Κοινωνικά Δίκτυα Χαρακτηριστικά & Μοντέλα Γράφων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κοινωνικά Δίκτυα Χαρακτηριστικά & Μοντέλα Γράφων"

Transcript

1 Κοινωνικά Δίκτυα Χαρακτηριστικά & Μοντέλα Γράφων Ν. Μ. Σγούρος Τμήμα Ψηφιακών Συστημάτων, Παν. Πειραιώς

2 Παράδειγμα

3 Χαρακτηριστικά Δικτύων Η κεντρικότητα (centrality) ενός κόμβου συνήθως ταυτίζεται με τον Η βαθμό του (degree centrality) Στην περίπ τωση αυτή χρησιμοπ οιείται ο κανονικόπ οιημένος βαθμός ενός κόμβου ο οπ οίος υπ όλογίζεται ως ο λόγος του βαθμού του π ρος το π λήθος των υπόλοιπ ων κόμβων στο δίκτυο και λαμβάνει τιμές μεταξύ 0 και 1. εγγύτητα (closeness) για έναν κόμβο Α ορίζεται ως ο λόγος του π λήθους των υπόλοιπ ων κόμβων στο δίκτυο π ρος το άθροισμα του μήκους των μονοπ ατιών ελαχίστου μήκους π ου συνδέουν τον Α με καθέναν απ ό τους υπόλοιπ ους κόμβους. Η εγύτητα ενός κόμβου αυξάνεται όσο μειώνεται το άθροισμα στον π αρανομάστη και επ ομένως μια μεγάλη τιμή εγγύτητητας υπ οδηλώνει ότι ο Α είναι κοντά σε όλους τους υπόλοιπ ους κόμβους.

4 Χαρακτηριστικά Δικτύων H ε ξασθενημένη εγγύτητα (decay centrality) ορίζεται μέσω μιας π αραμέτρου δ η οπ οία λαμβάνει τιμές μεταξύ 0 και 1 και καθορίζει το είδος της εγγήτητας π ου μας ενδιαφέρει. Α ν SumOfMinLengths(A) (= Σ lengthai ) είναι το άθροισμα του μήκους των μονοπ ατιών ελαχίστου μήκους π ου συνδέουν τον Α με τους υπόλοιπ ους κόμβους στο δίκτυο τότε η εξασθενημένη εγγύτητα DCA για τον Α ορίζεται ως: DCA = δ SumOfMinLenghts(A) Όταν δ 1 τότε η DCA εκφράζει το μέγεθος της συνδεδεμένης συνιστώσας στην οπ οία ανήκει ο Α ενώ τιμές της δ 0 επιτρέπ ουν στην DCA να εκτιμά το βαθμό του Α. Τιμές της δ 0.5 αντιστοιχούν σε μια εκτίμηση του συνδυασμού του βαθμού και του μεγέθους της συνιστώσας στην οπ οία ανήκει ο Α. Στην κανονικοπ οιημένη της έκφραση η εξασθενημένη εγγύτητα διαρείται με το γινόμενο (n-1)* δ

5 Παράδειγμα

6 Χαρακτηριστικά Δικτύων Η μεσολάβηση (betweenness) ενός κόμβου Α εκτιμά π όσο σημαντικός είναι ο Α για την επ ικοινωνία μεταξύ των άλλων κόμβων. Η μεσολάβηση ορίζεται ως το μήκους π λήθος των μονοπ ατιών ελάχιστου π ου συνδέουν δυο οποιουσδήπ οτε κόμβους και στα οπ οία ανήκει ο Α π ρος το π λήθος των μονοπ ατιών ελαχίστου μήκους π ου συνδέουν δυο οποιουσδήπ οτε κόμβους. Στην κανονικοπ οιημένη μορφή της η μεσολάβηση διαιρείται δια του όρου (n-1)*(n-2)/2 όπ ου n το π λήθος των κόμβων στο δίκτυο. O όρος αναφέρεται στον αριθμό των δυνατών συνδυασμών n-1 κόμβων ανα 2.

7 Παράδειγμα

8 Μοντέλα Αυξανόμενου Πλήθους Κόμβων Το δίκτυο αναπ τύσσεται σε διακριτά βήματα dt στο χρόνο t. Υπ οθέτουμε ότι dt = 1. Σε κάθε βήμα π ροστίθεται ένας νέος κόμβος στο δίκτυο. Επ όμένως σε κάθε βήμα ο χρόνος t ισούται με το π λήθος των κόμβων στο δίκτυο. Κάθε νέος κόμβος δημιουργεί m νέες συνδέσεις με προϋπ άρχοντες κόμβους στο δίκτυο. Κάθε ένας απ ό τους προϋπ άρχονες κόμβους επ ιλέγεται με μια σταθερή π ιθανότητα p. Το δίκτυο αρχικοπ οιείται με m π λήρως συνδεδεμένους κόμβους.

9 Ανάλυση Κάθε προϋπ άρχων κόμβος έχει π ιθανότητα ίση με m/t να συνδεθεί με έναν νέο κόμβο. Ο αναμενόμενος βαθμός κάπ οιου κόμβου i στο χρόνο t, όπ ου m<i<t υπ ολογίζεται ως: m+ m/(i+1)+m/(i+2)+...+m/t m*(1+log(t/i)) Ο αναμενόμενος χρόνος i μετά απ ό τον οπ οίο αναμένεται να έχουν δημιουργηθεί κόμβοι με βαθμό μικρότερο απ ό d κατά το χρόνο t υπ ολογίζεται ως: d > m*(1+log(t/i)) i > t * e (d-m)/m ο αναμενόμενος λόγος των κόμβων με βαθμό μεγαλύτερο α ό d π ρος το συνολικό π λήθος των κόμβων υπ ολογίζεται ως π (t - t * e(d-m)/m )/t = 1 - e(d-m)/m

10 Ποιοτικά Χαρακτηριστικά Οι νεότεροι κόμβοι έχουν συνήθως μικρότερο βαθμό από τους παλαιότερους Το μέγεθος της γιγάντιας συνιστώσας είναι συνήθως μικρότερο από τους ΕR γράφους

11 Μοντέλα Power Law log(p k ) = c- b * log(k) όπ ου k ο βαθμός ενός κόμβου και p κόμβος του γράφου να έχει βαθμό εξίσωση ως π ρος p k : k p k = M * k -b η τιιθανότητα ένας τυχαίος k. Λύνοντας την ανωτέρω όπ ου Μ ένας συντελεστής κανονικοπ οίησης π ου εξασφαλίζει ότι όλα τα p αθροίζονται στην μονάδα. Η ανωτέρω εξίσωση k θεωρούμε ότι επιτρέπ ει την εμφάνιση κόμβων με ακραίες τιμές βαθμών για b 3.

12 Τυπική συμπεριφορά P(x) x P(x) x

13 Παραδείγματα Moo n Solar flares wars ( ) richest individuals 2003 US family names 1990 US cities 2003

14 Προϋποθέσεις Ο αριθμός των κόμβων του γράφου αυξάνεται με την πάροδο του χρόνου Η πιθανόιτητα σύνδεσης ενός νέου κόμβου με έναν προϋπάρχοντα είναι ανάλογη του βαθμού του προϋπάρχοντος κόμβου. Το φαινόμενο αυτό ονομάζεται επιλεκτική προσκόλληση (preferential attachment) και υποδηλώνει την προτίμηση που έχουν νέα μέλη σε διάφορες κοινωνικές ομάδες να δημιουργούν σχέσεις με παλαιότερα μέλη τα οποία θεωρούνται αρκετά δημοφιλή.

15 Μοντέλο Barabasi-Albert Αρχικά δημιούργησε ένα π κόμβων. Σταδιακά π λήρως συνδεδεμένο γράφο q ρόσθεσε στο γράφο νέους κόμβους καθένας εκ των οπ οίων εισφέρει m νέες ακμές. Η π ιθανότητα κάπ οια απ ό τις νέες αυτές ακμές να συνδεθεί με κάπ οιον προϋπ άρχοντα κόμβο g είναι ανάλογη του βαθμού του g. A ν k i ο βαθμός του κόμβου i τότε η π ιθανότητα p i να συνδεθεί ο κόμβος i είναι: με ένα νέο κόμβο

16 Χαρακτηριστικά Η στατιστική κατανομή με την οπ οία π αράγονται οι ακμές στο δίκτυο είναι ανεξάρτητη απ ό την κλίμακα π αρατήρησης (scale-free). Η π ιθανότητα pk ένας οποισοδήπ οτε κόμβος να έχει βαθμό k είναι ανάλογη του k-3 δηλ: pk ~ k-3 Ο γράφος π ου π αράγεται είναι π λήρως συνδεδεμένος Οι βαθμοί των αλαιοτέρων κόμβων είναι συνήθως μεγαλύτεροι απ ό τους βαθμούς των νεοτέρων. Το φαινόμενο αυτό είναι γνωστό και ως the rich-get-richer effect. π

Ν. Μ. Σγούρος Κοινωνικά Δίκτυα Τμ. Ψηφιακών Συστημάτων, Παν. Πειραιώς

Ν. Μ. Σγούρος Κοινωνικά Δίκτυα Τμ. Ψηφιακών Συστημάτων, Παν. Πειραιώς ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ Οι γράφοι μας επιτρέπουν να αποτυπώσουμε τη δομή διαφόρων κοινωνικών δικτύων δεδομένου ότι μπορούν να αναπαραστήσουν σχέσεις ανάμεσα σε ένα σύνολο αντικειμένων. Ένας γράφος αποτελείται

Διαβάστε περισσότερα

Κοινωνικά Δίκτυα Χαρακτηριστικά & Μοντέλα Γράφων

Κοινωνικά Δίκτυα Χαρακτηριστικά & Μοντέλα Γράφων Κοινωνικά Δίκτυα Χαρακτηριστικά & Μοντέλα Γράφων Ν. Μ. Σγούρος Τμήμα Ψηφιακών Συστημάτων, Παν. Πειραιώς sgouros@unipi.gr Διάμετρος Ορίζουμε ως μήκος (length) ενός μονοπ ατιού τον αριθμό των ακμών π ου

Διαβάστε περισσότερα

Κοινωνικά Δίκτυα Δομή Κοινωνικών Δικτύων

Κοινωνικά Δίκτυα Δομή Κοινωνικών Δικτύων Κοινωνικά Δίκτυα Δομή Κοινωνικών Δικτύων Ν. Μ. Σγούρος Τμήμα Ψηφιακών Συστημάτων, Παν. Πειραιώς sgouros@unipi.gr Τύποι Δεσμών -Τριαδικό Κλείσιμο Οι συνδέσεις μεταξύ κόμβων σε κοινωνικά δίκτυα μ ορούν να

Διαβάστε περισσότερα

Ν. Μ. Σγούρος Κοινωνικά Δίκτυα Τμ. Ψηφιακών Συστημάτων, Παν. Πειραιώς

Ν. Μ. Σγούρος Κοινωνικά Δίκτυα Τμ. Ψηφιακών Συστημάτων, Παν. Πειραιώς ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΥΝΔΕΣΜΩΝ ΣΕ ΚΟΙΝΩΝΙΚΑ ΔΙΚΤΥΑ Ενώ τα μοντέλα που εξετάσαμε στην προηγούμενη ενότητα είναι αρκετά γενικά και μπορούν να περιγράψουν πέρα από κοινωνικά και βιολογικά ή φυσικά συστήματα (π.χ.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 202-203 ιδάσκων: Βασίλης ΚΟΥΤΡΑΣ ιδάσκων ε ί Συµβάσει Π. 407/80 v.koutras@fme.aegea.gr

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανε ιστήµιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΙΑΛΕΞΗ 05 ΠΕΡΙΓΡΑΦΙΚΗ ΑΝΑΛΥΣΗ Βόλος, 04-05 . Μέτρα ιασ οράς - Μεταβλητότητας . Εύρος e Max -M Ε ηρεάζεται α ό τον λήθος των αρατηρήσεων

Διαβάστε περισσότερα

ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 3 Ο ΚΕΦΑΛΑΙΟ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 3 Ο ΚΕΦΑΛΑΙΟ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 3 Ο ΚΕΦΑΛΑΙΟ 1 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΙΣΑΓΩΓΉ Συµβατικά συστήµατα: µεγάλη εριοχή κάλυψης υψηλή εκ εµ όµενη ισχύ αρεµβολές αδυναµία

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΕΠΙΛΟΓΩΝ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ I

ΘΕΩΡΙΑ ΤΩΝ ΕΠΙΛΟΓΩΝ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ I ΘΕΩΡΙΑ ΤΩΝ ΕΠΙΛΟΓΩΝ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ I Τέσσερα σηµαντικά στοιχεία: Το εισόδηµα του καταναλωτή Οι τιµές των αγαθών Οι ροτιµήσεις των καταναλωτών Η υ όθεση ότι ο καταναλωτής λαµβάνει α οφάσεις ου µεγιστο οιούν

Διαβάστε περισσότερα

ΠΡΟΣΘΗΚΗ- ΤΡΟΠΟΛΟΓΙΑ ΣΤΟ ΣΧΕ ΙΟ ΝΟΜΟΥ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΤΟΥΡΙΣΜΟΥ «Α

ΠΡΟΣΘΗΚΗ- ΤΡΟΠΟΛΟΓΙΑ ΣΤΟ ΣΧΕ ΙΟ ΝΟΜΟΥ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΤΟΥΡΙΣΜΟΥ «Α ΠΡΟΣΘΗΚΗ- ΤΡΟΠΟΛΟΓΙΑ ΣΤΟ ΣΧΕ ΙΟ ΝΟΜΟΥ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΤΟΥΡΙΣΜΟΥ «Α λούστευση διαδικασιών λειτουργίας τουριστικών ε ιχειρήσεων και τουριστικών υ οδοµών, ειδικές µορφές τουρισµού και άλλες διατάξεις» Α. ΑΙΤΙΟΛΟΓΙΚΗ

Διαβάστε περισσότερα

1 Η ΕΝΟΤΗΤΑ 1. Τι ονομάζεται επ ικοινωνία; Τι κοινό χρειάζεται για να επ ιτευχθεί;

1 Η ΕΝΟΤΗΤΑ 1. Τι ονομάζεται επ ικοινωνία; Τι κοινό χρειάζεται για να επ ιτευχθεί; 1 Η ΕΝΟΤΗΤΑ 1. Τι ονομάζεται επ ικοινωνία; Τι κοινό χρειάζεται για να επ ιτευχθεί; 2. Πώς ονομάζονται τα κείμενα π ου δε χρησιμοπ οιούν μόνο τη γλώσσα για να μεταδώσουν το μήνυμά τους; Ποιο άλλο μέσο εκτός

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ EΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μελέτη Επίδρασης Μεταβολής Δικτύου σε Μετρικές Ανάλυσης

Διαβάστε περισσότερα

Σύνθετα Δίκτυα. com+plex: with+ -fold (having parts) Διδάζκων Δημήηριος Καηζαρός

Σύνθετα Δίκτυα. com+plex: with+ -fold (having parts) Διδάζκων Δημήηριος Καηζαρός Σύνθετα Δίκτυα com+plex: with+ -fold (having parts) Διδάζκων Δημήηριος Καηζαρός Διάλεξη 5η: 07/03/2016 1 Δίκησα μικρού κόζμοσ Small-world networks 2 Συντελεστής ομαδοποίησης Ο ζοκηειεζηήξ μμαδμπμίεζεξ

Διαβάστε περισσότερα

Κοινωνικά Δίκτυα Αναζήτηση Πληροφοριών σε Δίκτυα

Κοινωνικά Δίκτυα Αναζήτηση Πληροφοριών σε Δίκτυα Κοινωνικά Δίκτυα Αναζήτηση Πληροφοριών σε Δίκτυα Ν. Μ. Σγούρος Τμήμα Ψηφιακών Συστημάτων, Παν. Πειραιώς sgouros@unipi.gr Δομή του WWW Ορισμός Προβλήματος Υποθέτουμε ότι οι πηγές πληροφοριών αναπριστώνται

Διαβάστε περισσότερα

1. Σε ένα τουρνουά με 8 παίκτες μπορεί οι παίκτες να συμμετείχαν σε: 6,5,4,4,4,3,1,1 αγώνες αντίστοιχα;

1. Σε ένα τουρνουά με 8 παίκτες μπορεί οι παίκτες να συμμετείχαν σε: 6,5,4,4,4,3,1,1 αγώνες αντίστοιχα; Ασκήσεις υποδειγματικές για το θεωρητικό μέρος του μαθήματος Α1. Εξετάστε αν είναι Σωστή ή Λάθος κάθε μία από τις επόμενες προτάσεις. Εξηγείστε την απάντησή σας. 1. Σε ένα τουρνουά με 8 παίκτες μπορεί

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΥΤΡΑΣ. ιδάσκων: ιδάσκων ε ί Συµβάσει Π. 407/80.

ΣΤΑΤΙΣΤΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΥΤΡΑΣ. ιδάσκων: ιδάσκων ε ί Συµβάσει Π. 407/80. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 2012-2013 ιδάσκων: Βασίλης ΚΟΥΤΡΑΣ ιδάσκων ε ί Συµβάσει Π. 407/80 v.koutras@fµe.aegean.gr

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Να αποδειχθεί ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B) Τα απλά ενδεχόµενα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 0-03 ιδάσκων: Βασίλης ΚΟΥΤΡΑΣ ιδάσκων ε ί Συµβάσει Π. 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

Τυχαία Γραφήματα. Τυχαία Δίκτυα. Τρία μοντέλα τυχαίων γραφημάτων Η συνάρτηση κατωφλίου και παραδείγματα με την R Μέσος βαθμός, μέσο μήκος μονοπατιών,

Τυχαία Γραφήματα. Τυχαία Δίκτυα. Τρία μοντέλα τυχαίων γραφημάτων Η συνάρτηση κατωφλίου και παραδείγματα με την R Μέσος βαθμός, μέσο μήκος μονοπατιών, Τυχαία Γραφήματα Τρία μοντέλα τυχαίων γραφημάτων Η συνάρτηση κατωφλίου και παραδείγματα με την R Μέσος βαθμός, μέσο μήκος μονοπατιών, Τυχαία Δίκτυα Ένα τυχαίο δίκτυο σχηματίζεται από ένα σύνολο V={v,v,,v

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

ΚΥΚΛΟΣ ΣΧΕΣΕΩΝ ΚΡΑΤΟΥΣ ΠΟΛΙΤΗ

ΚΥΚΛΟΣ ΣΧΕΣΕΩΝ ΚΡΑΤΟΥΣ ΠΟΛΙΤΗ ΚΥΚΛΟΣ ΣΧΕΣΕΩΝ ΚΡΑΤΟΥΣ ΠΟΛΙΤΗ ΣΥΝΟΨΗ ΔΙΑΜΕΣΟΛΑΒΗΣΗΣ Θέμα: ΣΥΜΒΟΛΗ ΤΟΥ ΣΥΝΗΓΟΡΟΥ ΤΟΥ ΠΟΛΙΤΗ ΣΤΗΝ ΑΠΟΚΑΤΑΣΤΑΣΗ ΤΗΣ ΟΡΘΗΣ ΕΡΜΗΝΕΙΑΣ ΝΟΜΟΥ: ΠΡΟΣΩΠΑ ΠΟΥ ΔΙΚΑΙΟΥΝΤΑΙ ΝΑ ΕΚΤΕΛΟΥΝ ΚΑΤΑ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΤΗΝ ΑΠΟ ΞΗΡΑΣ

Διαβάστε περισσότερα

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

Πιο αναλυτικά, οι τρο ο οιήσεις ου σχεδιάστηκαν για το εγκεκριµένο έργο και εριγράφονται στο αρόν συµ ληρωµατικό τεύχος είναι οι εξής:

Πιο αναλυτικά, οι τρο ο οιήσεις ου σχεδιάστηκαν για το εγκεκριµένο έργο και εριγράφονται στο αρόν συµ ληρωµατικό τεύχος είναι οι εξής: Ονοµασία - Περιγραφή Τρο ο οιήσεων Έργου Το εγκεκριµένο έργο ου ρόκειται να τρο ο οιηθεί αφορά στην κατασκευή των διασυνδετικών Γ.Μ. 400 & 150 KV του νέου ΚΥΤ Μεγαλό ολης. Πιο συγκεκριµένα, αφορά στην

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΑΧΟΝ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΗ Α.Ε.Π.Ε.Υ ΠΟΛΙΤΙΚΗ ΒΕΛΤΙΣΤΗΣ ΕΚΤΕΛΕΣΗΣ ΕΝΤΟΛΩΝ

ΑΧΟΝ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΗ Α.Ε.Π.Ε.Υ ΠΟΛΙΤΙΚΗ ΒΕΛΤΙΣΤΗΣ ΕΚΤΕΛΕΣΗΣ ΕΝΤΟΛΩΝ ΑΧΟΝ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΗ Α.Ε.Π.Ε.Υ ΠΟΛΙΤΙΚΗ ΒΕΛΤΙΣΤΗΣ ΕΚΤΕΛΕΣΗΣ ΕΝΤΟΛΩΝ ΑΘΗΝΑ, 2013 ΠΕΡΙΕΧΟΜΕΝΑ ΣΕΛΙ Α 1.Νοµοθετικό Πλαίσιο 3 2.Ορισµοί-Πεδίο Εφαρµογής της Πολιτικής Βέλτιστης Εκτέλεσης 3 3.Συναίνεση Πελάτη

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας. Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς

Διαβάστε περισσότερα

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών να αντιληφθούν τη σημασία της εν λόγω κατανομής

Διαβάστε περισσότερα

Το πιο απλό δίκτυο είναι η δυάδα ή το ζευγάρι. Οι δυάδες συνδέονται μεταξύ τους για να δημιουργήσουν μεγαλύτερα δίκτυα

Το πιο απλό δίκτυο είναι η δυάδα ή το ζευγάρι. Οι δυάδες συνδέονται μεταξύ τους για να δημιουργήσουν μεγαλύτερα δίκτυα Κοινωνικά Δίκτυα Το πιο απλό δίκτυο είναι η δυάδα ή το ζευγάρι Οι δυάδες συνδέονται μεταξύ τους για να δημιουργήσουν μεγαλύτερα δίκτυα Δεσμός = η σχέση μεταξύ δύο ατόμων Κεντρικός κόμβος Περιφερειακός

Διαβάστε περισσότερα

ΕΛΣΤΑΤ Πολιτική Αναθεωρήσεων

ΕΛΣΤΑΤ Πολιτική Αναθεωρήσεων ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ ΕΛΣΤΑΤ Πολιτική Αναθεωρήσεων ΠΕΙΡΑΙΑΣ, ΜΑΪΟΣ 2013 Η Ελληνική Στατιστική Αρχή (ΕΛΣΤΑΤ) υιοθετεί την αρούσα ολιτική αναθεωρήσεων η ο οία καθορίζει τυ ο οιηµένους

Διαβάστε περισσότερα

Στατιστική Ι-Πιθανότητες Ι

Στατιστική Ι-Πιθανότητες Ι Στατιστική Ι-Πιθανότητες Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 15 Οκτωβρίου 2015 Περιγραφή 1 Ενωση και Τομή Ενδεχομένων Περιγραφή 1 Ενωση και

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 1 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΥΨΕΛΩΤΑ ΣΥΣΤΗΜΑΤΑ ΚΙΝΗΤΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Κυψελωτή κάλυψη Σκο ός µείωση οµοκαναλικής αρεµβολής Μεγάλες κυψέλες

Διαβάστε περισσότερα

Σχήμα 8.46: Δίκτυο αεραγωγών παραδείγματος.

Σχήμα 8.46: Δίκτυο αεραγωγών παραδείγματος. Παράδειγμα 8.8 Διαστασιολόγηση και υπολογισμός δικτύου αεραγωγών με τη μέθοδο της σταθερής ταχύτητας Να υπολογιστούν οι διατομές των αεραγωγών και η συνολική πτώση πίεσης στους κλάδους του δικτύου αεραγωγών

Διαβάστε περισσότερα

ΘΕΜΑ : ΑΙΤΗΣΗ ΥΠΟΒΟΛΗΣ ΣΦΡΑΓΙΣΜΕΝΗΣ ΠΡΟΣΦΟΡΑΣ για τη διαχείριση Α οβλήτων Λι αντικών Ελαίων της ΣΤΑ.ΣΥ. Α.Ε.

ΘΕΜΑ : ΑΙΤΗΣΗ ΥΠΟΒΟΛΗΣ ΣΦΡΑΓΙΣΜΕΝΗΣ ΠΡΟΣΦΟΡΑΣ για τη διαχείριση Α οβλήτων Λι αντικών Ελαίων της ΣΤΑ.ΣΥ. Α.Ε. Αριθ. Πρωτ.: 14306 Ηµεροµηνία: 04.08.16 Πληροφορίες: Χρ. Τσαµ αρλή Τηλ.: 214 414 1304 ΘΕΜΑ : ΑΙΤΗΣΗ ΥΠΟΒΟΛΗΣ ΣΦΡΑΓΙΣΜΕΝΗΣ ΠΡΟΣΦΟΡΑΣ για τη διαχείριση Α οβλήτων Λι αντικών Ελαίων της ΣΤΑ.ΣΥ. Α.Ε. Η ΣΤΑ.ΣΥ

Διαβάστε περισσότερα

Ζωή και ενέργεια είναι δυο έννοιες άρρηκτα Όλοι οι ζωντανοί οργανισμοί για να

Ζωή και ενέργεια είναι δυο έννοιες άρρηκτα Όλοι οι ζωντανοί οργανισμοί για να 1. ΤΙ ΕΙΝΑΙ ΕΝΕΡΓΕΙΑ Ζωή και ενέργεια είναι δυο έννοιες άρρηκτα δεμένες. Όλοι οι ζωντανοί οργανισμοί για να επ ιζήσουν απ αιτούν ενέργεια, αλλά και οι φυσικές όπ ως και οι ανθρωπ ογενείς διαδικασίες απαιτούν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =

Διαβάστε περισσότερα

Φασµατική ανάλυση. Fast Fourier Transform

Φασµατική ανάλυση. Fast Fourier Transform Φασµατική ανάλυση Fast Fourier Transform Ανάλυση Fourier I Η ανάλυση Fourier είναι ένα εδίο των εφαρµοσµένων µαθηµατικών το ο οίο ροέκυψε α ό την ροσ άθεια ανα αράστασης µίας συνάρτησης ως αθροίσµατος

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοοίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΜΑΤΙΚΗΣ Οι τυχαίοι γράφοι ως μοντέλα δικτύων (με έμφαση στα κοινωνικά δίκτυα) ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του ΝΙΚΟΛΑΟΥ

Διαβάστε περισσότερα

Δίνονται οι συναρτήσεις: f ( x)

Δίνονται οι συναρτήσεις: f ( x) http://eler.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές ααντήσεις 6 ης Γρατής Εργασίας ΠΛΗ 00-0: Άσκηση (5 μον.) (Για το ερώτημα (α) συμβουλευθείτε τα εδάφια. και. και για το (β) το εδάφιο. του συγγράμματος

Διαβάστε περισσότερα

Η κεντρικότητα στην χωροθέτηση επιχειρήσεων σε οδικό δικτυο

Η κεντρικότητα στην χωροθέτηση επιχειρήσεων σε οδικό δικτυο Η κεντρικότητα στην χωροθέτηση επιχειρήσεων σε οδικό δικτυο Δρ. Δημήτρης Καβρουδάκης Επικουρος Καθηγήτής (υπο διορισμό) Πανεπιστήμιο Αιγαίου Τμήμα Γεωγραφίας Επιλογή θέσης Επιλογή θέσης επιχειρησης Προσβαση,

Διαβάστε περισσότερα

ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 2 Ο ΚΕΦΑΛΑΙΟ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 2 Ο ΚΕΦΑΛΑΙΟ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Ο ΚΕΦΑΛΑΙΟ 1 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΓΙΑ ΤΗ ΙΑ ΟΣΗ Βασικές α αιτήσεις για αξιό ιστη ε ικοινωνία κατανοµή της µέσης ηλεκτροµαγνητικής

Διαβάστε περισσότερα

ΠΥΘΙΑ BUSINESS FORECASTING SYSTEM

ΠΥΘΙΑ BUSINESS FORECASTING SYSTEM ΠΥΘΙΑ BUSINESS FORECASTING SYSTEM Ενηµερωτικό Φυλλάδιο FORECASTING SYSTEM UNIT Ενηµερωτικό Φυλλάδιο ΠΥΘΙΑ 1 Πυθία Ολοκληρωµένο Σύστηµα Ε ιχειρηµατικών Προβλέψεων Το εδίο των ροβλέψεων έχει σηµειώσει σηµαντική

Διαβάστε περισσότερα

H.Q.A.A. Α. Ι.Π. ιασφάλιση Ποιότητας στην Ανώτατη Εκπαίδευση ΠΑΡΑΡΤΗΜΑ Οδηγός εφαρµογής της διαδικασίας Εσωτερικής Αξιολόγησης

H.Q.A.A. Α. Ι.Π. ιασφάλιση Ποιότητας στην Ανώτατη Εκπαίδευση ΠΑΡΑΡΤΗΜΑ Οδηγός εφαρµογής της διαδικασίας Εσωτερικής Αξιολόγησης ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Α. Ι.Π. ΑΡΧΗ ΙΑΣΦΑΛΙΣΗΣ ΠΟΙΟΤΗΤΑΣ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ HELLENIC REPUBLIC H.Q.A.A. HELLENIC QUALITY ASSURANCE AGENCY FOR HIGHER EDUCATION ιασφάλιση Ποιότητας στην Ανώτατη Εκπαίδευση Οδηγός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανε ιστήµιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανε ιστήµιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΙΑΛΕΞΗ 09 ΧΡΗΣΗ ΤΗΣ ΤΥΠΟΠΟΙΗΜΕΝΗΣ ΚΑΝΟΝΙΚΗΣ ΚΑΤΑΝΟΜΗΣ ΑΣΚΗΣΕΙΣ Βόλος, 2015-2016

Διαβάστε περισσότερα

Εξισώσεις 2 ου βαθμού

Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Τεχνική Έκθεση 2. Ενδεικτικός Προϋ ολογισµός 3. Συγγραφή Υ οχρεώσεων ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΗΜΟΣ Η.Π.ΝΑΟΥΣΑΣ AΡ.ΠΡΩΤ.

ΠΕΡΙΕΧΟΜΕΝΑ 1. Τεχνική Έκθεση 2. Ενδεικτικός Προϋ ολογισµός 3. Συγγραφή Υ οχρεώσεων ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΗΜΟΣ Η.Π.ΝΑΟΥΣΑΣ AΡ.ΠΡΩΤ. AΡ.ΠΡΩΤ.7090/7-3-2014 ΕΝΙΑΙΑ ΜΕΛΕΤΗ ΓΙΑ ΤΗΝ ΤΟΥ ΗΜΟΥ ΝΑΟΥΣΑΣ ΚΑΙ ΤΩΝ ΝΟΜΙΚΩΝ ΤΟΥ ΠΡΟΣΩΠΩΝ ΠΡΟΫΠΟΛΟΓΙΣΜΟΥ 27.531,00 (ανευ Φ.Π.Α.) ΠΕΡΙΕΧΟΜΕΝΑ 1. Τεχνική Έκθεση 2. Ενδεικτικός Προϋ ολογισµός 3. Συγγραφή

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών

Διαβάστε περισσότερα

4. Η συµµετοχή στην ροωθητική ενέργεια και τον ιαγωνισµό είναι δωρεάν και δεν α αιτείται αγορά ο οιουδή οτε ροϊόντος της ιοργανώτριας.

4. Η συµµετοχή στην ροωθητική ενέργεια και τον ιαγωνισµό είναι δωρεάν και δεν α αιτείται αγορά ο οιουδή οτε ροϊόντος της ιοργανώτριας. Όροι συµµετοχής στον ιαγωνισµό ΝΕΑ ΣΚΑΝ ΑΛΟ 1. H εταιρεία ΓΡΗΓΟΡΗΣ ΜΙΚΡΟΓΕΥΜΑΤΑ ΑΒΕΕ (έδρα Άλιµος Αττικής, Αρχαίου Θεάτρου 8, τηλ. 210-9971100), εφεξής η «ιοργανώτρια», διοργανώνει ροωθητική ενέργεια &

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ JAVA. 2 η ιάλεξη

ΣΕΜΙΝΑΡΙΟ JAVA. 2 η ιάλεξη ΣΕΜΙΝΑΡΙΟ JAVA 2 η ιάλεξη ΕΙΣΑΓΩΓΙΚΑ ΓΙΑ ΤΟΝ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗ ΠΡΟΓ/ΣΜΟ Περισσότερος έλεγχος ροής ρογράµµατος Enumerators Εισαγωγή στον αντικειµενοστραφή ρογραµµατισµό Παραδείγµατα ΕΛΕΓΧΟΣ ΡΟΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ

Διαβάστε περισσότερα

Αιτιολόγηση με αβεβαιότητα

Αιτιολόγηση με αβεβαιότητα Αιτιολόγηση με αβεβαιότητα Στα προβλήματα του πραγματικού κόσμου οι αποφάσεις συνήθως λαμβάνονται υπό αβεβαιότητα (uncertainty), δηλαδή έλλειψη επαρκούς πληροφορίας. Οι κυριότερες πηγές αβεβαιότητας είναι:

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

ροστίθεται το εριθώριο διανοµής, το ο οίο αραµένει σταθερό (σε ανά kwh) καθ

ροστίθεται το εριθώριο διανοµής, το ο οίο αραµένει σταθερό (σε ανά kwh) καθ 16.03.2009 Α. Ι ΡΥΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΗΣ ΕΠΑ ΘΕΣΣΑΛΟΝΙΚΗΣ Α.Ε. Η Εταιρεία Παροχής Αερίου Θεσσαλονίκης Α.Ε. ιδρύθηκε το έτος 2000 µε την συµµετοχή κατά 51% της ηµόσιας Ε ιχείρησης Αερίου ( ΕΠΑ) και κατά

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

Σηµειώσεις Θεωρίας και Μέθοδοι. Κεφάλαιο: Παράγωγοι. και Cgδυο συναρτήσεων f και g εργαζόµαστε ως εξής: x,f(x ) και ( ) ó a

Σηµειώσεις Θεωρίας και Μέθοδοι. Κεφάλαιο: Παράγωγοι. και Cgδυο συναρτήσεων f και g εργαζόµαστε ως εξής: x,f(x ) και ( ) ó a Κοινή εφα τοµένη Αν θέλουµε να βρούµε τη κοινή εφα τοµένη ( ε ) : y=α +β των γραφικών αραστάσεων gδυο συναρτήσεων g εργαζόµαστε ως εξής:,( ) ( ) Έστω ( ),g( ) τα κοινά σηµεία της (ε) µε την εφα τοµένη

Διαβάστε περισσότερα

MILLENNIUM ΑΕ ΑΚ. Τελευταία τρο ο οίηση κανονισµού Α. Ε.Κ.: 100/

MILLENNIUM ΑΕ ΑΚ. Τελευταία τρο ο οίηση κανονισµού Α. Ε.Κ.: 100/ MILLENNIUM ΑΕ ΑΚ ΚΑΝΟΝΙΣΜΟΣ ΑΜΟΙΒΑΙΟΥ ΚΕΦΑΛΑΙΟΥ «Millennium EURO PLUS ΙΑΧΕΙΡΙΣΗΣ ΙΑΘΕΣΙΜΩΝ» Άρθρο 1 - ΑΜΟΙΒΑΙΟ ΚΕΦΑΛΑΙΟ Τελευταία τρο ο οίηση κανονισµού Α. Ε.Κ.: 100/11.07.2011 1. Το αµοιβαίο κεφάλαιο

Διαβάστε περισσότερα

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Προσδιορισµός ρο ής αδράνειας κυλίνδρου ή σφαίρας ου κυλίεται χωρίς ολίσθηση σε κεκλιµένο ε ί εδο Στόχοι 1. Σχεδιασμός και συναρμολόγηση απλών πειραματικών διατάξεων,

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι (3)

Παραδείγματα Διανυσματικοί Χώροι (3) Παραδείγματα Διανυσματικοί Χώροι () Παράδειγμα Δίνεται ο πίνακας A = 6. Να υπολογισθούν οι θεμελιώδεις υποχώροι που σχετίζονται με τον πίνακα Α. Να βρεθεί η διάστασή του κάθε ενός και από μία βάση τους.

Διαβάστε περισσότερα

Πριν α ό την έναρξη της συνεδρίασης ο Πρόεδρος δια ίστωσε ότι α ό τα εννέα (9) µέλη της Οικονοµικής Ε ιτρο ής:

Πριν α ό την έναρξη της συνεδρίασης ο Πρόεδρος δια ίστωσε ότι α ό τα εννέα (9) µέλη της Οικονοµικής Ε ιτρο ής: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΗΜΟΣ ΛΑΜΙΕΩΝ Α Α : 6ΨΝΣΩΛΚ-Ν0Κ Α όσ ασµα α ό το ρακτικό της 40 ης συνεδρίασης της Οικονοµικής Ε ιτρο ής. ΑΡΙΘΜ. ΑΠΟΦ. : 644 /2014 Θ Ε Μ Α : «ΚΑΘΟΡΙΣΜΟΣ ΤΕΛΩΝ ΙΕΛΕΥΣΗΣ, ΤΩΝ ΤΕΛΩΝ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΜΒΟΥΛΙΟΥ ΕΝΤΑΞΗΣ ΜΕΤΑΝΑΣΤΩΝ του ήµου Λαµιέων

ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΜΒΟΥΛΙΟΥ ΕΝΤΑΞΗΣ ΜΕΤΑΝΑΣΤΩΝ του ήµου Λαµιέων ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΜΒΟΥΛΙΟΥ ΕΝΤΑΞΗΣ ΜΕΤΑΝΑΣΤΩΝ του ήµου Λαµιέων Άρθρο 1 (Άρθρο 7, αρ. 1 Ν. 3852/2010) ιοίκηση ήµου Ο δήµος διοικείται α ό το δηµοτικό συµβούλιο, την οικονοµική ε ιτρο ή, την ε ιτρο

Διαβάστε περισσότερα

Network Science Θεωρεία Γραφηµάτων (1)

Network Science Θεωρεία Γραφηµάτων (1) Network Science Θεωρεία Γραφηµάτων (1) Network Theory: Graph Theory Section 1 Οι γέφυρες του Konigsberg THE BRIDGES OF KONIGSBERG Network Science: Graph Theory THE BRIDGES OF KONIGSBERG Network Science:

Διαβάστε περισσότερα

Προς το Υ ουργείο Οικονοµικών 1. Γενική Γραµµατεία ηµοσίων Εσόδων κ. Θεοχάρη Χάρη 2. Τµήµα Φορολογίας Εισοδήµατος 3. Τµήµα Φόρου Προστιθέµενης Αξίας

Προς το Υ ουργείο Οικονοµικών 1. Γενική Γραµµατεία ηµοσίων Εσόδων κ. Θεοχάρη Χάρη 2. Τµήµα Φορολογίας Εισοδήµατος 3. Τµήµα Φόρου Προστιθέµενης Αξίας Ιτέας 17, Αργυρού ολη, Αθήνα 16452 2103302840 2103304006 Προς το Υ ουργείο Οικονοµικών 1. Γενική Γραµµατεία ηµοσίων Εσόδων κ. Θεοχάρη Χάρη 2. Τµήµα Φορολογίας Εισοδήµατος 3. Τµήµα Φόρου Προστιθέµενης Αξίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

Αριθ. Πρωτ. : 15679 Ηµεροµηνία : 12.08.2015. Πρόχειρος µειοδοτικός διαγωνισµός Τ -111/15 για την ροµήθεια µεταχειρισµένων µειωτήρων

Αριθ. Πρωτ. : 15679 Ηµεροµηνία : 12.08.2015. Πρόχειρος µειοδοτικός διαγωνισµός Τ -111/15 για την ροµήθεια µεταχειρισµένων µειωτήρων ΣΤΑΘΕΡΕΣ ΣΥΓΚΟΙΝΩΝΙΕΣ A.E. ΛΕΙΤΟΥΡΓΙΑ ΜΕΣΩΝ ΣΤΑΘΕΡΗΣ ΤΡΟΧΙΑΣ Ε ΡΑ: ΑΘΗΝΑΣ 67 - ΑΘΗΝΑ 105 52 ΑΦΜ: 099939745.Ο.Υ. :ΦΑΕ ΑΘΗΝΩΝ ΤΗΛ. ΚΕΝΤΡΙΚΟΥ ΠΡΩΤΟΚΟΛΛΟΥ: 214 414 1499 FAX: 210-3223935 Αριθ. Πρωτ. : 15679

Διαβάστε περισσότερα

SQL: Αιτήματα. ( Συνέχεια...) Κεφάλαιο 5. Ενηµέρωση: 23/12/2008. Database Management Systems, R. Ramakrishnan and J. Gehrke

SQL: Αιτήματα. ( Συνέχεια...) Κεφάλαιο 5. Ενηµέρωση: 23/12/2008. Database Management Systems, R. Ramakrishnan and J. Gehrke SQL: Αιτήματα ( Συνέχεια...) Κεφάλαιο 5 Ενηµέρωση: 23/12/2008 Database Management Systems, R. Ramakrishnan and J. Gehrke Τελεστές Συνάθροισης Σημαντική π ροέκταση της σχεσιακής άλγεβρας. COUNT (*) COUNT

Διαβάστε περισσότερα

α n z n = 1 + 2z 2 + 5z 3 n=0

α n z n = 1 + 2z 2 + 5z 3 n=0 Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Άσκηση 1: Μια τράπεζα ενδιαφέρεται να μελετήσει την αποταμιευτική συμπεριφορά των πελατών της. Θεωρείται ως δεδομένο ότι η ετήσια αποταμίευση των πελατών της

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 7: Ανεξάρτητα ενδεχόμενα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 3 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ Ενημερωτικό Φυλλάδιο Πρωτοετών φοιτητών Οδηγός Χρήσης Εργαστηρίων Η/Υ Προπτυχιακών Φοιτητών και Βασικές Υπηρεσίες που Παρέχονται από το Πανεπιστήμιο Αιγαίου

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

Προσδιορισµός ρο ής αδράνειας κυλίνδρου ή σφαίρας ου κυλίεται χωρίς ολίσθηση σε κεκλιµένο ε ί εδο

Προσδιορισµός ρο ής αδράνειας κυλίνδρου ή σφαίρας ου κυλίεται χωρίς ολίσθηση σε κεκλιµένο ε ί εδο ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ Καθηγητές: Σφαέλος Ι. Φύττας Γ. Προσδιορισµός ρο ής αδράνειας κυλίνδρου ή σφαίρας ου κυλίεται

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ).

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). A n Πόρισμα 1: Ο βαθμός του χαρ/κου πολυωνύμου ενός

Διαβάστε περισσότερα

Περιεχόμενα. Λίγα λόγια από το συγγραφέα... 7

Περιεχόμενα. Λίγα λόγια από το συγγραφέα... 7 Περιεχόμενα Λίγα λόγια από το συγγραφέα... 7 1 Microsoft Excel 2003... 9 2 Η δομή ενός φύλλου εργασίας... 26 3 Δημιουργία νέου βιβλίου εργασίας και καταχώριση δεδομένων... 37 4 Συμβουλές για την καταχώριση

Διαβάστε περισσότερα

Ηλεκτρονική Έρευνα Ικανοποίησης Χρηστών Βιβλιοθήκης και Κέντρου Πληροφόρησης Πανεπιστηµίου Ιωαννίνων

Ηλεκτρονική Έρευνα Ικανοποίησης Χρηστών Βιβλιοθήκης και Κέντρου Πληροφόρησης Πανεπιστηµίου Ιωαννίνων 2 ΜΟΝΑ Α ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΑΚΑ ΗΜΑΪΚΩΝ ΒΙΒΛΙΟΘΗΚΩΝ ΕΡΕΥΝΑ Ηλεκτρονική Έρευνα Ικανοποίησης Χρηστών Βιβλιοθήκης και Κέντρου Πληροφόρησης Πανεπιστηµίου Ιωαννίνων Επιµέλεια : Βασίλης Πολυχρονόπουλος ΙΩΑΝΝΙΝΑ

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΠΡΟΣ ΕΠΙΒΛΕΠΟΝΤΕΣ ΦΟΡΕΙΣ ΓΙΑ ΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ ΥΠΟΒΟΛΗ ΕΝΤΥΠΩΝ ΟΑΕ ΣΤΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ «ΕΡΓΑΝΗ»

Ο ΗΓΙΕΣ ΠΡΟΣ ΕΠΙΒΛΕΠΟΝΤΕΣ ΦΟΡΕΙΣ ΓΙΑ ΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ ΥΠΟΒΟΛΗ ΕΝΤΥΠΩΝ ΟΑΕ ΣΤΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ «ΕΡΓΑΝΗ» ΠΑΡΑΡΤΗΜΑ Ο ΗΓΙΕΣ ΠΡΟΣ ΕΠΙΒΛΕΠΟΝΤΕΣ ΦΟΡΕΙΣ ΓΙΑ ΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ ΥΠΟΒΟΛΗ ΕΝΤΥΠΩΝ ΟΑΕ ΣΤΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ «ΕΡΓΑΝΗ» Οδηγίες καταχώρησης Υ οστήριξη: Σας γνωρίζουµε ότι: α) στο Πληροφοριακό Σύστηµα ΕΡΓΑΝΗ-κατά

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΠΡΟΤΥΠΟΠΟΙΗΣΗΣ

ΜΕΘΟΔΟΙ ΠΡΟΤΥΠΟΠΟΙΗΣΗΣ ΜΕΘΟΔΟΙ ΠΡΟΤΥΠΟΠΟΙΗΣΗΣ είναι ο αριθμός των θανάτων - από κάθε αιτία - που συνέβησαν και καταγράφηκαν μέσα σε ένα ημερολογιακό έτος ανά 1 κατοίκους του μελετώμενου πληθυσμού. αριθμός θανάτων έτους t TBM/CDR

Διαβάστε περισσότερα

Κεφάλαιο 2.4 Matrix Algorithms

Κεφάλαιο 2.4 Matrix Algorithms Κεφάλαιο 2.4 Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Κατασκευή ΝxNxN Mesh of trees (1/3) Στον ΝxNxN κύβο προσθέτω τους εξής κόμβους:

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοοίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 207-208 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Εικ. Καθηγητής v.kouras@fme.aegea.gr

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΡΑΣΗΣ ΤΟΥ ΟΙΚΟΝΟΜΙΚΟΥ ΕΠΙΜΕΛΗΤΗΡΙΟΥ ΤΗΣ ΕΛΛΑ ΑΣ ΓΙΑ ΤΗΝ ΠΕΡΙΟ Ο 2014-2016

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΡΑΣΗΣ ΤΟΥ ΟΙΚΟΝΟΜΙΚΟΥ ΕΠΙΜΕΛΗΤΗΡΙΟΥ ΤΗΣ ΕΛΛΑ ΑΣ ΓΙΑ ΤΗΝ ΠΕΡΙΟ Ο 2014-2016 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΡΑΣΗΣ ΤΟΥ ΟΙΚΟΝΟΜΙΚΟΥ ΕΠΙΜΕΛΗΤΗΡΙΟΥ ΤΗΣ ΕΛΛΑ ΑΣ ΓΙΑ ΤΗΝ ΠΕΡΙΟ Ο 2014-2016 Η αγκόσµια οικονοµική κρίση ου βιώνουµε τα τελευταία χρόνια είναι η χειρότερη της µετα ολεµικής ε οχής. Μια κρίση

Διαβάστε περισσότερα