ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ"

Transcript

1 ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36

2 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις που λαμβάνονται σε θέματα σύνθεσης διεργασιών είναι διακριτές εξ ορισμού (αριθμός δίσκων σε μία στήλη απόσταξης, η χρήση μίας συσκευής ορισμού τύπου κλπ. Εάν ακολουθηθεί μία αλγοριθμική προσέγγιση στο πρόβλημα της σύνθεσης χρειαζόμαστε αυτές τις διακριτές επιλογές να τις μοντελοποιήσουμε μαθηματικά και να μάθουμε πώς να λύνουμε το πρόβλημα βελτιστοποίησης που θα προκύπτει. Σε αυτό το κεφάλαιο εξετάζουμε το θέμα της μοντελοποίησης διακριτών αποφάσεων σε θέματα σύνθεσης διεργασιών. Υπάρχουν τρία βασικά βήματα σε αυτό το θέμα: Προσδιορισμός όλων των δυνατών εναλλακτικών. Ορισμός των διακριτών μεταβλητών αποφάσεων. Ανάπτυξη αλγεβρικών εξισώσεων που αντιπροσωπεύουν αυτές τις εναλλακτικές επιλογές.. Ανάπτυξη Υπερδομής Το πρώτο βήμα απεικονίζεται καλύτερα γραφικά. Για ομογενή συστήματα όπως δίκτυα εναλλακτών θερμότητας, αλληλουχία αποστακτικών στηλών και δίκτυα βοηθητικών παροχών πρέπει να αναπτυχθεί μια συστηματική αναπαράσταση. Το παρακάτω σχήμα απεικονίζει ένα δίκτυο αποστακτικών στηλών για ένα διαχωρισμό τεσσάρων συστατικών (Andrecovch and Westerberg, 985. Σε αυτό το διάγραμμα απεικονίζονται όλες οι δυνατές αλληλουχίες των στηλών. Το επόμενο διάγραμμα δείχνει μία υπερδομή από ένα σύστημα CSTR/PFR. Οι αντιδραστήρες μπορούν να χρησιμοποιηθούν μόνοι τους, παράλληλα, σε σειρά ή σε οποιαδήποτε άλλη διάταξη καθώς και να συμπεριληφθούν ανακυκλώσεις. 37

3 Δίκτυο Αποστακτικών Στηλών με διαχωρισμούς αντιπροσωπεύοντας όλες τις δυνατές επιλογές και αλληλουχίες Υπερδομή ενός συστήματος CSTR/PFR Για ετερογενή μίγματα, όπως ολικά διαγράμματα ροής, οι εναλλακτικές θα πρέπει να οριστούν από τον χρήστη. Για παράδειγμα, διαφορετικοί τύποι αντιδραστήρων μπορεί να προταθούν, διαφορετικές διατάξεις των ανακυκλώσεων να οριστούν, μερικές επιλογές πρώτων υλών να επιλεγούν, Γενικά πρέπει να χρησιμοποιηθεί καλή γνώση της διεργασίας, ιεραρχικοί κανόνες και θερμοδυναμική, πληροφορία προκειμένου να χτιστεί σωστά μια υπερδομή του διαγράμματος ροής. Μεγάλη προσοχή πρέπει να δοθεί στην ανάπτυξη της υπερδομής, καθώς η βέλτιστη λύση που θα βρεθεί καθορίζεται από τις παραδοχές που έχουν γίνει σε 38

4 αυτό το στάδιο: μόνο οι εναλλακτικές που έχουν χρησιμοποιηθεί στην υπερδομή μπορούν να επιλεχθούν στην βέλτιστη λύση. Η απόδοση/αποτελεσματικότητα του αλγορίθμου βελτιστοποίησης που θα χρησιμοποιηθεί για την βελτιστοποίηση της υπερδομής εξαρτάται από την μαθηματική αναπαράσταση αυτής. Απαιτείται καλή γνώση των αλγορίθμων βελτιστοποίησης, ακόμη και για καλά μοντελοποιημένα προβλήματα.. Μοντελοποίηση της Υπερδομής μίας Διεργασίας ή Διαγράμματος ροής Από την στιγμή που οριστεί το σετ των εναλλακτικών επιλογών των διαφόρων συσκευών ή διεργασιών, πρέπει να γίνει η μαθηματική αναπαράσταση/μοντελοποίηση της υπερδομής.. Συνεχής Αναπαράσταση Μια δυνατότητα είναι η ανάπτυξη ενός μοντέλου της διεργασίας, το οποίο περιλαμβάνει όλα τα δυνατά εναλλακτικά σενάρια με συνεχή τρόπο. Όταν βελτιστοποιείται αυτή η διεργασία, το μεγάλο κόστος της επιλογής όλων των συσκευών πρέπει να επιβάλει μηδενικές τιμές σε κάποιους από τους ρυθμούς ροής στην βέλτιστη λύση. Οι συσκευές με μηδενικές ροές εισόδου και εξόδου μπορούν κατόπιν να διαγραφούν από την διεργασία. Σε αυτήν την περίπτωση οι διακριτές αποφάσεις (πρέπει να χρησιμοποιηθεί CSTR, PFR ή και οι δύο? λαμβάνονται έμμεσα. Ωστόσο, μπορεί να υπάρχουν αποφάσεις οι οποίες είναι δύσκολα να ποσοτικοποιηθούν και να χρησιμοποιηθούν στην αντικειμενική συνάρτηση χρησιμοποιώντας αυτήν την έμμεση προσέγγιση. Για παράδειγμα μπορεί να απαιτείται να επιβληθεί ένα ελάχιστο στο μέγεθος μιας συσκευής όταν αυτή επιλεχθεί. Όταν ο ελάχιστος όγκος ενός αντιδραστήρα είναι V mn, θέλουμε ο βέλτιστος όγκος του αντιδραστήρα V να ικανοποιεί μία από τις παρακάτω σχέσεις: V = 0 ή V Vmn Πως μπορεί το παραπάνω να εκφραστεί μαθηματικά?... Μερικοί Ορισμοί Λογικές Εκφράσεις όπως η παραπάνω μπορούν να εκφραστούν μέσω Λογικών προτάσεων σχετίζοντας ένα σετ από όρους P, =,... r με βάση τα σύμβολα του παρακάτω πίνακα: Σύμβολο Ορισμός Η (διαζευκτικό- ισχύει τουλάχιστον Αποκλειστικό Η (μόνο ένα ΚΑΙ ΟΧΙ 39

5 Η πρόταση P P μπορεί να γραφεί ως P P. Το παράδειγμα του αντιδραστήρα μπορεί να εκφραστεί ως ( V = ( V 0 V mn Αλγεβρικές Εξισώσεις. Λογικές εκφράσεις μπορούν να μετατραπούν σε αλγεβρικές εξισώσεις. Αυτές περιλαμβάνουν μόνο αλγεβρικές εκφράσεις όπως +,,,, τριγωνομετρικές συναρτήσεις. Μπορεί να είναι ισότητες ή ανισότητες. Αυτό απαιτεί την εισαγωγή δυαδικών μεταβλητών. Οι δυαδικές μεταβλητές είναι μεταβλητές που μπορούν να πάρουν μόνο τιμές 0 και. Συχνά συμβολίζονται με το σύμβολο. Συχνά, μια δυαδική μεταβλητή σχετίζεται με μία συσκευή διεργασίας: αν η συσκευή υπαρχει = 0 αν η συσκευή δεν υπάρχει (ή δεν επιλεχθεί Αν μια τέτοια μεταβλητή οριστεί για το παράδειγμα του αντιδραστήρα που είδαμε πριν τότε η λογική έκφραση γράφεται: V mn V M Όπου Μ είναι ένας μεγάλος αριθμός (ή το μέγιστο όριο στον όγκο του αντιδραστήρα αν είναι γνωστό αυτό. Όταν ο αντιδραστήρας δεν επιλεγεί τότε V = 0 ενώ όταν επιλεχθεί V V M. mn... Από τις λογικές εκφράσεις στις Αλγεβρικές Εξισώσεις... Μερικοί βασικοί μετασχηματισμοί Λογική Πρόταση Μαθηματική αναπαράσταση = ή 0 P P P P3 P P P3 P P (ισοδύναμο του P P P ή ( P P ( P P P P P3 P P P3 P P3 P P3 = + + 3,, 3 + 0, = 3 0, 3 P ή 0 0 ή = ή ( ( 0 Στον παραπάνω πίνακα το P δηλώνει μια αληθή έκφραση-πρόταση ενώ το P δηλώνει την αντίθεση (μη ισχύ της πρότασης αυτής. Παράδειγμα P : Επιλογή της συσκευής ι, εκτέλεση ενός έργου κλπ.... Μία Συστηματική Προσέγγιση 40

6 Κάθε λογική έκφραση μπορεί να μετατραπεί σε μία ισοδύναμη αλγεβρική εξίσωση με δυαδικές μεταβλητές χρησιμοποιώντας μία συστηματική προσέγγιση Βήμα. Εισάγουμε δυαδικές μεταβλητές για κάθε όρο P. Αν το P είναι αληθές (ισχύει, τότε =. Αν το P είναι ψευδές (δεν ισχύει, τότε = 0. Βήμα. Μετατρέπουμε την λογική έκφραση σε μία ισοδύναμη συνδετική κανονική μορφή Q Q... Q Q j j =,... n είναι όροι που εξαρτώνται από τα n, όπου τα ( P. Τότε τα n Q είναι ανεξαρτήτως αληθή. Αντικαθιστούμε το ρυθμιστή συνεπαγωγής από την ισοδύναμη λογική μορφή: ( P P ( P P. Εφαρμόζουμε το θεώρημα του de Morgan για να θέσουμε κάθε αντίθεση προς τα μέσα P P P P ( ( ( P P ( P P Κατανέμουμε τον τελεστή Η πάνω στον ρυθμιστή ΚΑΙ χρησιμοποιώντας: P P P P P P (( (( ( 3 3 P3 Βήμα 3. Μετατρέπουμε το κάθε Q σε μία ισοδύναμη αλγεβρική εξίσωση ή σετ από αλγεβρικές εξισώσεις. Εφαρμογή. Μετατρέψτε το (( P P P ( P σε αλγεβρικές εξισώσεις 3 4 P5 Βήμα. Θέτουμε,...5 στα P,..., P5 αντίστοιχα Βήμα. Συνδετική κανονική μορφή Μετατρέψτε το τελεστή συνεπαγωγής : (( P P P3 ( P4 P5 Εφαρμόζουμε το θεώρημα του de Morgan P P P P P ( ( 3 ( 4 5, (( P P P ( P P Κατανέμουμε τον τελεστή Η: P P P P P 3 (( ( 4 5 ( 3 ( P4 P5 ( P P P P ( P P P Q 4 \ Βήμα 3. Η ισοδύναμη αλγεβρική εξίσωση για το Q είναι Για το Qείναι Αν και οι δύο εκφράσεις ικανοποιούνται, η αρχική λογική έκφραση ικανοποιείται επίσης. Q 4

7 ...3 Παραδείγματα Η παραπάνω συστηματική προσέγγιση μπορεί να εφαρμοστεί σε μερικά συχνά προβλήματα στην σύνθεση διεργασιών Αμοιβαία αποκλεισμένα σετ εναλλακτικών: Επιλέξτε μόνο ένα από τα m. m P ή = = m = Μη αποκλεισμένα σετ εναλλακτικών: Επιλέξτε το πολύ ένα από τα m. m P ή = m = Εξαρτώμενες αποφάσεις. Pk Pj (αλλά το Pj δεν απαιτεί κατά ανάγκη το P k : Pk Pj ή k j 0 Είτε/ή περιορισμοί: f ( x 0 ή f ( x 0 o Λογική έκφραση: ( f ( x 0 f ( x 0 o Αλγεβρική Εξίσωση: f( x M f ( x M ( Όπου Μ είναι ένας μεγάλος αριθμός. Αυτοί οι περιορισμοί είναι γνωστοί και ως περιορισμοί του μεγάλου Μ Ενεργοποίηση και απενεργοποίηση περιορισμών ισοτήτων. Αν η x = h x είναι άσχετο (δηλ. συσκευή υπάρχει, h ( 0. Διαφορετικά το ( ( x + h και γράφουμε:. Ορίζουμε τις μη-αρνητικές μεταβλητές slack ( x + h + s s + s + s U + s, s 0 Όπου U είναι ένας μεγάλος θετικός αριθμός. = 0 ( + s και Ενεργοποίηση και απενεργοποίηση ανισοτικών περιορισμών. Αν μία x 0 g x είναι άσχετο (δηλ. συσκευή υπάρχει τότε g (. Διαφορετικά ( g ( x. Ορίζουμε τις μη-αρνητικές μεταβλητές slack s και γράφουμε: g ( x s s U s 0 ( Όπου U είναι ένας μεγάλος θετικός αριθμός. Ασυνεχή πεδία: x = 0 ή L x U.Αυτό είναι το ίδιο με το παράδειγμα του αντιδραστήρα - ( x = 0 ( L x U ή L x U Ασυνεχείς συναρτήσεις: Ορισμένο μοντέλο κόστους σε ασυνεχές πεδίο (παρακάτω σχήμα. s 4

8 Γραμμική συνάρτηση κόστους σε ασυνεχές πεδίο α + βx L x U C = 0 x = 0 Λογική πρόταση: (( L x U ( C = α + βx ( x = 0 C = 0 Αλγεβρικές Εξισώσεις: C = α + βx L x U Προσέξτε ότι όταν το κάτω όριο στο x είναι μηδέν, ο συνδυασμός =, x = 0 δεν θα επιλεγεί ανεξάρτητα από το ότι ικανοποιεί την εξίσωση. Αυτό συμβαίνει γιατί δεν ανταποκρίνεται σε ένα ελάχιστο της αντικειμενικής συνάρτησης. Άσκηση: Αναπτύξτε την μαθηματική αναπαράσταση μια συσκευής με γραμμική συνάρτηση κόστους σε τμήματα ως συνάρτηση της μεταβλητής δυναμικότητας x όπως φαίνεται παρακάτω: Γραφική απεικόνιση τμηματικής γραμμικής συνάρτησης κόστους..3. Ακέραιες Μεταβλητές Ένας άλλος τύπος μεταβλητών που χρησιμοποιούνται σε θέματα σύνθεσης διεργασιών είναι οι ακέραιες μεταβλητές. Εξετάστε το παράδειγμα ενός δικτύου αντλιών όπου 3 διαφορετικοί τύποι αντλιών μπορούν να επιλεγούν από τον κατασκευαστή. Για κάθε τύπο αντλίας θα θέλαμε να ξέραμε πόσες παράλληλες γραμμές πρέπει να έχουμε και πόσες αντλίες θα πρέπει να τοποθετηθούν στην σειρά (δείτε το παρακάτω σχήμα. Αυτό το πρόβλημα περιλαμβάνει δυαδικές μεταβλητές 43

9 (εάν αντλίες ενός τύπου θα επιλεχθούν ή όχι και ακέραιες μεταβλητές (πόσες αντλίες στην σειρά θα χρησιμοποιηθούν στην σειρά, πόσες γραμμές θα τοποθετηθούν παράλληλα. Υπάρχουν δύο επιλογές για την μαθηματική μοντελοποίηση αυτού του προβλήματος: Μπορούμε να εισάγουμε ακέραιες μεταβλητές (( n { 0,,,3 } s, αριθμός αντλιών τύπου στην σειρά. Μπορούμε να εισάγουμε ένα σετ διαδυκών μεταβλητών που θα συνδυάζονται κατάλληλα και ομοίως με παραπάνω. Και πάλι υπάρχει ένας συστηματικός τρόπος για να εκφραστεί μια ακέραια μεταβλητή με ένα σετ από δυαδικές μεταβλητές. Θεωρείστε την ακέραια μεταβλητή n έτσι ώστε n { 0, U n} N. Ορίζουμε το Κ έτσι ώστε: K log U n < K Και Κ δυαδικές μεταβλητές k, k =,... K. Οι ακόλουθες εξισώσεις μπορούν να χρησιμοποιηθούν για να οριστεί το n ως προς τις δυαδικές μεταβλητές: K n = k = n U n k k Υπερδομή Δικτύου Αντλιών 44

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 4

Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 4 Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 4 Δευτέρα, 31 Μαρτίου 2008 Τρίτη, 1 Απριλίου 2008 Α. Δομική Αριστοποίηση 1 Εισαγωγή Όπως έχουμε πει, η αριστοποίηση διακρίνεται σε: Δομική: δοκιμάζονται

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΚΑΠΟΙΟΙ ΒΑΣΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΚΑΙ ΕΝΝΟΙΕΣ Ν = {1,2,3,...} το σύνολο των φυσικών αριθμών Ζ = {0, ±1, ±2, ±3,..

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο Ι. Να αντιστοιχίσετε τους παρακάτω όρους. Στη στήλη Β περισσεύει μια επιλογή. (6 Μονάδες) 1 - Β 2 - Α 3

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ψηφιακός Έλεγχος Συστημάτων Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Διάλεξη 1. Άρα, είναι ο κλάδος που αφορά παραγωγή προϊόντων σε βιομηχανική κλίμακα, βασισμένη σε φυσικοχημικές διεργασίες.

Διάλεξη 1. Άρα, είναι ο κλάδος που αφορά παραγωγή προϊόντων σε βιομηχανική κλίμακα, βασισμένη σε φυσικοχημικές διεργασίες. Διάλεξη 1 1. Εισαγωγή η έννοια του σχεδιασμού Ο σχεδιασμός (design) χημικών διεργασιών (unit processes) και χημικών εργοστασίων (chemical plants) ή ολόκληρων βιομηχανικών είναι η πιο ολοκληρωμένη έκφραση

Διαβάστε περισσότερα

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.:

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ,

Διαβάστε περισσότερα

ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός

ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 2 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 3 ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ 4 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 5 ΓΕΩΡΓΙΟΣ ΘΕΟΔΩΡΟΥ Καθηγητής Α.Π.Θ. ΧΡΙΣΤΙΝΑ ΘΕΟΔΩΡΟΥ Μαθηματικός ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ

Διαβάστε περισσότερα

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ 1.1 Προτεραιότητα Πράξεων Η προτεραιότητα των πράξεων είναι: (Από τις πράξεις που πρέπει να γίνονται πρώτες,

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ Πύλες - Άλγεβρα Boole 1 ΕΙΣΑΓΩΓΗ Α)Ηλεκτρονικά κυκλώµατα Αναλογικά κυκλώµατα Ψηφιακά κυκλώµατα ( δίτιµα ) V V 2 1 V 1 0 t t Θετική λογική: Ο V 1 µε V 1 =

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Α4. Δίδεται ο παρακάτω αλγόριθμος

Α4. Δίδεται ο παρακάτω αλγόριθμος Διαγώνισμα 2014-15 Ανάπτυξη Εφαρμογών σε Πραγματικό Περιβάλλον Επώνυμο Όνομα Εξεταζόμενο μάθημα Γ Λυκείου Κυριακή 02/11/2014 Τμήμα Ημερομηνία Τάξη Θέμα Α A1. Επιλέξτε Σωστό ή Λάθος για τις παρακάτω προτάσεις:

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1) Ο έλεγχος μιας συνθήκης έχει μόνο δυο τιμές,

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ 1) Ποιοι είναι οι τελεστές σύγκρισης και

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης Δίαυλος Πληροφορίας Η λειτουργία του διαύλου πληροφορίας περιγράφεται από: Τον πίνακα διαύλου μαθηματική περιγραφή. Το διάγραμμα διάυλου παραστατικός τρόπος περιγραφής. Πίνακας Διαύλου Κατασκευάζεται με

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου 2.87 Να περιγραφεί η δομή επανάληψης Μέχρις_ότου Ημορφή της δομής επανάληψης Μέχρις_ότου είναι: Μέχρις_ότου Συνθήκη Η ομάδα εντολών στο εσωτερικό της επανάληψης, εκτελείται μέχρις ότου ισχύει η συνθήκη

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΟΔΗΓΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΥΓΡΗΣ ΕΚΧΥΛΙΣΗΣ Ελένη Παντελή, Υποψήφια Διδάκτορας Γεωργία Παππά, Δρ. Χημικός Μηχανικός

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δρ. Κόννης Γιώργος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του Υπολογιστικού Προβλήματος και του Προγράμματος/Αλγορίθμου

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΙΚΗ ΜΕΘΟΔΟΣ ΕΠΙΛΟΓΗΣ ΜΟΡΙΩΝ ΔΙΑΛΥΤΩΝ ΓΙΑ ΤΟΝ ΒΕΛΤΙΣΤΟ ΣΧΕΔΙΑΣΜΟ ΚΑΙ ΕΛΕΓΧΟ ΔΙΕΡΓΑΣΙΩΝ

ΣΥΣΤΗΜΑΤΙΚΗ ΜΕΘΟΔΟΣ ΕΠΙΛΟΓΗΣ ΜΟΡΙΩΝ ΔΙΑΛΥΤΩΝ ΓΙΑ ΤΟΝ ΒΕΛΤΙΣΤΟ ΣΧΕΔΙΑΣΜΟ ΚΑΙ ΕΛΕΓΧΟ ΔΙΕΡΓΑΣΙΩΝ ΣΥΣΤΗΜΑΤΙΚΗ ΜΕΘΟΔΟΣ ΕΠΙΛΟΓΗΣ ΜΟΡΙΩΝ ΔΙΑΛΥΤΩΝ ΓΙΑ ΤΟΝ ΒΕΛΤΙΣΤΟ ΣΧΕΔΙΑΣΜΟ ΚΑΙ ΕΛΕΓΧΟ ΔΙΕΡΓΑΣΙΩΝ Α.Ι. Παπαδόπουλος, Π. Σεφερλής Τμήμα Μηχανολόγων Μηχανικών, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Θεσσαλονίκη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ Γ Α... Β

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ Γ Α... Β ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΑΠΡΙΛΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

Κανόνες και Μέθοδοι Αριστοποίησης Διεργασιών

Κανόνες και Μέθοδοι Αριστοποίησης Διεργασιών Ενότητα 5 Κανόνες και Μέθοδοι Αριστοποίησης Διεργασιών Εισαγωγή Σε αυτή την ενότητα συζητάμε πιο αναλυτικά τους τρόπους προσέγγισης, μεθόδους και τεχνικές της αριστοποίησης, παραμετρικής και δομικής. Παρουσιάζουμε

Διαβάστε περισσότερα

Διάλεξη 1. Πράξεις Τελεστές Έλεγχος Ροής

Διάλεξη 1. Πράξεις Τελεστές Έλεγχος Ροής Διάλεξη 1 Πράξεις Τελεστές Έλεγχος Ροής Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 Αριθμητικοί Τελεστές- Αριθμητικές Πράξεις 2 Internal use only Αριθμητικοί

Διαβάστε περισσότερα

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ:

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ: Η ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ καθώς είναι από τα σημαντικότερα κομμάτια της Άλγεβρας με τις περισσότερες εφαρμογές ΔΕΝ πρέπει να αποστηθίζεται και κυρίως ΔΕΝ πρέπει να γίνεται αντιπαθητική. Για τη σωστή εκμάθηση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα