ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ ΣΗΜΕΙΩΣΕΙΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ ΣΗΜΕΙΩΣΕΙΣ"

Transcript

1 ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ ΣΗΜΕΙΩΣΕΙΣ Καθηγητής Α. Τ. ΡΟΥΤΟΥΛΑΣ ρ ΧΗΜΙΚΟΣ ΜΗΧΑΝΙΚΟΣ ΑΘΗΝΑ 2000

2 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΕΙΣΑΓΩΓΗ.... ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ....2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΩΝ ΑΥΤΟΜΑΤΙΣΜΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΣΥΝΘΕΣΗ ΤΩΝ ΑΥΤΟΜΑΤΙΣΜΩΝ ΤΑ ΕΙ Η ΤΩΝ ΑΥΤΟΜΑΤΙΣΜΩΝ ΟΙ ΤΡΟΠΟΙ ΚΑΤΑΤΑΞΗΣ ΤΩΝ ΑΥΤΟΜΑΤΙΣΜΩΝ Αυτοµατισµοί ανοικτού και αυτοµατισµοί κλειστού κυκλώµατος Αναλογικά, ψηφιακά και υβριδικά συστήµατα αυτοµατισµού Συστήµατα αυτοµατισµού απλά, µε µνήµη και έξυπνα συστήµατα Υδραυλικά, Πνευµατικά, Ηλεκτρικά, Ηλεκτρονικά κ.λ.π. συστήµατα αυτοµατισµού ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Η ΈΝΝΟΙΑ ΤΟΥ ΕΛΕΓΧΟΥ ΒΑΣΙΚΕΣ ΠΑΡΑΜΕΤΡΟΙ ΤΟΥ ΕΛΕΓΧΟΥ Ακρίβεια Ευαισθησία ΟΜΙΚΑ ΙΑΓΡΑΜΜΑΤΑ ΚΑΙ ΣΧΕΣΕΙΣ οµικά στοιχεία σε σειρά οµικά στοιχεία σε παράλληλη σύνδεση ΕΛΕΓΚΤΕΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΙΕΡΓΑΣΙΩΝ ΑΝΑΛΟΓΙΚΟΣ ΕΛΕΓΚΤΗΣ (P) ΑΝΑΛΟΓΙΚΟΣ - ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΕΛΕΓΚΤΗΣ (PΙ) ΑΝΑΛΟΓΙΚΟΣ - ΟΛΟΚΛΗΡΩΤΙΚΟΣ - ΙΑΦΟΡΙΚΟΣ ΕΛΕΓΚΤΗΣ (PID) Κύκλωµα αυτοµατισµού στάθµης ΣΕΡΒΟΣΥΣΤΗΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Βασικοί κανόνες µετασχηµατισµού LAPLACE Παραδείγµατα Αντίστροφος µετασχηµατισµός LAPLACE Συναρτήσεις µεταφοράς ρυθµιστών - συστηµάτων ΜΕΤΑΤΡΟΠΕΙΣ (TRANSDUCERS) ΟΝΟΜΑΤΟΛΟΓΙΑ ΣΤΟΙΧΕΙΑ ΜΕΤΑΤΡΟΠΕΩΝ ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΦΑΛΜΑΤΑ ΜΕΤΑΤΡΟΠΕΩΝ ΥΝΑΜΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΕΤΑΤΡΟΠΕΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΕΤΑΤΡΟΠΕΩΝ ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΜΕΤΑΤΡΟΠΕΩΝ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΕΤΑΤΡΟΠΗΣ ΜΕΤΡΗΣΕΙΣ ΦΥΣΙΚΩΝ ΜΕΓΕΘΩΝ Μέτρηση Μετατόπισης Μέτρηση Θερµοκρασίας Μέτρηση Πίεσης Μέτρηση Στάθµης Υγρών ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ ΑΘΡΟΙΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ ΟΛΟΚΛΗΡΩΤΗΣ ΤΥΠΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Απλός αναλογικός ελεγκτής Αναλογικός και ολοκληρωτικός ελεγκτής

3 8 ΗΛΕΚΤΡΟΥ ΡΑΥΛΙΚΗ ΣΕΡΒΟΒΑΛΒΙ Α -Υ ΡΑΥΛΙΚΟ ΣΥΣΤΗΜΑ ΚΑΤΑΣΚΕΥΗ ΛΕΙΤΟΥΡΓΙΑ ΕΙ Η ΒΑΛΒΙ ΩΝ ΚΕΡ ΟΣ ΡΟΗΣ ΒΑΛΒΙ ΑΣ ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ ΣΕΡΒΟΒΑΛΒΙ ΑΣ ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ Υ ΡΑΥΛΙΚΟΥ ΚΙΝΗΤΗΡΑ (Υ/Κ) ΜΕ ΦΟΡΤΙΟ ΣΕΡΒΟΜΗΧΑΝΙΣΜΟΣ ΕΛΕΓΧΟΥ ΤΑΧΥΤΗΤΑΣ Υ ΡΑΥΛΙΚΟΥ ΚΙΝΗΤΗΡΑ ΜΕ ΦΟΡΤΙΟ ΜΕ ΚΛΕΙΣΤΟ ΒΡΟΓΧΟ ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΟΙ ΛΟΓΙΚΟΙ ΕΛΕΓΚΤΕΣ (P.L.C.) ΓΕΝΙΚΑ ΕΙΣΑΓΩΓΗ ΟΜΗ ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΟΥ ΛΟΓΙΚΟΥ ΕΛΕΓΚΤΗ ΗHARDWARE ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΩΝ ΛΟΓΙΚΩΝ ΕΛΕΓΚΤΩΝ ΛΟΓΙΣΜΙΚΟ (SOFTWARE) ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΩΝ ΛΟΓΙΚΩΝ ΕΛΕΓΚΤΩΝ Τµήµατα προγράµµατος Πρόγραµµα ΒΑΣΙΚΗ ΟΜΗ ΓΛΩΣΣΑΣ ΙΑΓΡΑΜΜΑΤΟΣ ΕΠΑΦΩΝ (LADDER) ΒΑΣΙΚΗ ΟΜΗ ΓΛΩΣΣΑΣ ΛΙΣΤΑΣ ΕΝΤΟΛΩΝ (STATEMENT LIST) ΒΑΣΙΚΗ ΟΜΗ ΛΟΓΙΚΟΥ ΙΑΓΡΑΜΜΑΤΟΣ CSF (CONTROL SYSTEM FLOWCHART) ΒΑΣΙΚΗ ΟΜΗ ΓΛΩΣΣΑΣ MATRIX ηµιουργία προγράµµατος MATRIX ΓΕΝΙΚΗ ΙΑ ΙΚΑΣΙΑ ΥΛΟΠΟΙΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Βασικά παραδείγµατα και εφαρµογές P.L.C ΜΕΘΟ ΟΛΟΓΙΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΥΣΧΕΤΙΣΜΩΝ ΚΙΝΗΣΕΩΝ ΕΜΒΟΛΩΝ ΣΕ ΓΛΩΣΣΕΣ LADDER ΚΑΙ STL Γενικά Προγραµµατισµός P.L.C. σε γλώσσα LADDER Προγραµµατισµός P.L.C. σε γλώσσα STL (STATEMENT LIST) ΠΑΡΑ ΕΙΓΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΥΣΧΕΤΙΣΜΩΝ ΚΙΝΗΣΕΩΝ ΕΜΒΟΛΩΝ ΣΕ ΓΛΩΣΣΕΣ LADDER ΚΑΙ STL ΚΥΚΛΟΣ L ΥΟ ΕΜΒΟΛΩΝ (ΚΙΝΗΣΕΙΣ Α+ Β+ Β- Α-) ΠΟΛΥΠΛΟΚΟ ΠΑΡΑ ΕΙΓΜΑ ΜΕ ΚΙΝΗΣΕΙΣ A+B+C+ B- Β+ (Τ)B-D-C-A ΒΙΒΛΙΟΓΡΑΦΙΑ

4 ΕΙΣΑΓΩΓΗ. Βασικές έννοιες των συστηµάτων Με την λέξη «αυτοµατισµός» επικράτησε στην καθηµερινή ζωή να εννοούµε την υποκατάσταση ανθρώπινης εργασίας από µηχανήµατα που µπορούν να εργάζονται µε µεγαλύτερη ανεξαρτησία από τους ανθρώπους. Αυτή η άποψη είναι τελείως ξεπερασµένη σήµερα, γιατί παρά πολλά συστήµατα αυτοµατισµού επιτελούν λειτουργίες που βρίσκονται τελείως έξω από τα όρια των δυνατοτήτων, όχι µόνο µε του µέσου ανθρώπου, αλλά και όλων των ανθρώπων µαζί. Πάρα πολλές αυτοµατοποιηµένες λειτουργίες δεν θα ήταν δυνατό να γίνουν από ανθρώπους έτσι και αλλιώς. Στο µάθηµα αυτό θα χρησιµοποιούµε την λέξη «αυτοµατισµός» σαν συντοµογραφία της έννοιας «σύστηµα αυτοµατισµού». Θα ασχοληθούµε µε τις εφαρµογές των συστηµάτων αυτοµατισµού στην βιοµηχανία των µηχανολογικών κατασκευών και της ενέργειας. Τα συστήµατα αυτοµατισµού είναι µία ειδική περίπτωση συστηµάτων. Ο γενικότερος δυνατός ορισµός της έννοιας «σύστηµα» είναι αυτός που χρησιµοποιεί η θερµοδυναµική : Σύστηµα είναι ένα πεπερασµένο τµήµα του χώρου µε σαφή και πλήρη όρια. Υπάρχει και ένας άλλος ορισµός που χρησιµοποιείται στην θεωρία των συστηµάτων : Σύστηµα είναι µία οµάδα αντικειµένων που έχουν κάποιους συσχετισµούς µεταξύ τους, τέτοιους ώστε να µπορούµε να τα θεωρήσουµε σαν ένα ενιαίο σύνολο. Είναι άσκοπο να επιµείνουµε στις λεπτές διαφορές µεταξύ των διαφόρων ορισµών της έννοιας του συστήµατος : Αλλά σαν σύστηµα αυτοµατισµού θα θεωρούµε ένα σύστηµα, που είναι τέτοιο ώστε σε ορισµένες δράσεις που ασκούµε σ αυτό, να έχει καθορισµένες και γνωστές µας εκ των προτέρων αντιδράσεις. Ένα σύστηµα αυτοµατισµού πρέπει να έχει τα εξής δύο χαρακτηριστικά : (Ι) Να υπάρχουν ορισµένα σηµεία ή τµήµατα του συστήµατος, στα οποία να είναι δυνατή η αλλαγή της κατάστασής τους (δηλ. κάποιας ιδιότητας ή ιδιοτήτων τους) µε δράση προερχόµενη έξω από το σύστηµα και (ΙΙ) Να υπάρχουν ορισµένα σηµεία ή τµήµατα του συστήµατος, στα οποία να επέρχεται µια προκαθορισµένη µεταβολή της κατάστασης (δηλ. ιδιότητας ή ιδιοτήτων) σαν συνέπεια των δράσεων στα παραπάνω σηµεία του (Ι). ΛΟΙΠΑ ΣΥΣΤΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΛΟΙΠΕΣ ΜΗΧΑΝΕΣ ΜΗΧΑΝΕΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ (ΑΥΤΟΜΑΤΙΣΜΟΙ) Σ. Κατηγορίες συστηµάτων

5 Ένα σύστηµα αυτοµατισµού είναι µία ειδική περίπτωση µηχανής. Μηχανή γενικά είναι ένα σύστηµα που χρησιµοποιούµε για να µεταφέρουµε ή / και να µετατρέψουµε ενέργεια. Στο σύστηµα αυτοµατισµού η ενέργεια γίνεται δεκτή κατά αυστηρά προκαθορισµένο τρόπο και µετατρέπεται ή µεταφέρεται επίσης κατά αυστηρά προκαθορισµένο τρόπο. Έτσι έχουµε µία ιεράρχηση των εννοιών «σύστηµα», «µηχανή» και «σύστηµα αυτοµατισµού» σύµφωνα µε το σχήµα Σ.. Παρατηρούµε ότι από την ευρύτερη έννοια του συστήµατος ως τη στενότερη έννοια του συστήµατος αυτοµατισµού έχουµε µια ολοένα και ακριβέστερη περιγραφή έννοιας. Οι αυτοµατισµοί ας πούµε, είναι τα πιο «συστηµατικά», µε την καθηµερινή έννοια της λέξης, συστήµατα. Η συµπεριφορά τους µπορεί να περιγραφεί µε µαθηµατικές µεθόδους πολύ ευκολότερα και πολύ πιο λεπτοµερειακά από την συµπεριφορά των άλλων συστηµάτων. Οι µαθηµατικές αυτές µέθοδοι δεν περιορίζονται µόνο σε εξισώσεις και παρόµοιες µαθηµατικές εκφράσεις, αλλά και σε χρησιµοποίηση συµβολικών διαγραµµάτων, πινάκων και κωδικοποιήσεων, που περιγράφουν µε ακρίβεια όλα τα ουσιώδη µέρη και όλη την λειτουργία ενός αυτοµατισµού. Ένα σηµαντικό µέρος του µαθήµατος είναι αφιερωµένο στις διάφορες αυτές µαθηµατικές και συµβολικές µεθόδους περιγραφής των αυτοµατισµών. Εδώ πρέπει να παραδεχτούµε µία όχι και τόσο καλή κατάσταση : υστυχώς, τα σύµβολα, εκτός από µερικές ειδικές περιπτώσεις, πολύ απέχουν από του να είναι πραγµατικά γενικής αποδοχής. Για το ίδιο πράγµα µπορεί να υπάρχουν και τρία και τέσσερα διαφορετικής εµφάνισης σύµβολα, ανάλογα µε τα ισχύοντα πρότυπα στις βιοµηχανικά προηγµένες χώρες. Θα καταβληθεί προσπάθεια να χρησιµοποιήσουµε όσο γίνεται λιγότερα, απλούστερα και προπαντός της ευρύτερης αποδοχής (τουλάχιστον στην Ευρώπη) σύµβολα, µε την ελπίδα να µην συµβάλλουµε στην σύγχυση και να παρακολουθήσουµε τις προσπάθειες διεθνοποίησης των συµβόλων..2 Βασικές έννοιες των αυτοµατισµών Θα αρχίσουµε ήδη από το τµήµα αυτό να χρησιµοποιούµε ένα τρόπο παράστασης των αυτοµατισµών, που λέγεται παράσταση µε «δοµικά διαγράµµατα» (BLOCK DIAGRAMS). Στα διαγράµµατα αυτά τα δοµικά στοιχεία των αυτοµατισµών ή και ολόκληροι αυτοµατισµοί ή τµήµατά τους, παριστάνονται µε απλά ορθογώνια παραλληλόγραµµα, χωρίς να διευκρινίζεται η κατασκευή τους και η εσωτερική τους οργάνωση. Η έµφαση δίνεται στην περιγραφή των αλληλεπιδράσεων του στοιχείου µε το περιβάλλον του. Ο τρόπος αυτός παράστασης, χωρίς να είναι πάντα ο καταλληλότερος, έχει ωστόσο το πλεονέκτηµα της γενικότητας, της ανεξαρτησίας δηλαδή από τον συγκεκριµένο τρόπο κατασκευής των στοιχείων που αποτελούν τον αυτοµατισµό, και της απλότητας πράγµατα που διευκολύνουν την µαθηµατική και την θεωρητική µελέτη των αυτοµατισµών. Στο ακόλουθο σχήµα Σ.2 έχουµε την παράσταση σε δοµικό διάγραµµα ενός ολόκληρου συστήµατος αυτοµατισµού Τ. Ολόκληρος ο Τ παριστάνεται µε ένα ορθογώνιο (BLOCK). Με βέλη που καταλήγουν στο BLOCK ή φεύγουν από αυτό παριστάνονται οι δράσεις που εφαρµόζουµε επάνω στο σύστηµα ή οι αντίστοιχες αντιδράσεις του συστήµατος Τ. Τα βέλη δηλαδή παριστάνουν τις µεταβολές του τύπου (Ι) ή (ΙΙ) που αναφέραµε στα χαρακτηριστικά των αυτοµατισµών στο προηγούµενο τµήµα 0.. Όλες αυτές οι δράσεις και αντιδράσεις µαζί ονοµάζονται «σήµατα» (SIGMALS). Ένα σήµα του τύπου (Ι), όπως τα x, x,..., 2 x v, ονοµάζεται «σήµα εισόδου» (INPUT SIGNAL) ή απλά «είσοδος» (INPUT) του αυτοµατισµού Τ. Ενώ ένα σήµα του τύπου (ΙΙ), όπως τα y y,,..., 2 «έξοδος» (OUTPUT) του αυτοµατισµού Τ. Σύµφωνα µε τον ορισµό του αυτοµατισµού, οι έξοδοι x x x v y µ, ονοµάζεται «σήµα εξόδου» (OUTPUT SIGNAL) ή απλά y y,,..., 2 y µ πρέπει να είναι συναρτήσεις των εισόδων,,...,. Έτσι σε κάθε οµάδα εισόδων θα αντιστοιχεί µία προβλεπτή οµάδα 2 εξόδων. 2

6 ιαταραχές ξ ξ2 ξλ Είσοδοι X y Έξοδοι X2 Xv T ζ,ζ2,...,ζκ Y=F(X) y2 ym Σ.2 Το απλούστερο δυνατό δοµικό διάγραµµα ενός αυτοµατισµού Τ Οι συναρτήσεις αυτές µπορούν να παρασταθούν όλες µαζί από µία διανυσµατική ή πινακοποιηµένη συνάρτηση Υ=F(X) : y y y µ και Χ= ( x,,..., ) x2 x v όπου Υ= (,,..., ) 2 Η συνάρτηση αυτή F υπάρχει πάντα για οποιοδήποτε αυτοµατισµό και ονοµάζεται «συνάρτηση µεταφοράς σηµάτων» ή «συνάρτηση µεταφοράς» του αυτοµατισµού αυτού (TRANSFER FUNCTION). Μόνο ο τρόπος, µε τον οποίο δίνεται (π.χ. υπό µορφή εξισώσεων, διαφορικών ή ολοκληρωτικών εξισώσεων, καµπυλών σε διαγράµµατα συντεταγµένων, διανυσµατικών σχέσεων, σχέσεων πινάκων (µητρών), πινακοποιηµένων αριθµητικών τιµών, δυαδικών σχέσεων, διαφόρων ειδικευµένων συµβόλων της θεωρίας των αυτοµατισµών κ.λ.π.) διαφέρει από αυτοµατισµό σε αυτοµατισµό. Η F είναι δυνατό να περιλαµβάνει βέβαια και παραµέτρους, όπως οι ζ, ζ,..., ζ 2 k στο παραπάνω παράδειγµα. Οι παράµετροι αυτές του αυτοµατισµού Τ είναι και αυτές ιδιότητες διαφόρων τµηµάτων ή σηµείων του Τ που µπορούν να µεταβληθούν και αυτές, αλλά δεν συµπεριλαµβάνονται στην τρέχουσα INPUT X. Μπορεί όµως να συµπεριλαµβανόταν σε προηγούµενη INPUT ή να εξαρτώνται από προηγούµενες INPUTS, όπως συµβαίνει στα συστήµατα αυτοµατισµού που διαθέτουν µνήµη. Οι παράµετροι πρέπει να είναι τέτοιες, ώστε να προσδιορίζουν πλήρως την κατάσταση του συστήµατος αυτοµατισµού και την συνάρτηση µεταφοράς F. Η ύπαρξη της συνάρτησης µεταφοράς δίνει την δυνατότητα της µαθηµατικής επεξεργασίας του κάθε συγκεκριµένου προβλήµατος, που επιχειρούµε να λύσουµε µε τον κάθε αυτοµατισµό. Στην πραγµατικότητα όλο το βάρος της µαθηµατικής επεξεργασίας πέφτει στην εύρεση και επεξεργασία της συνάρτησης µεταφοράς. Η παραπάνω παρουσίαση είναι κάπως εξιδανικευµένη. Γιατί στην πραγµατικότητα υπάρχουν συχνά και άλλες, ανεπιθύµητες, µεταβολές ιδιοτήτων, οι λεγόµενες διαταραχές ξ, ξ,..., ξ λ (DISTURBANCES) οι οποίες µπορούν να παραµορφώσουν τις εξόδους ή και να προκαλέσουν ανεπιθύµητες εξόδους, τις αναφερόµενες σαν «παρασιτικές εξόδους» ή απλά «παράσιτα» (NOISE), ή ακόµα και να καταργήσουν την συνάρτηση µεταφοράς και να πάψει το σύστηµα να είναι αυτοµατισµός. 2 3

7 Υπάρχουν αυτοµατισµοί, που από την κατασκευή τους έχουν να αντιµετωπίσουν πολύ σπάνια διαταραχές. Υπάρχουν όµως και άλλοι, που είναι πολύ ευαίσθητοι σε διαταραχές. Βέβαια, αντίστοιχα µε την σπουδαιότητα και την ευαισθησία κάθε αυτοµατισµού, καταβάλλονται ανάλογες προσπάθειες να εξουδετερώνονται οι διαταραχές και τα παράσιτα. Αξίζει να τονισθεί ότι τα σήµατα εισόδου είναι πάντοτε ενδεικτικά δράσεων από έξω από τον αυτοµατισµό επάνω του, δηλαδή αντιπροσωπεύουν πάντα µία συναλλαγή ενέργειας µε το περιβάλλον του αυτοµατισµού. εν συµβαίνει όµως το ίδιο µε όλα τα σήµατα εξόδου. Μερικά απ αυτά µπορούν να παραµένουν σαν εσωτερικές µεταβολές στον αυτοµατισµό, ενώ άλλα µπορεί να αξιοποιούνται σαν σήµατα εισόδου σε άλλα συστήµατα. ηλαδή οι έξοδοι δεν αντιπροσωπεύουν πάντα µία συναλλαγή ενέργειας µε το περιβάλλον. Το ίδιο συµβαίνει και µε τις διαταραχές. Άλλες µπορεί να είναι ανεπιθύµητες εξωτερικές επιδράσεις και άλλες µπορεί να είναι εσωτερικές ανωµαλίες του αυτοµατισµού (βλάβες, απορυθµίσεις κ.λ.π.)..3 Ανάλυση και σύνθεση των αυτοµατισµών Μέσα σ ένα αυτοµατισµό (σύστηµα αυτοµατισµού) µπορούµε συνήθως να διακρίνουµε υποσυστήµατα που έχουν τα χαρακτηριστικά (Ι) και (ΙΙ) του αυτοµατισµού που περιγράψαµε στο τµήµα.. Εποµένως τα υποσυστήµατα αυτά είναι υποαυτοµατισµοί. Όλα σχεδόν τα δοµικά στοιχεία ενός αυτοµατισµού είναι αυτοµατισµοί επίσης. Υπάρχουν και µερικά δοµικά στοιχεία τόσο απλά, που δεν αξίζει τον κόπο να τα υπολογίζουµε σαν αυτοµατισµούς, αλλά στην πραγµατικότητα είναι. Και µία απλή διακλάδωση συρµάτων που διαµοιράζει ένα σήµα, από την απόλυτα αυστηρή πλευρά του ορισµού, είναι αυτοµατισµός. Άλλωστε, αν έστω και ένα σηµαντικό δοµικό στοιχείο δεν είχε συµπεριφορά αυτοµατισµού, δηλαδή προβλεπτή συµπεριφορά, άρα δεν ήταν αυτοµατισµός. Έτσι κάθε αυτοµατισµός που δεν είναι πάρα πολύ απλός µπορεί να αναλυθεί σε υποαυτοµατισµούς. Η διαπίστωση αυτή αποδίδεται στο παρακάτω σχήµα Σ.3. A (y,y2) = fa(x,x2,x3) X X2 B (u,u2,u3) = = fb(x,x2) u2 u3 u F E u2 u5 C (y,y2,u7) = = fc(u2,u5,u6) y y2 u2 u4 u6 u7 D X3 (u4,u6) = = fd(x3,u2) Σ.3 Παράδειγµα αναλυτικού δοµικού διαγράµµατος ενός αυτοµατισµού Α µε δοµικά στοιχεία B, C, D. Στο σχήµα αυτό έχουµε ένα παράδειγµα αυτοµατισµού Α, του οποίου το BLOCK αναλύεται στα BLOCKS τριών υποαυτοµατισµών ή ίσως απλών δοµικών στοιχείων B, C, D. Για απλότητα, υποθέτουµε ότι δεν υπάρχουν διαταραχές ούτε µεταβαλλόµενες παράµετροι. Ένα τέτοιο σχήµα δεν είναι παρά ένα αναλυτικότερο δοµικό διάγραµµα του αυτοµατισµού Α. Το BLOCK του ίδιου του 4

8 Α δεν είναι απαραίτητο να εµφανίζεται στο σχήµα, γι αυτό το εµφανίζουµε µε στικτή γραµµή. Σε άλλες περιπτώσεις δεν θα το εµφανίζουµε καθόλου. Ο αυτοµατισµός Α έχει εισόδους,, και εξόδους 2 3 x x x x x u u u x u y, y. Ο αυτοµατισµός Β έχει 2 u, u, u και εξόδους εισόδους, και εξόδους,,. Ο αυτοµατισµός C έχει εισόδους y y y,,. Τέλος ο D έχει εισόδους, και εξόδους,. Παρατηρούµε ότι δύο ενδιάµεσες έξοδοι, η u, u δεν χρησιµοποιούνται για εισόδους σε άλλους αυτοµατισµούς. Π.χ. η 7 u µπορεί να είναι µία πίεση µέσα σε κάποιο τµήµα του C, την οποία επιθυµούµε να ρυθµίζουµε µόνο. Το πολύ να έχουµε και ένα µανόµετρο που να την δείχνει. Στο σχήµα αυτό έχουµε και δύο καινούρια σύµβολα : Ένα µικρό κύκλο στη θέση Ε. Το κυκλικό αυτό σύµβολο σηµαίνει µία συγχώνευση δύο ή περισσοτέρων σηµάτων σε ένα, κατά ένα απλό τρόπο, π.χ. απλή πρόσθεση ή αφαίρεση ή ένα πολλαπλασιασµό δύο σηµάτων, ώστε να µην αξίζει τον κόπο να παρασταθεί µε ένα ολόκληρο BLOCK. Στην συγκεκριµένη περίπτωση µπορεί π.χ. στην θέση Ε να u u προστίθενται τα σήµατα u, 2 u και να παράγουν το σήµα 4 u. 5 Μια τελεία στη θέση F. Το σύµβολο αυτό σηµαίνει µία διακλάδωση σήµατος προς δύο ή περισσότερες κατευθύνσεις. Το σήµα υποτίθεται ότι δεν υφίσταται µε τον διαχωρισµό του αυτή ποιοτική µεταβολή. Και αν υφίσταται ποσοτική µεταβολή (αν π.χ. καθένα από τα δύο ή περισσότερα σήµατα που βγαίνουν από τη διακλάδωση είναι ασθενέστερο από το αρχικό σήµα) τότε αυτή θα πρέπει να είναι χωρίς σηµασία (π.χ. ασήµαντη ή χωρίς συνέπειες). Στην συγκεκριµένη περίπτωση µπορεί π.χ. το σήµα u να είναι µια ηλεκτρική τάση και 2 στο σηµείο F να µεταδίδεται και στους δυο αυτοµατισµούς C και D. Γνωρίζουµε ότι η ηλεκτρική τάση δεν µειώνεται όταν µεταδίδεται µε τον τρόπο αυτό (τα C και D είναι σε παράλληλη διάταξη ως προς το F). Η ανάλυση ενός µεγαλύτερου αυτοµατισµού σε υποαυτοµατισµούς είναι µία πολύ καλή µέθοδος για την κατανόηση του τρόπου λειτουργίας ενός αυτοµατισµού. Είναι η κύρια µέθοδος σχεδίασης συνθετότερων αυτοµατισµών, των οποίων η άµεση σύλληψη είναι πολύ δύσκολη ως αδύνατη εξ αιτίας της πολυπλοκότητάς τους. Ένα µεγάλο µέρος του µαθήµατος θα διατεθεί στην ανάλυση και την σύνθεση αυτοµατισµών, προς και από τα απλούστερα δοµικά τους στοιχεία. 2 ΤΑ ΕΙ Η ΤΩΝ ΑΥΤΟΜΑΤΙΣΜΩΝ Αναφέρονται, χωρίς πολλές λεπτοµερειακές επεξηγήσεις και συγκρίσεις, οι κατηγορίες των αυτοµατισµών σύµφωνα µε τέσσερις διαφορετικούς τρόπους κατάταξης. 2. Οι τρόποι κατάταξης των αυτοµατισµών Οι τέσσερις τρόποι διάκρισης και οι αντίστοιχες κατηγορίες αυτοµατισµών είναι οι εξής : Α. Ανάλογα µε την φύση της σχέσης εισόδου και εξόδου, οι αυτοµατισµοί διακρίνονται σε «συστήµατα αυτοµατισµού ανοικτού κυκλώµατος» (OPEN - LOOP CONTROL SYSTEMS) και σε «συστήµατα αυτοµατισµού κλειστού κυκλώµατος» (CLOSED - LOOP CONTROL SYSTEMS). Το δεύτερο είδος των αυτοµατισµών είναι γνωστό και µε την ονοµασία «συστήµατα αυτοµάτου ελέγχου» ή συντοµογραφικά «Σ.Α.Ε.» (FEEDBACK CONTROL SYSTEMS). 5

9 Β. Ανάλογα µε τις δυνατότητες µνήµης που διαθέτουν, τα συστήµατα αυτοµατισµού διακρίνονται σε «αναλογικά» (ANALOG SYSTEMS), σε «ψηφιακά» (DIGITAL SYSTEMS) και σε «υβριδικά» (HYBRID SYSTEMS). Γ. Ανάλογα µε τις δυνατότητες µνήµης που διαθέτουν, τα συστήµατα αυτοµατισµού διακρίνονται σε «απλά» (SIMPLE SYSTEMS), σε «συστήµατα µε µνήµη» (SYSTEMS WITH MEMORY) και σε «έξυπνα συστήµατα» (ARTIFICIALLY INTELLIGENT SYSTEMS).. Ανάλογα µε την φύση των µέσων που χρησιµοποιούν, τα συστήµατα αυτοµατισµού διακρίνονται σε «υδραυλικά» (HYDRAULIC SYSTEMS), σε «πνευµατικά» (PENEUMATIC SYSTEMS), σε «ηλεκτρικά» (ELECTRIC SYSTEMS), σε «ηλεκτρονικά» (ELECTRΟΝIC SYSTEMS). Στο παρελθόν υπήρξαν και µηχανικά συστήµατα αυτοµατισµού και για το µέλλον υπάρχουν πιθανότητες να εµφανισθούν και µερικά άλλα είδη µέσα στον τρόπο κατάταξης αυτό, όπως π.χ. οπτικά συστήµατα. Προς το παρόν όµως τα τέσσερα είδη (υδραυλικά, πνευµατικά, ηλεκτρικά και ηλεκτρονικά) είναι ουσιαστικά τα µόνα σε βιοµηχανική χρήση. Οι παραπάνω τέσσερις τρόποι διάκρισης είναι τελείως ανεξάρτητοι µεταξύ τους. Π.χ. ένα σύστηµα µπορεί να είναι υδραυλικό σύστηµα αυτοµάτου ελέγχου υβριδικό µε µνήµη. Ένα άλλο µπορεί να είναι πνευµατικό σύστηµα ανοικτού κυκλώµατος ψηφιακό απλό, κ.ο.κ.. εν αποκλείονται και µικτοί τύποι, όπως π.χ. ηλεκτροπνευµατικό σύστηµα αυτοµάτου ελέγχου ψηφιακό απλό κ.λ.π Αυτοµατισµοί ανοικτού και αυτοµατισµοί κλειστού κυκλώµατος Το χαρακτηριστικό των αυτοµατισµών κλειστού κυκλώµατος ή συστηµάτων αυτοµάτου ελέγχου ή Σ.Α.Ε. είναι ότι σ αυτούς υπάρχει επηρεασµός όχι µόνο της OUTPUT από την INPUT, αλλά και της INPUT από την OUTPUT. Τρόποι, µε τους οποίους µπορεί να γίνει αυτό, δείχνονται στα δοµικά διαγράµµατα του σχήµατος Σ Σ 2.. Παραδείγµατα δοµικών διαγραµµάτων αυτοµατισµών κλειστού κυκλώµατος (,3,5) και ανοικτού κυκλώµατος(2,4,6). Στο σύστηµα αυτοµατισµού κλειστού κυκλώµατος το σήµα εξόδου έχει την δυνατότητα, µόλις παρουσιάσει µια απόκλιση από µία ή περισσότερες συνθήκες που οφείλει να εκπληρώνει, να παράγει ένα σήµα που τροποποιεί ένα ή περισσότερα σήµατα εισόδου (ή σε κάποιες άλλες 6

10 περιπτώσεις, να χρησιµοποιείται το ίδιο σαν πρόσθετη είσοδος) έτσι ώστε το σήµα εξόδου να επανέρχεται στα πλαίσια της παραπάνω συνθήκης (ή των παραπάνω συνθηκών). Κατά τον τρόπο αυτό τυχόν αποκλίσεις της OUTPUT, που προκαλούνται από διάφορες διαταραχές, διορθώνονται από το ίδιο το σύστηµα αυτοµατισµού. Σε ένα σύστηµα αυτοµατισµού ανοικτού κυκλώµατος τυχόν απόκλιση της OUTPUT από τις επιθυµητές συνθήκες που πρέπει να εκπληρώνει δεν έχει την δυνατότητα να επηρεάσει την INPUT κατά κανένα τρόπο. Έτσι η INPUT συνεχίζεται όπως είναι και η τυχόν απόκλιση της OUTPUT δεν διορθώνεται, εκτός αν γίνει εξωτερική επέµβαση, δηλ. από κάπου έξω από το σύστηµα αυτοµατισµού. Στο δοµικό διάγραµµα ενός αυτοµατισµού είναι εύκολο να διακρίνουµε αν αυτός είναι κλειστού ή ανοικτού κυκλώµατος. Στον αυτοµατισµό κλειστού κυκλώµατος, µπορούµε εύκολα να επισηµάνουµε ένα τουλάχιστον (µπορεί και περισσότερους) κλειστό βρόχο, τον οποίο τα σήµατα διατρέχουν κατά την ίδια φορά (ωρολογιακή ή ανθωρολογιακή) σε όλη την περιφέρεια του. Η OUTPUT «ανατροφοδοτεί» την INPUT χρησιµοποιώντας αυτούς τους βρόχους. Με αυτό τον κλειστό βρόχο (CLOSED LOOP) οφείλουν και την ονοµασία τους τα συστήµατα αυτά αυτοµατισµού. Στα συστήµατα ανοικτού κυκλώµατος αυτοί οι κλειστοί βρόχοι δεν υπάρχουν Αναλογικά, ψηφιακά και υβριδικά συστήµατα αυτοµατισµού Τα σήµατα των συστηµάτων αυτοµατισµού χωρίζονται σε δυο µεγάλες κατηγορίες, σε αναλογικά και σε ψηφιακά συστήµατα. Αντίστοιχα διακρίνουµε αναλογικά και ψηφιακά συστήµατα αυτοµατισµού. Σ Παραδείγµατα της µεταβολής αναλογικών σηµάτων εισόδου X και εξόδου Υ συναρτήσει του χρόνου t. Τα σήµατα εισόδου και εξόδου των αναλογικών συστηµάτων παρουσιάζουν µία αρκετά οµαλή και συνεχή µεταβολή ως προς τον χρόνο, ώστε να µπορούν να παρασταθούν µε συνεχείς συναρτήσεις 7

11 του χρόνου (βλ. σχ. Σ 2..2.). Η έξοδος Υ «προλαβαίνει» και παρακολουθεί κατά συνεχή τρόπο την είσοδο Χ. Στο παραπάνω σχήµα, στα διαγράµµατα και 2 βλέπουµε µια έξοδο Υ να παρακολουθεί οµαλά µία είσοδο Χ. Και τα δύο σήµατα είναι απεριοδικά. Στις περιπτώσεις 3-4 και5-6 έχουµε εισόδους περιοδικές και αντίστοιχες περιοδικές εξόδους µε την ίδια περίοδο Τ. Τα σήµατα αυτά είναι όλα αναλογικά. Σ Παραδείγµατα της µεταβολής ψηφιακών σηµάτων εισόδου X και εξόδου Υ συναρτήσει του χρόνου t. Τα σήµατα εισόδου και εξόδου των ψηφιακών συστηµάτων αυτοµατισµού παρουσιάζουν πολύ απότοµες µεταβολές, τόσο απότοµες που να µπορούν να παρασταθούν µε κάθετα επί τον άξονα του χρόνου ευθύγραµµα τµήµατα - άλµατα. Ενώ στο µεταξύ δύο αλµάτων χρονικό διάστηµα παρουσιάζουν σταθερότητα (βλ. σχ. Σ ). Κατά την απειροελάχιστα µικρή χρονική διάρκεια ενός άλµατος του σήµατος εισόδου το σύστηµα αυτοµατισµού δεν προλαβαίνει ουσιαστικά να αντιδράσει αλλιώς παρά µόνο µε ένα αντίστοιχο άλµα του σήµατος εξόδου, όπως δείχνεται στα διαγράµµατα 4 και 5 του Σ Στα διαγράµµατα και 2 του ίδιου σχήµατος Σ βλέπουµε τη µεταβολή δύο κανονικών ψηφιακών σηµάτων. Αλλά στο διάγραµµα 3 του Σ έχουµε ένα ψηφιακό σήµα που έχει το ιδιαίτερο χαρακτηριστικό να έχει πάρα πολύ µικρή χρονική διάρκεια µεταξύ µερικών αλµάτων του. Ένα τέτοιο σήµα ονοµάζεται «παλµικό σήµα» ή «παλµός» (PULSE). Τα πιο ευαίσθητα ψηφιακά συστήµατα αυτοµατισµού µπορούν να αντιδράσουν και σε είσοδο παλµική (π.χ. το σύστηµα µε INPUT - OUTPUT όπως στο σχ. Σ ) ή /και να παράγουν παλµική έξοδο. Χρησιµοποιούνται όµως και συστήµατα αυτοµατισµού, στα οποία συνυπάρχουν ψηφιακά µαζί µε αναλογικά σήµατα στις εισόδους ή/ και στις εξόδους. Υπάρχουν και σήµατα που έχουν µικτό ψηφιακό και αναλογικό χαρακτήρα, όπως το σήµα στο διάγραµµα 3 του σχ. Σ (υβριδικά σήµατα). Τα συστήµατα που χρησιµοποιούν µαζί ψηφιακά και αναλογικά σήµατα ή έστω υβριδικά σήµατα ονοµάζονται υβριδικά συστήµατα αυτοµατισµού. Στα διαγράµµατα και 2 του σχ. Σ έχουµε τις γραφικές παραστάσεις του σήµατος εισόδου και εξόδου ενός υβριδικού αυτοµατισµού. Ο αυτοµατισµός αυτός συµβαίνει να έχει ψηφιακή είσοδο και αναλογική έξοδο. 8

12 Φυσικά µπορεί σε άλλα υβριδικά συστήµατα να συµβαίνει και το αντίθετο, ή να συνυπάρχουν και τα δυο είδη σηµάτων στην είσοδο κ.λ.π.. Σ Παραδείγµατα της µεταβολής ως προς τον χρόνο σηµάτων που χρησιµοποιούν υβριδικά συστήµατα αυτοµατισµού Σ ιαγράµµατα σηµάτων εισόδου και εξόδου ενός ψηφιακού συστήµατος αυτοµατισµού µε µνήµη 2..3 Συστήµατα αυτοµατισµού απλά, µε µνήµη και έξυπνα συστήµατα. Ανάλογα µε τις δυνατότητες µνήµης που έχουν τα συστήµατα αυτοµατισµού διακρίνονται σε απλά ή χωρίς µνήµη, σε συστήµατα µε µνήµη και σε συστήµατα έξυπνα. Σε ένα σύστηµα αυτοµατισµού µε µνήµη, µία OUTPUT δεν εξαρτάται µόνο από την τρέχουσα INPUT, αλλά και από προηγούµενες INPUT σε προηγούµενους κύκλους λειτουργίας του συστήµατος. Ένα τέτοιο σύστηµα έχει την ικανότητα να θυµάται τις προγενέστερες αυτές INPUT και αυτό το επιτυγχάνει ρυθµίζοντας κάποιες παραµέτρους του ανάλογα µε αυτές τις προγενέστερες INPUT. Ενώ σ ένα απλό σύστηµα αυτοµατισµού χωρίς µνήµη, κάθε προγενέστερη INPUT αγνοείται και η OUTPUT καθορίζεται αποκλειστικά από την τρέχουσα INPUT. Το σχήµα Σ µας βοηθά να κατανοήσουµε την διαφορά αυτή. Στο διάγραµµα του σχήµατος αυτού έχουµε το σήµα εισόδου, που βλέπουµε ότι επαναλαµβάνεται πάντα το ίδιο. Αλλά 9

13 στο διάγραµµα 2 βλέπουµε ότι το σήµα εξόδου που προκύπτει δεν είναι πάντα το ίδιο. Αποκτά µία τιµή >0 σε ανταπόκριση κάθε σήµατος εισόδου περιττής τάξης (στο ο στο 3 ο, στο 5 ο κ.λ.π.) και µία τιµή =0 σε ανταπόκριση κάθε σήµατος εισόδου άρτιας τάξης (στο 2 ο στο 4 ο κ.λ.π.). Εποµένως το σύστηµα αυτό θυµάται τις τάξης (περιττής ή άρτιας) είναι η προηγούµενη και η παρούσα είσοδος και αντιδρά ανάλογα. Άρα είναι σύστηµα αυτοµατισµού µε µνήµη, πολύ απλή βέβαια, αλλά πάντως µνήµη. Σε ένα σύστηµα χωρίς µνήµη το σήµα εξόδου θα ήταν πάντα το ίδιο για ίδιες εισόδους. Οι προγενέστερες INPUT που λαµβάνει υπ όψη του ένα σύστηµα αυτοµατισµού µε µνήµη µπορεί να είναι πολύ λίγες και πολύ απλές (µόνο µία παλµική INPUT στο προηγούµενο παράδειγµα) ως πάρα πολλές και εξαιρετικά περίπλοκες. Οι πιο σύνθετες από αυτές αναφέρονται κάτω από την γενική ονοµασία «πρόγραµµα». Ένα έξυπνο σύστηµα αυτοµατισµού είναι ένα σύστηµα µε ισχυρή µνήµη, που οπωσδήποτε δέχεται προγράµµατα, αλλά που έχει την επιπλέον δυνατότητα να αναπροσαρµόζει ή να αλλάζει µόνο του τα προγράµµατά του αντιδρώντας σε διάφορες κατηγορίες εισόδων που δέχεται από το περιβάλλον κατά την διάρκεια της λειτουργίας του. Υπάρχουν πολλές διαβαθµίσεις έξυπνων συστηµάτων, µε ποσοτικές και ποιοτικές διαφορές µεταξύ τους. Στο κάτω άκρο, το όριο µεταξύ των ισχυρότερων συστηµάτων µε µνήµη και των λιγότερο έξυπνων συστηµάτων δεν είναι σαφές. Στο επάνω άκρο, θεωρητικά τουλάχιστον, υπάρχει η δυνατότητα να κατασκευασθούν έξυπνα συστήµατα µε εντελώς ανθρώπινα χαρακτηριστικά σκέψης. Όµως τέτοια συστήµατα αρχίζουν εντελώς να ξεφεύγουν από τον ορισµό του αυτοµατισµού που έχουµε δεχθεί εδώ. Γιατί το σύστηµα - άνθρωπος φαίνεται ότι διαθέτει ατέλειες ή προτερήµατα τέτοια, που το κάνουν να µην έχει σχεδόν ποτέ την ίδια ακριβώς έξοδο σε µία δεδοµένη σειρά από εισόδους, όσο και αν εκπαιδευθεί και όση εµπειρία και αν αποκτήσει Υδραυλικά, Πνευµατικά, Ηλεκτρικά, Ηλεκτρονικά κ.λ.π. συστήµατα αυτοµατισµού Στην βιοµηχανική πρακτική, η κατάταξη των συστηµάτων αυτοµατισµού σε κατηγορίες σύµφωνα µε τον τρόπο λειτουργίας και την φύση γενικά των µέσων που χρησιµοποιούν είναι πολύ διαδεδοµένη. Αυτό συµβαίνει γιατί υπάρχει εξειδίκευση των κατασκευαστών συστηµάτων αυτοµατισµού και δοµικών στοιχείων αυτοµατισµών σε ορισµένα είδη µέσων που απαιτούν ορισµένο σύνολο γνώσεων και µεθοδολογιών κατασκευής, πώλησης και χρήσης (γενικά αυτό που λέµε «KNOW - HOW»). Από την πλευρά όµως του χρήστη των αυτοµατισµών δεν µπορεί να υπάρξει εξειδίκευση του ίδιου βάθους, γιατί οι περισσότεροι αυτοµατισµοί είναι µικτού τύπου. Αυτό συµβαίνει όχι τυχαία, αλλά επειδή κάθε κατηγορία µέσων αυτοµατισµού έχει ιδιαίτερα πλεονεκτήµατα και ιδιαίτερα µειονεκτήµατα, µε συνέπεια αλλού να µην µπορεί να καλύψει τις ειδικές απαιτήσεις του χρήστη και αλλού να παρουσιάζεται συµφερότερη οικονοµικά κάποια άλλη κατηγορία µέσων. Πολύ συχνά η εξειδίκευση των πλεονεκτηµάτων και µειονεκτηµάτων καταλήγει σε σχεδίαση αυτοµατισµών µικτού τύπου. Τα πρώτα συστήµατα αυτοµατισµού της βιοµηχανικής επανάστασης ήταν µηχανικά συστήµατα. Χρησιµοποιούσαν δηλ. δοµικά στοιχεία από κατάλληλα στερεά εξαρτήµατα (µοχλούς, τροχούς, ιµάντες, ελατήρια κ.λ.π.). Τα συστήµατα αυτά κυριάρχησαν µέχρι και το πρώτο τέταρτο του αιώνα µας, αλλά σήµερα έχουν µόνο ιστορική αξία, αν και πολύ συχνά συναντάµε µηχανικά εξαρτήµατα µέσα σε άλλα είδη αυτοµατισµών. Τα µηχανικά συστήµατα, παρ όλο που χρησιµοποιούσαν απλά µηχανικά εξαρτήµατα, µπορούσαν να έχουν µεγάλη αποτελεσµατικότητα (κλασσικό το παράδειγµα του ρυθµιστή του WATT) και, χάρη στην καταπληκτική επινοητικότητα των κατασκευαστών τους, σχεδόν απίστευτες για εµάς, που έχουµε συνηθίσει στην χρήση των σύγχρονων συστηµάτων, δυνατότητες. Οι αυτόµατες εργαλειοµηχανές, που εµφανίσθηκαν στην δεύτερη δεκαετία του αιώνα µας, έκαναν σχεδόν ότι κάνουν και οι σηµερινές προγραµµατιζόµενες εργαλειοµηχανές αλλά µε µηχανικά αποκλειστικά εξαρτήµατα και πολλές από αυτές είναι ακόµα σε χρήση, ενώ µέχρι και σχετικά πρόσφατα εξακολουθούσαν να κατασκευάζονται. Μέχρι και ο 0

14 προγραµµατιζόµενος µηχανικός υπολογιστής σχεδόν κατασκευάστηκε και µάλιστα στα µέσα του 9 ου αιώνα από τον BABBAGE στην Αγγλία (σώζεται σήµερα ένα τµήµα του). Τελικά όµως τα µηχανικά συστήµατα δεν µπορούν να συναγωνισθούν σε κόστος, ευελιξία και αξιοπιστία τα σηµερινά σε χρήση συστήµατα. Σήµερα χρησιµοποιούµε στην βιοµηχανία τέσσερα είδη αυτοµατισµών : τους υδραυλικούς, τους πνευµατικούς, τους ηλεκτρικούς και τους ηλεκτρονικούς αυτοµατισµούς. Όπως είπαµε, πολύ συχνά συναντάµε και µικτούς τύπους από δύο ή και περισσότερα είδη αυτοµατισµού. Τα υδραυλικά συστήµατα αυτοµατισµών χρησιµοποιούν υδραυλικά ρευστά για την µετάδοση κινήσεων και δυνάµεων. Έχουν τη δυνατότητα ανάπτυξης µεγάλων δυνάµεων και ισχύων, αλλά έχουν αργές αντιδράσεις. Τα συναντάµε σχεδόν οπουδήποτε χρειάζεται µετάδοση ισχυρών δυνάµεων. Υπάρχουν αποκλειστικά υδραυλικά συστήµατα στη βιοµηχανία, αλλά πολύ συχνά τα συναντάµε σαν υποσυστήµατα άλλων αυτοµατισµών µικτού τύπου, σαν τελικά υποσυστήµατα που αναλαµβάνουν τις κινήσεις και την µετάδοση δυνάµεων. Τα πνευµατικά συστήµατα χρησιµοποιούν πεπιεσµένο αέρα κατά τον ίδιο περίπου τρόπο όπως τα υδραυλικά. Οι ικανότητες σε δυνάµεις είναι µικρότερες σε σχέση µε τα υδραυλικά συστήµατα, αλλά οι ταχύτητες δράσης τους πολύ καλύτερες. Θα δούµε ότι για πολλούς λόγους είναι πάρα πολύ διαδεδοµένα στην βιοµηχανία. Τα ηλεκτρικά συστήµατα αυτοµατισµού χρησιµοποιούν ηλεκτρικά σήµατα που προκαλούν µετατοπίσεις και κινήσεις αλλά σε άλλες εξόδους. Οι δυνατότητες τους σε δυνάµεις, ιδίως στατικές δυνάµεις, υπόκεινται σε πολλούς περιορισµούς γιατί θέλουν ειδικές προφυλάξεις κατά υπερφορτίσεων. Μπορούν όµως να µεταφέρουν µε πολύ µεγάλη αξιοπιστία και πολύ µεγαλύτερη από τους πνευµατικούς αυτοµατισµούς ταχύτητα περίπλοκα συστήµατα σε πολύ µεγάλες αποστάσεις. Γι αυτό είναι τα πιο διαδεδοµένα συστήµατα σήµερα και τα βρίσκουµε σαν υποσυστήµατα τουλάχιστον στους περισσότερους βιοµηχανικούς αυτοµατισµούς. Τα ηλεκτρονικά συστήµατα αυτοµατισµού χρησιµοποιούν και αυτά το ηλεκτρικό ρεύµα σαν φορέα σηµάτων, αλλά σε εντάσεις πολύ χαµηλότερες µε συνέπεια να συνδυάζουν την ταχύτητα µε πολύ µικρό όγκο. Από πλευράς κόστους υπερέχουν απόλυτα των άλλων συστηµάτων, όταν χρειάζονται περίπλοκοι αυτοµατισµοί, ιδίως προγραµµατιζόµενα συστήµατα µε µνήµη. Είναι τα µόνα πρακτικά εφαρµόσιµα συστήµατα στους έξυπνους αυτοµατισµούς. εν έχουν όµως την δυνατότητα να µεταφέρουν δυνάµεις και οι ικανότητές τους να µεταφέρουν ηλεκτρικές ισχείς είναι πολύ περιορισµένες. Γι αυτό στη βιοµηχανία τα συναντάµε περισσότερο σαν κέντρα µεγαλύτερων µικτών αυτοµατισµών. Πρέπει να πούµε ότι η διάκριση σε υδραυλικά, πνευµατικά, ηλεκτρικά, ηλεκτρονικά συστήµατα αυτοµατισµού αν και πρακτικά χρήσιµη στην εποχή µας, έχει πολλές ελλείψεις και ασάφειες. Π.χ. υπάρχουν ηλεκτρικά συστήµατα µε ηλεκτρονικούς διακόπτες (THYRISTORS) που δεν έχουν κινούµενα εξαρτήµατα. Υπάρχουν πνευµατικοί αυτοµατισµοί - µινιατούρες µε τρόπο λειτουργίας ίδιο µε τον τρόπο λειτουργίας των λογικών ηλεκτρονικών κυκλωµάτων (FLUIDICS από τις λέξεις FLUID & LOGICS). Υπάρχουν εξαρτήµατα αυτοµατισµών που είναι δύσκολο να καταταγούν σε συγκεκριµένη κατηγορία (π.χ. πιεζοστάτες). Σε µερικούς βιοµηχανικούς αυτοµατισµούς χρησιµοποιούνται όλα τα είδη των κυµάτων σαν φορείς σηµάτων : Υπέρηχοι, ραδιοκύµατα, φωτεινές δέσµες, υπέρυθρες ακτίνες, δέσµες LASER που διαδίδονται µέσα από λεπτούς σωληνίσκους (OPTICAL FIBERS) που µπορούν να παρουσιάζουν κάµψεις και στροφές. Ιδίως αυτές οι «οπτικές ίνες» προµηνύουν την εµφάνιση πέµπτης κατηγορίας αυτοµατισµών, των οπτικών αυτοµατισµών που πιθανότατα θα συναγωνισθούν σκληρά τους ηλεκτρικούς αυτοµατισµούς στην µετάδοση σηµάτων. Και η εξαφάνιση των µηχανικών αυτοµατισµών µας βεβαιώνει στο όχι και πολύ µακρινό µέλλον κάποια άλλη διάκριση σε κατηγορίες θα υπάρχει για τους αυτοµατισµούς. Αλλά µε τα σηµερινά δεδοµένα οι τέσσερις κατηγορίες αυτές είναι η καλύτερη διάκριση που µπορούµε να έχουµε.

15 3 ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ 3. Η Έννοια του ελέγχου Ο αυτόµατος έλεγχος είναι το σύνολο των ενεργειών µε τις οποίες ένα ελεγχόµενο µέγεθος διατηρεί µία επιθυµητή τιµή (βέβαια µε κάποιο δεδοµένο σφάλµα). Ο έλεγχος µπορεί να είναι ανοικτού ή κλειστού κυκλώµατος. Στα συστήµατα ανοικτού κυκλώµατος όπως φαίνεται στο σχήµα Σ 3. ο ελεγκτής δίνει µία και µοναδική εντολή και δεν επαληθεύει την τιµή που επιτυγχάνεται στη διεργασία. ΕΙΣΟ ΟΣ ΣΤΟΙΧΕΙΟ ΕΛΕΓΧΟΥ ΕΝΕΡΓΟΠΟΙΗΤΗΣ H ΙΕΡΓΑΣΙΑ ΣΗΜΑ ΕΝΤΟΛΗΣ ΕΛΕΓΚΤΗΣ ΣΗΜΑ ΑΝΑΦΟΡΑΣ (ΕΠΙΘΥΜΗΤΗ ΤΙΜΗ) Σ 3. Σύστηµα Ανοικτού Κυκλώµατος Η έξοδος ακολουθεί την επιθυµητή τιµή κατά κανόνα, πλην περιπτώσεων δράσης παραγόντων που ονοµάζονται διαταραχές οι οποίες παράγουν σφάλµατα µερικές φορές σηµαντικά. Οι διαταραχές µπορεί να είναι φύσης ηλεκτρικής, µηχανικής, ρευστοµηχανικής και γενικά προκαλούνται από µεταβολές πίεσης, θερµοκρασίας, φορτίου και µηχανικών κινήσεων. Στα συστήµατα κλειστού κυκλώµατος όπως φαίνεται στο Σχήµα Σ 3.2 ο ελεγκτής παρέχει στο στοιχείο ελέγχου µία εντολή που είναι το αποτέλεσµα σύγκρισης µεταξύ του σήµατος αναφοράς (επιθυµητής τιµής) και του σήµατος ανάδρασης. ΕΙΣΟ ΟΣ ΣΤΟΙΧΕΙΟ ΕΛΕΓΧΟΥ ΕΝΕΡΓΟΠΟΙΗΤΗΣ H ΙΕΡΓΑΣΙΑ ΕΛΕΓΚΤΗΣ + ΣΗΜΑ ΑΝΑΦΟΡΑΣ - ΑΝΑ ΡΑΣΗ ΜΕΤΑΤΡΟΠΕΑΣ Σ 3.2 Σύστηµα Κλειστού Κυκλώµατος 2

16 Η δράση των διαταραχών εξουδετερώνεται συνεχώς και το µέγεθος που ελέγχουµε διατηρείται σταθερή στην επιθυµητή τιµή (τιµή αναφοράς) µε τιµή σφάλµατος πολύ µικρή. 3.2 Βασικές παράµετροι του ελέγχου Οι παράµετροι που χαρακτηρίζουν ένα µοντέλο αυτοµατισµού είναι : 3.2. Ακρίβεια Η ακρίβεια είναι η προσέγγιση µε την οποία το ρυθµιζόµενο µέγεθος διατηρεί την επιθυµητή τιµή αναφοράς. Ορίζουµε σφάλµα την διαφορά µεταξύ της τιµής αναφοράς και της τιµής του V ρυθµιζόµενου µεγέθους. ( ) r V Απόλυτο σφάλµα ε = a V r V e r e Σχετικό σφάλµα Ευαισθησία e ε = V V a V r Ως ευαισθησία ορίζεται η πιο µικρή τιµή µεταβολής της τιµής αναφοράς που µπορεί να προκαλέσει µεταβολή στην έξοδο του συστήµατος Ευστάθεια Η ευστάθεια δείχνει την δυνατότητα του συστήµατος να φθάνει στη θέση ισορροπίας µε συµπεριφορά περιοδικής µορφής ή µορφή αποσβενυµένης ταλάντωσης. Όταν το σύστηµα σταθεροποιείται σε ταλάντωση σταθερού ή αυξανόµενου πλάτους τότε λέµε ότι είναι ασταθές Σχήµα Σ 3.3. Σ 3.3 Ευστάθεια Συστηµάτων 3

17 3.2.4 Χρόνος απόκρισης Ορίζουµε ως χρόνο απόκρισης, τον απαραίτητο χρόνο, ώστε το σύστηµα να φθάσει στην κατάσταση ισορροπίας. Όλες οι παράµετροι αναφέρονται σε συνθήκες λειτουργίας του συστήµατος στατικές ή δυναµικές. 3.3 οµικά διαγράµµατα και σχέσεις Η ανάλυση της µελέτης λειτουργίας ενός συστήµατος αυτοµατισµού επιτυγχάνεται µε σχηµατικά δοµικά διαγράµµατα. Με αυτά εκφράζεται κάθε σχέση που διέπει το εισερχόµενο µέγεθος µε το εξερχόµενο στο µελετούµενο σύστηµα. ΦΥΣΙΚΟ ΣΤΟΙΧΕΙΟ ΤΟΥ V F ΣΥΣΤΗΜΑΤΟΣ ΠΟΥ ΥΦΙΣΤΑΤΑΙ V2 ΕΙΣΟ ΟΣ Ε ΟΜΕΝΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΞΟ ΟΣ Η µαθηµατική σχέση που υπάρχει µεταξύ αυτών των δύο σηµάτων εισόδου και εξόδου, ονοµάζεται συνάρτηση µεταφοράς του δοµικού διαγράµµατος. Έχουµε V = F 2 V. Τα δοµικά στοιχεία που χρησιµοποιούνται για την συγκρότηση των δοµικών διαγραµµάτων είναι τα ακόλουθα: 3.3. Κόµβος σύγκρισης V V V V + V3 = V2 V + V3 = 3 2 _ V2 V V V οµικά στοιχεία σε σειρά Ε F X F 2 U Συνάρτηση µεταφοράς G= F F 2 4

18 X 2 F 2 Απόδειξη : X = E F U = X F G= 2 U G= E X X F 2 F G= F F οµικά στοιχεία σε παράλληλη σύνδεση F X + Ε F 2 X 2 + U Συνάρτηση µεταφοράς = + G F F 2 Απόδειξη : X X = E F F G= U E = E 2 2 F G E + = E ( ) F 2 F G= + F οµικά στοιχεία µε ανάδραση E X + F U - U Συνάρτηση µεταφοράς F F G= + F 2 5

19 Απόδειξη : U = X F X = U F U = X F = ( E X ) F = ( E U F ) F = E F U F F G= U E F F U U+ U F F = E F = E G = 2 + F 2 Αποδεικνύεται ότι στο σχηµατικό σύστηµα αυτοµατισµού ισχύει η σχέση : W = U E = + G K I G II G I G II E + G I G II U - Κ Υπάρχουν δύο πεδία εφαρµογής του αυτοµάτου ελέγχου :. Έλεγχος βιοµηχανικών διεργασιών, στον οποίο η ελεγχόµενη µεταβλητή διατηρείται σταθερή χρονικά και ίση µε µία τιµή αναφοράς αµετάβλητη. 2. Έλεγχος σερβοσυστηµάτων ή σερβοµηχανισµών, όπου η ελεγχόµενη µεταβλητή λαµβάνει προγραµµατισµένες χρονικά τιµές ή τιµές που ακολουθούν τη µεταβολή της εισόδου που γίνεται όχι µε προκαθορισµένο τρόπο. Παρακάτω δίνονται παραδείγµατα αυτοµατισµών και των δοµικών τους διαγραµµάτων στα Σχήµατα Σ

20 7

21 Σ Σ 3.7 8

22 4 ΕΛΕΓΚΤΕΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΙΕΡΓΑΣΙΩΝ Τα συστήµατα αυτοµατισµού που χρησιµοποιούνται για τις βιοµηχανικές διεργασίες είναι γενικά ηλεκτρικού ή πνευµατικού τύπου. Τα πνευµατικά συστήµατα χρησιµοποιούν σαν σήµατα εντολών και ανάδρασης παροχές πεπιεσµένου αέρα, πίεσης 0,2 - At. Τα ηλεκτρικά συστήµατα (ελεγκτές) χρησιµοποιούν ηλεκτρικά σήµατα έντασης µερικών ma. Σε κάθε σύστηµα ελέγχου προσαρµόζουµε την ειδική του συνάρτηση λειτουργίας κατά τρόπο τέτοιο ώστε να επιτυγχάνουµε τον πιο ευσταθή και γρήγορο έλεγχο. Με την προσαρµογή αυτή δίνουµε στον µηχανισµό έλεγχου (ελεγκτή) χαρακτηριστικά τύπου : P: Αναλογικά (PROPORTIONAL) Ι : Ολοκληρωτικού (INTEGRAL) D: ιαφορικά (DERIVATE) Ο ελεγκτής µπορεί να θεωρηθεί ότι αποτελείται από τρία δοµικά στοιχεία παράλληλα, εκ των οποίων το πρώτο αντιστοιχεί στην αναλογική σχέση, το δεύτερο στην σχέση ολοκλήρωσης, και το τρίτο στην σχέση διαφόρισης - παραγώγου. Στην αναλογική σχέση έχουµε σήµα εξόδου ανάλογο του σφάλµατος : ( ) K p x x 0. Στη σχέση ολοκλήρωσης έχουµε σήµα εξόδου ανάλογο του ολοκληρώµατος του σφάλµατος : K ( x ) t i x0 0 Στη σχέση διαφόρισης έχουµε σήµα εξόδου ανάλογο της παραγώγου του σφάλµατος : K dx. d dt Οι συντελεστές των τριών σχέσεων (δοµικών στοιχείων) µπορούν να ρυθµίζονται κατά τέτοιο τρόπο ώστε να διαφοροποιούν το σήµα εξόδου. 4. Αναλογικός ελεγκτής (P) Το δοµικό διάγραµµα λειτουργίας του φαίνεται στο σχ. Σ 4. dt. ΒΑΛΒΙ Α ΕΛΕΓΧΟΥ ΙΕΡΓΑΣΙΑ ΜΕΓΕΘΟΣ ΕΛΕΓΧΟΜΕΝΟ ΕΝΤΟΛΗ ΑΝΑΛΟΓΙΚΟΣ ΕΛΕΓΚΤΗΣ ΑΝΑ ΡΑΣΗ ΤΙΜΗ ΑΝΑΦΟΡΑΣ Σ 4. Η βαλβίδα ελέγχου λαµβάνει θέση ανοίγµατος ανάλογη προς την απόκλιση του ελεγχόµενου µεγέθους από την επιθυµητή τιµή. Αυτό φαίνεται καλύτερα στο σχήµα Σ

23 Για κάθε τιµή του ελεγχόµενου µεγέθους υπάρχει µία µοναδική θέση της βαλβίδας ελέγχου εντός της αναλογικής περιοχής (proportional band). Όταν το άνοιγµα της βαλβίδας αντιστοιχίσει στην επιθυµητή τιµή του ελεγχόµενου µεγέθους τότε φτάνει στη θέση 50%. Όταν το µέγεθος ελέγχου έχει τιµή µεγαλύτερη από την επιθυµητή, η βαλβίδα ελέγχου µετακινείται προς το κλείσιµο, ώστε να µειώσει την παροχή του ελεγχόµενου µέσου που απαιτείται από την διεργασία και τελικά να επαναφέρει το ελεγχόµενο µέγεθος στην επιθυµητή τιµή. Αντίστροφα αν το ελεγχόµενο µέγεθος έχει τιµή µικρότερη από την επιθυµητή, η βαλβίδα ελέγχου µετακινείται προς το άνοιγµα, ( %) ώστε µε αύξηση της παροχής να ρυθµίσει τη διεργασία. Στο παρακάτω σχήµα Σ 4.3 φαίνεται η πορεία του ελέγχου µε αναλογικό ελεγκτή και µεταβολές φορτίου προσωρινές και µόνιµες. Σ. 4.2 Σ

24 4.2 Αναλογικός - ολοκληρωτικός ελεγκτής (PΙ) Αυτός ο τύπος ελεγκτή είναι ο πιο διαδεδοµένος στο βιοµηχανικό αυτοµατισµό. Η µονάδα ελέγχου διαθέτει δύο δοµικά στοιχεία παράλληλα. Το σχηµατικό διάγραµµα κλειστού κυκλώµατος του PI ελεγκτή φαίνεται στο Σχ. Σ 4.4. Γενικά οι ελεγκτές PI διαθέτουν δύο ρυθµίσεις. Μία για να µεταβάλλεται το πλάτος της αναλογικής περιοχής (PB) και µία δεύτερη για να µεταβάλλεται ο χρόνος απόκρισης Tr. Η δράση ενός ελεγκτή PI για µία βαθµωτή µεταβολή του ελεγχόµενου µεγέθους της διεργασίας φαίνεται στο διάγραµµα του Σχ. Σ 4.5. Στο χρόνο t, το ελεγχόµενο µέγεθος και η επιθυµητή τιµή ταυτίζονται στο 0 x. 0 Μετά τη βαθµωτή µεταβολή του µεγέθους από την τιµή x στην 0 x έχουµε ως συνέπεια τη µεταβολή του σήµατος του ελεγκτή (ρυθµιστικού σήµατος) από y σε y λόγω της αναλογικής K p x x0 σχέσης ( ). Στη συνέχεια επίδραση της ολοκληρωτικής δράσης µεταβάλλει το σήµα του ελεγκτή από τη τιµή y σε y και την y µέχρι το χρόνο t I ΒΑΛΒΙ Α ΕΛΕΓΧΟΥ ΙΕΡΓΑΣΙΑ ΜΕΓΕΘΟΣ ΕΛΕΓΧΟΜΕΝΟ ΕΝΤΟΛΗ ΕΛΕΓΚΤΗΣ PI ΑΝΑ ΡΑΣΗ ΤΙΜΗ ΑΝΑΦΟΡΑΣ Σ 4.4 Σ

25 Μετά το ελεγχόµενο µέγεθος ακολουθώντας το κλείσιµο της βαλβίδας ελέγχου τείνει να γυρίσει στην επιθυµητή τιµή x µέχρι το χρόνο 0 t. Το σήµα του ελεγκτή y µεταβάλλει τη συνάρτηση 3 µεταβολής του αντίστοιχα και σταθεροποιείται τελικά στην τιµή y, διαφορετική από την y 4 0 δεδοµένου ότι άλλαξε το φορτίο. Έχουµε τελικά επαναφορά του x στο x λόγω της ρυθµιστικής 0 δράσης του ελεγκτή PI παρά τη µεταβολή του φορτίου που συνέβη και εξακολουθεί να συµβαίνει, και έχει σαν συνέπεια τη µεταβολή της τιµής του σήµατος ρύθµισης από την τιµή y στην y. Θα εξετάσουµε παράδειγµα µε ρύθµιση θερµοκρασίας σε τιµή 25 0 C όπως φαίνεται στο Σχήµα Σ Σ. 4.6 Ξεκινάµε από τη συνθήκη ισορροπίας του ελεγχόµενου µεγέθους στην επιθυµητή τιµή των 25 0 C, µε ένα ρυθµιστικό σήµα που προκαλεί άνοιγµα της βαλβίδας κατά 50%. Η διεργασία υφίσταται µια µόνιµη µεταβολή (προσθήκη ποσότητας) προς µια µεγαλύτερη φόρτιση. Αρχικά εµφανίζεται µια µείωση της θερµοκρασίας του σήµατος που προκαλεί µια ρύθµιση (διόρθωση) αναλογική. Στη συνέχεια δηµιουργείται µια απόκλιση που διορθώνεται από την ολοκληρωτική δράση που προστίθεται στη προηγούµενη. Η βάνα φθάνει έτσι σε µια θέση που επιτρέπει να διατηρείται η θερµοκρασία στην προκαθορισµένη τιµή ( 25 0 C ). Η χαρακτηριστική συνάρτηση του ρυθµιστή PI µπορεί να γραφεί µε την µορφή : t ( ) ( ) y K p x Ki x y = x + x dt ANAΛ OΓIKO OΛOKΛ HPΩ TIKO Για µία βαθµωτή µεταβολή της ελεγχόµενης µεταβλητής x το ρυθµιστικό σήµα γίνεται : 22

26 y K K i p y 0 = T r K = BP = p ( x x ) + K ( x x ) t 0 i 0 y= x x + t BP T r όπου ΒΡ : Αναλογική ζώνη Τ r : Χρόνος απόκρισης ολοκλήρωσης 4.3 Αναλογικός - Ολοκληρωτικός - ιαφορικός ελεγκτής (PID) Αυτός ο τύπος ελεγκτή χρησιµοποιείται κυρίως όταν στην ελεγχόµενη διεργασία υπάρχει µια συνεχής γραµµική µεταβολή της ελεγχόµενης µεταβλητής. Το σχηµατικό διάγραµµα του PID ελεγκτή φαίνεται στο σχήµα Σ4.7 και σχήµα Σ 4.8. ΒΑΛΒΙ Α ΕΛΕΓΧΟΥ ΙΕΡΓΑΣΙΑ ΜΕΓΕΘΟΣ ΕΛΕΓΧΟΜΕΝΟ ΕΝΤΟΛΗ ΕΛΕΓΚΤΗΣ P ID ΑΝΑ ΡΑΣΗ ΤΙΜΗ ΑΝΑΦΟΡΑΣ ΕΙΣΟ ΟΣ ΑΝΑΛΟΓΙΚΟ P ΕΞΟ ΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟ I ΙΑΦΟΡΙΚΟ D Σ4.7 και Σ 4.8 Τα τρία δοµικά στοιχεία του αυτοµατισµού παράλληλα συνδεδεµένα, µπορούν να συµµετέχουν στο συνολικό σήµα µε συντελεστές που επιδέχονται ρύθµιση. 23

27 Η χαρακτηριστική συνάρτηση ενός PID ρυθµιστή είναι η ακόλουθη : ( ) ( ) y K p x Ki x K y = x + x dt ANAΛOΓIKO( P) 0 OΛOKΛHPΩ TIKO( I) t d dx dt IAΦOPIKO( D) Η δράση ενός PID ελεγκτή για µία γραµµική µεταβολή της ελεγχόµενης µεταβλητής φαίνεται στο Σχήµα Σ 4.9. Σ 4.9 Στο χρόνο t η ελεγχόµενη µεταβλητή και η επιθυµητή τιµή ταυτίζονται στη τιµή 0 x. Το 0 παρεχόµενο από τον ρυθµιστή PID σήµα είναι y. 0 Στο χρόνο t αρχίζει µια µεταβολή της ελεγχόµενης µεταβλητής που προκύπτει από µία προοδευτική µεταβολή φορτίου. Το µέρος του σήµατος από την επίδραση µιας διαφορικής δράσης είναι η µεταβολή από y σε y ίσο µε 0 K d V... x V = dx. x dt Παρεµβαίνουν φυσικά και οι δράσεις αναλογική και ολοκληρωτική. Η αναλογική ξεκινώντας από το y µεταβάλλει το σήµα εξόδου µε µία σχέση γραµµική που είναι συνάρτηση της αναλογικής ζώνης (Β.Ρ) 24

28 t Η ολοκληρωτική δράση δίνεται από την σχέση : ( x ) K x i 0 0 Μετά το χρόνο t η δράση της βαλβίδας µειώνει την ελεγχόµενη µεταβλητή στην τιµή 2 x που 0 είναι επιθυµητή και επιτυγχάνεται στο χρόνο t όπου το ρυθµιστικό σήµα έχει πλέον µια καινούρια 3 τιµή που αντιστοιχεί στη µεταβολή του φορτίου Κύκλωµα αυτοµατισµού στάθµης Η διατήρηση της στάθµης σε δοχείο ανεξάρτητα από τις συνθήκες ροής στην έξοδο φαίνεται σχηµατικά στο Σχήµα Σ4.. dt ΕΙΣΟ ΟΣ ΡΕΥΣΤΟΥ ΒΑΛΒΙ Α ΣΕΡΒΟΜΗΧΑΝΙΣΜΟΣ ΕΝΤΟΛΗΣ ΕΞΑΜΕΝΗ m ΕΛΕΓΚΤΗΣ PI ΜΕΤΑΤΡΟΠΕΑΣ ΑΝΙΧΝΕΥΤΗΣ ΣΤΑΘΜΗΣ ΕΞΟ ΟΣ ΡΕΥΣΤΟΥ ΑΝΑ ΡΑΣΗ 0,2-At m/ω ΤΟΠΟΘΕΤΗΣΗ ΕΠΙΘΥΜΗΤΗΣ ΤΙΜΗΣ ΣΤΑΘΜΗΣ ΜΕΤΑΤΡΟΠΕΑΣ P/Amperes ΚΑΤΑΓΡΑΦΙΚΟ Σ4. Ο ανιχνευτής παρέχει σήµα ανάλογο του βάθους (στάθµης) σε m ενώ ο µετατροπέας (Transducer) µετατρέπει το σήµα σε πίεση P. Ο ελεγκτής PI δέχεται το σήµα και παρέχει σε σχέση µε την επιθυµητή τιµή στάθµης µια ρυθµιστική εντολή στην βαλβίδα παροχής ρευστού τέτοια ώστε, ανεξάρτητα από τις συνθήκες ροής στην έξοδο του ρευστού η στάθµη στην δεξαµενή να παραµένει σταθερή. 25

29 5 ΣΕΡΒΟΣΥΣΤΗΜΑΤΑ 5. Εισαγωγή Τα σερβοσυστήµατα κατατάσσονται ως εξής : Σταθερής τιµής, και είναι εκείνα στα οποία η ελεγχόµενη µεταβλητή παραµένει σταθερή για συγκεκριµένο χρόνο. Προγραµµατιζόµενης τιµής και είναι εκείνα στα οποία η ελεγχόµενη µεταβλητή ακολουθεί ένα ορισµένο πρόγραµµα µεταβολών. Μεταβαλλόµενης τιµής και είναι αυτά στα οποία η ελεγχόµενη µεταβλητή ακολουθεί τις διακυµάνσεις µίας ή περισσοτέρων παραµέτρων όχι προδιαγεγραµµένων. Το δοµικό σχηµατικό διάγραµµα ενός σερβοσυστήµατος φαίνεται στο σχήµα Σ 5.. ΜΟΝΑ Α ΕΛΕΓΧΟΥ ΜΕΤΑΒΛΗΤΗ ΓΙΑ ΕΛΕΓΧΟ ΣΗΜΑ ΑΝΑΦΟΡΑΣ V ε V 2 ΕΝΙΣΧΥ- ΤΗΣ ΣΤΟΙΧΕΙΟ ΕΛΕΓΧΟΥ ΕΝΕΡΓΟΠΟΙΗΤΗΣ H ΙΕΡΓΑΣΙΑ ΕΞΟ ΟΣ ΜΕΤΑΒΛΗΤΗΣ ΑΝΑ ΡΑΣΗ ΜΕΤΑΤΡΟΠΕΑΣ Σ 5. Το σήµα αναφοράς υφίσταται µονίµως µια σύγκριση µε αυτό που προκύπτει από την ανάδραση. Το σφάλµα ελέγχου ε = V V 2 ενισχύεται και µεταφέρεται στο όργανο ελέγχου το οποίο µε τη σειρά του σηµατοδοτεί τον ενεργοποιητή (π.χ. κινητήρας, έµβολο κ.λ.π.). Ο ρυθµιστής κάνει απευθείας την σύγκριση µεταξύ των σηµείων αναφοράς και ανάδρασης και παράγει σαν έξοδο µια ρυθµιστική δράση. Το όργανο ή στοιχείο ελέγχου ή βαλβίδα είναι το στοιχείο που δρα απευθείας στην µεταβλητή που θέλουµε να ρυθµίσουµε. Τα σερβοσυστήµατα ακριβείας που χρησιµοποιούνται στις π.χ. εργαλειοµηχανές CNC και στα ROBOT, λειτουργούν υπό µορφή κλειστού βρόχου και µάλιστα πολλαπλού, µε ανάδραση θέσης ταχύτητας, ρεύµατος. Οι µεταβλητές λοιπόν που θέλουµε να ρυθµίσουµε σε αυτήν τη περίπτωση ρυθµίζονται µε ηλεκτρονικό ρυθµιστή. 5.2 Συνάρτηση Μεταφοράς Κάθε δοµικό στοιχείο που απαρτίζει ένα σύστηµα αυτοµατισµού, χαρακτηρίζεται από τη δική του συνάρτηση µεταφοράς, που εκφράζει τον µαθηµατικό λόγο µεταξύ των σηµάτων εξόδου και εισόδου. Αυτό ισχύει όχι µόνο για σήµατα χρονικά σταθερά αλλά και για σήµατα µεταβλητά ως προς το χρόνο. E f U 26

30 Τα δοµικά στοιχεία ονοµάζονται γραµµικά όταν η συνάρτηση µεταφοράς είναι ένας απλός U συντελεστής αναλογίας f = = K. E Γραµµικά ονοµάζονται τα στοιχεία, όταν η συνάρτηση χαρακτηρίζεται από µια διαφορική εξίσωση πρώτης τάξης. Στην πρώτη περίπτωση το σήµα εξόδου εξαρτάται από την τιµή του σήµατος εισόδου, και η συνάρτηση µεταφοράς είναι µια σταθερά. Στη δεύτερη περίπτωση το σήµα εξόδου δεν εξαρτάται από την τιµή του σήµατος εισόδου αλλά επιπλέον και από τη διακύµανσή ως προς το χρόνο. Σ αυτή τη περίπτωση η σχέση µεταξύ των σηµάτων εισόδου και εξόδου δεν µπορεί να είναι µια απλή αλγεβρική έκφραση, αλλά ολοκληρωτική - διαφορική. Για να απλοποιήσουµε την ολοκληρωτική - διαφορική σχέση, χρησιµοποιούµε το µετασχηµατισµό LAPLACE. Για τον µετασχηµατισµό LAPLACE περνάµε, από συναρτήσεις χρονικές των σηµάτων E(t), f(t) σε συναρτήσεις της µεταβλητής S στο µιγαδικό πεδίο. Έτσι µπορούµε να εκφράσουµε σε κάθε περίπτωση την συνάρτηση µεταφοράς σαν σχέση µεταξύ U( S) των σηµάτων εισόδου και εξόδου µε µία αλγεβρική απλή έκφραση. Έτσι έχουµε f ( S) =. E( S) 5.3 Μετασχηµατισµός LAPLACE Η δράση αυτού του µετασχηµατισµού συνίσταται στην αντικατάσταση µιας συνάρτησης f(t) µίας µεταβλητής ως προς το χρόνο t µε µία αντίστοιχη αλλά µε έκφραση ως προς µία µιγαδική µεταβλητή S. Αυτή την αντίστοιχη συνάρτηση ορίζουµε f(s). Η µεταβλητή S µπορεί να παρασταθεί στο πεδίο των µιγαδικών αριθµών µε µία συνάρτηση S = δ + jω όπου δ είναι το πραγµατικό µέρος και ω το φανταστικό. Η µαθηµατική συνάρτηση του µετασχηµατισµού LAPLACE είναι : [ ] ( ) e st f ( S) = L f ( t) = f t dt Βασικοί κανόνες µετασχηµατισµού LAPLACE ) L[ K f ( t) ] = K L f( t) = K f S όπου L : το σύµβολο του µετασχηµατισµού [ ] ( ) f ( ) + f ( ) = f + f = f + f [ ] [ ( )] [ ( )] ( ) ( ) ) L t t L t L t S S ( ) 3) L df t [ ( )] ( ) dt S L f t S f S = = 4) L[ f( t) dt] = ( ) S L f t = S f S Παραδείγµατα Βαθµωτή µεταβολή : [ ] ( ) 27

31 f( t) = u( t) = {... t t< 0 t= st st L[ f( t) ] = e dt = = 0 = S S S 0 e t= 0 Ευθύγραµµη µεταβολή : f ( t) = Kt+ K 0 st 0 K L[ f ( t) ] = L[ Kt] + L[ K ] = Kt e dt+ = S 0 K S K S Αντίστροφος µετασχηµατισµός LAPLACE Όταν η εξίσωση µετασχηµατιστεί κατά LAPLACE, η επίλυσή της είναι αλγεβρική ή και προκύπτει µία συνάρτηση f(s) γνωστή. Προκειµένου να βρούµε την αρχικά ζητούµενη συνάρτηση f(t), πρέπει να καταφύγουµε ή στην µαθηµατική τους σχέση, ή στους πίνακες µετασχηµατισµών, ώστε την γνωστή συνάρτηση f(s) να την µετατρέψουµε συναρτήσεις f (S) των οποίων οι αντιστοιχούσες f (t) είναι γνωστές και περιλαµβάνονται στους πίνακες. Η µαθηµατική σχέση της αντίστροφης µετασχηµατισµένης LAPLACE είναι : 6+ jω f( t) f( S) j = e 2π 6 jω Ο πίνακας των βασικών µετασχηµατισµένων LAPLACE είναι στο Σχήµα Σ Ας θεωρήσουµε το παράδειγµα της συνάρτησης f ( S) = S( S+ ) Για να βρούµε την αντίστροφή µετασχηµατισµένη κατά LAPLACE f(t), µετατρέπουµε την f(s) ως 2 εξής : f ( S) = S( S+ ) = 2 S 2 S+ µε ( ) 2 2 f S = και f ( S) =, οπότε από το Σ 5.2 S 2 S+ βλέπουµε ότι η 2 2 t αντιστοιχεί στην f ( t ) = 2 και η αντιστοιχεί στην f ( t) = 2 S S+ 2 e, οπότε : f ( t) = ( t) ( t) = 2 f f e t Συναρτήσεις µεταφοράς ρυθµιστών - συστηµάτων y ) Αναλογικού (P) : y= K x G= = p p x K Εδώ δεν χρειάζεται µετασχηµατισµός LAPLACE 2) Ρυθµιστής PID Εδώ έχουµε την προσθήκη του διαφορικού όρου K dx όπου : d dt dx L K S S L( x) d d x d dt K L T = = και συνολικά : G = K + + S p T S T d, r 3) Σύστηµα που περιγράφεται µε διαφορική εξίσωση ης τάξης st ds 28

32 dy τ + y= f ( t ) όπου : dt τ : χρονική σταθερά του συστήµατος f(t) y y : σήµα εξόδου G f(t) : σήµα εισόδου χρονικά µεταβαλλόµενο t : χρόνος Παίρνοντας τους µετασχηµατισµούς LAPLACE της εξίσωσης έχοµε : τ L dy Ly L[ f( t) ] [ ( ) τ SLy Ly L f t ] dt + = + = Ly G= = L f ( t) S+ [ ] τ F (s) F (t) s n t...( n=, 2, 3,...) s n ( n )! e at s a n at t e ( s a) n ( n )! 2 2 sinh at s a a s 2 2 coshat s a...( a b) ( s a)( s+ a) a b e at e bt [ ] s at bt...( a b) [ ae be ] ( s a)( s+ a) a b 2 2 sin at s + a a s cosat 2 2 s + a 2 2 ( s a) + b b e at sin bt s a e at cos bt 2 2 ( s a) + b s 2 2 s + a 2 2a t sin at ( ) Σ

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΔΟΜΗ ΑΥΤΟΜΑΤΙΣΜΟΥ

ΒΑΣΙΚΗ ΔΟΜΗ ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 2 Ενότητα 2.1 ΒΑΣΙΚΗ ΔΟΜΗ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΤΟΧΟΙ Μετά την ολοκλήρωση της ενότητας αυτής θα μπορείτε: Να περιγράφετε ένα απλό σύστημα Αυτοματισμού Να διακρίνετε ένα Ανοικτό από ένα Κλειστό σύστημα

Διαβάστε περισσότερα

ΙΑΤΑΞΗ ΜΕΤΡΗΣΗΣ ΤΩΝ ΥΝΑΜΕΩΝ ΚΟΠΗΣ ΜΕ ΧΡΗΣΗ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ LABVIEW

ΙΑΤΑΞΗ ΜΕΤΡΗΣΗΣ ΤΩΝ ΥΝΑΜΕΩΝ ΚΟΠΗΣ ΜΕ ΧΡΗΣΗ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ LABVIEW ΙΑΤΑΞΗ ΜΕΤΡΗΣΗΣ ΤΩΝ ΥΝΑΜΕΩΝ ΚΟΠΗΣ ΜΕ ΧΡΗΣΗ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ LABVIEW Η έννοια της µέτρησης καθώς και η µέτρηση καθαυτή είναι άρρηκτα συνδεδεµένη µε την επιστηµονική µεθοδολογία. Επίσης ο κάθε άνθρωπος αντιµετωπίζει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing).

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Κεφάλαιο 4 Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Οι ενδείξεις (τάσεις εξόδου) των θερμοζευγών τύπου Κ είναι δύσκολο να

Διαβάστε περισσότερα

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής 3 Ενισχυτές Μετρήσεων 3.1 Ο διαφορικός Ενισχυτής Πολλές φορές ένας ενισχυτής σχεδιάζεται ώστε να αποκρίνεται στη διαφορά µεταξύ δύο σηµάτων εισόδου. Ένας τέτοιος ενισχυτής ονοµάζεται ενισχυτής διαφοράς

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Μετασχηµατισµός Laplace ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 4 Μαρτίου 29 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας του µετασχηµατισµού Laplace

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 1-3 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε FET s 8

ΠΕΡΙΕΧΟΜΕΝΑ. 1-3 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε FET s 8 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΙΑΦΟΡΙΚΟΣ ΕΝΙΣΧΥΤΗΣ 1 1-1 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε BJT s 1 και ιπλή Έξοδο Ανάλυση µε το Υβριδικό Ισοδύναµο του Τρανζίστορ 2 Ανάλυση µε βάση τις Ενισχύσεις των Βαθµίδων CE- 4

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΗ ΤΕΧΝΟΛΟΓΙΑ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ. ΕΚΠΑΙΔΕΥΤΗΣ: Ανδρέας Ιωάννου

ΣΥΓΧΡΟΝΗ ΤΕΧΝΟΛΟΓΙΑ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ. ΕΚΠΑΙΔΕΥΤΗΣ: Ανδρέας Ιωάννου ΣΥΓΧΡΟΝΗ ΤΕΧΝΟΛΟΓΙΑ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ 1 ΑΥΤΟΜΑΤΗ ΓΕΜΙΣΤΙΚΗ 2 3 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΡΥΘΜΙΣΗΣ ΚΑΙ ΕΛΕΓΧΟΥ ΑΥΤΟΜΑΤΩΝ ΛΕΙΤΟΥΡΓΕΙΩΝ Ο αυτοματισμός περιλαμβάνει σχεδόν κάθε μηχανισμό ή συσκευή που ελαττώνει το ποσό

Διαβάστε περισσότερα

Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.)

Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.) ΚΕΣ 01 Αυτόµατος Έλεγχος Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.) Νικόλας Τσαπατσούλης Λέκτορας Π..407/80 Τµήµα Επιστήµη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Βιβλιογραφία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα.

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα. ΚΕΦΑΛΑΙΟ 7 7. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ Ο τελεστικός ενισχυτής εφευρέθηκε κατά τη διάρκεια του δεύτερου παγκοσµίου πολέµου και. χρησιµοποιήθηκε αρχικά στα συστήµατα σκόπευσης των αντιαεροπορικών πυροβόλων για

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ. Κεφάλαιο 17

ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ. Κεφάλαιο 17 ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ 1 ο Παράδειγµα (διάρκεια: 15 λεπτά) Κεφάλαιο 17 Α. ΣΤΟΙΧΕΙΑ ΤΟΥ ΜΑΘΗΤΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ:... ΤΑΞΗ:... ΤΜΗΜΑ:... ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... Β.

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

Νίκος Μαζαράκης Αθήνα 2010

Νίκος Μαζαράκης Αθήνα 2010 Νίκος Μαζαράκης Αθήνα 2010 Οι χάρτες των 850 Hpa είναι ένα από τα βασικά προγνωστικά επίπεδα για τη παράµετρο της θερµοκρασίας. Την πίεση των 850 Hpa τη συναντάµε στην ατµόσφαιρα σε ένα µέσο ύψος περί

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν 1. Εισαγωγικά στοιχεία ηλεκτρονικών - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 1. ΘΕΜΕΛΙΩ ΕΙΣ ΕΝΝΟΙΕΣ ΚΑΙ ΕΙΣΑΓΩΓΙΚΑ ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ηλεκτρικό στοιχείο: Κάθε στοιχείο που προσφέρει, αποθηκεύει και καταναλώνει

Διαβάστε περισσότερα

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό.

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ).

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ). 7. Εισαγωγή στο διπολικό τρανζίστορ-ι.σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 7. TΟ ΙΠΟΛΙΚΟ ΤΡΑΝΖΙΣΤΟΡ Ανάλογα µε το υλικό διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και 2. τρανζίστορ πυριτίου

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ Εισαγωγή Ηεµφάνιση ηλεκτρονικών υπολογιστών και λογισµικού σε εφαρµογές µε υψηλές απαιτήσεις αξιοπιστίας, όπως είναι διαστηµικά προγράµµατα, στρατιωτικές τηλεπικοινωνίες,

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση ,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 2011-2012 1 Απλή Αρµονική Ταλάντωση 1.1 Περιοδικά Φαινόµενα

Διαβάστε περισσότερα

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να:

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να: ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Τίτλος Μαθήματος Μεθοδολογίες και Συστήματα Βιομηχανικής Αυτοματοποίησης Κωδικός Μαθήματος Μ3 Θεωρία / Εργαστήριο Θεωρία + Εργαστήριο Πιστωτικές μονάδες 4 Ώρες Διδασκαλίας 2Θ+1Ε Τρόπος/Μέθοδοι

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Στις φυσικές επιστήµες για να λύσουµε προβλήµατα ακολουθούµε συνήθως τα εξής βήµατα: 1. Μαθηµατική διατύπωση. Για να διατυπώσουµε µαθηµατικά ένα πρόβληµα

Διαβάστε περισσότερα

3. Η µερική παράγωγος

3. Η µερική παράγωγος 1 Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 1 Μερική παραγώγιση παράγωγος µιας συνάρτησης µερική παράγωγος ( ( µιας µεταβλητής ορίζεται ως d d ( ( (1 Για συναρτήσεις δύο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Μετρήσεις µε παλµογράφο

Μετρήσεις µε παλµογράφο Η6 Μετρήσεις µε παλµογράφο ΜΕΡΟΣ 1 ο ΠΑΛΜΟΓΡΑΦΟΣ Α. Γενικά Κατά την απεικόνιση ενός εναλλασσόµενου µεγέθους (Σχήµα 1), είναι γνωστό ότι στον κατακόρυφο άξονα «Υ» παριστάνεται το πλάτος του µεγέθους, ενώ

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

Υδραυλικά & Πνευματικά ΣΑΕ Εργαστηριακό μέρος του μαθήματος

Υδραυλικά & Πνευματικά ΣΑΕ Εργαστηριακό μέρος του μαθήματος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υδραυλικά & Πνευματικά ΣΑΕ Εργαστηριακό μέρος του μαθήματος Ενότητα: Σημειώσεις Εργαστηρίου Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 9 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Τρίτη Ιουνίου 9 11. 14. ΤΟ

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Κεφάλαιο 26 Συνεχή Ρεύµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 26 Συνεχή Ρεύµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 26 Συνεχή Ρεύµατα Περιεχόµενα Κεφαλαίου 26 Ηλεκτρεγερτική Δύναµη (ΗΕΔ) Αντιστάσεις σε σειρά και Παράλληλες Νόµοι του Kirchhoff Σειριακά και Παράλληλα EMF-Φόρτιση Μπαταρίας Κυκλώµατα RC Μέτρηση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές-Ι.Σ. Χαλκιάδης διαφάνεια 1

Τελεστικοί Ενισχυτές-Ι.Σ. Χαλκιάδης διαφάνεια 1 Τελεστικοί Ενισχυτές-Ι.Σ. Χαλκιάδης διαφάνεια. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ (Τ.Ε. ή OpAmps) ιαφορικοί Ενισχυτές: ενισχυτές που έχουν δυο εισόδους και µια έξοδο. Τελεστικοί Ενισχυτές (Τ.Ε.): διαφορικοί ενισχυτές

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ)

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) 0. Εισαγωγή Τα αποτελέσµατα πεπερασµένης ακρίβειας οφείλονται στα λάθη που προέρχονται από την παράσταση των αριθµών µε µια πεπερασµένη ακρίβεια. Τα αποτελέσµατα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE ΤΕΙ ΧΑΛΚΙΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Α/Α ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ : ΑΣΚΗΣΗ 3 η Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE Σκοπός Η κατανόηση της λειτουργίας και

Διαβάστε περισσότερα

Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση

Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση Αριστοτέλης Μακρίδης Μαθηµατικός, Επιµορφωτής των Τ.Π.Ε Αποσπασµένος στην ενδοσχολική

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

R 1. Σχ. (1) Σχ. (2)

R 1. Σχ. (1) Σχ. (2) Ηλ/κά ΙΙ, Σεπτ. 05 ΘΕΜΑ 1 ο (2,5 µον.) R 1 (Ω) R B Ρελέ R2 R3 Σχ. (1) Σχ. (2) Φωτεινότητα (Lux) Ένας επαγγελµατίας φωτογράφος χρειάζεται ένα ηλεκτρονικό κύκλωµα για να ενεργοποιεί µια λάµπα στο εργαστήριό

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΦΙΣΤΙΚΗ ΜΕ Η/Υ 1. Του Αποστόλου Παπαποστόλου Επίκουρου Καθηγητή του ΤΕΙ Αθήνας

ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΦΙΣΤΙΚΗ ΜΕ Η/Υ 1. Του Αποστόλου Παπαποστόλου Επίκουρου Καθηγητή του ΤΕΙ Αθήνας ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΦΙΣΤΙΚΗ ΜΕ Η/Υ 1 Του Αποστόλου Παπαποστόλου Επίκουρου Καθηγητή του ΤΕΙ Αθήνας ΕΙΣΑΓΩΓΗ Οι γραφικές παραστάσεις µε υπολογιστές έχουν προχωρήσει πολύ από τότε που οι ε- πιστήµονες που δούλευαν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

5. ΗΛΕΚΤΡΟΝΙΚΑ ΕΞΑΡΤΗΜΑΤΑ Ι (ΑΝΤΙΣΤΑΤΕΣ )

5. ΗΛΕΚΤΡΟΝΙΚΑ ΕΞΑΡΤΗΜΑΤΑ Ι (ΑΝΤΙΣΤΑΤΕΣ ) 5. ΗΛΕΚΤΡΟΝΙΚΑ ΕΞΑΡΤΗΜΑΤΑ Ι (ΑΝΤΙΣΤΑΤΕΣ ) Μεταβλητοί αντιστάτες Η τιμή της αντίστασης των μεταβλητών αντιστατών σε αντίθεση με αυτή των σταθερών, δε διατηρείται σταθερή αλλά μεταβάλλεται, είτε μηχανικά

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική (ETY-482) 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΤΑΣΗΣ-ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΕΥΘΕΙΑ ΦΟΡΤΟΥ

Εισαγωγή στη Μικροηλεκτρονική (ETY-482) 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΤΑΣΗΣ-ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΕΥΘΕΙΑ ΦΟΡΤΟΥ Εισαγωγή στη Μικροηλεκτρονική (ETY-482) 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΤΑΣΗΣ-ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΕΥΘΕΙΑ ΦΟΡΤΟΥ Σχήµα 1. Κύκλωµα DC πόλωσης ηλεκτρονικού στοιχείου Στο ηλεκτρονικό στοιχείο του σχήµατος

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Αυτοματισμοί και

Διαβάστε περισσότερα

Εισαγωγή. Κατηγοριοποίηση αισθητήρων. Χαρακτηριστικά αισθητήρων. Κυκλώματα διασύνδεσης αισθητήρων

Εισαγωγή. Κατηγοριοποίηση αισθητήρων. Χαρακτηριστικά αισθητήρων. Κυκλώματα διασύνδεσης αισθητήρων Εισαγωγή Κατηγοριοποίηση αισθητήρων Χαρακτηριστικά αισθητήρων Κυκλώματα διασύνδεσης αισθητήρων 1 2 Πωλήσεις αισθητήρων 3 4 Ο άνθρωπος αντιλαμβάνεται τη φύση με τα αισθητήρια όργανά του υποκειμενική αντίληψη

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ ΧΑΤΖΟΠΟΥΛΟΣ ΑΡΓΥΡΗΣ ΚΟΖΑΝΗ 2005 ΕΙΣΑΓΩΓΗ ΣΥΜΒΟΛΙΣΜΟΙ Για τον καλύτερο προσδιορισµό των µεγεθών που χρησιµοποιούµε στις εξισώσεις, χρησιµοποιούµε τους παρακάτω συµβολισµούς

Διαβάστε περισσότερα

Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα ΠεριεχόµεναΚεφαλαίου 31 Τα µεταβαλλόµενα ηλεκτρικά πεδία παράγουν µαγνητικά πεδία. Ο Νόµος του Ampère-Ρεύµα µετατόπισης Νόµος του Gauss s στο µαγνητισµό

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Το απλό εκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές

Διαβάστε περισσότερα

Μελέτη Μετασχηματιστή

Μελέτη Μετασχηματιστή Μελέτη Μετασχηματιστή 1. Θεωρητικό μέρος Κάθε φορτίο που κινείται και κατά συνέπεια κάθε αγωγός που διαρρέεται από ρεύμα δημιουργεί γύρω του ένα μαγνητικό πεδίο. Το μαγνητικό πεδίο B με την σειρά του ασκεί

Διαβάστε περισσότερα

ΠΝΕΥΜΑΤΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ

ΠΝΕΥΜΑΤΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Ενότητα 2.3 Κεφάλαιο 2 ΠΝΕΥΜΑΤΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ ΣΤΟΧΟΙ Μετά την ολοκλήρωση της ενότητας αυτής θα μπορείτε: Να αναφέρετε την αρχή λειτουργίας των πνευματικών αυτοματισμών. Να περιγράφετε τα δομικά στοιχεία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης 5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Περίληψη ιπλωµατικής Εργασίας

Περίληψη ιπλωµατικής Εργασίας Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός

Διαβάστε περισσότερα

Τεχνικό Άρθρο AN009 JUN-2009

Τεχνικό Άρθρο AN009 JUN-2009 Τεχνικό Άρθρο JUN-2009 Εφαρµογές ιαφορικών Θερµοστατών Γενικά Τα σύγχρονα συστήµατα θέρµανσης γίνονται ολοένα και πολυπλοκότερα. Οι σύγχρονες ανάγκες επιβάλλουν την ενσωµάτωση εξελιγµένων υποσυστηµάτων

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 4ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 4ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα 4ο. Λιούπης Λογική συζευγµένου εκποµπού Emitter-coupled logic (ECL) Χρησιµοποιούνται BJT transistor, µόνο στην ενεργή περιοχή Εµφανίζονται µικρές αλλαγές δυναµικού µεταξύ των

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

Πόλωση ηλεκτρικού πεδίου

Πόλωση ηλεκτρικού πεδίου ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 15 2. Άσκηση 2 Πόλωση ηλεκτρικού πεδίου 2.1 Σκοπός της Εργαστηριακής Άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την πόλωση των µικροκυµάτων και την

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

Με k1 = 1.220, k2 = 2.232, k3 = 3.238, and n = 1,2,3,

Με k1 = 1.220, k2 = 2.232, k3 = 3.238, and n = 1,2,3, ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ Ι ΠΟΜ 114(Ε) ΟΠΤΙΚΗ ιάθλαση φωτός µέσω σχισµής, γύρω από µικρό δοκάρι και µέσω µικρής οπής

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία

Μικροοικονοµική Θεωρία Μικροοικονοµική Θεωρία Ειδικά Θέµατα της Θεωρίας της Συµπεριφοράς του Καταναλωτή Το Συνολικό Αποτέλεσµα. Το Αποτέλεσµα Υποκατάστασης. Το Εισοδηµατικό Αποτέλεσµα. Κανονικά Αγαθά. Κατώτερα Αγαθά. Παράδοξο

Διαβάστε περισσότερα

ΑΡΘΡΟ Νο. 13.12 ΑΡΘΟ ΑΝΑΘΕΩΡ. ΥΔΡ 6653.1

ΑΡΘΡΟ Νο. 13.12 ΑΡΘΟ ΑΝΑΘΕΩΡ. ΥΔΡ 6653.1 ΑΡΘΡΟ Νο. 13.12 ΑΡΘΟ ΑΝΑΘΕΩΡ. ΥΔΡ 6653.1 ΔΙΑΦΡΑΓΜΑΤΙΚΗ ΒΑΛΒΙΔΑ ΔΙΠΛΟΥ ΘΑΛΑΜΟΥ ΓΕΝΙΚΑ ΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Σώμα βαλβίδας τύπου Υ (σειρά AS-A/Y-05) ή γωνιακού τύπου (σειρά ΑS-A/T-05 για διατομές μέχρι

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Τεχνικός Συντηρητής Εγκαταστάσεων Αυτοματισμού και Αυτόματου Ελέγχου

Τεχνικός Συντηρητής Εγκαταστάσεων Αυτοματισμού και Αυτόματου Ελέγχου Τεχνικός Συντηρητής Εγκαταστάσεων Αυτοματισμού και Αυτόματου Ελέγχου Τεχνικός Συντηρητής Εγκαταστάσεων Αυτοματισμού και Αυτόματου Ελέγχου Τεχνικός Συντηρητής Εγκαταστάσεων Αυτοματισμού και Αυτόματου Ελέγχου

Διαβάστε περισσότερα

(6) : : 17 60 40 . .

(6) :      :     17 60 40 . . ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΓΙΑ ΠΛΗΡΩΣΗ ΜΙΑΣ ΚΕΝΗΣ ΘΕΣΗΣ ΒΟΗΘΟΥ ΛΕΙΤΟΥΡΓΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟ ΗΜΟ ΛΕΥΚΩΣΙΑΣ Θέµα: Ειδικό

Διαβάστε περισσότερα

Επαναληπτικό πρόβλημα στη συμβολή κυμάτων.

Επαναληπτικό πρόβλημα στη συμβολή κυμάτων. Επαναληπτικό πρόβλημα στη συμβολή κυμάτων. ύο σύγχρονες πηγές Π 1 και Π 2 που απέχουν απόσταση d=8m, παράγουν στην επιφάνεια ενός υγρού αρµονικά κύµατα που έχουν ταχύτητα διάδοσης υ=2m/s. Η εξίσωση της

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΜΕΡΟΣ ΠΡΩΤΟ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΡΟΛΟΓΟΣ...17 ΕΙΣΑΓΩΓΗ...19 ΜΕΡΟΣ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟ ΟΛΟΓΙΑ ΣΧΕ ΙΑΣΗΣ 1.1 Μεθοδολογία σχεδίασης...25 1.2 Η διαδικασία της σχεδίασης...26 1.3 ηµιουργικότητα στη

Διαβάστε περισσότερα