1 GEOMETRIA DESKRIBATZAILEA...

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 GEOMETRIA DESKRIBATZAILEA..."

Transcript

1

2 Aurkibidea 1 GEOMETRIA DESKRIBATZAILEA Proiekzioa. Proiekzio motak Sistema diedrikoaren oinarriak Marrazketarako hitzarmenak. Notazioak Puntuaren, zuzenaren eta planoaren irudikapena Puntuaren irudikapena Zuzenaren irudikapena Determinazioa Zuzen baten barneko puntua Posizio egokiak Planoaren irudikapena Determinazioa Plano baten barneko zuzena Plano baten barneko puntua Posizio egokiak Planoaren zuzen partikularrak GEOMETRIA DESKRIBATZAILEAREN METODOAK. PLANO-ALDAKETAK Plano-aldaketak Solido baten proiekzio berriak, proiekzio-plano bat aldatzen denean Zuzenaren proiekzio berriak, proiekzio-plano bat aldatzen denean Zuzen zeihar bat proiekzio-plano batekiko paralelo ipintzea Zuzen frontala Zuzen horizontala Zuzen horizontala edo frontala proiekzio-plano batekiko zut ipintzea... 32

3 IV Zuzen bertikala Punta-zuzena Planoaren proiekzio berriak, proiekzio-plano bat aldatzen denean Plano zeihar bat proiekzio-plano batekiko zut ipintzea Plano proiektatzaile bertikala Plano proiektatzaile horizontala Plano proiektatzailea proiekzio-plano batekiko paralelo ipintzea Plano horizontala Plano bertikala Plano-aldaketa ondoz ondokoak BIRAKETAK Puntuaren biraketa Biraketa-ardatza aukeratzea Zuzen zeihar bat proiekzio-plano batekiko paralelo ipintzea Zuzen frontala Zuzen horizontala Zuzen horizontala edo frontala proiekzio-plano batekiko zut ipintzea Zuzen bertikala Punta-zuzena Plano zeihar bat proiekzio-plano batekiko zut ipintzea Plano proiektatzaile bertikala Plano proiektatzaile horizontala Plano proiektatzailea proiekzio-plano batekiko paralelo ipintzea Plano horizontala Plano bertikala Aplikazioa ERAISPENAK Plano bateko puntu baten eraispena Irudi lau baten benetako magnitudea ELKARGUNEAK Zuzenen artekoa Ageriko eta ezkutuko puntuak Zuzenaren eta planoaren arteko elkargunea Metodoen aplikazioa Plano-aldaketa baten bitartez Zuzena hartuko duen plano laguntzaile baten bitartez... 70

4 Sistema diedrikoa V 5.3 Planoen arteko elkargunea Metodoen aplikazioa Plano-aldaketa baten bitartez Plano laguntzaileen bitartez PARALELOTASUNA Elkarrekiko paraleloak diren zuzenak Plano batekiko paraleloa den zuzena Adibideak Izan bitez P puntua eta p planoa. P puntutik, marraztu π planoarekiko paraleloa den zuzena Izan bitez P puntua eta r zuzena. P puntutik, marraztu r zuzenarekiko paraleloa den planoa Izan bitez r eta s zuzenak. r zuzenetik, marraztu s zuzenarekiko paraleloa den planoa Elkarrekiko paraleloak diren planoak Adibidea P puntutik, marraztu w-rekiko paraleloa den ϕ planoa PERPENDIKULARTASUNA ETA DISTANTZIAK Zuzenen arteko perpendikulartasuna Puntu batetik zuzen baterainoko distantzia Plano-aldaketen bitartez Eraispen baten bitartez Bi zuzen paraleloren arteko distantzia Plano-aldaketen bitartez Eraispen baten bitartez Elkar gurutzatzen duten bi zuzenen arteko distantzia minimoa Plano-aldaketen bitartez Zuzen baten eta plano baten arteko perpendikulartasuna Metodoak Eraikuntza zuzena Plano-aldaketa baten bitartez Puntu batetik plano baterainoko distantzia Plano aldaketen bitartez Bi plano paraleloren arteko distantzia Plano-aldaketen bitartez Zuzen batekiko plano zuta Plano zutak Plano jakin batekiko plano zuta s zuzenetik igarota α eta β plano jakinekiko plano zuta P puntutik igarota

5 VI 8 ANGELUAK Zuzen batek proiekzio-plano bakoitzarekin eratzen duen angelua Plano batek proiekzio-plano bakoitzarekin eratzen duen angelua Bi zuzenen arteko angelua Zuzenaren eta planoaren arteko angelua Lehen prozedura Bigarren prozedura Bi planoren arteko angelu diedroa Lehen prozedura Bigarren prozedura Hirugarren prozedura. Plano-aldaketen bitartez ARIKETA EBATZIAK

6 Sistema diedrikoa 3 Geometria Deskribatzailea Geometriaren adarra da, eta, proiekzioak erabiliz, espazioko gorputzak planoan irudikatzea du helburu. Erabiltzen den proiekzio motaren araberakoak dira Geometria Deskribatzailearen irudikapen-sistemak. Ale honetan, Sistema Diedrikoa edo Monge-rena aztertzen da. 1.1 PROIEKZIOA. PROIEKZIO MOTAK A puntuaren α planorako proiekzioa da A-tik eta O proiekzio-zentrotik igarotzen den izpi proiektatzaileak α planoa ebakitzen duen puntua (1.1 irudia). O puntutik abiatuta, A puntuaren α planorako proiekzioa puntua da. O A zuzena izpi proiektatzailea da. Bi proiekzio mota daude: proiekzio konikoa eta proiekzio zilindrikoa. Lehenbizikoari proiekzio zentrala ere esaten zaio. Proiekzio koniko edo zentralean, izpi proiektatzaile guztiak proiekzio-zentro izeneko puntu finko batetik igarotzen dira; 1.2 irudiko O puntutik, alegia. Proiekzio zilindrikoan, berriz, proiekzio-zentroa ez- -jatorra izaten da, hau da, infinituan dago.

7 4 O A α O 1.1 irudia B A r α 1.2 irudia A r B α 1.3 irudia

8 Sistema diedrikoa 5 Horregatik, izpi proiektatzaile guztiak paraleloak dira norabide jakin batekiko. Norabidea proiekzio- -planoaren perpendikularrean badago, proiekzio zilindriko ortogonala da (1.3 irudia). Zeiharra bada, proiekzio zilindriko zeiharra izango dugu (1.4 irudia). A r B 1.4 irudia α 1.2 SISTEMA DIEDRIKOAREN OINARRIAK Sistema diedrikoa proiekzio zilindriko ortogonaleko sistema da. Sistema honetan, bi plano zut hartzen dira proiekzio-plano gisa, eta bakoitzean lortzen dira irudikatu behar den gorputz edo irudiaren proiekzioak. Plano horizontalari 2. diedroa 1. diedroa 3. diedroa L.L. 4. diedroa 1.5 irudia

9 6 deritzo eta bertikalari. Bi plano horien arteko elkarguneari lur-lerro (LL) deritzo (1.5 irudia). Proiekzio-planoak lau diedrotan zatitzen du espazioa, eta, proiekzio-planoak opakuak eta infinituak direla kontutan harturik, lehen diedroan dauden gorputzak bakarrik ikusten direla hartu behar da aintzat. Beste hiru diedroak, beraz, ezkutuan daude. Objektu bat diedro horietako batean ipini ondoren proiekzio-planoetara proiektatzen badugu era ortogonalean, bi proiekzio lortuko ditugu: goitiko bista edo proiekzio horizontala, eta aurretiko bista edo proiekzio bertikala. Puntu batek proiekzio-plano horizontalarekiko duen altuerari puntuaren kota deritzo. Puntuak proiekzio-plano bertikalarekiko duen distantziari, aldiz, puntuaren urrunera deritzo (1.6 irudia). P 2 P u k P irudia Irudikapen-sistema baten ezaugarri nagusia itzulgarritasuna da. Puntu batek bi proiekzio besterik ez du, eta bi horiek espazioko puntu batenak baino ezin dira izan. Beraz, proiekzioetatik abiatuz, proiektatutako gorputz edo elementuaren posizioa jakin daiteke. Orain artekoa espazioan egin dugu. Baina hori plano batean, paperean, irudikatu ahal izateko, H planoa lur-lerroaren inguruan biratu behar da B planoare-

10 Sistema diedrikoa 7 kin bat egin arte. Proiekzio-plano horizontala proiekzio-plano bertikalaren gainean eraitsitakoan, plano berean geratzen dira goitiko bista eta aurretiko bista. Goitiko bista eta aurretiko bista plano bakar batean, aldi berean eta elkarrekin erlazionaturik aurkezten baditugu, objektuaren aurkezpen diedrikoa izango dugu aurrean (1.7 irudia). Aurretiko bista Goitiko bista Aurretiko bista Goitiko bista 1.7 irudia Objektua proiekzio-plano baterantz perpendikularrean lekualdatzen denean, haren proiekzioak ez dira formaz aldatzen, baizik eta lur-lerrorako distantziak aldatzen dira soil-soilik. Beste era batera esanda, elementuen kotak eta urrunera aldatzen dira bakarrik (1.8 irudia).

11 8 1.8.a) irudia 1.8.b) irudia Halatan, alde batera utz dezakegu lur- -lerroa aurkezpen diedrikoan eta objektuaren goitiko eta aurretiko bisten irudikapena egin ditzakegu besterik gabe. Zuzeneko sistema diedrikoan ari garela esango dugu orduan. Horrenbestez, zuzeneko sistema diedrikoan ez da irudikatu beharreko objektuaren eta proiekzio-planoen arteko distantzia aintzat hartzen (1.9 irudia). Batzuetan, marraztu nahi den gorputzari hirugarren proiekzio bat egin behar izaten zaio erabat irudikaturik uzteko. Hiru- 1.9 irudia

12 Sistema diedrikoa 9 garren proiekzio hori, alboko P planoan egiten da. P planoa zuta da B eta H planoekiko. Baita LLrekiko ere; 1.10 irudian ikusten da nola gelditzen diren espazioan eta planoan. PP PP 1.10 irudia

13 MARRAZKETARAKO HITZARMENAK. NOTAZIOAK Puntuak letra nagusiz adieraziko ditugu. A puntua, esate baterako, A( ) adierazten da. eta, hurrenez hurren, espazioko A puntuaren proiekzio horizontala eta bertikala dira. Zenbakiz ere adieraz daitezke. Zuzenak letra txikiz adierazten dira. r( r 2 ) notazioak, adibidez, esan nahi du r zuzenaren proiekzio horizontala eta bertikala, hurrenez hurren, eta r 2 direla. Planoak, alfabeto grekoko hizkiz izendatzen dira: α, β, γ 1.4 PUNTUAREN, ZUZENAREN ETA PLANOAREN IRUDIKAPENA PUNTUAREN IRUDIKAPENA Puntu baten irudikapen diedrikoa puntuaren proiekzio horizontalean eta puntuaren proiekzio bertikalean gauzatzen da. Erreferentzia-lerro deritzo bi proiekzioak elkartzen dituen lerroari. Beste puntu batzuen proiekzioak erreferentziatzat hartuta mugatzen da espazioan duen posizioa irudian erakusten dira A puntuaren proiekzioak eta horren X, Y, Z koordenatuak B puntu batekiko. X koordenatuak bi puntuen arteko urrunera azaltzen digu, profil-planoaren proiekzioaren norabidean. Y koordenatuak bi puntuen arteko urrunera azaltzen digu, plano bertikalaren proiekzioaren norabidean Z koordenatuak bi puntuen artean dagoen kota- -diferentzia azaltzen du irudia

14 Sistema diedrikoa ZUZENAREN IRUDIKAPENA Determinazioa r 2 Zuzen baten plano baterako proiekzioa da zuzenaren puntu guztien proiekzioez osatutako beste zuzen bat. Zuzenaren proiekzio diedrikoa lortzeko, aski da zuzena zehazten duten bi puntuen proiekzio diedrikoak gauzatzea. Adibidez, A eta B puntuek r zuzena zehazten dute; eta puntuek zehazten dute r zuzenaren proiekzio horizontala; eta eta proiekzioek zehazten dute r zuzenaren r 2 proiekzio bertikala (1.12 irudia). P 2 P irudia Zuzen baten barneko puntua Puntu bat zuzen baten barnean dagoela esan ahal izateko, ezinbestekoa da puntuaren proiekzioak zuzenaren proiekzioetan egotea: P 1 -ean eta P 2 r 2 -an (1.12 irudia). Zuzena profilekoa bada, bere hirugarren proiekzioan ziurtatu beharko dugu p 3 r 3 -an dagoela a) irudiko P puntua ez da r zuzenekoa, baina 1.13.b) irudiko P puntua bai. P 2 P 3 r 2 r 3 r 2 r 3 P 2 P 3 P 1 P 1 a) b) 1.13 irudia

15 Posizio egokiak Zuzen baten posizio egokiak dira, zuzenaren proiekzio batean, haren benetako magnitudea azaltzen duten posizioak; beste elementuekiko erlazio geometrikoak zehazteko ere baliagarriak dira, proiekzio-planoarekiko angelua esaterako. Hurrengo irudietan, zuzenak proiekzio-planoarekiko dituen posizio egoki hauek azaltzen dira, r zuzenaren AB segmentuaren proiekzioaren bidez Proiekzio-planoekiko zuzen paraleloak Zuzen horizontalak. Paraleloak dira proiekzio-plano horizontalarekiko. Proiekzio horizontalean egiazko magnitudean proiektatzen dira eta zuzenek proiekzio- -plano bertikalarekin osatzen duten β angelua ere neurtzen da (1.14 irudia). β B β β 1.14 irudia Zuzen frontala edo aurrez aurreko zuzenak. Paraleloak dira proiekzio- -plano bertikalarekiko. Proiekzio bertikalean egiazko magnitudean proiektatzen dira eta zuzenek proiekzio-plano horizontalarekin osatzen duen α angelua ere neurtzen da (1.15 irudia). Profil zuzena. Paraleloak dira profil-planoarekiko. Profileko bistan egiazko magnitudean proiektatzen dira eta zuzenek proiekzio-plano horizontalarekin osatzen duen α angelua eta proiekzio-plano bertikalarekin osatzen duen β angelua ere neurtzen dira (1.16 irudia).

16 Sistema diedrikoa 13 α B α α 1.15 irudia A 3 A2 A 3 β PP β β α B 3 α B 3 α 1.16 irudia Proiekzio-planoekiko zuzen zutak Zuzen bertikalak. Zutak dira proiekzio-plano horizontalarekiko, eta paraleloak beste bi proiekzio-planoekiko. Proiekzio bertikalean eta profileko bistan

17 14 A 3 A B B1 A1 B irudia egiazko magnitudean proiektatzen dira. Proiekzio horizontalean, proiekzioa puntu bat da (1.17 irudia). Punta-zuzenak. Zutak dira proiekzio-plano bertikalarekiko, eta paraleloak beste bi proiekzio-planoekiko. Proiekzio horizontalean eta profileko bistan egiazko magnitudean proiektatzen dira. Proiekzio bertikalean, proiekzioa puntu bat da (1.18 irudia). A 3 B 3 B A 1.18 irudia

18 Sistema diedrikoa 15 Profil-planoarekiko zuzen zutak. Beste bi proiekzio-planoekiko paraleloak dira. Proiekzio horizontalean eta proiekzio bertikalean egiazko magnitudean proiektatzen dira. Profileko proiekzioan, proiekzioa puntu bat da (1.19. irudia). A B B3 A3 PP A2 A 3 B irudia PLANOAREN IRUDIKAPENA Determinazioa Diedriko zuzenean, plano bat irudikatzeko modurik ohikoena da itxura poligonal itxi baten bitartez egitea. Baina ikuspuntu kontzeptual batetik, plano bat erabat definituta geratzen da elementu hauek ezagututa: Elkar ebakitzen duten bi zuzenen bidez. Plano bat definitzeko oinarrizko forma da (1.20 irudia). Bi zuzen paraleloren bidez. Paraleloak diren bi zuzenek elkar ebakitzen dute infinituan (1.21 irudia). Lerrokatu gabeko hiru punturen bidez. Puntu horiek zuzenen bidez lotu ditzakegu, eta elkar ebakitzen duten bi zuzenen bitartez plano bat lortu (1.22 irudia). P 2 P irudia r 2 s 2 s irudia r 2 s 2 s 1

19 16 M 2 T 2 T 1 r 2 P 2 P 1 M irudia 1.23 irudia Zuzen baten eta hor ez dagoen puntu baten bidez. Kanpoko puntutik aipatutako zuzena ebakitzen duen beste bat eraikitzen badugu, elkar ebakitzen duten bi zuzenen bitartez definituko dugu planoa (1.23 irudia) Plano baten barneko zuzena Zuzen bateko bi puntu plano baten barnean badaude, zuzen osoa planoaren barnean dagoela esaten da. Plano baten barnean dauden zuzen guztiek elkar ebakitzen dute binaka, planoaren barneko puntu batean. Bi zuzen paraleloren kasuan, infinituko puntu ez-jatorra da ebakitze-puntu hori. (1.24.a) irudia). r 2 r 2 M 2 N 2 P 2 N 2 M 2 c 2 c 2 M 1 c 1 M1 c 1 N 1 P 1 N 1 a) b) 1.24 irudia

20 Sistema diedrikoa Plano baten barneko puntua Puntu bat planoaren barnean dagoela esaten da plano horren barneko zuzen batean badago, hau da, puntuaren proiekzioak planoko zuzen baten izen bereko proiekzioetan daudenean b) irudiko P puntua ABC planokoa da. Esandakoaren arabera, puntu bat ezin daiteke planoan edozein tokitan ipini. Izan ere, aurrez zuzena kokatu behar da plano horretan Posizio egokiak Plano baten posizio egokiak dira planoaren benetako magnitudeak azaltzen dituzten posizioak, edo erlazio geometrikoak mugatu eta ebazteko baliagarri direnak, esate baterako, beste plano batekin osatzen duen angelua, zuzenekiko eta beste planoekiko elkarguneak. Ondoren, plano batek proiekzio-planoekiko izan ditzakeen posizio egokiak erlazionatzen dira. Adibide hauetan, proiekzio diedrikoetan, planoa triangelu baten bitartez irudikatuta azaltzen da Proiekzio-plano batekiko zutak diren planoak Plano proiektatzaile horizontala. Zuta da proiekzio-plano horizontalarekiko. Plano honetan dauden irudi eta puntuak horizontalki zuzen baten gainean proiektatzen dira. Planoak proiekzio-plano bertikalarekin osatzen duen β angelua ere neurtzen da (1.25 irudia). C 2 π β β C irudia

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 1. (2015/2016) 20 cm-ko tarteak bereizten ditu bi karga puntual q 1 eta q 2. Bi kargek sortzen duten eremu elektrikoa q 1 kargatik 5 cm-ra dagoen A puntuan deuseztatu

Διαβάστε περισσότερα

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 AURKIBIDEA Or. I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 1.1. MAGNITUDEAK... 7 1.1.1. Karga elektrikoa (Q)... 7 1.1.2. Intentsitatea (I)... 7 1.1.3. Tentsioa ()... 8 1.1.4. Erresistentzia elektrikoa

Διαβάστε περισσότερα

Solido zurruna 2: dinamika eta estatika

Solido zurruna 2: dinamika eta estatika Solido zurruna 2: dinamika eta estatika Gaien Aurkibidea 1 Solido zurrunaren dinamikaren ekuazioak 1 1.1 Masa-zentroarekiko ekuazioak.................... 3 2 Solido zurrunaren biraketaren dinamika 4 2.1

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: OPTIKA

SELEKTIBITATEKO ARIKETAK: OPTIKA SELEKTIBITATEKO ARIKETAK: OPTIKA TEORIA 1. (2012/2013) Argiaren errefrakzioa. Guztizko islapena. Zuntz optikoak. Azaldu errefrakzioaren fenomenoa, eta bere legeak eman. Guztizko islapen a azaldu eta definitu

Διαβάστε περισσότερα

1 Aljebra trukakorraren oinarriak

1 Aljebra trukakorraren oinarriak 1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,

Διαβάστε περισσότερα

Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK

Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK SINUA KOSINUA TANGENTEA ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK sin α + cos α = sin α cos α = tg α 0º, º ETA 60º-KO ANGELUEN ARRAZOI TRIGONOMETRIKOAK

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,

Διαβάστε περισσότερα

0.Gaia: Fisikarako sarrera. ARIKETAK

0.Gaia: Fisikarako sarrera. ARIKETAK 1. Zein da A gorputzaren gainean egin behar dugun indarraren balioa pausagunean dagoen B-gorputza eskuinalderantz 2 m desplazatzeko 4 s-tan. Kalkula itzazu 1 eta 2 soken tentsioak. (Iturria: IES Nicolas

Διαβάστε περισσότερα

I. KAPITULUA Zenbakia. Aldagaia. Funtzioa

I. KAPITULUA Zenbakia. Aldagaia. Funtzioa I. KAPITULUA Zenbakia. Aldagaia. Funtzioa 1. ZENBAKI ERREALAK. ZENBAKI ERREALEN ADIERAZPENA ZENBAKIZKO ARDATZEKO PUNTUEN BIDEZ Matematikaren oinarrizko kontzeptuetariko bat zenbakia da. Zenbakiaren kontzeptua

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 95i 10 cm-ko aldea duen karratu baten lau erpinetako hirutan, 5 μc-eko karga bat dago. Kalkula itzazu: a) Eremuaren intentsitatea laugarren erpinean. 8,63.10

Διαβάστε περισσότερα

Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean

Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean Pablo Mínguez Elektrika eta Elektronika Saila Euskal Herriko Unibertsitatea/Zientzi Fakultatea 644 P.K., 48080 BILBAO Laburpena: Atomo baten

Διαβάστε περισσότερα

MARRAZKETA TEKNIKOA. Batxilergoa 1. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein

MARRAZKETA TEKNIKOA. Batxilergoa 1. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein MRRZKET TEKNIKO atxilegoa 1 Rafael Ciiza Robeto Galaaga Mª ngeles Gacía José ntonio Oiozabala eein Eusko Jaulaitzako Hezkuntza, Unibetsitate eta Ikeketa sailak onetsia (2003-09-25) zalaen diseinua: Itui

Διαβάστε περισσότερα

Oxidazio-erredukzio erreakzioak

Oxidazio-erredukzio erreakzioak Oxidazio-erredukzio erreakzioak Lan hau Creative Commons-en Nazioarteko 3.0 lizentziaren mendeko Azterketa-Ez komertzial-partekatu lizentziaren mende dago. Lizentzia horren kopia ikusteko, sartu http://creativecommons.org/licenses/by-ncsa/3.0/es/

Διαβάστε περισσότερα

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea. Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia

Διαβάστε περισσότερα

Uhin guztien iturburua, argiarena, soinuarena, edo dena delakoarena bibratzen duen zerbait da.

Uhin guztien iturburua, argiarena, soinuarena, edo dena delakoarena bibratzen duen zerbait da. 1. Sarrera.. Uhin elastikoak 3. Uhin-higidura 4. Uhin-higiduraren ekuazioa 5. Energia eta intentsitatea uhin-higiduran 6. Uhinen arteko interferentziak. Gainezarmen printzipioa 7. Uhin geldikorrak 8. Huyghens-Fresnelen

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren

Διαβάστε περισσότερα

1.1. Aire konprimituzko teknikaren aurrerapenak

1.1. Aire konprimituzko teknikaren aurrerapenak 1.- SARRERA 1.1. Aire konprimituzko teknikaren aurrerapenak Aire konprimitua pertsonak ezagutzen duen energia-era zaharrenetarikoa da. Seguru dakigunez, KTESIBIOS grekoak duela 2.000 urte edo gehiago katapulta

Διαβάστε περισσότερα

Dokumentua I. 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago:

Dokumentua I. 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago: Dokumentua I Iruzkin orokorrak 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago: 1. BOE. 1467/2007ko azaroaren 2ko Errege Dekretua. (Batxilergoaren

Διαβάστε περισσότερα

Jose Miguel Campillo Robles. Ur-erlojuak

Jose Miguel Campillo Robles. Ur-erlojuak HIDRODINAMIKA Hidrodinamikako zenbait kontzeptu garrantzitsu Fluidoen garraioa Fluxua 3 Lerroak eta hodiak Jarraitasunaren ekuazioa 3 Momentuaren ekuazioa 4 Bernouilli-ren ekuazioa 4 Dedukzioa 4 Aplikazioak

Διαβάστε περισσότερα

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK 1.-100 m 3 aire 33 Km/ordu-ko abiaduran mugitzen ari dira. Zenbateko energia zinetikoa dute? Datua: ρ airea = 1.225 Kg/m 3 2.-Zentral hidroelektriko batean ur Hm

Διαβάστε περισσότερα

Ordenadore bidezko irudigintza

Ordenadore bidezko irudigintza Ordenadore bidezko irudigintza Joseba Makazaga 1 Donostiako Informatika Fakultateko irakaslea Konputazio Zientziak eta Adimen Artifiziala Saileko kidea Asier Lasa 2 Donostiako Informatika Fakultateko ikaslea

Διαβάστε περισσότερα

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu)

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu) UNIBERTSITATERA SARTZEKO HAUTAPROBAK 2004ko EKAINA ELEKTROTEKNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 2004 ELECTROTECNIA 1-A eta 1-8 ariketen artean bat aukeratu (2.5 1-A ARIKETA Zirkuitu elektriko

Διαβάστε περισσότερα

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 1. AKTIBITATEA Lan Proposamena ARAZOA Zurezko oinarri baten gainean joko elektriko bat eraiki. Modu honetan jokoan asmatzen dugunean eta ukitzen dugunean

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa Analisia eta Kontrola Materialak eta entsegu fisikoak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): HOSTEINS UNZUETA, Ana Zuzenketak:

Διαβάστε περισσότερα

5. GAIA Mekanismoen Analisi Dinamikoa

5. GAIA Mekanismoen Analisi Dinamikoa HELBURUAK: HELBURUAK: sistema sistema mekaniko mekaniko baten baten oreka-ekuazioen oreka-ekuazioen ekuazioen planteamenduei planteamenduei buruzko buruzko ezagutzak ezagutzak errepasatu errepasatu eta

Διαβάστε περισσότερα

1. Oinarrizko kontzeptuak

1. Oinarrizko kontzeptuak 1. Oinarrizko kontzeptuak Sarrera Ingeniaritza Termikoa deritzen ikasketetan hasi berri den edozein ikaslerentzat, funtsezkoa suertatzen da lehenik eta behin, seguru aski sarritan entzun edota erabili

Διαβάστε περισσότερα

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK Zenbaki errealak ZENBAKI ERREALAK ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK ZENBAKI IRRAZIONALAK HURBILKETAK LABURTZEA BIRIBILTZEA GEHIAGOZ ERROREAK HURBILKETETAN Lagun ezezaguna Mezua premiazkoa zirudien

Διαβάστε περισσότερα

Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9

Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9 Magnetismoa manak eta imanen teoriak... 2 manaren definizioa:... 2 manen arteko interakzioak (elkarrekintzak)... 4 manen teoria molekularra... 4 man artifizialak... 6 Material ferromagnetikoak, paramagnetikoak

Διαβάστε περισσότερα

6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana

6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana 6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana GAITASUNAK Gai hau bukatzerako ikaslea gai izango da: - Batezbestekoaren estimazioa biztanlerian kalkulatzeko. - Proba parametrikoak

Διαβάστε περισσότερα

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2 Fisika BATXILEGOA Irakaslearen gidaliburua Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena,

Διαβάστε περισσότερα

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA Datu orokorrak: Elektroiaren masa: 9,10 10-31 Kg, Protoiaren masa: 1,67 x 10-27 Kg Elektroiaren karga e = - 1,60 x 10-19 C µ ο = 4π 10-7 T m/ampere edo 4π

Διαβάστε περισσότερα

OREKA KIMIKOA GAIEN ZERRENDA

OREKA KIMIKOA GAIEN ZERRENDA GAIEN ZERRENDA Nola lortzen da oreka kimikoa? Oreka konstantearen formulazioa Kc eta Kp-ren arteko erlazioa Disoziazio-gradua Frakzio molarrak eta presio partzialak Oreka kimikoaren noranzkoa Le Chatelier-en

Διαβάστε περισσότερα

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA 1. JARDUERA. KORRONTE ELEKTRIKOA. 1 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA Material guztiak atomo deitzen diegun partikula oso ttipiez osatzen dira. Atomoen erdigunea positiboki kargatua egon ohi da eta tinkoa

Διαβάστε περισσότερα

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa.

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa. Atomoa 1 1.1. MATERIAREN EGITURA Elektrizitatea eta elektronika ulertzeko gorputzen egitura ezagutu behar da; hau da, gorputz bakun guztiak hainbat partikula txikik osatzen dituztela kontuan hartu behar

Διαβάστε περισσότερα

4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK

4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK 4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK GAI HAU IKASTEAN GAITASUN HAUEK LORTU BEHARKO DITUZU:. Sistema ireki eta itxien artea bereiztea. 2. Masa balantze sinpleak egitea.. Taula estekiometrikoa

Διαβάστε περισσότερα

2. ERDIEROALEEN EZAUGARRIAK

2. ERDIEROALEEN EZAUGARRIAK 2. ERDIEROALEEN EZAUGARRIAK Gaur egun, dispositibo elektroniko gehienak erdieroale izeneko materialez fabrikatzen dira eta horien ezaugarri elektrikoak dispositiboen funtzionamenduaren oinarriak dira.

Διαβάστε περισσότερα

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia 1. MAKROEKONOMIA: KONTZEPTUAK ETA TRESNAK. 1.1. Sarrera Lehenengo atal honetan, geroago erabili behar ditugun oinarrizko kontzeptu batzuk gainbegiratuko ditugu, gauzak nola eta zergatik egiten ditugun

Διαβάστε περισσότερα

BIZIDUNEN OSAERA ETA EGITURA

BIZIDUNEN OSAERA ETA EGITURA BIZIDUNEN OSAERA ETA EGITURA 1 1.1. EREDU ATOMIKO KLASIKOAK 1.2. SISTEMA PERIODIKOA 1.3. LOTURA KIMIKOA 1.3.1. LOTURA IONIKOA 1.3.2. LOTURA KOBALENTEA 1.4. LOTUREN POLARITATEA 1.5. MOLEKULEN ARTEKO INDARRAK

Διαβάστε περισσότερα

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK GORAKORTASUNA ETA BEHERAKORTASUNA MAIMOAK ETA MINIMOAK

Διαβάστε περισσότερα

6. Errodamenduak 1.1. DESKRIBAPENA ETA SAILKAPENAK

6. Errodamenduak 1.1. DESKRIBAPENA ETA SAILKAPENAK 2005 V. IOL 6. Errodamenduak 1.1. ESKRIPEN ET SILKPENK Errodamenduak biziki ikertu eta garatu ziren autoak, abiadura handiko motorrak eta produkzio automatikorako makineria agertu zirenean. Horren ondorioz,

Διαβάστε περισσότερα

1. SARRERA. 2. OSZILOSKOPIO ANALOGIKOA 2.1 Funtzionamenduaren oinarriak

1. SARRERA. 2. OSZILOSKOPIO ANALOGIKOA 2.1 Funtzionamenduaren oinarriak 1. SARRERA Osziloskopioa, tentsio batek denborarekin duen aldaketa irudikatzeko tresna da. v(t) ADIBIDEZ Y Ardatza (adib.): 1 dibisio = 1 V X Ardatza (adib.): 1 dibisio = 1 ms t 4.1 Irudia. Osziloskopioaren

Διαβάστε περισσότερα

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a 1. Partziala 2009.eko urtarrilaren 29a ATAL TEORIKOA: Azterketaren atal honek bost puntu balio du totalean. Hiru ariketak berdin balio dute. IRAUPENA: 75 MINUTU. EZ IDATZI ARIKETA BIREN ERANTZUNAK ORRI

Διαβάστε περισσότερα

EIB sistemaren oinarriak 1

EIB sistemaren oinarriak 1 EIB sistemaren oinarriak 1 1.1. Sarrera 1.2. Ezaugarri orokorrak 1.3. Transmisio teknologia 1.4. Elikatze-sistema 1.5. Datuen eta elikatzearen arteko isolamendua 5 Instalazio automatizatuak: EIB bus-sistema

Διαβάστε περισσότερα

Oinarrizko mekanika:

Oinarrizko mekanika: OINARRIZKO MEKANIKA 5.fh11 /5/08 09:36 P gina C M Y CM MY CY CMY K 5 Lanbide Heziketarako Materialak Oinarrizko mekanika: mugimenduen transmisioa, makina arruntak eta mekanismoak Gloria Agirrebeitia Orue

Διαβάστε περισσότερα

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma)

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Termodinamika Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Erreakzio kimikoetako transformazio energetikoak. Espontaneotasuna 1. Energia eta erreakzio kimikoa. Prozesu exotermikoak

Διαβάστε περισσότερα

Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula

Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula Fisika BATXILERGOA 2 Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena, legeak aurrez ikusitako

Διαβάστε περισσότερα

1. MATERIAREN PROPIETATE OROKORRAK

1. MATERIAREN PROPIETATE OROKORRAK http://thales.cica.es/rd/recursos/rd98/fisica/01/fisica-01.html 1. MATERIAREN PROPIETATE OROKORRAK 1.1. BOLUMENA Nazioarteko Sisteman bolumen unitatea metro kubikoa da (m 3 ). Hala ere, likido eta gasen

Διαβάστε περισσότερα

Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua.

Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua. Elektronika Analogikoa 1 ELEKTRONIKA- -LABORATEGIKO TRESNERIA SARRERA Elektronikako laborategian neurketa, baieztapen eta proba ugari eta desberdinak egin behar izaten dira, diseinatu eta muntatu diren

Διαβάστε περισσότερα

Energia-metaketa: erredox orekatik baterietara

Energia-metaketa: erredox orekatik baterietara Energia-metaketa: erredox orekatik baterietara Paula Serras Verónica Palomares ISBN: 978-84-9082-038-4 EUSKARAREN ARLOKO ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko Euskararen Arloko Errektoreordetzaren

Διαβάστε περισσότερα

LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz.

LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. - 1-1. JARDUERA. LAN PROPOSAMENA. 1 LAN PROPOSAMENA Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. BALDINTZAK 1.- Bai memoria (txostena),

Διαβάστε περισσότερα

MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):...

MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):... Makina Elektrikoak MAKINA ELEKTRIKOAK... 3 Motak:... 3 Henry-Faradayren legea... 3 ALTERNADOREA:... 6 DINAMOA:... 7 Ariketak generadoreak (2010eko selektibitatekoa):... 8 TRANSFORMADOREAK:... 9 Ikurrak...

Διαβάστε περισσότερα

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA eman ta zabal zazu Euskal Herriko Unibertsitatea Informatika Fakultatea Konputagailuen Arkitektura eta Teknologia saila KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA KTL'2000-2001 Oinarrizko dokumentazioa lehenengo

Διαβάστε περισσότερα

FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia)

FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia) FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia) 1.- Proiektuaren zergatia eta ezaugarri orokorrak Indarrean dagoen curriculumean zehazturiko Batxilergoko zientzietako jakintzagaiei dagozkien lanmaterialak

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa ELEKTROTEKNIA Makina elektriko estatikoak eta birakariak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak LANBIDE HEZIKETAKO ZUZENDARITZA DIRECCION DE FORMACION

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa PROGRAMAZIO-TEKNIKAK Programazio-teknikak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak LANBIDE HEZIKETAKO ZUZENDARITZA DIRECCION DE FORMACION PROFESIONAL Hizkuntz

Διαβάστε περισσότερα

Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du.

Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du. Korronte zuzena 1 1.1. ZIRKUITU ELEKTRIKOA Instalazio elektrikoetan, elektroiak sorgailuaren borne batetik irten eta beste bornera joaten dira. Beraz, elektroiek desplazatzeko egiten duten bidea da zirkuitu

Διαβάστε περισσότερα

Laborategiko materiala

Laborategiko materiala Laborategiko materiala Zirkuitu elektronikoak muntatzeko, bikote bakoitzaren laborategiko postuan edo mahaian, besteak beste honako osagai hauek aurkituko ditugu: Mahaiak berak dituen osagaiak: - Etengailu

Διαβάστε περισσότερα

Immunologiako praktika-gidaliburua

Immunologiako praktika-gidaliburua Immunologiako praktika-gidaliburua Rosario San Millán Gutiérrez eta Joseba Bikandi Bikandi ISBN/ISSN: 978-84-9082-199-2 EUSKARAREN ARLOKO ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko Euskararen

Διαβάστε περισσότερα

ARIKETAK (1) : KONPOSATU ORGANIKOEN EGITURA KIMIKOA [1 3. IKASGAIAK]

ARIKETAK (1) : KONPOSATU ORGANIKOEN EGITURA KIMIKOA [1 3. IKASGAIAK] 1. Partzialeko ariketak 1 ARIKETAK (1) : KNPSATU RGANIKEN EGITURA KIMIKA [1 3. IKASGAIAK] 1.- ndorengo konposatuak kontutan hartuta, adierazi: Markatutako atomoen hibridazioa. Zein lotura diren kobalenteak,

Διαβάστε περισσότερα

NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ

NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ 2006-VI-19 J.R. Etxebarria Gure inguruko hizkuntzetan, neurri-izenen eta neurri-esamoldeen normalizazioa XIX. mendearen bigarren erdialdean abiatu zela esan

Διαβάστε περισσότερα

LAN PROPOSAMENA. ASKATASUNA BHI. Unitatea: MEKANISNOAK Orri zk: 1 Burlata 1. JARDUERA. IRAKASLEA: Arantza Martinez Iturri

LAN PROPOSAMENA. ASKATASUNA BHI. Unitatea: MEKANISNOAK Orri zk: 1 Burlata 1. JARDUERA. IRAKASLEA: Arantza Martinez Iturri ASKATASUNA BHI. Uitatea: MEKANISNOAK Orri zk: 1 1. JARDUERA LAN PROPOSAMENA LAN PROPOSAMENA Diseiatu eta eraiki ERAKUSLEIHO ZINETIKOA jedeare arreta erakartzeko edo produktu bat iragartzeko. Erakusleihoare

Διαβάστε περισσότερα

Lan honen bibliografia-erregistroa Eusko Jaurlaritzako Liburutegi Nagusiaren katalogoan aurki daiteke: http://www.euskadi.net/ejgvbiblioteka ARGITARATUTAKO IZENBURUAK 1. Prototipo elektronikoen garapena

Διαβάστε περισσότερα

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin:

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1 Tentsio gorakada edo pikoa errele batean: Ikertu behar dugu

Διαβάστε περισσότερα

2011ko EKAINA KIMIKA

2011ko EKAINA KIMIKA 2011ko EKAINA KIMIKA A AUKERA P.1. Hauek dira, hurrenez hurren, kaltzio karbonatoaren, kaltzio oxidoaren eta karbono dioxidoaren formazioberoak: 289; 152 eta 94 kcal mol 1. Arrazoituz, erantzun iezaiezu

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA

FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA FISIKA ZINEMATIKA KONTZEPTUAK: 1. Marraz itzazu txakurraren x/t eta v/t grafikoak, txakurrraren higidura ondoko taulan ageri diren araberako higidura zuzena dela

Διαβάστε περισσότερα

KOSMOLOGIAREN HISTORIA

KOSMOLOGIAREN HISTORIA KOSMOLOGIAREN HISTORIA Historian zehar teoria asko garatu dira unibertsoa azaltzeko. Kultura bakoitzak bere eredua garatu du, unibertsoaren hasiera eta egitura azaltzeko. Teoria hauek zientziaren aurrerapenekin

Διαβάστε περισσότερα

ALKENOAK (I) EGITURA ETA SINTESIA

ALKENOAK (I) EGITURA ETA SINTESIA ALKENOAK (I) EGITURA ETA SINTESIA SARRERA Karbono-karbono lotura bikoitza agertzen duten konposatuak dira alkenoak. Olefina ere deitzen zaiete, izen hori olefiant-ik dator eta olioa ekoizten duen gasa

Διαβάστε περισσότερα

1. GAIA PNEUMATIKA. Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da.

1. GAIA PNEUMATIKA. Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da. 1. GAIA PNEUMATIKA Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da. Pneumatika hitza grekoek arnasa eta haizea izendatzeko erabiltzen zuten. Pneumatikaz

Διαβάστε περισσότερα

IRAKASKUNTZA GIDA: MATEMATIKARAKO SARRERA

IRAKASKUNTZA GIDA: MATEMATIKARAKO SARRERA IRAKASKUNTZA GIDA: MATEMATIKARAKO SARRERA 1. HELBURUAK Kurtso honetarako prestatu den materialarekin, irakurlearentzat ohikoak diren matematikako sinboloak, notazioak, lengoaia matematikoa eta aritmetikako

Διαβάστε περισσότερα

Biologia BATXILERGOA 2. Teoriek eta eskolek, mikrobioek eta globuluek, elkar jaten dute, eta borroka horri esker egiten du aurrera biziak.

Biologia BATXILERGOA 2. Teoriek eta eskolek, mikrobioek eta globuluek, elkar jaten dute, eta borroka horri esker egiten du aurrera biziak. Biologia BATXILERGA 2 Teoriek eta eskolek, mikrobioek eta globuluek, elkar jaten dute, eta borroka horri esker egiten du aurrera biziak. M. PRUST (1871-1922) 6. argitalpena Eusko Jaurlaritzako ezkuntza,

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4 DBH Lana eta energia

FISIKA ETA KIMIKA 4 DBH Lana eta energia 5 HASTEKO ESKEMA INTERNET Edukien eskema Energia Energia motak Energiaren propietateak Energia iturriak Energia iturrien sailkapena Erregai fosilen ustiapena Energia nuklearraren ustiapena Lana Zer da

Διαβάστε περισσότερα

Batxilergo Zientifiko-Teknikoa MATEMATIKA II GEOMETRIA. Ignazio Zuloaga B.H.I. (Eibar)

Batxilergo Zientifiko-Teknikoa MATEMATIKA II GEOMETRIA. Ignazio Zuloaga B.H.I. (Eibar) atilego Zientifiko-Teknikoa MTEMTIK II GEOMETRI Ignaio Zloaga.H.I. (Eiba) URKIIDE Geometia EKTOREK ESPZION... EKTOREK ESPZION... V EKTORE-ESPZIO. DEFINIZIOK... E V eta R MULTZOEN RTEKO ERLZIO... ERREFERENTZI

Διαβάστε περισσότερα

2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK

2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK 2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK 1. DISOLUZIOAK Disoluzioa (def): Substantzia baten partikulek beste substantzia baten barnean egiten duten tartekatze mekanikoa. Disolbatzaileaz eta solutuaz

Διαβάστε περισσότερα

ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA

ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA Informatika Fakultatea / Facultad de Informática ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA Ikaslea: Hurko Mendiguren Quevedo Zuzendaria: Txelo Ruiz Vázquez Karrera Amaierako Proiektua, 2013-ekaina

Διαβάστε περισσότερα

BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1)

BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1) BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1) Altitudea 600 km 80 km 50 km 12 km -100 C -50 C 0 C 50 C 100 C NOLAKOA DA LIBURU HAU? Unitateen egitura Unitatearen hasiera 3 Elikadura Elikadura osasuntsua

Διαβάστε περισσότερα

9. GAIA: ZELULAREN KITZIKAKORTASUNA

9. GAIA: ZELULAREN KITZIKAKORTASUNA 9. GAIA: ZELULAREN KITZIKAKORTASUNA OHARRA: Zelula kitzikatzea zelula horretan, kinada egokiaren bidez, ekintza-potentziala sortaraztea da. Beraz, zelula kitzikatua egongo da ekintza-potentziala gertatzen

Διαβάστε περισσότερα

KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik:

KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik: KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik: BBVA Fundazioa Bilbao Bizkaia Kutxa BBK Gipuzkoa Donostia Kutxa

Διαβάστε περισσότερα

Oscar Wilde. De profundis

Oscar Wilde. De profundis Oscar Wilde De profundis Izenburua: De profundis Egilea: Oscar Wilde Itzulpena: Aitor Arana Argitaratzea: Txalaparta argitaletxea e.m. Nabaz-Bides karrika, 1-2 78. posta-kutxa 31300 Tafalla NAFARROA Tel.

Διαβάστε περισσότερα

4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA. 20 urte euskal hezkuntza ospatuz

4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA. 20 urte euskal hezkuntza ospatuz 4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA hh hik hasi 193 20 urte euskal hezkuntza ospatuz REGGIO EMILIAKO ESPERIENTZIA JESUS MARI MUJIKA LOMCE-RI EZ ANTZERKHIZKUNTZA PROIEKTUA HIK HASI OSPAKIZUNETAN

Διαβάστε περισσότερα

MIKROKONTROLADORE BATEAN OINARRITUTAKO ETXE DOMOTIKOA 1. MEMORIA INDUSTRIA ELEKTRONIKAREN ETA AUTOMATIKAREN INGENIARITZAKO GRADUA GRADU AMAIERAKO LANA

MIKROKONTROLADORE BATEAN OINARRITUTAKO ETXE DOMOTIKOA 1. MEMORIA INDUSTRIA ELEKTRONIKAREN ETA AUTOMATIKAREN INGENIARITZAKO GRADUA GRADU AMAIERAKO LANA aqeman ta zabal zazu BILBOKO INDUSTRIA INGENIARITZA TEKNIKOKO UNIBERTSITATE ESKOLA INDUSTRIA ELEKTRONIKAREN ETA AUTOMATIKAREN INGENIARITZAKO GRADUA GRADU AMAIERAKO LANA 2016 / 2017 MIKROKONTROLADORE BATEAN

Διαβάστε περισσότερα

Ezaugarriak: Gaitasunak: Ikasgaia: KIMIKA ORGANIKOAREN OINARRIAK,

Ezaugarriak: Gaitasunak: Ikasgaia: KIMIKA ORGANIKOAREN OINARRIAK, Ikasgaia: KIMIKA GANIKAEN INAIAK, Urte Akademikoa: 2008-09 Titulazioa: Licenciatura en Química, Ingeniero Químico. Irakaslea: Jose Luis Vicario, (Kimika rganikoa II Saila) Ezaugarriak: Ikasgai honetan

Διαβάστε περισσότερα

KIMIKA UZTAILA. Ebazpena

KIMIKA UZTAILA. Ebazpena KIMIKA 009- UZTAILA A1.- Hauspeatze-ontzi batean kobre (II) sulfatoaren ur-disoluzio urdin bat dugu, eta haren barruan zink-xafla bat sartzen dugu. Kontuan hartuta 5 C-an erredukzio-- potentzialak E O

Διαβάστε περισσότερα

Giza eta Gizarte Zientziak Matematika I

Giza eta Gizarte Zientziak Matematika I Gia eta Giarte Zietiak Matematika I. eta. ebaluaioak Zue erreala Segida errealak Ekuaio espoetialak Logaritmoak Ekuaio lieale sistemak ESTATISTIKA Aldagai diskretuak eta jarraiak Parametro estatistikoak

Διαβάστε περισσότερα

Makroekonomiarako sarrera

Makroekonomiarako sarrera Makroekonomiarako sarrera Galder Guenaga Garai Segundo Vicente Ramos EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA Aurkibidea Hitzaurrea. 1. GAIA: Makroekonomiaren ikuspegi orokorra. 1.1. Makroekonomia:

Διαβάστε περισσότερα

Teknologia Elektrikoa I Laborategiko Praktikak ISBN:

Teknologia Elektrikoa I Laborategiko Praktikak ISBN: Teknologia Elektrikoa I Laborategiko Praktikak ISBN: 978-84-9860-669-0 Agurtzane Etxegarai Madina Zigor Larrabe Uribe EUSKARA ETA ELEANIZTASUNEKO ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko

Διαβάστε περισσότερα

TAILERREKO ESKULIBURU TEKNIKOA

TAILERREKO ESKULIBURU TEKNIKOA TAILERREKO ESKULIBURU TEKNIKOA 1. edizioa 2004. Tailerreko Eskuliburu Teknikoa. Danobaten 50. urteurrena ospatzeko. 2. edizioa 2009 Egilea: Danobat Kooperatiba Elkartea Laguntzailea: Mondragon Unibertsitatea

Διαβάστε περισσότερα

KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ

KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ eman ta zabal zazu Universidad del País Vasco Euskal Herriko Unibertsitatea BILBOKO INGENIARIEN GOI ESKOLA TEKNIKOA KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ I EGILEA: Jesus-Mari Romo Uriarte (hirugarren

Διαβάστε περισσότερα

SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK

SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK... Zer da sistema Pneumatikoa? Fluido mota, erabilerak, abantailak eta desabantailak... ABANTAILAK... DESABANTAILAK...3

Διαβάστε περισσότερα

ELEKTRONIKA ZER DEN ETA NOLA KOKATZEN DEN HISTORIAN

ELEKTRONIKA ZER DEN ETA NOLA KOKATZEN DEN HISTORIAN 1. DISPOSITIBOAK ELEKTRONIKA ZER DEN ETA NOLA KOKATZEN DEN HISTORIAN Gaurko hzteg entzklopedko batzuek azaltzen dutenez, elektronka elektro askeek esku hartuz jazotzen dren gertakarak aztertzen dtuen fskaren

Διαβάστε περισσότερα

ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK

ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK Ikasmaterialen Aholku Batzordea Estilo-liburuaren seigarren atala 22 Euskara Zerbitzua Hizkuntza Prestakuntza ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO

Διαβάστε περισσότερα

6. GAIA: Txapa konformazioa

6. GAIA: Txapa konformazioa II MODULUA: METALEN KONFORMAZIO PLASTIKOA 6. GAIA: Txapa konformazioa TEKNOLOGIA MEKANIKOA INGENIARITZA MEKANIKO SAILA Universidad del País s Vasco Euskal Herriko Unibertsitatea 6. Gaia: Txapa konformazioa

Διαβάστε περισσότερα

Enbriologia Orokorra eta Bereziko buruxka

Enbriologia Orokorra eta Bereziko buruxka Enbriologia Orokorra eta Bereziko buruxka Medikuntzako Ikasleen Elkartea Irakasgaieko irakaslea: Amale Caballero Lasquibar Ikasle-egilea: Adrian H. Llorente Aginagalde Oharra Apunte buruxka hau AEM/MIB

Διαβάστε περισσότερα

ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak

ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak ELEKTRIZITATEA D.B.H. 1 Joseba Arruabarrena 2007ko Otsaila ren atalak: 1. Karga elektrikoa 2. Korronte elektrikoa 3. Zirkuitu elektrikoa 4. Magnitudeak: : Ohmen legea 5. Irudikapena eta ikurrak 6. Korronte

Διαβάστε περισσότερα

ENERGIA ARIKETAK Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z= ,47 J.

ENERGIA ARIKETAK Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z= ,47 J. ENERGIA ARIKETAK OINARRIZKO KONTZEPTUAK 1.- 1000 Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z=385.802,47 J.) 2.- 500Kg.tako eta 10m-tara zintzilik dagoen masa

Διαβάστε περισσότερα

PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA. II. Itemen adibideak irakasleak erabiltzeko. 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua

PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA. II. Itemen adibideak irakasleak erabiltzeko. 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua 2009 PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA II. Itemen adibideak irakasleak erabiltzeko 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua w w www.pisa.oecd.org ISEI-IVEIk argitaratuta: Irakas-Sistema

Διαβάστε περισσότερα

Mikroekonomia I. Gelan lantzeko ikasmaterialak.

Mikroekonomia I. Gelan lantzeko ikasmaterialak. Mikroekonomia I. Gelan lantzeko ikasmaterialak. Egilea(k) Andoni Maiza Larrarte* * Eduki gehienak Zurbanok (1989), eta Ansa, Castrillón eta Francok (2011) prestatutako ikasmaterialetatik hartu dira. Egileak

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa Ingurugiroa babesteko teknikak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): AGOTE Igor eta OLAZARAN Iratxe, Lea Artibai ikastetxea.

Διαβάστε περισσότερα

Giza eta Gizarte Zientziak Matematika II

Giza eta Gizarte Zientziak Matematika II Giza eta Gizarte Zietziak Matematika II 3. ebaluazioa Probabilitatea Baaketa Normala eta Biomiala Lagi estatistikoak Iferetzia estatistikoa Hipotesiak Igacio Zuloaga B.H.I. (Eibar) 1 PROBABILITATEA Igazio

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα