ΣΧΕΣΕΙΣ ΕΝΔΕΧΟΜΕΝΩΝ - ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ - ΚΑΤΑΝΟΜΗ ΠΙΘΑΝΟΤΗΤΑΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΧΕΣΕΙΣ ΕΝΔΕΧΟΜΕΝΩΝ - ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ - ΚΑΤΑΝΟΜΗ ΠΙΘΑΝΟΤΗΤΑΣ"

Transcript

1 ΚΕΦΑΛΑΙΟ 4 ΣΧΕΣΕΙΣ ΕΝΔΕΧΟΜΕΝΩΝ - ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ - ΚΑΤΑΝΟΜΗ ΠΙΘΑΝΟΤΗΤΑΣ ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Σε πολλά προβλήματα, το γεγονός ότι κάποιο ενδεχόμενο Β έχει συμβεί είναι πολύ πιθανό να επηρεάσει την πιθανότητα να συμβεί κάποιο άλλο γεγονός Α. Αν για παράδειγμα, ρίξουμε δύο ζάρια και ορίσουμε τα ενδεχόμενα Α{άθροισμα 5} Β{ένα από τα δύο είναι 3} τότε P(A)4/36. Εάν όμως ξέρουμε ήδη ότι το ένα ζάρι είναι 3 η πιθανότητα του A γίνεται 2/. Αυτό συμβαίνει γιατί στην περίπτωση αυτή ο αρχικός δειγματικός χώρος των 36 σημείων ελαττώνεται στο δειγματικό χώρο {(3,),(3,2),(3,4),(3,5),(3,6),(,3),(2,3),(4,3),(5,3),(6,3)} Όταν οι δειγματικοί χώροι έχουν ισοπίθανα απλά ενδεχόμενα, όπως το προηγούμενο παράδειγμα, ο καθορισμός πιθανοτήτων ενδεχομένων δοθέντος ότι κάποιο άλλο ενδεχόμενο έχει συμβεί είναι εύκολος. Εάν όμως τα απλά ενδεχόμενα δεν είναι ισοπίθανα ο καθορισμός τέτοιων πιθανοτήτων δεν είναι πάντα εύκολος. Ο ορισμός που ακολουθεί θα διευκολύνει τον υπολογισμό πιθανοτήτων της μορφής αυτής. Ορισμός: Έστω S ο δειγματικός χώρος ενός πειράματος και Β ένα ενδεχόμενο με P(B)>0. Η πιθανότητα να συμβεί ένα ενδεχόμενο Α δοθέντος ότι το Β έχει ήδη συμβεί λέγεται δεσμευμένη πιθανότητα (condotnal probablty) του Α δοθέντος του Β, συμβολίζεται με P(A B) και ορίζεται ως εξής: P(A B) P(A B) P(B) Χρησιμοποιώντας τον ορισμό στο παράδειγμα μας έχουμε P(A B) 2/36 2 P(A B) P(B) /36 39

2 Ο ορισμός της δεσμευμένης πιθανότητας είναι χρήσιμος και για τον υπολογισμό πιθανοτήτων τομής ενδεχομένων. Πολλαπλασιαστικός κανόνας P(A B) P(A B)P(B) (P(B) > 0) ή, εναλλακτικά P(A B) P(B A)P(A) (P(A) > 0). Ο πολλαπλασιαστικός κανόνας μπορεί να επεκταθεί σε n ενδεχόμενα. Θεώρημα: Θεωρούμε τα ενδεχόμενα A, A 2,..., A n με την ιδιότητα n P A > 0. Τότε P (A A 2... A n ) P(Α Α 2 Α n ) n P(A )P(A 2 A )P(A 3 A A 2 )... P A n A Απόδειξη: Το θεώρημα ισχύει για n 2. Έστω ότι ισχύει για n k. Θα αποδείξουμε ότι ισχύει και για n k +. Έχουμε k k k P [ A A2... Ak+ ] P A A k+ P A k + A P A k k P A k + A xp A k A x...x P[ A 2 A 2 ] P(A ) Από την μορφή του πολλαπλασιαστικού τύπου, είναι φανερό ότι κατά κάποιο τρόπο θεωρούμε σαν δεδομένο ότι πρώτα συμβαίνει το A και κατόπιν κατά σειρά τα Α 2, Α 3,, Α n. Ο ορισμός της δεσμευμένης πιθανότητας ικανοποιεί τα τρία αξιώματα του Kolmogorov, όπως φαίνεται από το θεώρημα που ακολουθεί. Θεώρημα: Αν P(B) >0, τότε ) P(A B) 0 2) P(B B) 3) Αν τα ενδεχόμενα Α,,2,... είναι αμοιβαία ξένα μεταξύ τους, τότε 40

3 P A Απόδειξη: P(A B) ) P(A/B) 0 P(B) P(B) 2) P(B/B) P(B) 3) B P ( A B) P A B P ( A B) P A B P(B) P(B) P(A B) P(A P(B) Παράδειγμα: Σύνθετα ανταλλακτικά συναρμολογούνται σε μια βιομηχανία η οποία χρησιμοποιεί δύο διαφορετικά συστήματα συναρμολόγησης Α και Α. Το σύστημα Α χρησιμοποιεί παλαιότερα μηχανήματα από το σύστημα Α με αποτέλεσμα να είναι πιο αργό και μικρότερης εμπιστοσύνης. Ας υποθέσουμε ότι κάποια μέρα το σύστημα Α συναρμολόγησε 8 ανταλλακτικά από τα οποία 2 είναι ελαττωματικά (E) και 6 μη ελαττωματικά (E ), ενώ το Α συναρμολόγησε ελαττωματικό και 9 μη ελαττωματικά. /B) Δηλαδή, ισχύει ο εξής συνοπτικός πίνακας: Ε Ε Α Α Χωρίς να έχει τις παραπάνω πληροφορίες περί ελαττωματικών ένας διευθυντής διαλέγει στην τύχη από 8 ανταλλακτικά για επίδειξη. Τότε P(το ανταλλακτικό προέρχεται από το σύστημα 4

4 A)8/ Εάν όμως το ανταλλακτικό βρεθεί να είναι ελαττωματικό P(A E)2/3 ή ισοδύναμα P(AE) 2/8 P(A E) 2/3 P(E) 3/8 Παράδειγμα: Μια δέσμη αποτελείται από 2 αντικείμενα 4 από τα οποία είναι ελαττωματικά. Διαλέγουμε στην τύχη 3 αντικείμενα από την δέσμη, χωρίς επανάθεση και θέλουμε να βρούμε την πιθανότητα να είναι και τα τρία ελαττωματικά. Λύση: Έστω Α {το αντικείμενο είναι ελαττωματικό},,2,3. Μας ενδιαφέρει η P(A A 2 A 3 ). Είναι P(A A 2 A 3 ) P(A ) P(A 2 A ) P(A 3 A A 2 ) (4/2) (3/) (2/0) /55 Ορισμός: Μια διαμέριση ενός συνόλου S είναι μια πεπερασμένη συλλογή A, A 2,..., A n από υποσύνολα του S που ικανοποιούν τις ακόλουθες δύο συνθήκες: ) S A A 2... A n 2) A A j,,j,2,...,n j Θεώρημα Ολικής Πιθανότητας (theorem of total probablty): Έστω ότι Α, Α 2,..., A n είναι μια διαμέριση του δειγματικού χώρου S τέτοια ώστε P(A ) 0,,2,...,n. Τότε για κάθε ενδεχόμενο Ε έχουμε P(E) n P(A (από το πολλαπλασιαστικό θεώρημα). )P(E A ) Το θεώρημα ολικής πιθανότητας χρησιμεύει στον υπολογισμό πιθανοτήτων ενδεχομένων. Όπως είναι προφανές από το θεώρημα, η πιθανότητα ενός ενδεχομένου μπορεί να υπολογισθεί μέσω των δεσμευμένων πιθανοτήτων του ενδεχομένου σε σχέση με τα στοιχεία 42

5 κάποιας διαμέρισης θεωρώντας τον σταθμικό μέσο αυτών των πιθανοτήτων με βάση τις πιθανότητες των στοιχείων της διαμέρισης. Α 5 L Α 4 Α3 P(L) P(L A )P(A ) Α Α 2 Παράδειγμα: Τρία κουτιά περιέχουν στοιχεία μερικά από τα οποία είναι ελαττωματικά. Η αναλογία φαίνεται στον παρακάτω πίνακα. κουτί κουτί 2 κουτί 3 Αριθμός στοιχείων Αριθμός ελαττωματικών 4 3 Διαλέγουμε ένα κουτί στην τύχη και στην συνέχεια διαλέγουμε ένα στοιχείο στην τύχη από το κουτί αυτό. Να βρεθεί η πιθανότητα το στοιχείο να είναι ελαττωματικό. Λύση: Έστω Α {το στοιχείο προέρχεται από το κουτί },2,3. E {το στοιχείο είναι ελαττωματικό} Από το θεώρημα ολικής πιθανότητα έχουμε P(E) P(E A )P(A ) + P(E A 2 )P(A 2 ) + P(E A 3 )P(A 3 ) (4/0)(/3) + (/6)(/3) + (3/8)(/3) 3/360 Μια άλλη εφαρμογή της δεσμευμένης πιθανότητας είναι το θεώρημα του Bayes (Άγγλος κληρικός του 8ου αιώνα). Όπως θα δούμε στην συνέχεια το θεώρημα του Bayes είναι το αρχικό σημείο μιας ολόκληρης στατιστικής φιλοσοφίας γνωστής ως Μπεϋζιανή Στατιστική (Bayesan Statstcs). 43

6 Θεώρημα: Έστω Α, A 2,..., A n μια διαμέριση του δειγματικού χώρου S με P(A )>0 για κάθε,2,...,n. Τότε, για κάθε ενδεχόμενο Ε με P(E) >0 έχουμε ότι P(E A k )P(A k ) P(A k E) n P(E A )P(A ) ή ισοδύναμα P(E A k )P(A k ) P(A k E) P(E) Απόδειξη: E(A E) (A 2 E)... (A n E). Προφανώς Α Ε, Α 2 Ε,... A n E είναι μια διαμέριση του Ε. Επομένως, P(A k E) P(A k )P(E A k ) P(A k E) n P(E) P(A E)P(E) Σημείωση: Το νόημα του παραπάνω θεωρήματος ίσως να προκαλεί κάποια σύγχυση. Στα παραδείγματα που έχουμε συναντήσει μέχρι τώρα οι πιθανότητες P(A ) των στοιχείων A της διαμέρισης ήταν γνωστές και μας ενδιέφεραν οι δεσμευμένες πιθανότητες σε σχέση με τα στοιχεία της διαμέρισης. Υπάρχουν όμως προβλήματα όταν είναι άγνωστες οι πιθανότητες των στοιχείων της διαμέρισης και ο σκοπός του πειράματος είναι να προσεγγίσουμε, ή να βρούμε, τις ακριβείς τιμές των πιθανοτήτων αυτών. Πριν να γίνει το πείραμα είναι δυνατόν να έχουμε κάποια υποκειμενική αντίληψη, η εκτίμηση, για τις πιθανότητες P(A k ) (εκ των προτέρων ή a-pror πιθανότητες). Αφού κάνουμε το πείραμα μια ή περισσότερες φορές και παρατηρήσουμε τα αποτελέσματα του πειράματος, ίσως αποφασίσουμε να αναθεωρήσουμε τις απόψεις μας για τις πιθανότητες αυτές. Στην περίπτωση αυτή κατασκευάζουμε (μέσω του θεωρήματος του Bayes) τις εκ των υστέρων (α-posteror) πιθανότητες. Παράδειγμα: Στην αρχή του έτους, διατυπώθηκαν τρεις οικονομικές θεωρίες για την πιθανή εξέλιξη της Ελληνικής Οικονομίας. Όταν 44

7 διατυπώθηκαν και οι τρεις θεωρίες φαίνονταν ισοπίθανες. Στο τέλος του έτους εξετάσθηκε η πραγματική κατάσταση της οικονομίας με αναφορά στις τρεις θεωρίες. Η ανάλυση κατέληξε στο συμπέρασμα ότι αν η πρώτη θεωρία ήταν αληθινή, η οικονομία θα είχε πιθανότητα 0.6 να καταλήξει στην παρούσα κατάσταση. Οι αντίστοιχες πιθανότητες για την δεύτερη και την τρίτη πρόβλεψη είναι 0.4 και 0.2. Να υπολογισθεί η πιθανότητα με την οποία η παρούσα κατάσταση της οικονομίας μπορεί να θεωρηθεί αποτέλεσμα της θεωρίας,,2,3. Λύση: Έστω Α {η θεωρία είναι σωστή},,2,3 Έχουμε P(A ) P(A 2 ) P(A 3 ) /3 Έστω Ε {η οικονομία βρίσκεται στην παρούσα κατάσταση} Τότε με βάση το θεώρημα του Bayes έχουμε P(A E) P(E A )P(A P(E A ) + P(E A 2 )P(A )P(A 2 ) ) + P(E A 3 )P(A 3 ) (/3)(6/0 (/3)(6/0 ) + (/3)(4/0 ) ) + (/3)(2/0 ) Με όμοιο τρόπο, βρίσκουμε P(A 2 E) (/ 3)(4 /0) 4 /0 3 P(A 3 E) (/ 3)(2 /0) 4 /0 Παράδειγμα. (Παράδοξο του Russel): Έχουμε τρία όμοια πορτοφόλια καθένα από τα οποία περιέχει 2 νομίσματα. Το ένα περιέχει δύο τάλληρα, το άλλο δύο δεκάρικα και το τρίτο ένα τάλληρο και ένα δεκάρικο. Διαλέγουμε ένα πορτοφόλι στην τύχη και βγάζουμε το ένα από τα δύο νομίσματα που βρίσκεται να είναι 45 6

8 τάλληρο. Να βρεθεί η πιθανότητα το άλλο νόμισμα στο πορτοφόλι που διαλέξαμε να είναι επίσης τάλληρο. (Δηλαδή η πιθανότητα να έχουμε διαλέξει το πρώτο πορτοφόλι). Λύση: Έστω Ε{το νόμισμα που διαλέξαμε ήταν τάλληρο} και έστω Α {το νόμισμα το πήραμε από το πορτοφόλι},,2,3. Τότε P(E A)P(A) P(A E) P(E A )P(A ) + P(E A )P(A ) + P(E A )P(A ) (/3) ( /3) + (0 /3) + (/2 /3) 2 3 Σημείωση: Με μια επιπόλαιη ματιά ίσως κάποιος παρασυρθεί να απαντήσει ότι αφού το νόμισμα ήταν τάλληρο θα πρέπει να προερχόταν ή από το πρώτο ή από το τρίτο πορτοφόλι και επομένως η πιθανότητα να ήταν από το πρώτο είναι /2. Η λογική εξήγηση του γεγονότος ότι η σωστή απάντηση είναι 2/3 και όχι /2 βρίσκεται στο ότι 2 από τα 3 τάλληρα που έχουν τα τρία πορτοφόλια βρίσκονταν στο πρώτο πορτοφόλι. Σχηματικά το πρόβλημα μπορεί να παρουσιασθεί ως εξής: Τ /3 πορτοφόλι 0 Δ 0 Τ /3 πορτοφόλι 2 Δ /2 Τ /3 πορτοφόλι 3 /2 Δ Παράδειγμα: Ένα άγνωστο άτομο με συγκεκριμένα χαρακτηριστικά (χρώμα μαλλιών, ομάδα αίματος κ.λ.π.) διέπραξε ένα αδίκημα. Είναι γνωστό ότι η πιθανότητα να έχει κάποιο άτομο στον πληθυσμό αυτά τα χαρακτηριστικά είναι p. Ένας ύποπτος έχει συλληφθεί από την αστυνομία και βρέθηκε να έχει όλα τα παραπάνω χαρακτηριστικά. 46

9 Παρ' ότι η αστυνομία δεν έχει αποδείξεις για την ενοχή του, το γεγονός ότι έχει όλα τα χαρακτηριστικά του δράστη αυξάνει την πιθανότητα να είναι ένοχος. Υποθέτουμε ότι πριν η αστυνομία διαπιστώσει ότι ο ύποπτος είχε τα χαρακτηριστικά του δράστη, η πιθανότητα ότι ο ύποπτος ήταν και ο δράστης ήταν (0.5). Χρησιμοποιώντας την πρόσθετη πληροφορία ότι ο ύποπτος έχει όλα τα χαρακτηριστικά του δράστη μπορούμε με το θεώρημα του Bayes, να αναθεωρήσουμε την αρχική μας πιθανότητα ότι ο ύποπτος είναι ένοχος ως εξής: Έστω Ε το ενδεχόμενο ένοχος, Α το ενδεχόμενο αθώος και C το ενδεχόμενο ότι κάποιος έχει τα χαρακτηριστικά του δράστη. Ξέρουμε ότι P(C E) και υποθέσαμε ότι P(C)p. Επομένως P(E C) P(C E)P(E) P(C) (/2) p 2p > 2 Σημείωση: Ένας από τους τρόπους χρησιμοποίησης του θεωρήματος του Bayes που προκαλεί πολλές αντιθέσεις είναι στην περίπτωση που προσπαθεί κανείς να υποστηρίξει μια σχέση αιτίου-αιτιατού με βάση το παραπάνω θεώρημα και να καθορίσει την αιτία από το αποτέλεσμα. Στην ιατρική διάγνωση για παράδειγμα, κάποιο αποτέλεσμα Ε (ορισμένα συμπτώματα) παρατηρούνται σ έναν ασθενή. Ο γιατρός πρέπει να καθορίσει την αιτία Α που προκάλεσε τα συμπτώματα αυτά. Συνήθως, ο γιατρός έχει δεδομένα (πληροφορίες) για την πιθανότητα P(E A) δηλαδή πόσο πιθανά είναι τα συγκεκριμένα συμπτώματα δεδομένου ότι ο ασθενής έχει μια συγκεκριμένη ασθένεια. Αυτό που ο γιατρός θέλει είναι η πιθανότητα P(A E), δηλαδή η πιθανότητα ότι ο ασθενής έχει την συγκεκριμένη ασθένεια Α που προκαλεί τα συμπτώματα Ε. Παράδειγμα: Ένα παιδί με εξανθήματα και πυρετό επισκέπτεται τον γιατρό. Ο γιατρός θεωρεί σαν πιθανές αιτίες των συμπτωμάτων αυτών (Σ) την ανεμοβλογιά (A) που έχει επιδημία την εποχή αυτή, την οστρακιά (Π) και ίσως κάποια τρίτη άγνωστη αρρώστεια (Β). Έστω ότι τα παραπάνω συμπτώματα εμφανίζονται πάντα σε παιδιά που έχουν προσβληθεί από οστρακιά, σχεδόν πάντα (85% των 47

10 περιπτώσεων) σε παιδιά που υποφέρουν από ανεμοβλογιά και μόνο στο 33% των παιδιών που υποφέρουν από κάποια άλλη ασθένεια. Δηλαδή P(Σ A)0.85, P(Σ Π), P(Σ B)0.33 Ο γιατρός γνωρίζει ότι οι συχνότητες των τριών παραπάνω ασθενειών την εποχή αυτή είναι: P(A)0.5 P(Π)0.005 και P(B) Με βάση τα παραπάνω στοιχεία οι πιθανότητες να έχει το παιδί τις τρεις παραπάνω ασθένειες υπολογίζονται ως εξής: P(A Σ) P(Σ A)P(A) P(Σ A)P(A) + P(Σ Π)P(Π) + P(Σ Β)P(Β) (0.85)(0.50) (0.85)(0.50) + ()(0.005) + (0.33)(0.075) 0.8 Με όμοιο τρόπο, βρίσκουμε ότι και ()(0.005) P(Π Σ) (0.33)(0.075) P(Β Σ) Σημείωση: Είναι χρήσιμο να παρατηρήσει κανείς ότι τα ενδεχόμενα Α, Π και Β δεν αποτελούν διαμέριση του δειγματικού χώρου. Πράγματι P(A)+P(Π)+P(B)0.23 και όχι. Αυτό που έχει συμβεί είναι ότι αγνοήσαμε το ενδεχόμενο Y (το παιδί είναι υγιές) που έχει πιθανότητα Ρ(Y)0.77. Αυτό όμως δεν επηρεάζει τους υπολογισμούς μας μια και μπορούμε να υποθέσουμε ότι Ρ(Σ Y)0. ΑΝΕΞΑΡΤΗΤΑ ΚΑΙ ΑΣΥΜΒΑΤΑ ΕΝΔΕΧΟΜΕΝΑ Ο ορισμός της δεσμευμένης πιθανότητας μας επιτρέπει να αναθεωρήσουμε την πιθανότητα P(A) ενός ενδεχομένου Α που αρχικά έχουμε δώσει στο Α όταν μας δοθεί η πληροφορία ότι κάποιο άλλο ενδεχόμενο Β έχει συμβεί. Η νέα πιθανότητα είναι η Ρ(Α Β). 48

11 Συμβαίνει πολλές φορές να έχουμε Ρ(Α Β) Ρ(Α), γεγονός που σημαίνει ότι η πληροφορία ότι το Β έχει συμβεί έχει σαν αποτέλεσμα να μεταβληθεί η πιθανότητα να συμβεί το Α. Σε άλλες όμως περιπτώσεις αυτό δεν συμβαίνει. Για τις τελευταίες αυτές περιπτώσεις δίνουμε τον εξής ορισμό. Ορισμός: Τα ενδεχόμενα Α και Β λέγονται ανεξάρτητα (ndependent) (ή ακριβέστερα στοχαστικά ανεξάρτητα ή στατιστικά ανεξάρτητα ή ανεξάρτητα κατά πιθανότητα), αν P(A B) P(A) P(B) Σε μερικές περιπτώσεις, χρησιμοποιείται η ορολογία Α ανεξάρτητο του Β αν P(A B)P(A). Ομοίως Β ανεξάρτητο του Α αν P(B A)P(B). Στην ορολογία αυτή υποτίθεται ότι P(B)>0 στην πρώτη περίπτωση και P(A)>0 στην δεύτερη περίπτωση. Είναι προφανές (λόγω της πολλαπλασιαστικής αρχής) ότι αν το Α είναι ανεξάρτητο του Β τότε και το Β είναι ανεξάρτητο του Α και αντίστροφα (οπότε τα Α και Β είναι ανεξάρτητα) με την προϋπόθεση ότι P(A)>0 και P(B)>0. Με τον ορισμό της ανεξαρτησίας όμως που δώσαμε οι συνθήκες P(A)>0 και P(B)>0 δεν είναι απαραίτητες. Σημείωση: Ο ορισμός της ανεξαρτησίας είναι ισοδύναμος με το ότι τα ενδεχόμενα Α και Β είναι ανεξάρτητα αν το γεγονός ότι το ένα έχει συμβεί δεν επηρεάζει την πιθανότητα να συμβεί το άλλο. Σημείωση: Από τον ορισμό, προκύπτει ότι κάθε γεγονός Α είναι ανεξάρτητο από το αδύνατο γεγονός και από το βέβαιο γεγονός S. Παράδειγμα: Έστω ότι βγάζουμε ένα χαρτί από μια τράπουλα και έστω Α {το χαρτί είναι άσσος} Β {το χαρτί είναι σπαθί} Έχουμε P(A) 4/52 /3, P(B) 3/52 /4 Εξ άλλου P(A B) /52 Επομένως Α και Β είναι ανεξάρτητα. 49

12 Παράδειγμα: Ένα σύστημα αποτελείται από 4 εξαρτήματα όπως δείχνει το σχήμα Το σύστημα λειτουργεί αν ή το υποσύστημα -2 λειτουργεί ή το υποσύστημα 3-4 λειτουργεί, (μια και τα δύο συστήματα συνδέονται παράλληλα). Προφανώς ένα υποσύστημα δουλεύει αν και τα δύο εξαρτήματά του δουλεύουν (μια και τα δύο εξαρτήματα σε κάθε υποσύστημα συνδέονται στην σειρά). Κάθε εξάρτημα δουλεύει ή χαλάει ανεξάρτητα από τα άλλα και κάθε ένα δουλεύει με πιθανότητα 0.9. Να βρεθεί η πιθανότητα να λειτουργεί ολόκληρο το σύστημα. (Η πιθανότητα αυτή ονομάζεται συντελεστής αξιοπιστίας του συστήματος (system relablty coeffcent)). Λύση: Έστω Α (,2,3,4) το ενδεχόμενο ότι το εξάρτημα δουλεύει. Τα Α είναι αμοιβαία ανεξάρτητα. Το ενδεχόμενο ότι το -2 υποσύστημα δουλεύει είναι το Α A 2. Ομοίως Α 3 Α 4 είναι το ενδεχόμενο ότι το υποσύστημα 3-4 δουλεύει. Η πιθανότητα που ζητάμε είναι P[(A A 2 ) (A 3 A 4 )] P(A A 2 )+P(A 3 A 4 )-P[(A A 2 ) (A 3 A 4 )] P(A ) P(A 2 ) + P(A 3 ) P(A 4 ) - P(A ) P(A 2 ) P(A 3 ) P(A 4 ) (0.9) (0.9) + (0.9) (0.9) - (0.9) Παράδειγμα (συνέχεια): Έστω x P(A ),,2,3,4. Ποιά είναι η τιμή του x που θα δώσει συντελεστή αξιοπιστίας του συστήματος 0.99; Λύση: Θέλουμε P (το σύστημα λειτουργεί) 0.99 x 2 + x 2 - x ψ 2-2ψ +(0.99) 0 (με ψx 2 ) ψ 0.9 x 0.95 Θεώρημα: Αν Α και Β είναι ανεξάρτητα τότε: 50

13 ) Α, B είναι ανεξάρτητα. 2) Α, B είναι ανεξάρτητα. 3) Α, B είναι ανεξάρτητα. Απόδειξη: ) Έχουμε ότι P(A B) P(A) P(B). Προφανώς το Β και Β αποτελούν μία διαμέριση του S. Επομένως και τα A B, A B' αποτελούν μια διαμέριση του Α. Τότε P(A) P(A B) + P(A B') δηλαδή, P(A B') P(A)- P(A)P(B) P(A)- (- P(B)) P(A)P(B') Άρα τα Α και Β είναι ανεξάρτητα. Με όμοιο τρόπο αποδεικνύονται οι προτάσεις (2) και (3). Παράδειγμα λανθασμένης χρήσης της έννοιας της ανεξαρτησίας ενδεχομένων. (Η δίκη Collns στις ΗΠΑ): Το 968, έγινε στο Λος Άντζελες η δίκη για μία ληστεία που είχε γίνει το 964 από ένα ζευγάρι. Σύμφωνα με το κατηγορητήριο, ο άνδρας ήταν μαύρος με γένεια και μουστάκι και η γυναίκα λευκή με ξανθά μαλλιά και αλογουρά. Στην ληστεία, χρησιμοποίησαν ένα κίτρινο αυτοκίνητο. Ένα ζευγάρι που είχε όλα αυτά τα χαρακτηριστικά συνελήφθη και καταδικάστηκε. Η καταδίκη τους βασίσθηκε στην εξής επιχειρηματολογία που ανέλυσε ένας καθηγητής μαθηματικών ενός τοπικού κολλεγίου: Από την σύνθεση του πληθυσμού του Λος Άντζελες προκύπτει ότι οι πιθανότητες για κάθε ένα από τα παρακάτω χαρακτηριστικά είναι: P(ζευγάρι από διαφορετικές φυλές σε αυτοκίνητο) /000 P(κίτρινο αυτοκίνητο) /0 P(μαύρος άνδρας με γένεια ) /0 P(άνδρας με μουστάκι) /4 P(ξανθή κοπέλλα) /3 P(κοπέλλα με αλογουρά) /0 Με την υποθέση ότι τα παραπάνω χαρακτηριστικά είναι ανεξάρτητα (κάτι που δεν αποδείχθηκε, αλλά ούτε αμφισβητήθηκε στην δίκη) και πολλαπλασιάζοντας τις αντίστοιχες πιθανότητες, 5

14 βρέθηκε ότι η πιθανότητα να έχει ένα ζευγάρι όλα τα παραπάνω χαρακτηριστικά είναι / Είναι δηλαδή πολύ σπάνιο να βρεθεί ζευγάρι που να έχει όλα τα παραπάνω χαρακτηριστικά, δεδομένου ότι την εποχή αυτή ζούσαν στην περιοχή περίπου ζευγάρια. Αφού λοιπόν βρέθηκε ένα ζευγάρι με όλα τα χαρακτηριστικά, το ζευγάρι αυτό θα πρέπει να είναι και οι ληστές. Με την επιχειρηματολογία αυτή, το ζευγάρι καταδικάσθηκε. Αργότερα όμως έκαναν έφεση και χρησιμοποιώντας μια άλλη επιχειρηματολογία βασισμένη στις πιθανότητες, αθωώθηκαν. Το πρόβλημα δημιουργήθηκε από την άκριτη χρήση του πολλαπλασιαστικού κανόνα. Πριν χρησιμοποιηθεί ο κανόνας αυτός θα πρέπει να ελεγχθεί η ανεξαρτησία ή, εναλλακτικά, να χρησιμοποιηθεί η δεσμευμένη πιθανότητα. Υπάρχει βέβαια και μια άλλη αντίρρηση στην επιχειρηματολογία του Εισαγγελέα. Οι υπολογισμοί πιθανοτήτων με την χρήση κανόνων όπως ο πολλαπλασιαστικός, αναπτύχθηκαν για την αντιμετώπιση τυχερών παιχνιδιών όπου η βασική διαδικασία που διέπει το παιχνίδι μπορεί να επαναληφθεί με ανεξάρτητες επαναλήψεις και κάτω από τις ίδιες συνθήκες. Ο Εισαγγελέας, στο συγκεκριμένο πρόβλημα, προσπάθησε να εφαρμόσει αυτή την θεωρία σε ένα μοναδικό φαινόμενο. Κάτι που ή συνέβη ή δεν συνέβη στις 8 Ιουνίου 964 στις :30 π.μ.. Τί σημαίνει η πιθανότητα στο συγκεκριμένο πλαίσιο; Ήταν στην ευθύνη του Εισαγγελέα να απαντήσει στην ερώτηση αυτή και να αποδείξει ότι η θεωρία εφαρμόζεται στην συγκεκριμένη περίπτωση. Ο Εισαγγελέας υπολόγισε τις πιθανότητες για δύο ενδεχόμενα πηδώντας από το ένα στο άλλο και αντίστροφα. Το πρώτο ενδεχόμενο ήταν ότι οι κατηγορούμενοι ήταν ένοχοι. Το δεύτερο ενδεχόμενο ήταν ότι δεν υπήρχε άλλο ζευγάρι στο Λος Άντζελες την εποχή εκείνη με τα ίδια χαρακτηριστικά. Με την κλασσική στατιστική προσέγγιση (της σχετικής συχνότητας), η έννοια της πιθανότητας δεν μπορεί να εφαρμοστεί τόσο καλά. Ακόμα και κάποιος που ακολουθεί την Μπεϋζιανή προσέγγιση θα είχε κάποιες δυσκολίες εδώ δεδομένου ότι δεν υπάρχει κάποιο γενικό μοντέλο πιθανοτήτων που να συνδέει τα δεδομένα με την υπόθεση ενοχής ή αθωώτητας. 52

15 Υπήρχαν άλλα ζευγάρια στο Λος Άντζελες που να ικανοποιούν τα ίδια χαρακτηριστικά; Καταρχήν η ερώτηση αυτή μοιάζει να είναι ένα στατιστικό ερώτημα που θα μπορούσε να απαντηθεί με την λήψη ενός δείγματος. Παρ όλα αυτά, κάποιοι υπολογισμοί μπορούν να αποδείξουν ότι δειγματοληψία από τα ζευγάρια που ζούσαν στο Λος Άντζελες δεν θα έλυνε το πρόβλημα με κάποιο αξιόπιστο βαθμό εμπιστοσύνης (για την σχέση δείγματος με πληθυσμό, βλέπε μεθόδους δειγματοληψίας). Για την σωστή απάντηση στο ερώτημα αυτό θα έπρεπε να γίνει μία πλήρης απογραφή. Παράδειγμα. (Νόμος των Hardy-Wenberg): Θεωρούμε ένα απλό γονίδιο το οποίο μπορεί να βρίσκεται σε μια από τις εξής δύο καταστάσεις. Επικρατούσα κατάσταση, έστω Α και υπολειπόμενη κατάσταση, έστω α. Κάθε άτομο σε ένα πληθυσμό είναι φορέας δύο τέτοιων γονιδίων. Επομένως, οι δυνατοί συνδυασμοί γονιδίων είναι: ΑΑ (επικρατών ομόζυγος) Αα (ετερόζυγος) αα (υπολειπόμενος ομόζυγος) Έστω ότι στην πρώτη γενεά ενός πληθυσμού τα ποσοστά των ατόμων που έχουν αυτά τα τρία είδη γονιδίων είναι p, p 2, και p 3 αντίστοιχα (για αρσενικά και θηλυκά). Σε ένα τυχαίο ζευγάρωμα, το αρσενικό και το θηλυκό επιλέγονται τυχαία και κάθε ένα συνεισφέρει ανεξάρτητα από το άλλο ένα από τα γονίδια στον απόγονο. Να βρεθεί η γενεά στην οποία επιτυγχάνεται η κατάσταση ισορροπίας της κατανομής των γονοτύπων. Λύση: Η πιθανότητα ότι το αρσενικό συνεισφέρει στον απόγονο της πρώτης γενεάς ένα γονίδιο της μορφής Α είναι: 53

16 Ρ Ρ(μεταφέρεται το Α) Ρ(Α ΑΑ)Ρ(ΑΑ)+Ρ(Α Αα)Ρ(Αα) Ρ(ΑΑ)+Ρ(Α Αα)Ρ(Αα) p +p 2 /2 Ομοίως q P(μεταφέρεται το α) Ρ(α Αα)Ρ(Αα)+Ρ(α αα)ρ(αα) (/2)p 2 +p 3 (ή ισοδύναμα: Ρ(μεταφέρεται το α) - p (/2)p 2 + p 3 μια και p +p 2 +p 3 ). Είναι προφανές ότι οι πιθανότητες αυτές είναι ίδιες για τα γονίδια που συνεισφέρουν τα αρσενικά και τα θηλυκά. Επομένως, τα ποσοστά των ατόμων της δεύτερης γενεάς που είναι φορείς γονιδίων ' ' ' της μορφής ΑΑ, Αα και αα, έστω p, p, αντίστοιχα είναι: 54 2 p 3 ' p Ρ(ΑΑ στην δεύτερη γενεά) Ρ(αρσενικό της πρώτης γενεάς συνεισφέρει ένα Α θηλυκό της πρώτης γενεάς συνεισφέρει ένα Α) [Ρ(άτομο της πρώτης γενεάς συνεισφέρει ένα Α)] 2 p 2 Ομοίως ' p 2 Ρ(Αα στην δεύτερη γενεά) Ρ[{αρσενικό της πρώτης γενεάς συνεισφέρει ένα Α θηλυκό της πρώτης γενεάς συνεισφέρει ένα α} {αρσενικό της πρώτης γενεάς συνεισφέρει ένα α θηλυκό της πρώτης γενεάς συνεισφέρει ένα Α}] 2p(-p) 2pq Τέλος, ' p 3 Ρ(αα στην δεύτερη γενεά) q 2 (-p) 2 Επαναλαμβάνοντας την ίδια λογική για τους απογόνους της δεύτερης γενεάς (δηλαδή για την τρίτη γενεά) θα έχουμε ότι: p * P(μεταφέρεται το Α από ένα άτομο της δεύτερης γενεάς) Ρ(Α ΑΑ στην δεύτερη γενεά) Ρ(ΑΑ στην δεύτερη γενεά) + Ρ(Α Αα στην δεύτερη γενεά) Ρ(Αα στην δεύτερη γενεά) ' p + (/2) ' p 2 p 2 + p(-p) p

17 Δηλαδή, η πιθανότητα p * είναι ίση με την p και επομένως το ποσοστό ατόμων της τρίτης γενεάς με γονίδια της μορφής ΑΑ είναι '' p Ρ(ΑΑ στην τρίτη γενεά) p 2 Με όμοιο τρόπο, βρίσκουμε '' p 2 Ρ(Αα στην τρίτη γενεά) 2p(-p) και p Ρ(αα στην τρίτη γενεά) (-p) 2 '' 3 Επομένως, τα γονότυπα της τρίτης γενεάς (και όλων των επομένων γενεών) θα έχουν την ίδια αναλογία όπως και τα γονότυπα της δεύτερης γενεάς. Δηλαδή, η κατάσταση ισορροπίας της κατανομής των γονοτύπων επιτυγχάνεται μετά από μία γενεά. Ο νόμος αυτός αποδείχθηκε το 908 από τον μαθηματικό G. H. Hardy. Ορισμός: Τα ενδεχόμενα Α, Α 2, Α n, n είναι ανεξάρτητα αν ο πολλαπλασιαστικός τύπος ισχύει για κάθε συνδυασμό δύο ή περισσοτέρων από αυτά. Αν δηλαδή P(A A...A ) P(A )P(A )...P(A ), < 2 < k n 2 k 2 k Για παράδειγμα, τα ενδεχόμενα Α, Β, Γ είναι ανεξάρτητα αν Ρ(ΑΒ)Ρ(Α)Ρ(Β), Ρ(ΑΓ)Ρ(Α)Ρ(Γ), Ρ(ΒΓ)Ρ(Β)Ρ(Γ) και Ρ(ΑΒΓ)Ρ(Α)Ρ(Β)Ρ(Γ). Γενικά αν έχουμε n ενδεχόμενα θα πρέπει να εξετάσουμε n n n n n + περιπτώσεις. 2 3 n Ορισμός: Τα ενδεχόμενα Α, Α 2, Α n θα λέγονται ανεξάρτητα κατά ζεύγη αν Ρ(Α A j )P(A )P(A j ),, j, 2,, n, j. Σημείωση: Είναι δυνατόν να έχουμε ανεξαρτησία κατά ζεύγη χωρίς να έχουμε ανεξαρτησία. Παράδειγμα: Στρίβουμε δύο νομίσματα και θεωρούμε τα ενδεχόμενα Α(το πρώτο νόμισμα είναι Κ) Β(το δεύτερο νόμισμα είναι Κ) Γ(ακριβώς ένα Κ στο πείραμα) Έχουμε 55

18 S(KK, KΓ, ΓΚ, ΓΓ) Ρ(Α)Ρ(Β)Ρ(Γ)/2 Επίσης, επειδή ΑΒ{ΚΚ}, ΑΓ{ΚΓ}, ΒΓ{ΓΚ} Θα είναι Ρ(ΑΒ)Ρ(Α)Ρ(Β) Ρ(ΑΓ)Ρ(Α)Ρ(Γ) και Ρ(ΒΓ)Ρ(Β)Ρ(Γ) Δηλαδή, τα Α, Β, Γ είναι ανεξάρτητα κατά ζεύγη. Όμως ΑΒΓ Ρ(ΑΒΓ)0 ενώ Ρ(Α)Ρ(Β)Ρ(Γ)/8 Ρ(ΑΒΓ) Επομένως, τα Α, Β, Γ είναι εξαρτημένα. Ορισμός: (Ανεξάρτητες δοκιμές). Έστω ότι ένα πείραμα Ε αποτελείται από μια ακολουθία n δοκιμών Δ, Δ 2,, Δ n. Οι δοκιμές είναι ανεξάρτητες, αν το αποτέλεσμα κάθε μιας από αυτές δεν επηρεάζει τις πιθανότητες των ενδεχομένων στις άλλες δοκιμές. Επιπλέον, αν το ενδεχόμενο Α αντιστοιχεί στην δοκιμή και Ρ(Α ) είναι η πιθανότητα του ενδεχομένου αυτού (, 2,, n), τότε P(A A A...A ) P(A )P(A )P(A )...P(A ) 2 3 n Ορισμός: Τα ενδεχόμενα Α και Β λέγονται ασυμβίβαστα ή ασύμβατα ή ξένα μεταξύ τους (mutually exclusve ή dsjont events), αν η πραγματοποίηση του ενός δεν επιτρέπει την πραγματοποίηση του άλλου, αν δηλαδή Ρ(Α Β)0 Σημείωση: Προφανώς, στην περίπτωση των ξένων μεταξύ τους ενδεχομένων, ισχύει ότι Ρ(Α Β) Ρ(Α)+Ρ(Β). Για παράδειγμα, στο ρίξιμο ενός ζαριού, τα ενδεχόμενα Α{αποτέλεσμα άσσος } και Β{αποτέλεσμα έξι } είναι ασύμβατα. (Ρ(Α)/6, Ρ(Β)/6, Ρ(Α Β)0 και Ρ(Α Β)Ρ(Α)+Ρ(Β)/6+/62/6). Σχέση Ξένων Μεταξύ τους και Ανεξαρτήτων Ενδεχομένων 2 3 n 56

19 Τα ασυμβίβαστα, ή αλλιώς ξένα μεταξύ τους, ενδεχόμενα (mutually exclusve) και τα ανεξάρτητα ενδεχόμενα (ndependent) είναι δύο έννοιες που αναφέρονται σε ζευγάρια ενδεχομένων και εκφράζουν κάποιας μορφής σχέση μεταξύ τους. Η σχέση αυτή όμως είναι τελείως διαφορετική στην μια περίπτωση από την άλλη. Ξένα μεταξύ τους είναι δύο ενδεχόμενα που η πραγματοποίηση του ενός δεν επιτρέπει την πραγματοποίηση του άλλου. Ανεξάρτητα είναι δύο ενδεχόμενα η πραγματοποίηση του ενός εκ των οποίων δεν μεταβάλλει την πιθανότητα πραγματοποίησης του άλλου. Με τα ξένα μεταξύ τους ενδεχόμενα σχετίζεται ο προσθετικός ή αθροιστικός κανόνας για τις πιθανότητες. Ο κανόνας αυτός αναφέρεται στην πιθανότητα ότι τουλάχιστον ένα από δύο πράγματα μπορούν να συμβούν. Με τα ανεξάρτητα ενδεχόμενα συνδέεται ο πολλαπλασιαστικός κανόνας. Ο κανόνας αυτός χρησιμοποιείται για να προσδιορίσει την πιθανότητα ότι δύο ενδεχόμενα θα συμβούν ταυτόχρονα. Επομένως, το πρώτο βήμα για να αποφασίσει κανείς εάν θα χρησιμοποιήσει τον πολλαπλασιαστικό ή τον αθροιστικό κανόνα είναι να απαντήσει στην ερώτηση: Με ενδιαφέρει η πιθανότητα P(Α ή Β), η πιθανότητα P(Α και Β) ή κάτι τελείως διαφορετικό; Θα πρέπει να προσέχουμε ιδιαίτερα ότι, άθροιση πιθανοτήτων δύο ενδεχομένων απαιτεί ότι τα ενδεχόμενα αυτά είναι αμοιβαία ξένα μεταξύ τους. Πολλαπλασιασμός μη δεσμευμένων πιθανοτήτων δύο ενδεχομένων απαιτεί ότι τα ενδεχόμενα αυτά είναι ανεξάρτητα. (Για εξαρτημένα ενδεχόμενα, ο πολλαπλασιαστικός κανόνας χρησιμοποιεί δεσμευμένες πιθανότητες). Τα δύο παραδείγματα που ακολουθούν είναι χαρακτηριστικά κακής εφαρμογής των εννοιών των ανεξαρτήτων ενδεχομένων και των ξένων μεταξύ τους ενδεχομένων. Παράδειγμα λανθασμένης χρήσης του πολλαπλασιαστικού κανόνα των πιθανοτήτων για ανεξάρτητα ενδεχόμενα. (Η διαθήκη Howland): Μια από τις πρώτες εφαρμογές της θεωρίας των πιθανοτήτων και των στατιστικών ενδείξεων στο δικαστικό σύστημα 57

20 των Ηνωμένων Πολιτείων έγινε το 967, όταν ο Benjamn Perce, καθηγητής των μαθηματικών στο Πανεπιστήμιο του Harvard, κατέθεσε ως μάρτυρας στο δικαστήριο στην δίκη αμφισβήτησης της ομοιότητας της υπογραφής μιας διαθήκης και της υπογραφής που είχε μπει σε μια πρόσθετη παράγραφο της διαθήκης αυτής. ( Paul Meer & Sandy Zabell: Benjamn Perce & the Howland Wll. Journal of the Amercan Statstcal Assocaton September 980, ). Ο Perce, χρησιμοποιώντας τον πολλαπλασιαστικό κανόνα των πιθανότητων, υποστήριξε ότι οι δύο υπογραφές είχαν γίνει από το ίδιο άτομο. Το συμπέρασμα αυτό το στήριξε σε μια λεπτομερή σύγκριση των κατακόρυφων γραμμών σε 42 άλλες υπογραφές του αποθανόντος για τις οποίες δεν είχε υπάρξει αμφισβήτηση. Σύμφωνα με τον πολλαπλασιαστικό κανόνα, ο Perce εκτίμησε ότι η πιθανότητα για όμοια κατακόρυφη γραμμή είναι 0.2. Στην συγκεκριμένη διαθήκη, όλες οι 30 κατακόρυφες γραμμές στην πρόσθετη υπογραφή ταίριαζαν με τις κατακόρυφες γραμμές στην τελική υπογραφή της διαθήκης. Χρησιμοποιώντας τον πολλαπλασιαστικό κανόνα, υπολόγισε οτι η πιθανότητα να υπάρχουν 30 τέτοιες συμπτώσεις είναι (0.2) 30 και εξ αυτού συμπέρανε ότι ενδεχόμενο με τόσο μικρή πιθανότητα είναι μάλλον αδύνατον. Πρέπει να σημειώσουμε ότι η χρήση του πολλαπλασιαστικού κανόνα υποθέτει έμμεσα ανεξαρτησία σε όλες τις 30 κατακόρυφες γραμμές. Στην μαρτυρία του, δεν υπάρχει αναφορά για το κατά πόσο αυτή η κρίσιμη υπόθεση είναι εύλογη ή βάσιμη. Επίσης, δεν έλαβε υπόψη του το γεγονός ότι η εκτίμηση 0.2 για την πιθανότητα βασίστηκε σε 42 υπογραφές που μπήκαν σε διαφορετικές χρονικές στιγμές, ενώ η υπογραφή της διαθήκης και η υπογραφή στην πρόσθετη παράγραφο της διαθήκης γράφτηκαν, σύμφωνα με τις μαρτυρίες, την ίδια μέρα. Δεδομένου, όμως, ότι την εποχή εκείνη, η γνώση των πιθανότητων δεν ήταν διαδεδομένη και ταυτόχρονα, λόγω του μεγάλου σεβασμού που υπήρχε για την ακαδημαϊκή αξιοπιστία του Perce, ο δικηγόρος της αντίθετης πλευράς δεν αμφισβήτησε τους ισχυρισμούς αυτούς. 58

21 Η αυθεντική υπογραφή (αρ. ) και οι δύο αμβισβητούμενες υπογραφές (αρ. 0 και 5) 0 5 Μερικές από τις 42 υπογραφές που χρησιμοποιήθηκαν για σύγκριση 59

22 Παράδειγμα λανθασμένης χρήσης του αθροιστικού κανόνα των πιθανοτήτων. (Το παράδοξο του Chevaler De Méré): Τον 7ο αιώνα, οι Γάλλοι παίκτες τυχερών παιχνιδιών στοιχημάτιζαν πολλές φορές στο ενδεχόμενο: Όταν ένα ζάρι ριχτεί 4 φορές, ποιά είναι η πιθανότητα να εμφανισθεί τουλάχιστον ένας άσσος. Ένα άλλο τυχερό παιχνίδι που έπαιζαν ήταν στην περίπτωση όπου ένα ζευγάρι από ζάρια ριχνόταν 24 φορές και ενδιέφερε η πιθανότητα να εμφανισθούν άσσοι τουλάχιστον μία φορά. Ο Chevaler De Méré, ένας Γάλλος ευγενής της περιόδου εκείνης, πίστευε ότι τα δύο παραπάνω ενδεχόμενα είναι ισοπίθανα. Η λογική του για το πρώτο παιχνίδι ήταν η εξής: Σε ένα ρίξιμο ζαριού, η πιθανότητα άσσου έναι /6. Σε τέσσερις ρίψεις του ζαριού, η πιθανότητα τουλάχιστον ενός άσσου είναι 4 φορές το /62/3. Για το δεύτερο παιχνίδι, χρησιμοποίησε το εξής επιχείρημα: Όταν ρίξει κανείς ένα ζευγάρι ζάρια, η πιθανότητα άσσων είναι /36. Επομένως, σε 24 ρίψεις ενός ζευγαριού ζαριών, η πιθανότητα να πάρει κανείς τουλάχιστον ένα ζευγάρι άσσων είναι 24 φορές το /362/3. Με την παραπάνω επιχειρηματολογία, οι πιθανότητες για τα δύο αυτά τυχερά παιχνίδια ήταν ίδιες, δηλαδή 2/3. Η εμπειρία, όμως, είχε δείξει ότι το πρώτο ενδεχόμενο είναι περισσότερο πιθανό να εμφανισθεί από ότι το δεύτερο. Η αντίφαση αυτή έγινε γνωστή ως το παράδοξο του Chevaler De Méré, και οφειλόταν στην λανθασμένη χρήση της έννοιας των αμοιβαία ξένα μεταξύ τους ενδεχομένων. Ο De Méré ρώτησε τον φιλόσοφο Blase Pascal για το πρόβλημα αυτό και ο Pascal το έλυσε με την βοήθεια ενός φίλου του του Pere de Fermat. (Ο Fermat ήταν δικαστής και ταυτόχρονα μέλος του κοινοβουλίου που είναι γνωστός σήμερα για την έρευνα στα μαθηματικά που έκανε αργά το βράδυ μετά τις άλλες ασχολίες του). Ο Fermat αντελήφθη ότι ο De Méré προσέθετε πιθανότητες για ενδεχόμενα τα οποία δεν ήταν ξένα μεταξύ τους. Στην πραγματικότητα, εάν κανείς προχωρούσε την επιχειρηματολογία του De Méré λίγο περισσότερο, θα μπορούσε να καταλήξει στο 60

23 συμπέρασμα ότι η πιθανότητα να έχει κανείς ως αποτέλεσμα άσσο σε 6 ρίψεις ενός ζαριού είναι 6/6 ή, ισοδύναμα, 00%, κάτι που θα έπρεπε να είναι λάθος. Το ερώτημα που τίθεται είναι πώς να υπολογίσει κανείς σωστά τις πιθανότητες αυτές. Σε τέσσερις ρίψεις ενός ζαριού, υπάρχουν δυνατά αποτελέσματα. Σε 24 ρίψεις ενός ζεύγους ζαριών υπάρχουν, αποτελέσματα. Ο υπολογισμός όμως των ευνοϊκών ενδεχομένων σε κάθε μια από τις δύο περιπτώσεις είναι αρκετά δύσκολος. Ας δούμε όμως τον συλλογισμό του De Méré. Στο πρώτο από τα παιχνίδια, αν Α, Β, Γ και Δ είναι τα ενδεχόμενα άσσου στην πρώτη, δεύτερη, τρίτη και τέταρτη δοκιμή αντίστοιχα, μας ενδιαφέρει η P(A B Γ Δ), δηλαδή η πιθανότητα άσσου σε μια τουλάχιστον από τις τέσσερις δοκιμές. Ο De Méré, θεώρησε έμμεσα ότι τα ενδεχόμενα Α, Β, Γ, Δ είναι ξένα μεταξύ τους και κατέληξε ότι P(A B Γ Δ) P(Α) + Ρ(Β) + Ρ(Γ) + Ρ(Δ) /6 + /6 + /6 + /6 4/6 2/3 Με τον ίδιο τρόπο μπορεί κανείς να περιγράψει την επιχειρηματολογία του De Méré στο δεύτερο πρόβλημα. Ο τρόπος και οι σκέψεις που ο Pascal και ο Fermat χρησιμοποίησαν για να επιλύσουν σωστά το πρόβλημα δεν έχει καταγραφεί στην ιστορία. Ιστορικά στοιχεία όμως για την αλληλογραφία του Pascal και του Fermat μπορεί κανείς να βρει στο βιβλίο του Davd, F.N. Games, Gods and Gamblng. Grffn, 962. Ο Pascal και ο Fermat έλυσαν το πρόβλημα με ένα έμμεσο μαθηματικό συλλογισμό. Θα μπορούσε όμως κανείς να φαντασθεί τον διάλογο του Pascal και του Fermat ως εξής: Pascal. Ας κοιτάξουμε πρώτα το πρώτο παιχνίδι. 6

24 Fermat. Η πιθανότητα να κερδίσει κανείς είναι δύσκολο να υπολογισθεί, γι αυτό, ας δουλέψουμε με την πιθανότητα του αντίθετου ενδεχομένου, δηλαδή του ενδεχομένου να χάσει. Τότε, η πιθανότητα να κερδίσει είναι 00% - την πιθανότητα να χάσει. Pascal. Συμφωνώ. Ο παίκτης θα χάσει όταν σε καμιά από τις 4 ζαριές δεν έλθει άσσος. Πώς όμως υπολογίζουμε αυτήν την πιθανότητα; Fermat. Δεν είναι δύσκολο. Ας αρχίσουμε με το ρίξιμο ενός ζαριού. Ποιά είναι η πιθανότητα ότι στο πείραμα αυτό το αποτέλεσμα δεν θα είναι άσσος; Pascal. Θα πρέπει το αποτέλεσμα να είναι ή 2 ή 3 ή 4 ή 5 ή 6. Επομένως, η πιθανότητα είναι 5/6. Fermat. Ωραία. Και ποιά είναι η πιθανότητα ότι στις δύο πρώτες ζαριές το αποτέλεσμα δεν θα είναι άσσος; Pascal. Μπορούμε να χρησιμοποιήσουμε τον πολλαπλασιαστικό κανόνα. Η πιθανότητα ότι και στην πρώτη ζαριά και στην δεύτερη ζαριά δεν θα υπάρχει άσσος είναι 5/6 5/6 (5/6) 2. Αυτό, γιατί οι ζαριές είναι ανεξάρτητες μεταξύ τους, έτσι δεν είναι; Fermat. Τί θα γίνει με τρεις ζαριές; Pascal. Προφανώς, θα είναι 5/6 5/6 5/6 (5/6) 3. Fermat. Εντάξει. Τί γίνεται με τέσσερις ζαριές; Pascal. Θα πρέπει να είναι (5/6) 4. Fermat. Ναι. Και αυτό είναι περίπου ή 48,2%. Pascal. Επομένως, η πιθανότητα να χάσει κανείς αυτό το παιχνίδι είναι 48,2% και η πιθανότητα νίκης είναι 00% - πιθανότητα να χάσει κανείς 00% - 48,2% 5,8%. Fermat. Ωραία. Αυτό δίνει την λύση στο πρώτο παιχνίδι. Η πιθανότητα δηλαδή λύσης είναι λίγο περισσότερο από 50%. Ας δούμε τώρα το δεύτερο παιχνίδι. Pascal. Σε μια ζαριά με δύο ζάρια, υπάρχει /36 πιθανότητα άσσων και 35/36 πιθανότητα να μην έχουμε άσσους. Επομένως με, τον πολλαπλασιαστικό κανόνα, σε 24 ζαριές δύο ζαριών, η πιθανότητα να μην έχουμε άσσους θα πρέπει να είναι (35/36) 24 62

25 Fermat. Ωραία. Αυτό είναι 50.9% και αυτό αποτελεί την πιθανότητα να χάσει κανείς. Επομένως, πιθανότητα κέρδους 00% - πιθανότητα να χάσει κανείς 00% % 49.%. Pascal. Πράγματι και αυτό είναι λίγο λιγότερο από 50%. Γι αυτό, παρατηρούμε λιγότερες φορές νίκης στο δεύτερο παιχνίδι από ό,τι στο πρώτο. Χρειάζεται, όμως, να επαναλάβει κανείς πολλές φορές το παιχνίδι για να διαπιστώσει την διαφορά. Σημείωση : Η σωστή απάντηση με την χρήση του αξιώματος του Kolmogorov θα μπορούσε να βρεθεί αν ο De Méré είχε λάβει υπόψη του το γεγονός ότι τα ενδεχόμενα Α, Β, Γ, Δ δεν είναι ξένα μεταξύ τους. Επομένως, Ρ(Α Β Γ Δ) Ρ(Α) + Ρ(Β) + Ρ(Γ) + Ρ(Δ) - Ρ(ΑΒ) - Ρ(ΑΓ) - Ρ(ΑΔ) - Ρ(ΒΓ) - Ρ(ΒΔ) - P(ΓΔ) - Ρ(ΑΒΓ) - Ρ(ΑΒΔ) - Ρ(ΒΓΔ) - Ρ(ΑΒΓΔ) 4/6-6/36-2(/6) 3 - (/6) 4 2/3 - /6 - /08 - / Σημείωση 2: Από τον αριθμό των δυνατών ενδεχομένων που υπολογίσαμε προηγουμένως για τα δύο αυτά παιχνίδια, είναι φανερό ότι, παρότι θα μπορούσε κανείς να χρησιμοποιήσει τον κλασσικό ορισμό πιθανότητας του Pascal ως πηλίκου του αριθμού των ευνοϊκών διά του συνολικού αριθμού ενδεχομένων, είναι μάλλον εξαιρετικά δύσκολο να προσδιορισθεί ο αριθμός των ευνοϊκών ενδεχομένων. Σημείωση 3: Το παράδειγμα αυτό αποτελεί κλασσική περίπτωση χρησιμοποίησης μιας στρατηγικής υπολογισμού των πιθανοτήτων. Αν είναι δύσκολο να υπολογίσει κανείς την πιθανότητα ενός ενδεχομένου, βρίσκει την πιθανότητα του συμπληρωματικού του ενδεχομένου και στην συνέχεια την αφαιρεί από την μονάδα. 63

26 ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Οι δειγματικοί χώροι που συναντήσαμε μέχρι τώρα στα παραδείγματά μας μπορούν να καταταγούν σε δυο κατηγορίες: ) Ποιοτικοί ή περιγραφικοί 2) Ποσοτικοί ή αριθμητικοί. Παράδειγμα της πρώτης κατηγορίας είναι το φύλο ενός παιδιού (S{A,K}), ενώ της δεύτερης είναι ο αριθμός των Κ σε τρία στριψίματα ενός νομίσματος. Ο υπολογισμός πιθανοτήτων ενδεχομένων ή συνδυασμού ενδεχομένων είναι βέβαια ευκολότερος στην δεύτερη περίπτωση όπου χρησιμοποιούνται αριθμοί. Για τον ευκολότερο υπολογισμό πιθανοτήτων σε δειγματικό χώρο οποιασδήποτε μορφής θα ήταν επιθυμητό να ορισθεί ένας κανόνας (ή μια συνάρτηση) που να αντιστοιχεί ένα πραγματικό αριθμό k σε κάθε στοιχείο Α του δειγματικού χώρου S. Η συνάρτηση αυτή ονομάζεται τυχαία μεταβλητή (random varable). Η χρήση της τυχαίας μεταβλητής διευκολύνει επίσης την κατάσταση όταν ενδιαφερόμαστε να υπολογίσουμε πιθανότητες συνάρτησης ενδεχομένων. Ορισμός: Δοθέντος ενός δειγματικού χώρου S και ενός συνόλου Β υποσυνόλων του S, ορίζουμε ως τυχαία μεταβλητή (τ.μ.) (random varable) μια μονοσήμαντη συνάρτηση με πεδίο ορισμού το S και τιμές στην ευθεία των πραγματικών αριθμών R X : S R τέτοια ώστε το σύνολο X - (I) να είναι ένα ενδεχόμενο για κάθε διάστημα Ι R. Η τυχαία μεταβλητή δηλαδή δεν είναι τίποτα άλλο από μια πραγματική συνάρτηση που ορίζεται στα στοιχεία του δειγματικού χώρου. Είναι τυχαία με την έννοια ότι η τιμή της εξαρτάται από το τυχαίο αποτέλεσμα ενός πειράματος που καθορίζει ένα στοιχείο του δειγματικού χώρου (πεδίου ορισμού της τυχαίας μεταβλητής). Παράδειγμα: Έστω ότι στρίβουμε ένα αμερόληπτο νόμισμα δύο φορές και ενδιαφερόμαστε για τον αριθμό των Κ που θα εμφανισθούν. S {KK, KΓ, ΓK, ΓΓ} 64

27 Έστω Χ ο αριθμός των Κ που παρατηρήθηκαν. ΚΚ Χ(ΚΚ) 2 Χ: ΚΓ Χ(ΚΓ) ΓΚ Χ(ΓΚ) ΓΓ Χ(ΓΓ) 0 Το ενδεχόμενο Α {τουλάχιστο ένα Κ στις δύο δοκιμές) μπορεί να εκφρασθεί μέσω της τυχαίας μεταβλητής Χ σαν {Χ }. Επομένως P(A) P(X ). Οι πιθανότητες επάγονται στο πεδίο τιμών της τυχαίας μεταβλητής μέσω των πιθανοτήτων που έχουν ορισθεί στον δειγματικό χώρο. Στο παράδειγμά μας το πεδίο τιμών της Χ είναι το {0,,2} και οι πιθανότητες που αντιστοιχούν σε αυτές μέσω του S είναι /4, /2, και /4 αντίστοιχα. Είναι προφανές ότι σε ένα δειγματικό χώρο είναι δυνατό να ορισθούν ταυτόχρονα περισσότερες από μια τυχαίες μεταβλητές. Παράδειγμα: Έστω οτι παίρνουμε 3 χαρτιά από μια τράπουλα. S {(,2,3), (,2,4),...} (με όλους τους συνδυασμούς χαρτιών και χρωμάτων). Μπορούμε να ορίσουμε Χ αριθμός μαύρων χαρτιών Υ αριθμός σπαθιών Ζ αριθμός χαρτιών με αριθμό μεγαλύτερο του 5. κ.λ.π. Διακριτές Τυχαίες Μεταβλητές Ορισμόs: Μια τυχαία μεταβλητή Χ:S R λέγεται διακριτή (dscrete) (ή απαριθμητή ή ασυνεχής) αν ισχύει μία από τις παρακάτω συνθήκες: ) S είναι ένα πεπερασμένο σύνολο. 2) Χ(S) είναι ένα πεπερασμένο σύνολο (έστω και αν S δεν είναι πεπερασμένο) 3) X(S) είναι αριθμήσιμο σύνολο. 65

28 Παράδειγμα: Για κάθε ενδεχόμενο Α του S, μπορούμε να ορίσουμε μία τυχαία μεταβλητή Ι Α που λέγεται τυχαία μεταβλητή-δείκτης του Α ή τυχαία μεταβλητή του Bernoull για το Α ως εξής: αν x A Ι A ( x ) x S 0 αν x A Όταν το Ι A παίρνει την τιμή αυτό σημαίνει ότι το ενδεχόμενο Α έχει συμβεί, δηλαδή το πείραμα κατέληξε σε ένα στοιχειώδες ενδεχόμενο x A. Σημείωση: Αργότερα θα έχουμε την ευκαιρία να μιλήσουμε για συναρτήσεις τυχαίων μεταβλητών. Αν Χ:S R είναι μία τυχαία μεταβλητή και f:r R είναι μία πραγματική συνάρτηση ορισμενή στο σύνολο των πραγματικών αριθμών, μπορούμε να ορίσουμε μία τυχαία μεταβλητή ως εξής: Για κάθε x S έστω f(x)(x)f(x(x)). Δηλαδή, πρώτα εφαρμόζουμε την τυχαία μεταβλητή Χ στο σημείο x στη συνεχεία δε εφαρμόζουμε την συνάρτηση f στον αριθμό αυτό παίρνοντας τον πραγματικό αριθμό f(x(x)). Για παράδειγμα, αν f(x)x 2 μπορούμε να ορίσουμε την τυχαία μεταβλητή Χ 2 σαν Χ 2 (x)(x(x)) 2. ΚΑΤΑΝΟΜΗ ΠΙΘΑΝΟΤΗΤΑΣ Έστω {Xα} {x S : X(x) α} Ορισμόs: Έστω Χ μία διακριτή τυχαία μεταβλητή ορισμένη στο χώρο πιθανοτήτων S. Η συνάρτηση p x P(x) P X (x) P({Xx}) με πεδίο ορισμού τις τιμές της Χ και πεδίο τιμών τις πιθανότητες των τιμών αυτών λέγεται συνάρτηση πιθανότητας της Χ ή αλλιώς κατανομή πιθανότητας (probablty dstrbuton) της Χ. Η συνάρτηση πιθανότητας δίνει την πιθανότητα με την οποία η τυχαία μεταβλητή Χ παίρνει την τιμή x R. Από εδώ και στο εξής θα γράφουμε P(Xx) και θα εννοούμε P({Xx}). 66

29 Στο παράδειγμα όπου Χ είναι ο αριθμός των K που παρατηρήθηκαν όταν στρίβουμε ένα νόμισμα δυο φορές, έχουμε ότι η συνάρτηση πιθανότητας της Χ είναι /4 x 0 P X ( x) / 2 x /4 x 2 Απο τον παραπάνω ορισμό και τα αξιώματα των πιθανοτήτων, είναι φανερό ότι η συνάρτηση πιθανότητας P X (x) έχει τις εξής ιδιότητες: ) P X (x) 0, για κάθε x R 2) ΣP X (x) P όπου Α υποσύνολο του πεδίου τιμών της X. 3) P(X A) ( ) x A X x Οι ιδιότητες () και (2) δίνουν τις αναγκαίες και ικανές συνθήκες που πρέπει να πληροί μία συνάρτηση για να είναι συνάρτηση πιθανότητας. Πολλές φορές είναι χρήσιμο και σκόπιμο να έχουμε μία παραστατική μορφή της συνάρτησης πιθανότητας. Έτσι η γραφική παράσταση της συνάρτησης πιθανότητας του παραδείγματος είναι P x (x) /2 / X Παράδειγμα: Διαλέγουμε ένα δείγμα από 3 αντικείμενα από ένα κουτί που περιέχει 2 αντικείμενα 3 από τα οποία είναι ελαττωματικά. Έστω Χ η τυχαία μεταβλητή που αναφέρεται στον αριθμό των ελαττωματικών αντικειμένων στο δείγμα. Το Χ μπορεί να πάρει τις τιμές 0,,2, και 3 με πιθανότητες. 67

30 P ( X 0) P ( X ) P ( X 2) P ( X 3) ΣΥΝΕΧΕΙΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Ορισμός: Μια τυχαία μεταβλητή Χ λέγεται (απόλυτα) συνεχής (contnuous) αν υπάρχει μία μη αρνητική συνάρτηση f(x) που να ικανοποιεί την εξίσωση F(x) x f(t)dt για μια τυχαία τιμή του x, - < x < +. Η συνάρτηση f(x) λέγεται συνάρτηση πυκνότητας πιθανότητας (probablty densty functon). Προφανώς αν Χ είναι (απόλυτα) συνεχής, P(α<X<β) β α f(t)dt. Συνεχείς τυχαίες μεταβλητές συναντώνται συχνά, ειδικά σε πειράματα στα οποία παίρνονται μετρήσεις. Ας υποθέσουμε, για 68

31 παράδειγμα, ότι 200 άνθρωποι μετρούν το ίδιο αντικείμενο του οποίου το μήκος είναι περίπου 25 εκατοστά. Στις περιπτώσεις αυτές, συνήθως, η απάντηση στρογγυλεύεται σε κάποιο δεκαδικό ψηφίο. Στο παράδειγμά μας, αν οι μετρήσεις στρογγυλευθούν στο πλησιέστερο εκατοστό ο δειγματικός χώρος θα μπορούσε να είναι το πεπερασμένο σύνολο {22, 23, 24, 25, 26, 27, 28}. Αν οι μετρήσεις στρογγυλευθούν στο πλησιέστερο εκατοστό του εκατοστού ο δειγματικός χώρος θα μπορούσε να είναι πάλι ένα πεπερασμένο σύνολο της μορφής {22.00, 22.0, 22.02, , 28}. Από το άλλο μέρος, πριν την στρογγυλοποίηση, οποιαδήποτε τιμή στο διάστημα [27, 28] είναι δυνατόν να προκύψει ως αποτέλεσμα μιας μέτρησης. Επομένως το διάστημα [22, 28] θα μπορούσε να θεωρηθεί ως δειγματικός χώρος του πειράματος αυτού με την έννοια ότι κάθε ένα από τα άπειρα στοιχεία του συνόλου αυτού είναι πιθανό ενδεχόμενο του πειράματος. Είναι φυσικό ότι στην περίπτωση αυτή η P(Xα) όπου α X(S) είναι ίση με το μηδέν. Ιδιότητες της f(x): Από τον ορισμό της f(x) προκύπτουν εύκολα οι εξής ιδιότητες: ) f(x) 0 σχεδόν παντού 2) + f(x)dx. (Σχεδόν παντού σημαίνει για όλα τα σημεία του R εκτός από ένα αριθμήσιμο, το πολύ, πλήθος σημείων του R). ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ Ορισμός: Έστω Χ μία τυχαία μεταβλητή. Η συνάρτηση F:R R που ορίζεται ως F X (α) P(X α) P(s:X(s) α) α R λέγεται συνάρτηση κατανομής (probablty functon) ή αθροιστική συνάρτηση κατανομής της τυχαίας μεταβλητής Χ. Γνώση της F X (α) καθορίζει τις πιθανότητες όλων των γεγονότων στο R. 69

32 Σημείωση: Στη συνέχεια θα χρησιμοποιούμε το συμβολισμό F(α) (χωρίς δηλαδή τον δείκτη Χ) όταν αυτό δεν δημιουργεί ασάφεια. Παράδειγμα: Στο παράδειγμα όπου Χ είναι ο αριθμός των K που παρατηρήθηκαν όταν στρίβουμε ένα νόμισμα δυο φορές, έχουμε ότι η συνάρτηση κατανομής είναι 0 α < α < F ( α) 3 4 α < 2 2 α Ιδιότητες: ) Η F(α) είναι μη φθίνουσα συνάρτηση του α. (Αν δηλαδή α < α 2 F(α ) F(α 2 )). 2) H F(α) είναι συνεχής από τα δεξιά α R. (Δηλαδη lm F( α ) F( α )). α a+ 0 n n 3) Η μέγιστη τίμη της F(α) είναι το και η ελάχιστη το 0. lm F α και lm F α (Δηλαδή ( ) ( ) 0). a + a Αν η τυχαία μεταβλητή Χ είναι διακριτή τότε η συνάρτηση F( ) είναι βαθμωτή με F(α) - F(α-) P(Xα). Οι παρακάτω ιδιότητες της συνάρτησης F X ( ), όπου Χ διακριτή, είναι προφανείς. ) P(α < X b) F(b) - F(α) 2) P(α X b) F(b) - F(α-) 3) P(α < X < b) F(b-) - F(α) 4) P(α X < b) F(b-) - F(α-). 70

33 Γραφική Παράσταση της Συνάρτησης F( ) Για το παράδειγμα όπου Χ είναι ο αριθμός των K που παρατηρήθηκαν όταν στρίβουμε ένα νόμισμα δυο φορές, έχουμε: F(x) 3/4 /2 /4 0 2 x 7

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ 3ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 3ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ 1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι

Διαβάστε περισσότερα

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ Συχνότητα Σχετική συχνότητα Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται va φορές,τότε va ο αριθμός va λέγεται συχνότητα του ενδεχομένου

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ Αριθµητικός Μέσος: όπου : αριθµός παρατηρήσεων ιάµεσος: εάν άρτιος εάν περιττός M + + M + Παράδειγµα: ηλ.: Εάν :,,, M + + 5 + +, 5 Εάν :,, M + Επικρατούσα Τιµή:

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα.

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα. Η Διωνυμική Κατανομή Η Διωνυμική κατανομή συνδέεται με ένα πολύ απλό πείραμα τύχης. Ίσως το απλούστερο! Πρόκειται για τη δοκιμή Bernoulli, ένα πείραμα τύχης με μόνο δύο, αμοιβαίως αποκλειόμενα, δυνατά

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f = ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 16 (version 9-6-16) 1. A Να δώσετε τον ορισμό της παραγώγου μιας συνάρτησης σε ένα σημείο x του πεδίο ορισμού της. Απάντηση: Παράγωγος μιας συνάρτησης σε ένα σημείο x του πεδίο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ 1. Ο Γυμναστής ενός λυκείου προκειμένου να στελεχώσει την ομάδα μπάσκετ του λυκείου ψάχνει στην τύχη μεταξύ των μαθητών να βρει τρεις κοντούς (Κ) και τρεις ψηλούς (Ψ). Να

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016 Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 06 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου

Διαβάστε περισσότερα

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά Εισαγωγή Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά μοντέλα, είτε σε στοχαστικά ή αλλοιώς πιθανοτικά μοντέλα. προσδιοριστικά μοντέλα : επιτρέπουν προσδιορισμό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων . Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων Tα διάφορα επιστημονικά μοντέλα ή πειράματα ή γενικότερα τα φυσικά φαινόμενα μπορεί να θεωρηθεί ότι εντάσσονται σε δύο μεγάλες κατηγορίες: τα προσδιοριστικά

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. (α) Βρέστε την πιθανότητα κανείς από

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Έστω πρώτα μια συνάρτηση Ρ που πληροί τα αξιώματα (α), (β) και (γ) της ορισμού Ισχύει δηλαδή Ρ(ω j ) 0, για κάθε j = l, 2,...

Έστω πρώτα μια συνάρτηση Ρ που πληροί τα αξιώματα (α), (β) και (γ) της ορισμού Ισχύει δηλαδή Ρ(ω j ) 0, για κάθε j = l, 2,... ΠΑΡΑΔΕΙΓΜΑΤΑ ΧΩΡΩΝ ΠΙΘΑΝΟΤΗΤΩΝ Πεπερασμένος_δειγματοχώρος. Έστω ο πεπερασμένος δειγματοχώρος Ω ={ω,ω,...,ω n }. Η σ-άλγεβρα γεγονότων του Ω είναι η επίσης πεπερασμένη συλλογή των n υποσυνόλων του Ω. των

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση f () είναι παραγωγίσιμη στο R με f () Α Αν είναι οι τιμές μιας μεταβλητής Χ ενός δείγματος παρατηρήσεων μεγέθους ν ( ) να ορίσετε την

Διαβάστε περισσότερα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Πιθανότητες και βακτηριουρία πυελονεφρίτιδα Πιθανότητες και ο καρκίνος της μήτρας Ιατρική διάγνωση με υπολογιστές

Πιθανότητες και βακτηριουρία πυελονεφρίτιδα Πιθανότητες και ο καρκίνος της μήτρας Ιατρική διάγνωση με υπολογιστές ΠΙΘΑΝΟΤΗΤΕΣ Πιθανότητες και Στατιστική ειγματικός χώρος Ενδεχόμενα Ορισμοί και νόμοι των πιθανοτήτων εσμευμένη πιθανότητα Ολική πιθανότητα Κανόνας του Bayes Υποκειμενική πιθανότητα Πιθανότητες και βακτηριουρία

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 ιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 03 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολουποθέσεωνκαιτουοποίουτο αποτέλεσμα

Διαβάστε περισσότερα

17/10/2016. Στατιστική Ι. 3 η Διάλεξη

17/10/2016. Στατιστική Ι. 3 η Διάλεξη Στατιστική Ι 3 η Διάλεξη 1 2 Τυχαία μεταβλητή X στο δειγματικό χώρο Ω Μια πραγματική συνάρτηση που αντιστοιχίζει τα στοιχεία του δειγματικού χώρου Ω στο σύνολο των πραγματικών αριθμών τέτοια ώστε για κάθε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ Οµάδα η. Αν Ω={ω,ω,,ω 6 } είναι ο δ.χ ενός πειράµατος τύχης να βρείτε τις πιθανότητες Ρ(ω ),,Ρ(ω 6 ) αν είναι γνωστό ότι αυτές αποτελούν διαδοχικούς όρους αριθµητικής προόδου µε

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος ΠΙΘΑΝΟΤΗΤΕΣ.Ένα κουτί περιέχει τέσσερις λαχνούς αριθμημένους από το εώς το 4. Εκλέγουμε έναν λαχνό στην τύχη,σημειώνουμε το αποτέλεσμα και δεν ξανατοποθετούμε τον λαχνό στο κουτί. Επαναλαμβάνουμε το πείραμα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς. Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1. Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα

Διαβάστε περισσότερα

Διάλεξη 5: Τυχαία Μεταβλητή Κατανομές Πιθανότητας

Διάλεξη 5: Τυχαία Μεταβλητή Κατανομές Πιθανότητας Διάλεξη 5: ΑΣΚΗΣΕΙΣ 1. Έστω η ποιότητα ενός προϊόντος που παίρνουμε από ένα σύνολο προϊόντων με απλή τυχαία δειγματοληψία. Ανάλογα με το αν το προϊόν είναι ελαττωματικό, καλο ή άριστο, η παίρνει τις τιμές,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

10/10/2016. Στατιστική Ι. 2 η Διάλεξη

10/10/2016. Στατιστική Ι. 2 η Διάλεξη Στατιστική Ι 2 η Διάλεξη 1 2 Δεσμευμένη πιθανότητα του Α δοθέντος του Β (1) Αν Α και Β δύο ενδεχόμενα του δειγματικού χώρου Ω ενός πειράματος τύχης και P(Β)>0, τότε η δεσμευμένη πιθανότητα του Α δοθέντος

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ισχύει: Ρ(Α )=-Ρ(Α) Μονάδες 7 Α. Να ορίσετε το μέτρο διασποράς εύρος ή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Βασικά στοιχεία της θεωρίας πιθανοτήτων

Βασικά στοιχεία της θεωρίας πιθανοτήτων Η έννοια του Πειράµατος Τύχης. 9 3 Το σύνολο των πιθανών εκβάσεων ενός πειράµατος τύχης καλείται δειγµατοχώρος ήδειγµατικόςχώρος (sample space)καισυµβολίζεταιµεωήµε S.Έναστοιχείοω ή s του δειγµατικού χώρου

Διαβάστε περισσότερα

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 18 MAΪΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ .5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων

Διαβάστε περισσότερα

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ ΜΕΡΟΣ Α 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ 69 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ Πείραμα τύχης- Δειγματικός χώρος Ένα πείραμα το οποίο όσες φορές και αν το επαναλάβουμε, δεν μπορούμε να προβλέψουμε το αποτέλεσμα

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

Κεφάλαιο 4. Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Έννοια Τυχαίας Μεταβλητής. Συναρτήσεις Μάζας ή Πυκνότητας Πιθανότητας

Κεφάλαιο 4. Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Έννοια Τυχαίας Μεταβλητής. Συναρτήσεις Μάζας ή Πυκνότητας Πιθανότητας Κεφάλαιο 4 Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας Έννοια Τυχαίας Μεταβλητής Συναρτήσεις Μάζας ή Πυκνότητας Πιθανότητας Αθροιστική Συνάρτηση Πιθανότητας Μικτή Τυχαία Μεταβλητή Περίληψη Κεφαλαίου

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 7 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος»

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος» ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν είναι δειγματικός χώρος ενός πειράματος τύχης, τότε Ρ () = 1. 2. * Αν Α είναι ενδεχόμενο ενός πειράματος τύχης τότε, 0 Ρ (Α) 1. 3. * Για το αδύνατο

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Δείξτε ότι αν πιθανότητα Ρ(Α/Β) είναι μεγαλύτερη της πιθανότητας Ρ(Α), τότε πιθανότητα Ρ(Β/Α) είναι μεγαλύτερη της πιθανότητας Ρ(Β);

Δείξτε ότι αν πιθανότητα Ρ(Α/Β) είναι μεγαλύτερη της πιθανότητας Ρ(Α), τότε πιθανότητα Ρ(Β/Α) είναι μεγαλύτερη της πιθανότητας Ρ(Β); Μια παρέα αποτελούμενη από 10 άντρες και 5 γυναίκες, με τυχαίο τρόπο χωρίζονται σε ομάδες 3 ατόμων. Βρείτε την πιθανότητα ότι σε κάθε ομάδα θα υπάρχει ένας τουλάχιστον άνδρας. Απάντηση: Έστω το γεγονός

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,... Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 96) Άσκηση ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Έστω οι παρατηρήσεις δυο δειγμάτων αντίστοιχα των μεταβλητών Χ και Ψ Δίνεται ότι η μέση τιμή

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17 ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε ΠΙΘΑΝΟΤΗΤΕΣ Π ε ι ρ α μ α τ υ χ η ς - Δ ε ι γ μ α τ ι κ ο ς χ ω ρ ο ς. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε το αποτελεσμα,.

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ [Δεν είναι σκόπιμο να αποκαλύψεις στο παιδί σου ότι οι μεγάλοι άντρες δεν είχαν ιδέα από άλγεβρα] ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ Μ. ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) o ΘΕΜΑ A. Aν n

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις 1 ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ 1 Συνδυαστική ανάλυση Η συνδυαστική ανάλυση είναι οι διάφοροι μέθοδοι και τύποι που χρησιμοποιούνται στη λύση προβλημάτων εκτίμησης του πλήθους των στοιχείων ενός πεπερασμένου συνόλου

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q 7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την Η ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Ενδιαφερόμαστε για την απλούστερη μορφή πειραματικής διαδικασίας, όπου η έκβαση των αποτελεσμάτων χαρακτηρίζεται μόνο ως "επιτυχής" ή "ανεπιτυχής" (δοκιμές Beroulli). Ορίζουμε λοιπόν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΟΜΙΚΩΝ ΤΗΣ ΣΧΟΛΗΣ Σ.Τ.Ε.Φ Τ.Ε.Ι. ΗΡΑΚΛΕΙΟΥ ΠΑΝΑΓΙΩΤΗΣ ΠΑΠΑΔΑΚΗΣ ΗΡΑΚΛΕΙΟ 008 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ I. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ Τµ. Επιστήµης των Υλικών εσµευµένες Πιθανότητες Εστω (Ω, A, P) ένας πιθανοθεωρητικός χώρος. Αξιωµατικός Ορισµός της Πιθανότητας (Kolmogorov) Θεωρούµε (Ω, A) έναν µετρήσιµο χώρο. Ενα πιθανοθεωρητικό µέτρο

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου Άλγεβρα Α Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Άλγεβρα Α Λυκείου Οι πράξεις των πραγματικών αριθμών και οι ιδιότητες τους Αν οι αριθμοί α,β είναι αντίστροφοι, να αποδείξετε ότι: 7 4 : 8 0 7 Να

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων ΑΓΡΙΝΙΟ ΣΤΑΤΙΣΤΙΚΗ Φραγκίσκος Κουτελιέρης Αναπληρωτής

Διαβάστε περισσότερα

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ . Ασκήσεις σχ. βιβλίου σελίδας 54 56 Α ΟΜΑ ΑΣ. Από µία τράπουλα µε 5 φύλλα παίρνουµε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχοµένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν είναι 5 i) εχόµαστε

Διαβάστε περισσότερα

Στην Ξένια και στην Μαίρη

Στην Ξένια και στην Μαίρη Στην Ξένια και στην Μαίρη Περιεχόμενα 3 ΠΡΟΛΟΓΟΣ Πολλές φορές θέλουμε να μελετήσουμε φαινόμενα ή συστήματα τα οποία εξελλίσονται, κυρίως αναφορικά με τον χρόνο, και των οποίων η μελλοντική συμπεριφορά

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 1: Στοιχεία Πιθανοθεωρίας Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

Παρατηρήσεις και ενδεχόμενα. Πληθυσμοί και δείγματα

Παρατηρήσεις και ενδεχόμενα. Πληθυσμοί και δείγματα Ενότητα 0 Εισαγωγή Βασικές Έννοιες. Παρατηρήσεις και ενδεχόμενα. Πληθυσμοί και δείγματα Τα δεδομένα με τα οποία ασχολείται η Στατιστική προέρχονται από παρατηρήσεις και πειράματα που εμπίπτουν σε οποιονδήποτε

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα