ΣΧΕΣΕΙΣ ΕΝΔΕΧΟΜΕΝΩΝ - ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ - ΚΑΤΑΝΟΜΗ ΠΙΘΑΝΟΤΗΤΑΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΧΕΣΕΙΣ ΕΝΔΕΧΟΜΕΝΩΝ - ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ - ΚΑΤΑΝΟΜΗ ΠΙΘΑΝΟΤΗΤΑΣ"

Transcript

1 ΚΕΦΑΛΑΙΟ 4 ΣΧΕΣΕΙΣ ΕΝΔΕΧΟΜΕΝΩΝ - ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ - ΚΑΤΑΝΟΜΗ ΠΙΘΑΝΟΤΗΤΑΣ ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Σε πολλά προβλήματα, το γεγονός ότι κάποιο ενδεχόμενο Β έχει συμβεί είναι πολύ πιθανό να επηρεάσει την πιθανότητα να συμβεί κάποιο άλλο γεγονός Α. Αν για παράδειγμα, ρίξουμε δύο ζάρια και ορίσουμε τα ενδεχόμενα Α{άθροισμα 5} Β{ένα από τα δύο είναι 3} τότε P(A)4/36. Εάν όμως ξέρουμε ήδη ότι το ένα ζάρι είναι 3 η πιθανότητα του A γίνεται 2/. Αυτό συμβαίνει γιατί στην περίπτωση αυτή ο αρχικός δειγματικός χώρος των 36 σημείων ελαττώνεται στο δειγματικό χώρο {(3,),(3,2),(3,4),(3,5),(3,6),(,3),(2,3),(4,3),(5,3),(6,3)} Όταν οι δειγματικοί χώροι έχουν ισοπίθανα απλά ενδεχόμενα, όπως το προηγούμενο παράδειγμα, ο καθορισμός πιθανοτήτων ενδεχομένων δοθέντος ότι κάποιο άλλο ενδεχόμενο έχει συμβεί είναι εύκολος. Εάν όμως τα απλά ενδεχόμενα δεν είναι ισοπίθανα ο καθορισμός τέτοιων πιθανοτήτων δεν είναι πάντα εύκολος. Ο ορισμός που ακολουθεί θα διευκολύνει τον υπολογισμό πιθανοτήτων της μορφής αυτής. Ορισμός: Έστω S ο δειγματικός χώρος ενός πειράματος και Β ένα ενδεχόμενο με P(B)>0. Η πιθανότητα να συμβεί ένα ενδεχόμενο Α δοθέντος ότι το Β έχει ήδη συμβεί λέγεται δεσμευμένη πιθανότητα (condotnal probablty) του Α δοθέντος του Β, συμβολίζεται με P(A B) και ορίζεται ως εξής: P(A B) P(A B) P(B) Χρησιμοποιώντας τον ορισμό στο παράδειγμα μας έχουμε P(A B) 2/36 2 P(A B) P(B) /36 39

2 Ο ορισμός της δεσμευμένης πιθανότητας είναι χρήσιμος και για τον υπολογισμό πιθανοτήτων τομής ενδεχομένων. Πολλαπλασιαστικός κανόνας P(A B) P(A B)P(B) (P(B) > 0) ή, εναλλακτικά P(A B) P(B A)P(A) (P(A) > 0). Ο πολλαπλασιαστικός κανόνας μπορεί να επεκταθεί σε n ενδεχόμενα. Θεώρημα: Θεωρούμε τα ενδεχόμενα A, A 2,..., A n με την ιδιότητα n P A > 0. Τότε P (A A 2... A n ) P(Α Α 2 Α n ) n P(A )P(A 2 A )P(A 3 A A 2 )... P A n A Απόδειξη: Το θεώρημα ισχύει για n 2. Έστω ότι ισχύει για n k. Θα αποδείξουμε ότι ισχύει και για n k +. Έχουμε k k k P [ A A2... Ak+ ] P A A k+ P A k + A P A k k P A k + A xp A k A x...x P[ A 2 A 2 ] P(A ) Από την μορφή του πολλαπλασιαστικού τύπου, είναι φανερό ότι κατά κάποιο τρόπο θεωρούμε σαν δεδομένο ότι πρώτα συμβαίνει το A και κατόπιν κατά σειρά τα Α 2, Α 3,, Α n. Ο ορισμός της δεσμευμένης πιθανότητας ικανοποιεί τα τρία αξιώματα του Kolmogorov, όπως φαίνεται από το θεώρημα που ακολουθεί. Θεώρημα: Αν P(B) >0, τότε ) P(A B) 0 2) P(B B) 3) Αν τα ενδεχόμενα Α,,2,... είναι αμοιβαία ξένα μεταξύ τους, τότε 40

3 P A Απόδειξη: P(A B) ) P(A/B) 0 P(B) P(B) 2) P(B/B) P(B) 3) B P ( A B) P A B P ( A B) P A B P(B) P(B) P(A B) P(A P(B) Παράδειγμα: Σύνθετα ανταλλακτικά συναρμολογούνται σε μια βιομηχανία η οποία χρησιμοποιεί δύο διαφορετικά συστήματα συναρμολόγησης Α και Α. Το σύστημα Α χρησιμοποιεί παλαιότερα μηχανήματα από το σύστημα Α με αποτέλεσμα να είναι πιο αργό και μικρότερης εμπιστοσύνης. Ας υποθέσουμε ότι κάποια μέρα το σύστημα Α συναρμολόγησε 8 ανταλλακτικά από τα οποία 2 είναι ελαττωματικά (E) και 6 μη ελαττωματικά (E ), ενώ το Α συναρμολόγησε ελαττωματικό και 9 μη ελαττωματικά. /B) Δηλαδή, ισχύει ο εξής συνοπτικός πίνακας: Ε Ε Α Α Χωρίς να έχει τις παραπάνω πληροφορίες περί ελαττωματικών ένας διευθυντής διαλέγει στην τύχη από 8 ανταλλακτικά για επίδειξη. Τότε P(το ανταλλακτικό προέρχεται από το σύστημα 4

4 A)8/ Εάν όμως το ανταλλακτικό βρεθεί να είναι ελαττωματικό P(A E)2/3 ή ισοδύναμα P(AE) 2/8 P(A E) 2/3 P(E) 3/8 Παράδειγμα: Μια δέσμη αποτελείται από 2 αντικείμενα 4 από τα οποία είναι ελαττωματικά. Διαλέγουμε στην τύχη 3 αντικείμενα από την δέσμη, χωρίς επανάθεση και θέλουμε να βρούμε την πιθανότητα να είναι και τα τρία ελαττωματικά. Λύση: Έστω Α {το αντικείμενο είναι ελαττωματικό},,2,3. Μας ενδιαφέρει η P(A A 2 A 3 ). Είναι P(A A 2 A 3 ) P(A ) P(A 2 A ) P(A 3 A A 2 ) (4/2) (3/) (2/0) /55 Ορισμός: Μια διαμέριση ενός συνόλου S είναι μια πεπερασμένη συλλογή A, A 2,..., A n από υποσύνολα του S που ικανοποιούν τις ακόλουθες δύο συνθήκες: ) S A A 2... A n 2) A A j,,j,2,...,n j Θεώρημα Ολικής Πιθανότητας (theorem of total probablty): Έστω ότι Α, Α 2,..., A n είναι μια διαμέριση του δειγματικού χώρου S τέτοια ώστε P(A ) 0,,2,...,n. Τότε για κάθε ενδεχόμενο Ε έχουμε P(E) n P(A (από το πολλαπλασιαστικό θεώρημα). )P(E A ) Το θεώρημα ολικής πιθανότητας χρησιμεύει στον υπολογισμό πιθανοτήτων ενδεχομένων. Όπως είναι προφανές από το θεώρημα, η πιθανότητα ενός ενδεχομένου μπορεί να υπολογισθεί μέσω των δεσμευμένων πιθανοτήτων του ενδεχομένου σε σχέση με τα στοιχεία 42

5 κάποιας διαμέρισης θεωρώντας τον σταθμικό μέσο αυτών των πιθανοτήτων με βάση τις πιθανότητες των στοιχείων της διαμέρισης. Α 5 L Α 4 Α3 P(L) P(L A )P(A ) Α Α 2 Παράδειγμα: Τρία κουτιά περιέχουν στοιχεία μερικά από τα οποία είναι ελαττωματικά. Η αναλογία φαίνεται στον παρακάτω πίνακα. κουτί κουτί 2 κουτί 3 Αριθμός στοιχείων Αριθμός ελαττωματικών 4 3 Διαλέγουμε ένα κουτί στην τύχη και στην συνέχεια διαλέγουμε ένα στοιχείο στην τύχη από το κουτί αυτό. Να βρεθεί η πιθανότητα το στοιχείο να είναι ελαττωματικό. Λύση: Έστω Α {το στοιχείο προέρχεται από το κουτί },2,3. E {το στοιχείο είναι ελαττωματικό} Από το θεώρημα ολικής πιθανότητα έχουμε P(E) P(E A )P(A ) + P(E A 2 )P(A 2 ) + P(E A 3 )P(A 3 ) (4/0)(/3) + (/6)(/3) + (3/8)(/3) 3/360 Μια άλλη εφαρμογή της δεσμευμένης πιθανότητας είναι το θεώρημα του Bayes (Άγγλος κληρικός του 8ου αιώνα). Όπως θα δούμε στην συνέχεια το θεώρημα του Bayes είναι το αρχικό σημείο μιας ολόκληρης στατιστικής φιλοσοφίας γνωστής ως Μπεϋζιανή Στατιστική (Bayesan Statstcs). 43

6 Θεώρημα: Έστω Α, A 2,..., A n μια διαμέριση του δειγματικού χώρου S με P(A )>0 για κάθε,2,...,n. Τότε, για κάθε ενδεχόμενο Ε με P(E) >0 έχουμε ότι P(E A k )P(A k ) P(A k E) n P(E A )P(A ) ή ισοδύναμα P(E A k )P(A k ) P(A k E) P(E) Απόδειξη: E(A E) (A 2 E)... (A n E). Προφανώς Α Ε, Α 2 Ε,... A n E είναι μια διαμέριση του Ε. Επομένως, P(A k E) P(A k )P(E A k ) P(A k E) n P(E) P(A E)P(E) Σημείωση: Το νόημα του παραπάνω θεωρήματος ίσως να προκαλεί κάποια σύγχυση. Στα παραδείγματα που έχουμε συναντήσει μέχρι τώρα οι πιθανότητες P(A ) των στοιχείων A της διαμέρισης ήταν γνωστές και μας ενδιέφεραν οι δεσμευμένες πιθανότητες σε σχέση με τα στοιχεία της διαμέρισης. Υπάρχουν όμως προβλήματα όταν είναι άγνωστες οι πιθανότητες των στοιχείων της διαμέρισης και ο σκοπός του πειράματος είναι να προσεγγίσουμε, ή να βρούμε, τις ακριβείς τιμές των πιθανοτήτων αυτών. Πριν να γίνει το πείραμα είναι δυνατόν να έχουμε κάποια υποκειμενική αντίληψη, η εκτίμηση, για τις πιθανότητες P(A k ) (εκ των προτέρων ή a-pror πιθανότητες). Αφού κάνουμε το πείραμα μια ή περισσότερες φορές και παρατηρήσουμε τα αποτελέσματα του πειράματος, ίσως αποφασίσουμε να αναθεωρήσουμε τις απόψεις μας για τις πιθανότητες αυτές. Στην περίπτωση αυτή κατασκευάζουμε (μέσω του θεωρήματος του Bayes) τις εκ των υστέρων (α-posteror) πιθανότητες. Παράδειγμα: Στην αρχή του έτους, διατυπώθηκαν τρεις οικονομικές θεωρίες για την πιθανή εξέλιξη της Ελληνικής Οικονομίας. Όταν 44

7 διατυπώθηκαν και οι τρεις θεωρίες φαίνονταν ισοπίθανες. Στο τέλος του έτους εξετάσθηκε η πραγματική κατάσταση της οικονομίας με αναφορά στις τρεις θεωρίες. Η ανάλυση κατέληξε στο συμπέρασμα ότι αν η πρώτη θεωρία ήταν αληθινή, η οικονομία θα είχε πιθανότητα 0.6 να καταλήξει στην παρούσα κατάσταση. Οι αντίστοιχες πιθανότητες για την δεύτερη και την τρίτη πρόβλεψη είναι 0.4 και 0.2. Να υπολογισθεί η πιθανότητα με την οποία η παρούσα κατάσταση της οικονομίας μπορεί να θεωρηθεί αποτέλεσμα της θεωρίας,,2,3. Λύση: Έστω Α {η θεωρία είναι σωστή},,2,3 Έχουμε P(A ) P(A 2 ) P(A 3 ) /3 Έστω Ε {η οικονομία βρίσκεται στην παρούσα κατάσταση} Τότε με βάση το θεώρημα του Bayes έχουμε P(A E) P(E A )P(A P(E A ) + P(E A 2 )P(A )P(A 2 ) ) + P(E A 3 )P(A 3 ) (/3)(6/0 (/3)(6/0 ) + (/3)(4/0 ) ) + (/3)(2/0 ) Με όμοιο τρόπο, βρίσκουμε P(A 2 E) (/ 3)(4 /0) 4 /0 3 P(A 3 E) (/ 3)(2 /0) 4 /0 Παράδειγμα. (Παράδοξο του Russel): Έχουμε τρία όμοια πορτοφόλια καθένα από τα οποία περιέχει 2 νομίσματα. Το ένα περιέχει δύο τάλληρα, το άλλο δύο δεκάρικα και το τρίτο ένα τάλληρο και ένα δεκάρικο. Διαλέγουμε ένα πορτοφόλι στην τύχη και βγάζουμε το ένα από τα δύο νομίσματα που βρίσκεται να είναι 45 6

8 τάλληρο. Να βρεθεί η πιθανότητα το άλλο νόμισμα στο πορτοφόλι που διαλέξαμε να είναι επίσης τάλληρο. (Δηλαδή η πιθανότητα να έχουμε διαλέξει το πρώτο πορτοφόλι). Λύση: Έστω Ε{το νόμισμα που διαλέξαμε ήταν τάλληρο} και έστω Α {το νόμισμα το πήραμε από το πορτοφόλι},,2,3. Τότε P(E A)P(A) P(A E) P(E A )P(A ) + P(E A )P(A ) + P(E A )P(A ) (/3) ( /3) + (0 /3) + (/2 /3) 2 3 Σημείωση: Με μια επιπόλαιη ματιά ίσως κάποιος παρασυρθεί να απαντήσει ότι αφού το νόμισμα ήταν τάλληρο θα πρέπει να προερχόταν ή από το πρώτο ή από το τρίτο πορτοφόλι και επομένως η πιθανότητα να ήταν από το πρώτο είναι /2. Η λογική εξήγηση του γεγονότος ότι η σωστή απάντηση είναι 2/3 και όχι /2 βρίσκεται στο ότι 2 από τα 3 τάλληρα που έχουν τα τρία πορτοφόλια βρίσκονταν στο πρώτο πορτοφόλι. Σχηματικά το πρόβλημα μπορεί να παρουσιασθεί ως εξής: Τ /3 πορτοφόλι 0 Δ 0 Τ /3 πορτοφόλι 2 Δ /2 Τ /3 πορτοφόλι 3 /2 Δ Παράδειγμα: Ένα άγνωστο άτομο με συγκεκριμένα χαρακτηριστικά (χρώμα μαλλιών, ομάδα αίματος κ.λ.π.) διέπραξε ένα αδίκημα. Είναι γνωστό ότι η πιθανότητα να έχει κάποιο άτομο στον πληθυσμό αυτά τα χαρακτηριστικά είναι p. Ένας ύποπτος έχει συλληφθεί από την αστυνομία και βρέθηκε να έχει όλα τα παραπάνω χαρακτηριστικά. 46

9 Παρ' ότι η αστυνομία δεν έχει αποδείξεις για την ενοχή του, το γεγονός ότι έχει όλα τα χαρακτηριστικά του δράστη αυξάνει την πιθανότητα να είναι ένοχος. Υποθέτουμε ότι πριν η αστυνομία διαπιστώσει ότι ο ύποπτος είχε τα χαρακτηριστικά του δράστη, η πιθανότητα ότι ο ύποπτος ήταν και ο δράστης ήταν (0.5). Χρησιμοποιώντας την πρόσθετη πληροφορία ότι ο ύποπτος έχει όλα τα χαρακτηριστικά του δράστη μπορούμε με το θεώρημα του Bayes, να αναθεωρήσουμε την αρχική μας πιθανότητα ότι ο ύποπτος είναι ένοχος ως εξής: Έστω Ε το ενδεχόμενο ένοχος, Α το ενδεχόμενο αθώος και C το ενδεχόμενο ότι κάποιος έχει τα χαρακτηριστικά του δράστη. Ξέρουμε ότι P(C E) και υποθέσαμε ότι P(C)p. Επομένως P(E C) P(C E)P(E) P(C) (/2) p 2p > 2 Σημείωση: Ένας από τους τρόπους χρησιμοποίησης του θεωρήματος του Bayes που προκαλεί πολλές αντιθέσεις είναι στην περίπτωση που προσπαθεί κανείς να υποστηρίξει μια σχέση αιτίου-αιτιατού με βάση το παραπάνω θεώρημα και να καθορίσει την αιτία από το αποτέλεσμα. Στην ιατρική διάγνωση για παράδειγμα, κάποιο αποτέλεσμα Ε (ορισμένα συμπτώματα) παρατηρούνται σ έναν ασθενή. Ο γιατρός πρέπει να καθορίσει την αιτία Α που προκάλεσε τα συμπτώματα αυτά. Συνήθως, ο γιατρός έχει δεδομένα (πληροφορίες) για την πιθανότητα P(E A) δηλαδή πόσο πιθανά είναι τα συγκεκριμένα συμπτώματα δεδομένου ότι ο ασθενής έχει μια συγκεκριμένη ασθένεια. Αυτό που ο γιατρός θέλει είναι η πιθανότητα P(A E), δηλαδή η πιθανότητα ότι ο ασθενής έχει την συγκεκριμένη ασθένεια Α που προκαλεί τα συμπτώματα Ε. Παράδειγμα: Ένα παιδί με εξανθήματα και πυρετό επισκέπτεται τον γιατρό. Ο γιατρός θεωρεί σαν πιθανές αιτίες των συμπτωμάτων αυτών (Σ) την ανεμοβλογιά (A) που έχει επιδημία την εποχή αυτή, την οστρακιά (Π) και ίσως κάποια τρίτη άγνωστη αρρώστεια (Β). Έστω ότι τα παραπάνω συμπτώματα εμφανίζονται πάντα σε παιδιά που έχουν προσβληθεί από οστρακιά, σχεδόν πάντα (85% των 47

10 περιπτώσεων) σε παιδιά που υποφέρουν από ανεμοβλογιά και μόνο στο 33% των παιδιών που υποφέρουν από κάποια άλλη ασθένεια. Δηλαδή P(Σ A)0.85, P(Σ Π), P(Σ B)0.33 Ο γιατρός γνωρίζει ότι οι συχνότητες των τριών παραπάνω ασθενειών την εποχή αυτή είναι: P(A)0.5 P(Π)0.005 και P(B) Με βάση τα παραπάνω στοιχεία οι πιθανότητες να έχει το παιδί τις τρεις παραπάνω ασθένειες υπολογίζονται ως εξής: P(A Σ) P(Σ A)P(A) P(Σ A)P(A) + P(Σ Π)P(Π) + P(Σ Β)P(Β) (0.85)(0.50) (0.85)(0.50) + ()(0.005) + (0.33)(0.075) 0.8 Με όμοιο τρόπο, βρίσκουμε ότι και ()(0.005) P(Π Σ) (0.33)(0.075) P(Β Σ) Σημείωση: Είναι χρήσιμο να παρατηρήσει κανείς ότι τα ενδεχόμενα Α, Π και Β δεν αποτελούν διαμέριση του δειγματικού χώρου. Πράγματι P(A)+P(Π)+P(B)0.23 και όχι. Αυτό που έχει συμβεί είναι ότι αγνοήσαμε το ενδεχόμενο Y (το παιδί είναι υγιές) που έχει πιθανότητα Ρ(Y)0.77. Αυτό όμως δεν επηρεάζει τους υπολογισμούς μας μια και μπορούμε να υποθέσουμε ότι Ρ(Σ Y)0. ΑΝΕΞΑΡΤΗΤΑ ΚΑΙ ΑΣΥΜΒΑΤΑ ΕΝΔΕΧΟΜΕΝΑ Ο ορισμός της δεσμευμένης πιθανότητας μας επιτρέπει να αναθεωρήσουμε την πιθανότητα P(A) ενός ενδεχομένου Α που αρχικά έχουμε δώσει στο Α όταν μας δοθεί η πληροφορία ότι κάποιο άλλο ενδεχόμενο Β έχει συμβεί. Η νέα πιθανότητα είναι η Ρ(Α Β). 48

11 Συμβαίνει πολλές φορές να έχουμε Ρ(Α Β) Ρ(Α), γεγονός που σημαίνει ότι η πληροφορία ότι το Β έχει συμβεί έχει σαν αποτέλεσμα να μεταβληθεί η πιθανότητα να συμβεί το Α. Σε άλλες όμως περιπτώσεις αυτό δεν συμβαίνει. Για τις τελευταίες αυτές περιπτώσεις δίνουμε τον εξής ορισμό. Ορισμός: Τα ενδεχόμενα Α και Β λέγονται ανεξάρτητα (ndependent) (ή ακριβέστερα στοχαστικά ανεξάρτητα ή στατιστικά ανεξάρτητα ή ανεξάρτητα κατά πιθανότητα), αν P(A B) P(A) P(B) Σε μερικές περιπτώσεις, χρησιμοποιείται η ορολογία Α ανεξάρτητο του Β αν P(A B)P(A). Ομοίως Β ανεξάρτητο του Α αν P(B A)P(B). Στην ορολογία αυτή υποτίθεται ότι P(B)>0 στην πρώτη περίπτωση και P(A)>0 στην δεύτερη περίπτωση. Είναι προφανές (λόγω της πολλαπλασιαστικής αρχής) ότι αν το Α είναι ανεξάρτητο του Β τότε και το Β είναι ανεξάρτητο του Α και αντίστροφα (οπότε τα Α και Β είναι ανεξάρτητα) με την προϋπόθεση ότι P(A)>0 και P(B)>0. Με τον ορισμό της ανεξαρτησίας όμως που δώσαμε οι συνθήκες P(A)>0 και P(B)>0 δεν είναι απαραίτητες. Σημείωση: Ο ορισμός της ανεξαρτησίας είναι ισοδύναμος με το ότι τα ενδεχόμενα Α και Β είναι ανεξάρτητα αν το γεγονός ότι το ένα έχει συμβεί δεν επηρεάζει την πιθανότητα να συμβεί το άλλο. Σημείωση: Από τον ορισμό, προκύπτει ότι κάθε γεγονός Α είναι ανεξάρτητο από το αδύνατο γεγονός και από το βέβαιο γεγονός S. Παράδειγμα: Έστω ότι βγάζουμε ένα χαρτί από μια τράπουλα και έστω Α {το χαρτί είναι άσσος} Β {το χαρτί είναι σπαθί} Έχουμε P(A) 4/52 /3, P(B) 3/52 /4 Εξ άλλου P(A B) /52 Επομένως Α και Β είναι ανεξάρτητα. 49

12 Παράδειγμα: Ένα σύστημα αποτελείται από 4 εξαρτήματα όπως δείχνει το σχήμα Το σύστημα λειτουργεί αν ή το υποσύστημα -2 λειτουργεί ή το υποσύστημα 3-4 λειτουργεί, (μια και τα δύο συστήματα συνδέονται παράλληλα). Προφανώς ένα υποσύστημα δουλεύει αν και τα δύο εξαρτήματά του δουλεύουν (μια και τα δύο εξαρτήματα σε κάθε υποσύστημα συνδέονται στην σειρά). Κάθε εξάρτημα δουλεύει ή χαλάει ανεξάρτητα από τα άλλα και κάθε ένα δουλεύει με πιθανότητα 0.9. Να βρεθεί η πιθανότητα να λειτουργεί ολόκληρο το σύστημα. (Η πιθανότητα αυτή ονομάζεται συντελεστής αξιοπιστίας του συστήματος (system relablty coeffcent)). Λύση: Έστω Α (,2,3,4) το ενδεχόμενο ότι το εξάρτημα δουλεύει. Τα Α είναι αμοιβαία ανεξάρτητα. Το ενδεχόμενο ότι το -2 υποσύστημα δουλεύει είναι το Α A 2. Ομοίως Α 3 Α 4 είναι το ενδεχόμενο ότι το υποσύστημα 3-4 δουλεύει. Η πιθανότητα που ζητάμε είναι P[(A A 2 ) (A 3 A 4 )] P(A A 2 )+P(A 3 A 4 )-P[(A A 2 ) (A 3 A 4 )] P(A ) P(A 2 ) + P(A 3 ) P(A 4 ) - P(A ) P(A 2 ) P(A 3 ) P(A 4 ) (0.9) (0.9) + (0.9) (0.9) - (0.9) Παράδειγμα (συνέχεια): Έστω x P(A ),,2,3,4. Ποιά είναι η τιμή του x που θα δώσει συντελεστή αξιοπιστίας του συστήματος 0.99; Λύση: Θέλουμε P (το σύστημα λειτουργεί) 0.99 x 2 + x 2 - x ψ 2-2ψ +(0.99) 0 (με ψx 2 ) ψ 0.9 x 0.95 Θεώρημα: Αν Α και Β είναι ανεξάρτητα τότε: 50

13 ) Α, B είναι ανεξάρτητα. 2) Α, B είναι ανεξάρτητα. 3) Α, B είναι ανεξάρτητα. Απόδειξη: ) Έχουμε ότι P(A B) P(A) P(B). Προφανώς το Β και Β αποτελούν μία διαμέριση του S. Επομένως και τα A B, A B' αποτελούν μια διαμέριση του Α. Τότε P(A) P(A B) + P(A B') δηλαδή, P(A B') P(A)- P(A)P(B) P(A)- (- P(B)) P(A)P(B') Άρα τα Α και Β είναι ανεξάρτητα. Με όμοιο τρόπο αποδεικνύονται οι προτάσεις (2) και (3). Παράδειγμα λανθασμένης χρήσης της έννοιας της ανεξαρτησίας ενδεχομένων. (Η δίκη Collns στις ΗΠΑ): Το 968, έγινε στο Λος Άντζελες η δίκη για μία ληστεία που είχε γίνει το 964 από ένα ζευγάρι. Σύμφωνα με το κατηγορητήριο, ο άνδρας ήταν μαύρος με γένεια και μουστάκι και η γυναίκα λευκή με ξανθά μαλλιά και αλογουρά. Στην ληστεία, χρησιμοποίησαν ένα κίτρινο αυτοκίνητο. Ένα ζευγάρι που είχε όλα αυτά τα χαρακτηριστικά συνελήφθη και καταδικάστηκε. Η καταδίκη τους βασίσθηκε στην εξής επιχειρηματολογία που ανέλυσε ένας καθηγητής μαθηματικών ενός τοπικού κολλεγίου: Από την σύνθεση του πληθυσμού του Λος Άντζελες προκύπτει ότι οι πιθανότητες για κάθε ένα από τα παρακάτω χαρακτηριστικά είναι: P(ζευγάρι από διαφορετικές φυλές σε αυτοκίνητο) /000 P(κίτρινο αυτοκίνητο) /0 P(μαύρος άνδρας με γένεια ) /0 P(άνδρας με μουστάκι) /4 P(ξανθή κοπέλλα) /3 P(κοπέλλα με αλογουρά) /0 Με την υποθέση ότι τα παραπάνω χαρακτηριστικά είναι ανεξάρτητα (κάτι που δεν αποδείχθηκε, αλλά ούτε αμφισβητήθηκε στην δίκη) και πολλαπλασιάζοντας τις αντίστοιχες πιθανότητες, 5

14 βρέθηκε ότι η πιθανότητα να έχει ένα ζευγάρι όλα τα παραπάνω χαρακτηριστικά είναι / Είναι δηλαδή πολύ σπάνιο να βρεθεί ζευγάρι που να έχει όλα τα παραπάνω χαρακτηριστικά, δεδομένου ότι την εποχή αυτή ζούσαν στην περιοχή περίπου ζευγάρια. Αφού λοιπόν βρέθηκε ένα ζευγάρι με όλα τα χαρακτηριστικά, το ζευγάρι αυτό θα πρέπει να είναι και οι ληστές. Με την επιχειρηματολογία αυτή, το ζευγάρι καταδικάσθηκε. Αργότερα όμως έκαναν έφεση και χρησιμοποιώντας μια άλλη επιχειρηματολογία βασισμένη στις πιθανότητες, αθωώθηκαν. Το πρόβλημα δημιουργήθηκε από την άκριτη χρήση του πολλαπλασιαστικού κανόνα. Πριν χρησιμοποιηθεί ο κανόνας αυτός θα πρέπει να ελεγχθεί η ανεξαρτησία ή, εναλλακτικά, να χρησιμοποιηθεί η δεσμευμένη πιθανότητα. Υπάρχει βέβαια και μια άλλη αντίρρηση στην επιχειρηματολογία του Εισαγγελέα. Οι υπολογισμοί πιθανοτήτων με την χρήση κανόνων όπως ο πολλαπλασιαστικός, αναπτύχθηκαν για την αντιμετώπιση τυχερών παιχνιδιών όπου η βασική διαδικασία που διέπει το παιχνίδι μπορεί να επαναληφθεί με ανεξάρτητες επαναλήψεις και κάτω από τις ίδιες συνθήκες. Ο Εισαγγελέας, στο συγκεκριμένο πρόβλημα, προσπάθησε να εφαρμόσει αυτή την θεωρία σε ένα μοναδικό φαινόμενο. Κάτι που ή συνέβη ή δεν συνέβη στις 8 Ιουνίου 964 στις :30 π.μ.. Τί σημαίνει η πιθανότητα στο συγκεκριμένο πλαίσιο; Ήταν στην ευθύνη του Εισαγγελέα να απαντήσει στην ερώτηση αυτή και να αποδείξει ότι η θεωρία εφαρμόζεται στην συγκεκριμένη περίπτωση. Ο Εισαγγελέας υπολόγισε τις πιθανότητες για δύο ενδεχόμενα πηδώντας από το ένα στο άλλο και αντίστροφα. Το πρώτο ενδεχόμενο ήταν ότι οι κατηγορούμενοι ήταν ένοχοι. Το δεύτερο ενδεχόμενο ήταν ότι δεν υπήρχε άλλο ζευγάρι στο Λος Άντζελες την εποχή εκείνη με τα ίδια χαρακτηριστικά. Με την κλασσική στατιστική προσέγγιση (της σχετικής συχνότητας), η έννοια της πιθανότητας δεν μπορεί να εφαρμοστεί τόσο καλά. Ακόμα και κάποιος που ακολουθεί την Μπεϋζιανή προσέγγιση θα είχε κάποιες δυσκολίες εδώ δεδομένου ότι δεν υπάρχει κάποιο γενικό μοντέλο πιθανοτήτων που να συνδέει τα δεδομένα με την υπόθεση ενοχής ή αθωώτητας. 52

15 Υπήρχαν άλλα ζευγάρια στο Λος Άντζελες που να ικανοποιούν τα ίδια χαρακτηριστικά; Καταρχήν η ερώτηση αυτή μοιάζει να είναι ένα στατιστικό ερώτημα που θα μπορούσε να απαντηθεί με την λήψη ενός δείγματος. Παρ όλα αυτά, κάποιοι υπολογισμοί μπορούν να αποδείξουν ότι δειγματοληψία από τα ζευγάρια που ζούσαν στο Λος Άντζελες δεν θα έλυνε το πρόβλημα με κάποιο αξιόπιστο βαθμό εμπιστοσύνης (για την σχέση δείγματος με πληθυσμό, βλέπε μεθόδους δειγματοληψίας). Για την σωστή απάντηση στο ερώτημα αυτό θα έπρεπε να γίνει μία πλήρης απογραφή. Παράδειγμα. (Νόμος των Hardy-Wenberg): Θεωρούμε ένα απλό γονίδιο το οποίο μπορεί να βρίσκεται σε μια από τις εξής δύο καταστάσεις. Επικρατούσα κατάσταση, έστω Α και υπολειπόμενη κατάσταση, έστω α. Κάθε άτομο σε ένα πληθυσμό είναι φορέας δύο τέτοιων γονιδίων. Επομένως, οι δυνατοί συνδυασμοί γονιδίων είναι: ΑΑ (επικρατών ομόζυγος) Αα (ετερόζυγος) αα (υπολειπόμενος ομόζυγος) Έστω ότι στην πρώτη γενεά ενός πληθυσμού τα ποσοστά των ατόμων που έχουν αυτά τα τρία είδη γονιδίων είναι p, p 2, και p 3 αντίστοιχα (για αρσενικά και θηλυκά). Σε ένα τυχαίο ζευγάρωμα, το αρσενικό και το θηλυκό επιλέγονται τυχαία και κάθε ένα συνεισφέρει ανεξάρτητα από το άλλο ένα από τα γονίδια στον απόγονο. Να βρεθεί η γενεά στην οποία επιτυγχάνεται η κατάσταση ισορροπίας της κατανομής των γονοτύπων. Λύση: Η πιθανότητα ότι το αρσενικό συνεισφέρει στον απόγονο της πρώτης γενεάς ένα γονίδιο της μορφής Α είναι: 53

16 Ρ Ρ(μεταφέρεται το Α) Ρ(Α ΑΑ)Ρ(ΑΑ)+Ρ(Α Αα)Ρ(Αα) Ρ(ΑΑ)+Ρ(Α Αα)Ρ(Αα) p +p 2 /2 Ομοίως q P(μεταφέρεται το α) Ρ(α Αα)Ρ(Αα)+Ρ(α αα)ρ(αα) (/2)p 2 +p 3 (ή ισοδύναμα: Ρ(μεταφέρεται το α) - p (/2)p 2 + p 3 μια και p +p 2 +p 3 ). Είναι προφανές ότι οι πιθανότητες αυτές είναι ίδιες για τα γονίδια που συνεισφέρουν τα αρσενικά και τα θηλυκά. Επομένως, τα ποσοστά των ατόμων της δεύτερης γενεάς που είναι φορείς γονιδίων ' ' ' της μορφής ΑΑ, Αα και αα, έστω p, p, αντίστοιχα είναι: 54 2 p 3 ' p Ρ(ΑΑ στην δεύτερη γενεά) Ρ(αρσενικό της πρώτης γενεάς συνεισφέρει ένα Α θηλυκό της πρώτης γενεάς συνεισφέρει ένα Α) [Ρ(άτομο της πρώτης γενεάς συνεισφέρει ένα Α)] 2 p 2 Ομοίως ' p 2 Ρ(Αα στην δεύτερη γενεά) Ρ[{αρσενικό της πρώτης γενεάς συνεισφέρει ένα Α θηλυκό της πρώτης γενεάς συνεισφέρει ένα α} {αρσενικό της πρώτης γενεάς συνεισφέρει ένα α θηλυκό της πρώτης γενεάς συνεισφέρει ένα Α}] 2p(-p) 2pq Τέλος, ' p 3 Ρ(αα στην δεύτερη γενεά) q 2 (-p) 2 Επαναλαμβάνοντας την ίδια λογική για τους απογόνους της δεύτερης γενεάς (δηλαδή για την τρίτη γενεά) θα έχουμε ότι: p * P(μεταφέρεται το Α από ένα άτομο της δεύτερης γενεάς) Ρ(Α ΑΑ στην δεύτερη γενεά) Ρ(ΑΑ στην δεύτερη γενεά) + Ρ(Α Αα στην δεύτερη γενεά) Ρ(Αα στην δεύτερη γενεά) ' p + (/2) ' p 2 p 2 + p(-p) p

17 Δηλαδή, η πιθανότητα p * είναι ίση με την p και επομένως το ποσοστό ατόμων της τρίτης γενεάς με γονίδια της μορφής ΑΑ είναι '' p Ρ(ΑΑ στην τρίτη γενεά) p 2 Με όμοιο τρόπο, βρίσκουμε '' p 2 Ρ(Αα στην τρίτη γενεά) 2p(-p) και p Ρ(αα στην τρίτη γενεά) (-p) 2 '' 3 Επομένως, τα γονότυπα της τρίτης γενεάς (και όλων των επομένων γενεών) θα έχουν την ίδια αναλογία όπως και τα γονότυπα της δεύτερης γενεάς. Δηλαδή, η κατάσταση ισορροπίας της κατανομής των γονοτύπων επιτυγχάνεται μετά από μία γενεά. Ο νόμος αυτός αποδείχθηκε το 908 από τον μαθηματικό G. H. Hardy. Ορισμός: Τα ενδεχόμενα Α, Α 2, Α n, n είναι ανεξάρτητα αν ο πολλαπλασιαστικός τύπος ισχύει για κάθε συνδυασμό δύο ή περισσοτέρων από αυτά. Αν δηλαδή P(A A...A ) P(A )P(A )...P(A ), < 2 < k n 2 k 2 k Για παράδειγμα, τα ενδεχόμενα Α, Β, Γ είναι ανεξάρτητα αν Ρ(ΑΒ)Ρ(Α)Ρ(Β), Ρ(ΑΓ)Ρ(Α)Ρ(Γ), Ρ(ΒΓ)Ρ(Β)Ρ(Γ) και Ρ(ΑΒΓ)Ρ(Α)Ρ(Β)Ρ(Γ). Γενικά αν έχουμε n ενδεχόμενα θα πρέπει να εξετάσουμε n n n n n + περιπτώσεις. 2 3 n Ορισμός: Τα ενδεχόμενα Α, Α 2, Α n θα λέγονται ανεξάρτητα κατά ζεύγη αν Ρ(Α A j )P(A )P(A j ),, j, 2,, n, j. Σημείωση: Είναι δυνατόν να έχουμε ανεξαρτησία κατά ζεύγη χωρίς να έχουμε ανεξαρτησία. Παράδειγμα: Στρίβουμε δύο νομίσματα και θεωρούμε τα ενδεχόμενα Α(το πρώτο νόμισμα είναι Κ) Β(το δεύτερο νόμισμα είναι Κ) Γ(ακριβώς ένα Κ στο πείραμα) Έχουμε 55

18 S(KK, KΓ, ΓΚ, ΓΓ) Ρ(Α)Ρ(Β)Ρ(Γ)/2 Επίσης, επειδή ΑΒ{ΚΚ}, ΑΓ{ΚΓ}, ΒΓ{ΓΚ} Θα είναι Ρ(ΑΒ)Ρ(Α)Ρ(Β) Ρ(ΑΓ)Ρ(Α)Ρ(Γ) και Ρ(ΒΓ)Ρ(Β)Ρ(Γ) Δηλαδή, τα Α, Β, Γ είναι ανεξάρτητα κατά ζεύγη. Όμως ΑΒΓ Ρ(ΑΒΓ)0 ενώ Ρ(Α)Ρ(Β)Ρ(Γ)/8 Ρ(ΑΒΓ) Επομένως, τα Α, Β, Γ είναι εξαρτημένα. Ορισμός: (Ανεξάρτητες δοκιμές). Έστω ότι ένα πείραμα Ε αποτελείται από μια ακολουθία n δοκιμών Δ, Δ 2,, Δ n. Οι δοκιμές είναι ανεξάρτητες, αν το αποτέλεσμα κάθε μιας από αυτές δεν επηρεάζει τις πιθανότητες των ενδεχομένων στις άλλες δοκιμές. Επιπλέον, αν το ενδεχόμενο Α αντιστοιχεί στην δοκιμή και Ρ(Α ) είναι η πιθανότητα του ενδεχομένου αυτού (, 2,, n), τότε P(A A A...A ) P(A )P(A )P(A )...P(A ) 2 3 n Ορισμός: Τα ενδεχόμενα Α και Β λέγονται ασυμβίβαστα ή ασύμβατα ή ξένα μεταξύ τους (mutually exclusve ή dsjont events), αν η πραγματοποίηση του ενός δεν επιτρέπει την πραγματοποίηση του άλλου, αν δηλαδή Ρ(Α Β)0 Σημείωση: Προφανώς, στην περίπτωση των ξένων μεταξύ τους ενδεχομένων, ισχύει ότι Ρ(Α Β) Ρ(Α)+Ρ(Β). Για παράδειγμα, στο ρίξιμο ενός ζαριού, τα ενδεχόμενα Α{αποτέλεσμα άσσος } και Β{αποτέλεσμα έξι } είναι ασύμβατα. (Ρ(Α)/6, Ρ(Β)/6, Ρ(Α Β)0 και Ρ(Α Β)Ρ(Α)+Ρ(Β)/6+/62/6). Σχέση Ξένων Μεταξύ τους και Ανεξαρτήτων Ενδεχομένων 2 3 n 56

19 Τα ασυμβίβαστα, ή αλλιώς ξένα μεταξύ τους, ενδεχόμενα (mutually exclusve) και τα ανεξάρτητα ενδεχόμενα (ndependent) είναι δύο έννοιες που αναφέρονται σε ζευγάρια ενδεχομένων και εκφράζουν κάποιας μορφής σχέση μεταξύ τους. Η σχέση αυτή όμως είναι τελείως διαφορετική στην μια περίπτωση από την άλλη. Ξένα μεταξύ τους είναι δύο ενδεχόμενα που η πραγματοποίηση του ενός δεν επιτρέπει την πραγματοποίηση του άλλου. Ανεξάρτητα είναι δύο ενδεχόμενα η πραγματοποίηση του ενός εκ των οποίων δεν μεταβάλλει την πιθανότητα πραγματοποίησης του άλλου. Με τα ξένα μεταξύ τους ενδεχόμενα σχετίζεται ο προσθετικός ή αθροιστικός κανόνας για τις πιθανότητες. Ο κανόνας αυτός αναφέρεται στην πιθανότητα ότι τουλάχιστον ένα από δύο πράγματα μπορούν να συμβούν. Με τα ανεξάρτητα ενδεχόμενα συνδέεται ο πολλαπλασιαστικός κανόνας. Ο κανόνας αυτός χρησιμοποιείται για να προσδιορίσει την πιθανότητα ότι δύο ενδεχόμενα θα συμβούν ταυτόχρονα. Επομένως, το πρώτο βήμα για να αποφασίσει κανείς εάν θα χρησιμοποιήσει τον πολλαπλασιαστικό ή τον αθροιστικό κανόνα είναι να απαντήσει στην ερώτηση: Με ενδιαφέρει η πιθανότητα P(Α ή Β), η πιθανότητα P(Α και Β) ή κάτι τελείως διαφορετικό; Θα πρέπει να προσέχουμε ιδιαίτερα ότι, άθροιση πιθανοτήτων δύο ενδεχομένων απαιτεί ότι τα ενδεχόμενα αυτά είναι αμοιβαία ξένα μεταξύ τους. Πολλαπλασιασμός μη δεσμευμένων πιθανοτήτων δύο ενδεχομένων απαιτεί ότι τα ενδεχόμενα αυτά είναι ανεξάρτητα. (Για εξαρτημένα ενδεχόμενα, ο πολλαπλασιαστικός κανόνας χρησιμοποιεί δεσμευμένες πιθανότητες). Τα δύο παραδείγματα που ακολουθούν είναι χαρακτηριστικά κακής εφαρμογής των εννοιών των ανεξαρτήτων ενδεχομένων και των ξένων μεταξύ τους ενδεχομένων. Παράδειγμα λανθασμένης χρήσης του πολλαπλασιαστικού κανόνα των πιθανοτήτων για ανεξάρτητα ενδεχόμενα. (Η διαθήκη Howland): Μια από τις πρώτες εφαρμογές της θεωρίας των πιθανοτήτων και των στατιστικών ενδείξεων στο δικαστικό σύστημα 57

20 των Ηνωμένων Πολιτείων έγινε το 967, όταν ο Benjamn Perce, καθηγητής των μαθηματικών στο Πανεπιστήμιο του Harvard, κατέθεσε ως μάρτυρας στο δικαστήριο στην δίκη αμφισβήτησης της ομοιότητας της υπογραφής μιας διαθήκης και της υπογραφής που είχε μπει σε μια πρόσθετη παράγραφο της διαθήκης αυτής. ( Paul Meer & Sandy Zabell: Benjamn Perce & the Howland Wll. Journal of the Amercan Statstcal Assocaton September 980, ). Ο Perce, χρησιμοποιώντας τον πολλαπλασιαστικό κανόνα των πιθανότητων, υποστήριξε ότι οι δύο υπογραφές είχαν γίνει από το ίδιο άτομο. Το συμπέρασμα αυτό το στήριξε σε μια λεπτομερή σύγκριση των κατακόρυφων γραμμών σε 42 άλλες υπογραφές του αποθανόντος για τις οποίες δεν είχε υπάρξει αμφισβήτηση. Σύμφωνα με τον πολλαπλασιαστικό κανόνα, ο Perce εκτίμησε ότι η πιθανότητα για όμοια κατακόρυφη γραμμή είναι 0.2. Στην συγκεκριμένη διαθήκη, όλες οι 30 κατακόρυφες γραμμές στην πρόσθετη υπογραφή ταίριαζαν με τις κατακόρυφες γραμμές στην τελική υπογραφή της διαθήκης. Χρησιμοποιώντας τον πολλαπλασιαστικό κανόνα, υπολόγισε οτι η πιθανότητα να υπάρχουν 30 τέτοιες συμπτώσεις είναι (0.2) 30 και εξ αυτού συμπέρανε ότι ενδεχόμενο με τόσο μικρή πιθανότητα είναι μάλλον αδύνατον. Πρέπει να σημειώσουμε ότι η χρήση του πολλαπλασιαστικού κανόνα υποθέτει έμμεσα ανεξαρτησία σε όλες τις 30 κατακόρυφες γραμμές. Στην μαρτυρία του, δεν υπάρχει αναφορά για το κατά πόσο αυτή η κρίσιμη υπόθεση είναι εύλογη ή βάσιμη. Επίσης, δεν έλαβε υπόψη του το γεγονός ότι η εκτίμηση 0.2 για την πιθανότητα βασίστηκε σε 42 υπογραφές που μπήκαν σε διαφορετικές χρονικές στιγμές, ενώ η υπογραφή της διαθήκης και η υπογραφή στην πρόσθετη παράγραφο της διαθήκης γράφτηκαν, σύμφωνα με τις μαρτυρίες, την ίδια μέρα. Δεδομένου, όμως, ότι την εποχή εκείνη, η γνώση των πιθανότητων δεν ήταν διαδεδομένη και ταυτόχρονα, λόγω του μεγάλου σεβασμού που υπήρχε για την ακαδημαϊκή αξιοπιστία του Perce, ο δικηγόρος της αντίθετης πλευράς δεν αμφισβήτησε τους ισχυρισμούς αυτούς. 58

21 Η αυθεντική υπογραφή (αρ. ) και οι δύο αμβισβητούμενες υπογραφές (αρ. 0 και 5) 0 5 Μερικές από τις 42 υπογραφές που χρησιμοποιήθηκαν για σύγκριση 59

22 Παράδειγμα λανθασμένης χρήσης του αθροιστικού κανόνα των πιθανοτήτων. (Το παράδοξο του Chevaler De Méré): Τον 7ο αιώνα, οι Γάλλοι παίκτες τυχερών παιχνιδιών στοιχημάτιζαν πολλές φορές στο ενδεχόμενο: Όταν ένα ζάρι ριχτεί 4 φορές, ποιά είναι η πιθανότητα να εμφανισθεί τουλάχιστον ένας άσσος. Ένα άλλο τυχερό παιχνίδι που έπαιζαν ήταν στην περίπτωση όπου ένα ζευγάρι από ζάρια ριχνόταν 24 φορές και ενδιέφερε η πιθανότητα να εμφανισθούν άσσοι τουλάχιστον μία φορά. Ο Chevaler De Méré, ένας Γάλλος ευγενής της περιόδου εκείνης, πίστευε ότι τα δύο παραπάνω ενδεχόμενα είναι ισοπίθανα. Η λογική του για το πρώτο παιχνίδι ήταν η εξής: Σε ένα ρίξιμο ζαριού, η πιθανότητα άσσου έναι /6. Σε τέσσερις ρίψεις του ζαριού, η πιθανότητα τουλάχιστον ενός άσσου είναι 4 φορές το /62/3. Για το δεύτερο παιχνίδι, χρησιμοποίησε το εξής επιχείρημα: Όταν ρίξει κανείς ένα ζευγάρι ζάρια, η πιθανότητα άσσων είναι /36. Επομένως, σε 24 ρίψεις ενός ζευγαριού ζαριών, η πιθανότητα να πάρει κανείς τουλάχιστον ένα ζευγάρι άσσων είναι 24 φορές το /362/3. Με την παραπάνω επιχειρηματολογία, οι πιθανότητες για τα δύο αυτά τυχερά παιχνίδια ήταν ίδιες, δηλαδή 2/3. Η εμπειρία, όμως, είχε δείξει ότι το πρώτο ενδεχόμενο είναι περισσότερο πιθανό να εμφανισθεί από ότι το δεύτερο. Η αντίφαση αυτή έγινε γνωστή ως το παράδοξο του Chevaler De Méré, και οφειλόταν στην λανθασμένη χρήση της έννοιας των αμοιβαία ξένα μεταξύ τους ενδεχομένων. Ο De Méré ρώτησε τον φιλόσοφο Blase Pascal για το πρόβλημα αυτό και ο Pascal το έλυσε με την βοήθεια ενός φίλου του του Pere de Fermat. (Ο Fermat ήταν δικαστής και ταυτόχρονα μέλος του κοινοβουλίου που είναι γνωστός σήμερα για την έρευνα στα μαθηματικά που έκανε αργά το βράδυ μετά τις άλλες ασχολίες του). Ο Fermat αντελήφθη ότι ο De Méré προσέθετε πιθανότητες για ενδεχόμενα τα οποία δεν ήταν ξένα μεταξύ τους. Στην πραγματικότητα, εάν κανείς προχωρούσε την επιχειρηματολογία του De Méré λίγο περισσότερο, θα μπορούσε να καταλήξει στο 60

23 συμπέρασμα ότι η πιθανότητα να έχει κανείς ως αποτέλεσμα άσσο σε 6 ρίψεις ενός ζαριού είναι 6/6 ή, ισοδύναμα, 00%, κάτι που θα έπρεπε να είναι λάθος. Το ερώτημα που τίθεται είναι πώς να υπολογίσει κανείς σωστά τις πιθανότητες αυτές. Σε τέσσερις ρίψεις ενός ζαριού, υπάρχουν δυνατά αποτελέσματα. Σε 24 ρίψεις ενός ζεύγους ζαριών υπάρχουν, αποτελέσματα. Ο υπολογισμός όμως των ευνοϊκών ενδεχομένων σε κάθε μια από τις δύο περιπτώσεις είναι αρκετά δύσκολος. Ας δούμε όμως τον συλλογισμό του De Méré. Στο πρώτο από τα παιχνίδια, αν Α, Β, Γ και Δ είναι τα ενδεχόμενα άσσου στην πρώτη, δεύτερη, τρίτη και τέταρτη δοκιμή αντίστοιχα, μας ενδιαφέρει η P(A B Γ Δ), δηλαδή η πιθανότητα άσσου σε μια τουλάχιστον από τις τέσσερις δοκιμές. Ο De Méré, θεώρησε έμμεσα ότι τα ενδεχόμενα Α, Β, Γ, Δ είναι ξένα μεταξύ τους και κατέληξε ότι P(A B Γ Δ) P(Α) + Ρ(Β) + Ρ(Γ) + Ρ(Δ) /6 + /6 + /6 + /6 4/6 2/3 Με τον ίδιο τρόπο μπορεί κανείς να περιγράψει την επιχειρηματολογία του De Méré στο δεύτερο πρόβλημα. Ο τρόπος και οι σκέψεις που ο Pascal και ο Fermat χρησιμοποίησαν για να επιλύσουν σωστά το πρόβλημα δεν έχει καταγραφεί στην ιστορία. Ιστορικά στοιχεία όμως για την αλληλογραφία του Pascal και του Fermat μπορεί κανείς να βρει στο βιβλίο του Davd, F.N. Games, Gods and Gamblng. Grffn, 962. Ο Pascal και ο Fermat έλυσαν το πρόβλημα με ένα έμμεσο μαθηματικό συλλογισμό. Θα μπορούσε όμως κανείς να φαντασθεί τον διάλογο του Pascal και του Fermat ως εξής: Pascal. Ας κοιτάξουμε πρώτα το πρώτο παιχνίδι. 6

24 Fermat. Η πιθανότητα να κερδίσει κανείς είναι δύσκολο να υπολογισθεί, γι αυτό, ας δουλέψουμε με την πιθανότητα του αντίθετου ενδεχομένου, δηλαδή του ενδεχομένου να χάσει. Τότε, η πιθανότητα να κερδίσει είναι 00% - την πιθανότητα να χάσει. Pascal. Συμφωνώ. Ο παίκτης θα χάσει όταν σε καμιά από τις 4 ζαριές δεν έλθει άσσος. Πώς όμως υπολογίζουμε αυτήν την πιθανότητα; Fermat. Δεν είναι δύσκολο. Ας αρχίσουμε με το ρίξιμο ενός ζαριού. Ποιά είναι η πιθανότητα ότι στο πείραμα αυτό το αποτέλεσμα δεν θα είναι άσσος; Pascal. Θα πρέπει το αποτέλεσμα να είναι ή 2 ή 3 ή 4 ή 5 ή 6. Επομένως, η πιθανότητα είναι 5/6. Fermat. Ωραία. Και ποιά είναι η πιθανότητα ότι στις δύο πρώτες ζαριές το αποτέλεσμα δεν θα είναι άσσος; Pascal. Μπορούμε να χρησιμοποιήσουμε τον πολλαπλασιαστικό κανόνα. Η πιθανότητα ότι και στην πρώτη ζαριά και στην δεύτερη ζαριά δεν θα υπάρχει άσσος είναι 5/6 5/6 (5/6) 2. Αυτό, γιατί οι ζαριές είναι ανεξάρτητες μεταξύ τους, έτσι δεν είναι; Fermat. Τί θα γίνει με τρεις ζαριές; Pascal. Προφανώς, θα είναι 5/6 5/6 5/6 (5/6) 3. Fermat. Εντάξει. Τί γίνεται με τέσσερις ζαριές; Pascal. Θα πρέπει να είναι (5/6) 4. Fermat. Ναι. Και αυτό είναι περίπου ή 48,2%. Pascal. Επομένως, η πιθανότητα να χάσει κανείς αυτό το παιχνίδι είναι 48,2% και η πιθανότητα νίκης είναι 00% - πιθανότητα να χάσει κανείς 00% - 48,2% 5,8%. Fermat. Ωραία. Αυτό δίνει την λύση στο πρώτο παιχνίδι. Η πιθανότητα δηλαδή λύσης είναι λίγο περισσότερο από 50%. Ας δούμε τώρα το δεύτερο παιχνίδι. Pascal. Σε μια ζαριά με δύο ζάρια, υπάρχει /36 πιθανότητα άσσων και 35/36 πιθανότητα να μην έχουμε άσσους. Επομένως με, τον πολλαπλασιαστικό κανόνα, σε 24 ζαριές δύο ζαριών, η πιθανότητα να μην έχουμε άσσους θα πρέπει να είναι (35/36) 24 62

25 Fermat. Ωραία. Αυτό είναι 50.9% και αυτό αποτελεί την πιθανότητα να χάσει κανείς. Επομένως, πιθανότητα κέρδους 00% - πιθανότητα να χάσει κανείς 00% % 49.%. Pascal. Πράγματι και αυτό είναι λίγο λιγότερο από 50%. Γι αυτό, παρατηρούμε λιγότερες φορές νίκης στο δεύτερο παιχνίδι από ό,τι στο πρώτο. Χρειάζεται, όμως, να επαναλάβει κανείς πολλές φορές το παιχνίδι για να διαπιστώσει την διαφορά. Σημείωση : Η σωστή απάντηση με την χρήση του αξιώματος του Kolmogorov θα μπορούσε να βρεθεί αν ο De Méré είχε λάβει υπόψη του το γεγονός ότι τα ενδεχόμενα Α, Β, Γ, Δ δεν είναι ξένα μεταξύ τους. Επομένως, Ρ(Α Β Γ Δ) Ρ(Α) + Ρ(Β) + Ρ(Γ) + Ρ(Δ) - Ρ(ΑΒ) - Ρ(ΑΓ) - Ρ(ΑΔ) - Ρ(ΒΓ) - Ρ(ΒΔ) - P(ΓΔ) - Ρ(ΑΒΓ) - Ρ(ΑΒΔ) - Ρ(ΒΓΔ) - Ρ(ΑΒΓΔ) 4/6-6/36-2(/6) 3 - (/6) 4 2/3 - /6 - /08 - / Σημείωση 2: Από τον αριθμό των δυνατών ενδεχομένων που υπολογίσαμε προηγουμένως για τα δύο αυτά παιχνίδια, είναι φανερό ότι, παρότι θα μπορούσε κανείς να χρησιμοποιήσει τον κλασσικό ορισμό πιθανότητας του Pascal ως πηλίκου του αριθμού των ευνοϊκών διά του συνολικού αριθμού ενδεχομένων, είναι μάλλον εξαιρετικά δύσκολο να προσδιορισθεί ο αριθμός των ευνοϊκών ενδεχομένων. Σημείωση 3: Το παράδειγμα αυτό αποτελεί κλασσική περίπτωση χρησιμοποίησης μιας στρατηγικής υπολογισμού των πιθανοτήτων. Αν είναι δύσκολο να υπολογίσει κανείς την πιθανότητα ενός ενδεχομένου, βρίσκει την πιθανότητα του συμπληρωματικού του ενδεχομένου και στην συνέχεια την αφαιρεί από την μονάδα. 63

26 ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Οι δειγματικοί χώροι που συναντήσαμε μέχρι τώρα στα παραδείγματά μας μπορούν να καταταγούν σε δυο κατηγορίες: ) Ποιοτικοί ή περιγραφικοί 2) Ποσοτικοί ή αριθμητικοί. Παράδειγμα της πρώτης κατηγορίας είναι το φύλο ενός παιδιού (S{A,K}), ενώ της δεύτερης είναι ο αριθμός των Κ σε τρία στριψίματα ενός νομίσματος. Ο υπολογισμός πιθανοτήτων ενδεχομένων ή συνδυασμού ενδεχομένων είναι βέβαια ευκολότερος στην δεύτερη περίπτωση όπου χρησιμοποιούνται αριθμοί. Για τον ευκολότερο υπολογισμό πιθανοτήτων σε δειγματικό χώρο οποιασδήποτε μορφής θα ήταν επιθυμητό να ορισθεί ένας κανόνας (ή μια συνάρτηση) που να αντιστοιχεί ένα πραγματικό αριθμό k σε κάθε στοιχείο Α του δειγματικού χώρου S. Η συνάρτηση αυτή ονομάζεται τυχαία μεταβλητή (random varable). Η χρήση της τυχαίας μεταβλητής διευκολύνει επίσης την κατάσταση όταν ενδιαφερόμαστε να υπολογίσουμε πιθανότητες συνάρτησης ενδεχομένων. Ορισμός: Δοθέντος ενός δειγματικού χώρου S και ενός συνόλου Β υποσυνόλων του S, ορίζουμε ως τυχαία μεταβλητή (τ.μ.) (random varable) μια μονοσήμαντη συνάρτηση με πεδίο ορισμού το S και τιμές στην ευθεία των πραγματικών αριθμών R X : S R τέτοια ώστε το σύνολο X - (I) να είναι ένα ενδεχόμενο για κάθε διάστημα Ι R. Η τυχαία μεταβλητή δηλαδή δεν είναι τίποτα άλλο από μια πραγματική συνάρτηση που ορίζεται στα στοιχεία του δειγματικού χώρου. Είναι τυχαία με την έννοια ότι η τιμή της εξαρτάται από το τυχαίο αποτέλεσμα ενός πειράματος που καθορίζει ένα στοιχείο του δειγματικού χώρου (πεδίου ορισμού της τυχαίας μεταβλητής). Παράδειγμα: Έστω ότι στρίβουμε ένα αμερόληπτο νόμισμα δύο φορές και ενδιαφερόμαστε για τον αριθμό των Κ που θα εμφανισθούν. S {KK, KΓ, ΓK, ΓΓ} 64

27 Έστω Χ ο αριθμός των Κ που παρατηρήθηκαν. ΚΚ Χ(ΚΚ) 2 Χ: ΚΓ Χ(ΚΓ) ΓΚ Χ(ΓΚ) ΓΓ Χ(ΓΓ) 0 Το ενδεχόμενο Α {τουλάχιστο ένα Κ στις δύο δοκιμές) μπορεί να εκφρασθεί μέσω της τυχαίας μεταβλητής Χ σαν {Χ }. Επομένως P(A) P(X ). Οι πιθανότητες επάγονται στο πεδίο τιμών της τυχαίας μεταβλητής μέσω των πιθανοτήτων που έχουν ορισθεί στον δειγματικό χώρο. Στο παράδειγμά μας το πεδίο τιμών της Χ είναι το {0,,2} και οι πιθανότητες που αντιστοιχούν σε αυτές μέσω του S είναι /4, /2, και /4 αντίστοιχα. Είναι προφανές ότι σε ένα δειγματικό χώρο είναι δυνατό να ορισθούν ταυτόχρονα περισσότερες από μια τυχαίες μεταβλητές. Παράδειγμα: Έστω οτι παίρνουμε 3 χαρτιά από μια τράπουλα. S {(,2,3), (,2,4),...} (με όλους τους συνδυασμούς χαρτιών και χρωμάτων). Μπορούμε να ορίσουμε Χ αριθμός μαύρων χαρτιών Υ αριθμός σπαθιών Ζ αριθμός χαρτιών με αριθμό μεγαλύτερο του 5. κ.λ.π. Διακριτές Τυχαίες Μεταβλητές Ορισμόs: Μια τυχαία μεταβλητή Χ:S R λέγεται διακριτή (dscrete) (ή απαριθμητή ή ασυνεχής) αν ισχύει μία από τις παρακάτω συνθήκες: ) S είναι ένα πεπερασμένο σύνολο. 2) Χ(S) είναι ένα πεπερασμένο σύνολο (έστω και αν S δεν είναι πεπερασμένο) 3) X(S) είναι αριθμήσιμο σύνολο. 65

28 Παράδειγμα: Για κάθε ενδεχόμενο Α του S, μπορούμε να ορίσουμε μία τυχαία μεταβλητή Ι Α που λέγεται τυχαία μεταβλητή-δείκτης του Α ή τυχαία μεταβλητή του Bernoull για το Α ως εξής: αν x A Ι A ( x ) x S 0 αν x A Όταν το Ι A παίρνει την τιμή αυτό σημαίνει ότι το ενδεχόμενο Α έχει συμβεί, δηλαδή το πείραμα κατέληξε σε ένα στοιχειώδες ενδεχόμενο x A. Σημείωση: Αργότερα θα έχουμε την ευκαιρία να μιλήσουμε για συναρτήσεις τυχαίων μεταβλητών. Αν Χ:S R είναι μία τυχαία μεταβλητή και f:r R είναι μία πραγματική συνάρτηση ορισμενή στο σύνολο των πραγματικών αριθμών, μπορούμε να ορίσουμε μία τυχαία μεταβλητή ως εξής: Για κάθε x S έστω f(x)(x)f(x(x)). Δηλαδή, πρώτα εφαρμόζουμε την τυχαία μεταβλητή Χ στο σημείο x στη συνεχεία δε εφαρμόζουμε την συνάρτηση f στον αριθμό αυτό παίρνοντας τον πραγματικό αριθμό f(x(x)). Για παράδειγμα, αν f(x)x 2 μπορούμε να ορίσουμε την τυχαία μεταβλητή Χ 2 σαν Χ 2 (x)(x(x)) 2. ΚΑΤΑΝΟΜΗ ΠΙΘΑΝΟΤΗΤΑΣ Έστω {Xα} {x S : X(x) α} Ορισμόs: Έστω Χ μία διακριτή τυχαία μεταβλητή ορισμένη στο χώρο πιθανοτήτων S. Η συνάρτηση p x P(x) P X (x) P({Xx}) με πεδίο ορισμού τις τιμές της Χ και πεδίο τιμών τις πιθανότητες των τιμών αυτών λέγεται συνάρτηση πιθανότητας της Χ ή αλλιώς κατανομή πιθανότητας (probablty dstrbuton) της Χ. Η συνάρτηση πιθανότητας δίνει την πιθανότητα με την οποία η τυχαία μεταβλητή Χ παίρνει την τιμή x R. Από εδώ και στο εξής θα γράφουμε P(Xx) και θα εννοούμε P({Xx}). 66

29 Στο παράδειγμα όπου Χ είναι ο αριθμός των K που παρατηρήθηκαν όταν στρίβουμε ένα νόμισμα δυο φορές, έχουμε ότι η συνάρτηση πιθανότητας της Χ είναι /4 x 0 P X ( x) / 2 x /4 x 2 Απο τον παραπάνω ορισμό και τα αξιώματα των πιθανοτήτων, είναι φανερό ότι η συνάρτηση πιθανότητας P X (x) έχει τις εξής ιδιότητες: ) P X (x) 0, για κάθε x R 2) ΣP X (x) P όπου Α υποσύνολο του πεδίου τιμών της X. 3) P(X A) ( ) x A X x Οι ιδιότητες () και (2) δίνουν τις αναγκαίες και ικανές συνθήκες που πρέπει να πληροί μία συνάρτηση για να είναι συνάρτηση πιθανότητας. Πολλές φορές είναι χρήσιμο και σκόπιμο να έχουμε μία παραστατική μορφή της συνάρτησης πιθανότητας. Έτσι η γραφική παράσταση της συνάρτησης πιθανότητας του παραδείγματος είναι P x (x) /2 / X Παράδειγμα: Διαλέγουμε ένα δείγμα από 3 αντικείμενα από ένα κουτί που περιέχει 2 αντικείμενα 3 από τα οποία είναι ελαττωματικά. Έστω Χ η τυχαία μεταβλητή που αναφέρεται στον αριθμό των ελαττωματικών αντικειμένων στο δείγμα. Το Χ μπορεί να πάρει τις τιμές 0,,2, και 3 με πιθανότητες. 67

30 P ( X 0) P ( X ) P ( X 2) P ( X 3) ΣΥΝΕΧΕΙΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Ορισμός: Μια τυχαία μεταβλητή Χ λέγεται (απόλυτα) συνεχής (contnuous) αν υπάρχει μία μη αρνητική συνάρτηση f(x) που να ικανοποιεί την εξίσωση F(x) x f(t)dt για μια τυχαία τιμή του x, - < x < +. Η συνάρτηση f(x) λέγεται συνάρτηση πυκνότητας πιθανότητας (probablty densty functon). Προφανώς αν Χ είναι (απόλυτα) συνεχής, P(α<X<β) β α f(t)dt. Συνεχείς τυχαίες μεταβλητές συναντώνται συχνά, ειδικά σε πειράματα στα οποία παίρνονται μετρήσεις. Ας υποθέσουμε, για 68

31 παράδειγμα, ότι 200 άνθρωποι μετρούν το ίδιο αντικείμενο του οποίου το μήκος είναι περίπου 25 εκατοστά. Στις περιπτώσεις αυτές, συνήθως, η απάντηση στρογγυλεύεται σε κάποιο δεκαδικό ψηφίο. Στο παράδειγμά μας, αν οι μετρήσεις στρογγυλευθούν στο πλησιέστερο εκατοστό ο δειγματικός χώρος θα μπορούσε να είναι το πεπερασμένο σύνολο {22, 23, 24, 25, 26, 27, 28}. Αν οι μετρήσεις στρογγυλευθούν στο πλησιέστερο εκατοστό του εκατοστού ο δειγματικός χώρος θα μπορούσε να είναι πάλι ένα πεπερασμένο σύνολο της μορφής {22.00, 22.0, 22.02, , 28}. Από το άλλο μέρος, πριν την στρογγυλοποίηση, οποιαδήποτε τιμή στο διάστημα [27, 28] είναι δυνατόν να προκύψει ως αποτέλεσμα μιας μέτρησης. Επομένως το διάστημα [22, 28] θα μπορούσε να θεωρηθεί ως δειγματικός χώρος του πειράματος αυτού με την έννοια ότι κάθε ένα από τα άπειρα στοιχεία του συνόλου αυτού είναι πιθανό ενδεχόμενο του πειράματος. Είναι φυσικό ότι στην περίπτωση αυτή η P(Xα) όπου α X(S) είναι ίση με το μηδέν. Ιδιότητες της f(x): Από τον ορισμό της f(x) προκύπτουν εύκολα οι εξής ιδιότητες: ) f(x) 0 σχεδόν παντού 2) + f(x)dx. (Σχεδόν παντού σημαίνει για όλα τα σημεία του R εκτός από ένα αριθμήσιμο, το πολύ, πλήθος σημείων του R). ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ Ορισμός: Έστω Χ μία τυχαία μεταβλητή. Η συνάρτηση F:R R που ορίζεται ως F X (α) P(X α) P(s:X(s) α) α R λέγεται συνάρτηση κατανομής (probablty functon) ή αθροιστική συνάρτηση κατανομής της τυχαίας μεταβλητής Χ. Γνώση της F X (α) καθορίζει τις πιθανότητες όλων των γεγονότων στο R. 69

32 Σημείωση: Στη συνέχεια θα χρησιμοποιούμε το συμβολισμό F(α) (χωρίς δηλαδή τον δείκτη Χ) όταν αυτό δεν δημιουργεί ασάφεια. Παράδειγμα: Στο παράδειγμα όπου Χ είναι ο αριθμός των K που παρατηρήθηκαν όταν στρίβουμε ένα νόμισμα δυο φορές, έχουμε ότι η συνάρτηση κατανομής είναι 0 α < α < F ( α) 3 4 α < 2 2 α Ιδιότητες: ) Η F(α) είναι μη φθίνουσα συνάρτηση του α. (Αν δηλαδή α < α 2 F(α ) F(α 2 )). 2) H F(α) είναι συνεχής από τα δεξιά α R. (Δηλαδη lm F( α ) F( α )). α a+ 0 n n 3) Η μέγιστη τίμη της F(α) είναι το και η ελάχιστη το 0. lm F α και lm F α (Δηλαδή ( ) ( ) 0). a + a Αν η τυχαία μεταβλητή Χ είναι διακριτή τότε η συνάρτηση F( ) είναι βαθμωτή με F(α) - F(α-) P(Xα). Οι παρακάτω ιδιότητες της συνάρτησης F X ( ), όπου Χ διακριτή, είναι προφανείς. ) P(α < X b) F(b) - F(α) 2) P(α X b) F(b) - F(α-) 3) P(α < X < b) F(b-) - F(α) 4) P(α X < b) F(b-) - F(α-). 70

33 Γραφική Παράσταση της Συνάρτησης F( ) Για το παράδειγμα όπου Χ είναι ο αριθμός των K που παρατηρήθηκαν όταν στρίβουμε ένα νόμισμα δυο φορές, έχουμε: F(x) 3/4 /2 /4 0 2 x 7

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. (α) Βρέστε την πιθανότητα κανείς από

Διαβάστε περισσότερα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΚΕΦΑΛΑΙΟ 9

Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΚΕΦΑΛΑΙΟ 9 ΚΕΦΑΛΑΙΟ 9 Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Η κανονική κατανομή ανακαλύφθηκε γύρω στο 720 από τον Abraham De Moivre στην προσπάθειά του να διαμορφώσει Μαθηματικά που να εξηγούν την τυχαιότητα. Γύρω στο 870, ο Βέλγος

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΘΗΜΤΙΚ ΓΕΝΙΚΗΣ ΠΙΔΕΙΣ ΠΙΘΝΟΤΗΤΕΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου Π Ι Θ Ν Ο Τ Η Τ Ε Σ ΟΡΙΣΜΟΙ Πείραμα τύχης λέγεται το πείραμα το οποίο όσες φορές και αν επαναληφθεί (φαινομενικά τουλάχιστον

Διαβάστε περισσότερα

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ). Υπενθυμίσεις Παραδείγματα Ασκήσεις Μελέτη 31 Οκτωβρίου 2014 Πιθανότητες και Στατιστική Διάλεξη 7 Ασκήσεις ΙΙ Δεσμευμένη πιθανότητα, Συνδυαστικά επιχειρήματα Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

ΙΙΙ εσµευµένη Πιθανότητα

ΙΙΙ εσµευµένη Πιθανότητα ΙΙΙ εσµευµένη Πιθανότητα 1 Λυµένες Ασκήσεις Ασκηση 1 Στρίβουµε ένα νόµισµα δύο ϕορές. Υποθέτοντας ότι και τα τέσσερα στοιχεία του δειγµατοχώρου Ω {(K, K, (K, Γ, (Γ, K, (Γ, Γ} είναι ισοπίθανα, ποια είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1.1 Απαρίθμηση και καταγραφή 1.2 Η αρχή του αθροίσματος 1.3 Η πολλαπλασιαστική αρχή 1.4 Άλλοι κανόνες απαρίθμησης 1.5 Πιθανότητες σε πεπερασμένους δειγματικούς χώρους 1.6 Γενικές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

Βασικές Έννοιες Πιθανότητας

Βασικές Έννοιες Πιθανότητας Βασικές Έννοιες Πιθανότητας 0 ΠΕΡΙΓΡΑΦΗ ΚΕΦΑΛΑΙΟΥ. ΑΒΕΒΑΙΟΤΗΤΑ, ΤΥΧΑΙΑ ΔΙΑΔΙΚΑΣΙΑ, ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ... Αβεβαιότητα και Τυχαίο Πείραμα.. Δειγματοχώρος και Δειγματοσημεία..3 Σύνθετος Δειγματοχώρος...4

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική

ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική Ο μεγάλος Γάλλος μαθηματικός Laplace έγραψε ότι οι Πιθανότητες δεν είναι τίποτα άλλο παρά η μετατροπή της κοινής λογικής σε μαθηματικές εκφράσεις. Η χρήση

Διαβάστε περισσότερα

ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ BAYES, Η ΙΑΜΟΡΦΩΣΗ ΤΟΥ ΟΜΩΝΥΜΟΥ ΘΕΩΡΗΜΑΤΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ BAYES, Η ΙΑΜΟΡΦΩΣΗ ΤΟΥ ΟΜΩΝΥΜΟΥ ΘΕΩΡΗΜΑΤΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ BAYES, Η ΙΑΜΟΡΦΩΣΗ ΤΟΥ ΟΜΩΝΥΜΟΥ ΘΕΩΡΗΜΑΤΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Χαράλαµπος Α. Χαραλαµπίδης Τµήµα Μαθηµατικών, Πανεπιστήµιο Αθηνών 23 Οκτωβρίου 2009 ΣΧΕ ΙΟ ΙΑΛΕΞΗΣ ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή

3 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή 3 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή Υπάρχει σε πολλούς η εντύπωση ότι το κύριο κίνητρο για την ανάπτυξη της Θεωρίας των Πιθανοτήτων προήλθε από το ενδιαφέρον του ανθρώπου για τα τυχερά παιχνίδια Σημαντική μάλιστα ώθηση

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

Πριν απο λιγα χρονια ημουνα ακριβως σαν εσενα.

Πριν απο λιγα χρονια ημουνα ακριβως σαν εσενα. Πριν απο λιγα χρονια ημουνα ακριβως σαν εσενα. Ηξερα οτι υπαρχουν επαγγελματιες παιχτες που κερδιζουν πολλα χρηματα απο το στοιχημα και εψαχνα να βρω τη "μυστικη formula" 'Ετσι κ εσυ. Πηρες μια απο τις

Διαβάστε περισσότερα

Στατιστική. Βασικές έννοιες

Στατιστική. Βασικές έννοιες Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό

Διαβάστε περισσότερα

3. Η Έννοια και Βασικές Ιδιότητες της Πιθανότητας

3. Η Έννοια και Βασικές Ιδιότητες της Πιθανότητας 3 Η Έννοια και Βασικές Ιδιότητες της Πιθανότητας Όπως ήδη έχουμε αναφέρει στην εισαγωγική ενότητα αλλά και όπως θα διαπιστώσουμε στις ενότητες που ακολουθούν, βεβαιότητες για συμπεράσματα που αφορούν σε

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008 Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 8 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 9.9.8. [] Μια βιομηχανία τροφίμων προμηθεύεται νωπά κοτόπουλα από τρεις διαφορετικούς παραγωγούς Α, Β, Γ. Το % των κοτόπουλων

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Δασική Γενετική Εισαγωγή: Βασικές έννοιες

Δασική Γενετική Εισαγωγή: Βασικές έννοιες Δασική Γενετική Εισαγωγή: Βασικές έννοιες Χειμερινό εξάμηνο 2014-2015 Γενετική Πειραματική επιστήμη της κληρονομικότητας Προέκυψε από την ανάγκη κατανόησης της κληρονόμησης οικονομικά σημαντικών χαρακτηριστικών

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

2013-14 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ. http://cutemaths.wordpress.

2013-14 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ. http://cutemaths.wordpress. 3-4 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ Βαγγέλης Α Νικολακάκης Μαθηματικός ttp://cutemats.wordpress.com/ ΛΙΓΑ ΛΟΓΙΑ Η παρούσα εργασία

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100 1. (Εξεταστ. Φεβ. 2004) Μια µεγάλη εταιρία θέλει να εξετάσει εάν το εκπαιδευτικό πρόγραµµα που ακολουθήσανε οι 100 πωλητές της ήταν αποτελεσµατικό (δηλαδή εάν αυξήθηκαν οι πωλήσεις). Οι δύο παρακάτω πίνακες

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 5 ο : Ο Προσδιορισμός των Τιμών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Οι συναρτήσεις ζήτησης και προσφοράς ενός αγαθού είναι: =20-2P και S =5+3P αντίστοιχα.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 0 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει βοήθεια κυρίως στους μαθητές

Διαβάστε περισσότερα

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων . Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων Με σκοπό την καλύτερη μελέτη τους και ανάλογα με τα χαρακτηριστικά τους, τα διάφορα επιστημονικά μοντέλα ή πειράματα ή γενικότερα τα φυσικά φαινόμενα μπορεί

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ A ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

ΠΑΡΑΡΤΗΜΑ A ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ ΠΑΡΑΡΤΗΜΑ A ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ A.0. Σύνολα Μια οποιαδήποτε συλλογή αντικειμένων λέγεται * ότι είναι ένα σύνολο και τα αντικείμενα λέγονται στοιχεία του συνόλου. Αν με Α συμβολίσουμε ένα σύνολο και α είναι

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΕΦΑΛΑΙΟ 6 ΣΥΝΑΡΤΗΣΕΙΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΠΟΛΥΜΕΤΑΒΛΗΤEΣ ΚΑΤΑΝΟΜEΣ Σε πολλά προβλήματα, ενδιαφερόμαστε για περισσότερα από ένα χαρακτηριστικά ενός πληθυσμού. Τα χαρακτηριστικά αυτά είναι πιθανό να αλληλοεξαρτώνται

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΣΥΝΘΕΤΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΣΥΣΤΗΜΑΤΑ

ΣΥΝΘΕΤΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΘΕΤΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΣΥΣΤΗΜΑΤΑ 1. Να λύσετε τα συστήματα: 4 1 17 x y α) 19 x y δ) 1 4 17 5 5 x y β) 15 1 1 y x 1 1 0 x y ε) 1 1 8 x y στ) γ) 5 5 a 1 7 1 1 5 x y 1 7 x y. Να λυθούν τα συστήματα:

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ)

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ) ΑΣΚΗΣΕΙΣ. Ο διευθυντής προσωπικού μιας μεγάλης εταιρείας πιστεύει ότι ίσως υφίσταται κάποια σχέση μεταξύ των ημερών απουσίας και της ηλικίας των εργαζομένων. Με βάση την υπόθεση αυτή ενδιαφέρεται να κατασκευάσει

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα