Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ"

Transcript

1 Πίνακες ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας και της άλγεβρας των πινάκων. Το ϕυλλάδιο διατίθεται ΩΡΕΑΝ και απαγορεύεται η εµπορική εκµετάλλευση από οποιονδήποτε. 1

2 Κ. Κυρίτσης 2 Πίνακες Περιεχόµενα 1 Ορισµός 3 2 Άλγεβρα Πινάκων Πρόσθεση Πολλαπλασιασµός µε Βαθµωτό Πολλαπλασιασµός Πινάκων Κατηγορίες Πινάκων Ανάστροφος Τετραγωνικοί Ιχνος, Τριγωνικός, ιαγώνιος Πίνακας Μονάδα υνάµεις και Πολυώνυµα Πινάκων Αντίστροφος Ειδικοί Πραγµατικοί Πίνακες Συµµετρικοί Αντισυµµετρικοί Ορθογώνιοι Κανονικός Μιγαδικοί Πίνακες Μιγαδικός Συζυγής Ερµιτιανός Συζυγής Ερµιτιανός και Ανθερµιτιανός Πίνακας Μοναδιαίος Πίνακας Κανονικός Πίνακας Εύρεση Αντιστρόφου 7 5 Κλιµακωτή Μορφή Πίνακα 8 6 Οµοιοι Πίνακες 8

3 Κ. Κυρίτσης 3 Πίνακες 1 Ορισµός Πίνακας A στο σώµα K ή απλά πίνακας ονοµάζεται µια διάταξη αριθµών γραµµένη ως εξής: a 11 a a 1n A = a 21 a a 2n (1) a m1 a m2... a mn Λέµε τότε ο πίνακας έχει m γραµµές και n στήλες και λέµε ότι είναι πίνακας m n. Συνοπτικά γράφουµε A = (a ij ) όπου i = 1, 2,..., m και j = 1, 2,..., n. Αν m = 1 ο A λέγεται πίνακας γραµµή, αν n = 1 λέγεται πίνακας στήλη. Τα στοιχεία του πίνακα είναι αριθµοί από το σώµα K, συνήθως πραγµατικοί ή µιγαδικοί. Ο πίνακας που όλα του τα στοιχεία είναι µηδέν λέγεται µηδενικός πίνακας. 2 Άλγεβρα Πινάκων 2.1 Πρόσθεση Ορίζεται για πίνακες ίδιας διάστασης και είναι για τους πίνακες A = (a ij ), B = (b ij ) a 11 + b 11 a 12 + b a 1n + b 1n A + B = a 21 + b 21 a 22 + b a 2n + b 2n (2) a m1 + b m1 a m2 + b m2... a mn + b mn Το αποτέλεσµα είναι πίνακας m n. 2.2 Πολλαπλασιασµός µε Βαθµωτό Το γινόµενο αριθµού λ K µε τον πίνακα A = (a ij ) ορίζεται να είναι λa 11 λa λa 1n λa = λa 21 λa λa 2n (3) λa m1 λa m2... λa mn Ο αντίθετος ενός πίνακα ορίζεται να είναι A := ( 1)A και η αφαίρεση πινάκων A B = A + ( 1)B.

4 Κ. Κυρίτσης 4 Πίνακες 2.3 Πολλαπλασιασµός Πινάκων Εστω ο πίνακας γραµµή A = ( a 1 a 2 )... a n και ο πίνακας στήλη Ορίζουµε το γινόµενο B = b (4) A B = AB = ( ) a 1 a 2... a n b 2... = a 1b 1 + a 2 b a n b n = b 1 b n b 1 b n = n a i b i. (5) Το αποτέλεσµα είναι ένα ϐαθµωτό (πίνακας 1 1). Το γινόµενο δεν ορίζεται όταν οι πίνακες A, B έχουν διαφορετικό αριθµό στοιχείων. Εστω τώρα οι πίνακες A = (a ij ) διάστασης m n και B = (b jk ) διάστασης n k. Ορίζεται το γινόµενο A B να είναι ο πίνακας C = AḂ µε στοιχεία C = (c ik ), διάστασης m k. Το στοιχείο c ik προκύπτει σαν το γινόµενο της i γραµµής του A (ειδωµένης σαν πίνακας γραµµή) µε την k στήλη του B (ειδοµένης σαν πίνακας στήλη). n c ik = a ij b jk. (6) j=1 Το γινόµενο πινάκων ορίζεται µόνο όταν οι στήλες του πρώτου είναι ίσες µε τις γραµµές του δευτέρου. Εν γένει AB BA. 3 Κατηγορίες Πινάκων 3.1 Ανάστροφος Συµβολίζεται A T και προκύπτει από τον A = (a ij ) µε εναλλαγή γραµµών µε στήλες, A T = (a ji ). Αν ο A είναι m n, ο ανάστροφος είναι n m. 3.2 Τετραγωνικοί i=1 Είναι οι πίνακες µε ίσο αριθµό γραµµών και στηλών. Τα στοιχεία a ii αποτελούν την κύρια διαγώνιο.

5 Κ. Κυρίτσης 5 Πίνακες Ιχνος, Τριγωνικός, ιαγώνιος Ορίζουµε το ίχνος του πίνακα tr(a) = Ισχύει ότι n a ii. (7) i=1 tr(a + B) = tr(a) + trb tr(λa) = λtr(a) tr(a T ) = tr(a) tr(ab) = tr(ba). Αν a ij = 0 i < j τότε ο πίνακας ϑα λέγεται άνω τριγωνικός ή απλά τριγωνικός. Αν a ij = 0 i > j ϑα λέγεται κάτω τριγωνικός. Αν a ij = 0, i j ο πίνακας ϑα λέγεται διαγώνιος και συνήθως γράφουµε D = diag ( d 11, d 22,... d nn ). (8) Για διαγώνιους πίνακες είναι πάντα AB = BA Πίνακας Μονάδα Η συνάρτηση δέλτα του Kronecker ορίζεται να είναι { δ ij = 0 i j, 1 i = j. (9) Ο πίνακας n n µε στοιχεία δ ij γράφεται I n και λέγεται πίνακας µονάδα. Ισχύει ότι AI n = I n A = A για κάθε πίνακα A, n n.

6 Κ. Κυρίτσης 6 Πίνακες υνάµεις και Πολυώνυµα Πινάκων Για τετραγωνικούς πίνακες n n ορίζεται να είναι A 2 = AA, A 3 = A 2 A και γενικώς A n = A n 1 A. Κατά σύµβαση, A 0 = I n. Εστω το πολυώνυµο P(x) = a 0 + a 1 x + a 2 x a m x m. (10) Ορίζουµε το πολυώνυµο του πίνακα A να είναι Αντίστροφος P(A) = a 0 I n + a 1 A + a 2 A a m A m. (11) εδοµένου ενός πίνακα A, αν υπάρχει πίνακας B τέτοιος ώστε AB = BA = I n τότε ϑα λέµε ότι ο B είναι ο αντίστροφος του A και ϑα γράφουµε B = A 1. Σ αυτή την περίπτωση ϑα λέµε ότι ο A είναι αντιστρέψιµος. Ο αντίστροφος, εφ όσων υπάρχει, είναι µοναδικός. 3.3 Ειδικοί Πραγµατικοί Πίνακες Συµµετρικοί Είναι τετραγωνικοί πίνακες για τους οποίους A = A T. Για τα στοιχεία τους έχουµε ότι a ij = a ji Αντισυµµετρικοί Είναι τετραγωνικοί πίνακες για τους οποίους A = A T. Για τα στοιχεία τους έχουµε ότι a ij = a ji. Ειδικά για την κύρια διαγώνιο, a ii = Ορθογώνιοι Ενας πραγµατικός πίνακας είναι ορθογώνιος εάν A 1 = A T. Ισοδύναµα AA T = A T A = I n Κανονικός Εάν ο A µετατίθεται µε τον ανάστροφό του, AA T = A T A, ϑα λέγε κανονικός. Αν ο A είναι συµµετρικός, αντισυµµετρικός ή ορθογώνιος, τότε είναι και κανονικός. εν ισχύει το αντίστροφο.

7 Κ. Κυρίτσης 7 Πίνακες 3.4 Μιγαδικοί Πίνακες Πρόκειται για πίνακες µε στοιχεία από το σώµα των µιγαδικών αριθµών C. Ο ορισµός του συµµετρικού και του αντισυµµετρικού παραµένουν ίδιοι Μιγαδικός Συζυγής Είναι A = (a ij ) Ερµιτιανός Συζυγής Είναι A = (A ) T = (A T ). Είναι συνδυασµός µιγαδικού συζυγούς και αναστροφής Ερµιτιανός και Ανθερµιτιανός Πίνακας Ερµιτιανός είναι ο πίνακας για τον οποίο Ανθερµιτιανός είναι ο πίνακας για τον οποίο Μοναδιαίος Πίνακας Είναι ο πίνακας για τον οποίο Ισοδύναµα AA = A A = I n Κανονικός Πίνακας A = A. (12) A = A. (13) A = A 1. (14) Για τους µιγαδικούς πίνακες, κανονικός ορίζεται να είναι ο πίνακας για τον οποίο AA = A A. (15) 4 Εύρεση Αντιστρόφου Ο αντίστροφος πίνακας µπορεί να ϐρεθεί είτε µε την µέθοδο Gauss-Jordan είτε µε την µέθοδο του προσαρτηµένου πίνακα.

8 Κ. Κυρίτσης 8 Πίνακες 5 Κλιµακωτή Μορφή Πίνακα Είναι η µορφή στην οποία σε κάθε γραµµή το πρώτο µη µηδενικό στοιχείο είναι δεξιότερα από το αντίστοιχο της προηγούµενης γραµµής. Στην περίπτωση που το πρώτο µη µηδενικό στοιχείο κάθε γραµµής είναι η µονάδα, µιλάµε για κανονική κλιµακωτή µορφή. 6 Οµοιοι Πίνακες Θα λέµε ότι ο πίνακας B είναι όµοιος µε τον A αν υπάρχει αντιστρέψιµος πίνακας P και ισχύει B = P 1 AP.

9 Κ. Κυρίτσης 9 Πίνακες ΕΚΠΑΙ ΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ Πανεπιστηµιακά Φροντιστήρια Μαθήµατα για: Πανεπιστήµιο Πειραιώς Οικονοµικό Πανεπιστήµιο Αθηνών Καποδιστριακό Πανεπιστήµιο Αθηνών Πάντειον Πανεπιστήµιο Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Ελληνικό Ανοικτό Πανεπιστήµιο (ΕΑΠ) ΤΕΙ Αθηνών ΤΕΙ Πειραιώς... Σεµινάρια για ιαγωνισµούς ηµοσίου Προετοιµασία για: Εθνική Σχολή ηµόσιας ιοίκησης Εθνική Σχολή Τοπικής Αυτοδιοίκησης Υπουργείο Οικονοµικών Υπουργείο Εξωτερικών Υπουργείο ικαιοσύνης ιαγωνισµός Εκπαιδευτικών ιαγωνισµός Ευρύτερου ηµόσιου Τοµέα.

10 Κ. Κυρίτσης 10 Πίνακες Ξένες Γλώσσες Αγγλικά Κινέζικα TOEFL (εξεταστικό κέντρο) GMAT IELTS TOEIC GRE Εξειδικευµένα Σεµινάρια Επίσηµο Εξεταστικό Κέντρο TOEFL Στατιστικά Προγράµµατα (SPSS, StatView,... ) Matlab Mathematica Autocad Μηχανογραφηµένη Λογιστική Γλώσσες Προγραµµατισµού (C, C++, Java, Php,... )

11 Κ. Κυρίτσης 11 Πίνακες Πληροφορική (Πιστοποιήσεις) Βασικό Επίπεδο (απαραίτητο στον ΑΣΕΠ) Προχωρηµένο Επίπεδο Εξειδικευµένο Επίπεδο Πιστοποιηµένο Εξεταστικό Κέντρο ECDL Πιστοποιηµένο Εξεταστικό Κέντρο keycert Επισκεφθείτε την ιστοσελίδα µας και ενηµερωθείτε για τα προγράµµατά µας. ιευθυντής Εκπαίδευσης ρ. Χόντας Στυλιανός ιδάκτωρ Μηχανικός ΕΜΠ Ηλεκτρολόγος Μηχανικός & Μηχανικός Η/Υ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Μετασχηµατισµός Laplace ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 4 Μαρτίου 29 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας του µετασχηµατισµού Laplace

Διαβάστε περισσότερα

Κατανομές Απώλειας. Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος

Κατανομές Απώλειας. Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Κατανομές Απώλειας Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Απαγορεύεται η αναδημοσίευση, η αναπαραγωγή, ολική ή περιληπτική του περιεχομένου αυτού με οποιονδήποτε τρόπο χωρίς προηγούμενη γραπτή άδεια του

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Σηµειώσεις Γραµµικής Άλγεβρας

Σηµειώσεις Γραµµικής Άλγεβρας Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από

Διαβάστε περισσότερα

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0 Σελίδα από 53 Κεφάλαιο 3 Πίνακες Περιεχόµενα 3 Ορισµοί Επεξεργασµένα Παραδείγµατα Ασκήσεις 3 3 Πράξεις µε Πίνακες Πρόσθεση Πινάκων Πολλαπλασιασµός Πίνακα µε Αριθµό Πολλαπλασιασµός Πινάκων ιωνυµικό Ανάπτυγµα

Διαβάστε περισσότερα

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD ΚΕΦΑΛΑΙΟ ΙΙΙ ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD Εισαγωγή To παρόν κεφάλαιο χωρίζεται σε μέρη. Στο (Α), μεταξύ άλλων, εξηγούμε γιατί μας ενδιαφέρει η λεγόμενη ανάλυση σε παράγοντες ειδικούς πίνακες (decompositio)

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θέµα α) (µ) Θεωρούµε ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουλίου 3 (διάρκεια: 3 ώρες

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ 7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

http://kesyp.didefth.gr/ 1

http://kesyp.didefth.gr/ 1 248_Τµήµα Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης, Ηράκλειο Προπτυχιακό Πρόγραµµα Σκοπός του Τµήµατος Εφαρµοσµένων Μαθηµατικών είναι η εκαπαίδευση επιστηµόνων ικανών όχι µόνο να υπηρετήσουν και να

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ 2. ΣΠΟΥ ΕΣ 3. ΑΚΑ ΗΜΑΪΚΗ Ι ΑΚΤΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΜΠΕΙΡΙΑ. Στυλιανός Θ. Τσιλίκης Βιογραφικό Σηµείωµα

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ 2. ΣΠΟΥ ΕΣ 3. ΑΚΑ ΗΜΑΪΚΗ Ι ΑΚΤΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΜΠΕΙΡΙΑ. Στυλιανός Θ. Τσιλίκης Βιογραφικό Σηµείωµα ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ Επώνυµο : ΤΣΙΛΙΚΗΣ Όνοµα : ΣΤΥΛΙΑΝΟΣ Όνοµα Πατρός : ΘΕΟ ΩΡΟΣ Έτος Γέννησης : 12 Ιουνίου 1971 ιεύθυνση Κατοικίας : Αλεξάνδρου ιάκου 36, Νέο Ηράκλειο, Αθήνα Τηλέφωνο

Διαβάστε περισσότερα

Κατασκευή Προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή Προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή Προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Λιακόπουλος Ιωάννης1 και Λυπηρίδης Χαράλαμπος2 1liakopoulosjohn@gmail.com, 2xarislip@hotmail.com Επιβλέπων Καθηγητής: Λάζαρος Τζήμκας tzimkaslazaros@gmail.com

Διαβάστε περισσότερα

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Ν. Λυγερός Παρουσίαση εργασίας φοιτητή Θα µιλήσουµε για το θεώρηµα του Lagrange. Αλλά προτού φτάσουµε εκεί, θα ήθελα να εισάγω ορισµένες έννοιες που θα µας

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

ΠΡΟΣΚΛΗΣΗ ΕΚ ΗΛΩΣΗΣ ΕΝ ΙΑΦΕΡΟΝΤΟΣ ΕΚΠΑΙ ΕΥΟΜΕΝΩΝ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ «ΣΥΓΧΡΟΝΕΣ ΕΞΕΛΙΞΕΙΣ ΣΤΙΣ ΘΑΛΑΣΣΙΕΣ ΚΑΤΑΣΚΕΥΕΣ» Ηµεροµηνία έναρξης: Τρία εξέχοντα Πανεπιστήµια της χώρας ενώνουν τις δυνάµεις

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής 3 Ενισχυτές Μετρήσεων 3.1 Ο διαφορικός Ενισχυτής Πολλές φορές ένας ενισχυτής σχεδιάζεται ώστε να αποκρίνεται στη διαφορά µεταξύ δύο σηµάτων εισόδου. Ένας τέτοιος ενισχυτής ονοµάζεται ενισχυτής διαφοράς

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

α,. J α12 α22... α2η Στα παρακάτω, εκτός εάν αναφέρεται ρητά, οι πίνακες θα είναι πραγματικοί, δηλ. όλα τα στοιχεία τους θα είναι πραγματικοί αριθμοι

α,. J α12 α22... α2η Στα παρακάτω, εκτός εάν αναφέρεται ρητά, οι πίνακες θα είναι πραγματικοί, δηλ. όλα τα στοιχεία τους θα είναι πραγματικοί αριθμοι Α ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ Α.Ι. Πράξεις πινάκων Ένας mxn πίνακας Α είναι η διάταξη m ' n στοιχείων από κάποιο αλγεβρικό σώμα, σε m γραμμές και η στήλες, και αν συμβολίσουμε με aij το στοιχείο που βρίσκεται στην

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR. Τα IIR φίλτρα είναι επαναληπτικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοποιούνται από το σύστηµα για τον υπολογισµό τν νέν τιµών της εξόδου σε επόµενες χρονικές στιγµές. Για να επιτύχουµε

Διαβάστε περισσότερα

Master of Science in Information Technology (Software and Systems), 01/12/2000, ΙΚΑΤΣΑ, Μάστερ Επιστήµων (Μ.C.s.) στην πληροφορική 23/04/2001

Master of Science in Information Technology (Software and Systems), 01/12/2000, ΙΚΑΤΣΑ, Μάστερ Επιστήµων (Μ.C.s.) στην πληροφορική 23/04/2001 Τ.Ε.Ι. ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΞΙΟΛΟΓΗΣΗ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΣΥΝΕΡΓΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2012-2013 ΠΙΝΑΚΑΣ (α) άρθρου 2, παρ. 2, Π.. 163, ΦΕΚ 149/26-06-2002, τεύχος

Διαβάστε περισσότερα

Pascal Βασικοί τύποι δεδοµένων

Pascal Βασικοί τύποι δεδοµένων Pasal Βασικοί τύποι δεδοµένων «ΜΗ ΕΝ ΠΟΛΛΟΙΣ ΟΛΙΓΑ ΛΕΓΕ, ΑΛΛ ΕΝ ΟΛΙΓΟΙΣ ΠΟΛΛΑ» Σηµαίνει: "Μη λες πολλά χωρίς ουσία, αλλά λίγα που να αξίζουν πολλά" (Πυθαγόρας) Κουλλάς Χρίστος www.oullas.om oullas 2 Στόχοι

Διαβάστε περισσότερα

apple system Ολική ποιότητα εκπαίδευσης απλά... μαθαίνεις Υψηλή ακαδημαϊκή ποιότητα Τεχνολογία και εκπαίδευση Είναι γεγονός!

apple system Ολική ποιότητα εκπαίδευσης απλά... μαθαίνεις Υψηλή ακαδημαϊκή ποιότητα Τεχνολογία και εκπαίδευση Είναι γεγονός! Ολική ποιότητα εκπαίδευσης Υψηλή ακαδημαϊκή ποιότητα Τεχνολογία και εκπαίδευση Είναι γεγονός! Μια νέα εποχή έχει ξεκινήσει στην εκπαίδευση. Μια εποχή που τοποθετεί εσάς στο κέντρο κάθε ενέργειας, δράσης

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

Διανομή Οδηγού Καριέρας 2014

Διανομή Οδηγού Καριέρας 2014 Διανομή Οδηγού Καριέρας 2014 Ο Οδηγός Καριέρας εκδίδεται τα τελευταία χρόνια από το kariera.gr, αποτελώντας μέρος μιας συστηματικής και συνολικής προσπάθειας ώστε να έρθουν κοντά οι νέοι απόφοιτοι και

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

ΕΙ ΙΚΟ ΠΑΡΑΡΤΗΜΑ (Α1) ΑΠΟ ΕΙΞΗΣ ΧΕΙΡΙΣΜΟΥ Η/Υ

ΕΙ ΙΚΟ ΠΑΡΑΡΤΗΜΑ (Α1) ΑΠΟ ΕΙΞΗΣ ΧΕΙΡΙΣΜΟΥ Η/Υ ΕΙ ΙΚΟ ΠΑΡΑΡΤΗΜΑ (Α1) ΑΠΟ ΕΙΞΗΣ ΧΕΙΡΙΣΜΟΥ Η/Υ Η γνώση χειρισµού Η/Υ στα αντικείµενα: α) επεξεργασίας κειµένων, β) υπολογιστικών φύλλων και γ) υπηρεσιών διαδικτύου αποδεικνύεται ως εξής: (1) Με πιστοποιητικά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος Θεωρια Αριθµων Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 25 Μαιου 2013 2

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

File: D:\ISTOSELIDA\SED_3C1\sed11_pin4x.txt 2/2/2006, 9:09:14πµ

File: D:\ISTOSELIDA\SED_3C1\sed11_pin4x.txt 2/2/2006, 9:09:14πµ Ηµ/νία: 31/01/2006 ΠΡΟΓΡΑΜΜΑΤΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ Σελίδα 1 από 8 ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΥΝΟΛΟ Αραβικές Χώρες Λοιπή Ασία Λοιπή Αφρική Νοτιαφρικανική ΗΠΑ-Καναδάς Ωκεανία Πρώην ΕΣΣ ΣΧΟΛΗ Ενωση ΤΜΗΜΑ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΕΙ ΙΚΟ ΠΑΡΑΡΤΗΜΑ (Α1) ΑΠΟ ΕΙΞΗΣ ΧΕΙΡΙΣΜΟΥ Η/Υ

ΕΙ ΙΚΟ ΠΑΡΑΡΤΗΜΑ (Α1) ΑΠΟ ΕΙΞΗΣ ΧΕΙΡΙΣΜΟΥ Η/Υ ΕΙ ΙΚΟ ΠΑΡΑΡΤΗΜΑ (Α1) ΑΠΟ ΕΙΞΗΣ ΧΕΙΡΙΣΜΟΥ Η/Υ 03-10-2013 Η γνώση χειρισµού Η/Υ στα αντικείµενα: α) επεξεργασίας κειµένων, β) υπολογιστικών φύλλων και γ) υπηρεσιών διαδικτύου αποδεικνύεται ως εξής: (1)

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

Πώς θα κατανεµηθούν οι σχολές από το 2016

Πώς θα κατανεµηθούν οι σχολές από το 2016 Πώς θα κατανεµηθούν οι σχολές από το 2016 Με βάση τη νέα ένταξη των τµηµάτων πανεπιστηµίων και ΤΕΙ στα πέντε επιστηµονικά πεδία, το 2ο Πεδίο «Θετικές και Τεχνολογικές Επιστήµες» είναι το πιο ευνοηµένο.

Διαβάστε περισσότερα

Τηλέφωνο: (26310) 58212 3) ΠΙΝΑΚΑΣ ΑΝΑΚΟΙΝΩΣΕΩΝ ΦΑΞ : (26310) 25183 e-mail: ksamalek@teimes.gr Α/Α ΓΝΩΣΤΙΚΑ ΑΝΤΙΚΕΙΜΕΝΑ ΏΡΕΣ /ΕΒΔΟΜΑΔΑ ΛΟΓΙΣΤΙΚΗ

Τηλέφωνο: (26310) 58212 3) ΠΙΝΑΚΑΣ ΑΝΑΚΟΙΝΩΣΕΩΝ ΦΑΞ : (26310) 25183 e-mail: ksamalek@teimes.gr Α/Α ΓΝΩΣΤΙΚΑ ΑΝΤΙΚΕΙΜΕΝΑ ΏΡΕΣ /ΕΒΔΟΜΑΔΑ ΛΟΓΙΣΤΙΚΗ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΙΑΥΓΕΙΑ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Μεσολόγγι 27 /06/2011 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (ΤΕΙ) Αριθ.Πρωτ : Φ 2.2/2358 ΜΕΣΟΛΟΓΓΙΟΥ Ταχ. /νση : ΝΕΑ ΚΤΙΡΙΑ Τ.Κ. 302.00 ΠΡΟΣ:1) Ο.Α.Ε. ΜΕΣΟΛΟΓΓΙΟΥ Πληροφορίες

Διαβάστε περισσότερα

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις Σελίδα 1 από 9 Κεφάλαιο 8 1 Γραµµικές Απεικονίσεις Τα αντικείµενα µελέτης της γραµµικής άλγεβρας είναι σύνολα διανυσµάτων που χαρακτηρίζονται µε την αλγεβρική δοµή των διανυσµατικών χώρων. Όπως λοιπόν

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Μαθηµατικά Ι Ακαδ. Έτος 2008-9 1/24 Κ2: Γραµµικά συστήµατα 1. Ορισµοί 2. Σύστηµα σε µορφή πίνακα 3. Επίλυση Crammer 4. Επίλυση Gauss

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

18η Διημερίδα Διεθνών και Δημοσίων Σχέσεων 25-26 Ιουνίου 2015 Ρέθυμνο

18η Διημερίδα Διεθνών και Δημοσίων Σχέσεων 25-26 Ιουνίου 2015 Ρέθυμνο 18η Διημερίδα Διεθνών και Δημοσίων Σχέσεων 25-26 Ιουνίου 2015 Ρέθυμνο Η αρχική ιδέα για τη δημιουργία Ομίλου Πρακτικής Άσκησης δια μέσου του προγράμματος LLP- ERASMUS έγινε από τους υπευθύνους των Τμημάτων

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ Ο ΓΕΝΙΚΟΣ ΓΡΑΜΜΑΤΕΑΣ ΠΕΡΙΦΕΡΕΙΑΣ ΗΠΕΙΡΟΥ

ΑΠΟΦΑΣΗ Ο ΓΕΝΙΚΟΣ ΓΡΑΜΜΑΤΕΑΣ ΠΕΡΙΦΕΡΕΙΑΣ ΗΠΕΙΡΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΗΠΕΙΡΟΥ ΓΕΝΙΚΗ IΕΥΘΥΝΣΗ ΠΕΡΙΦΕΡΕΙΑΣ /ΝΣΗ ΣΧΕ ΙΑΣΜΟΥ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΗΣ ΠΡΟΓΡ/ΤΩΝ & ΙΑΧ/ΣΗΣ ΕΡΓΩΝ Ταχ. /νση : Β. Ηπείρου 20 ΙΩΑΝΝΙΝΑ ΤΚ45332 Πληροφορίες: Ν.Θεοδόσης

Διαβάστε περισσότερα

Λαμία 25/1/2012 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΠΡΟΣ: ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΤΕΙ ΛΑΜΙΑΣ

Λαμία 25/1/2012 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΠΡΟΣ: ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΤΕΙ ΛΑΜΙΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Λαμία 25/1/2012 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ Ταχ. Δ/νση: 3ο χιλ. Π.Ε.Ο. Λαμίας - Αθηνών 35100 Λαμία ΠΡΟΣ: ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΤΕΙ ΛΑΜΙΑΣ ΚΟΙΝ: TEI ΛΑΜΙΑΣ ΠΡΑΚΤΙΚΟ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Θέμα: Απόδειξη της γνώσης πληροφορικής και χειρισμού Η/Υ, ως πρόσθετου προσόντος για διορισμό σε θέσεις δημοσίων υπηρεσιών κ.λπ.

Θέμα: Απόδειξη της γνώσης πληροφορικής και χειρισμού Η/Υ, ως πρόσθετου προσόντος για διορισμό σε θέσεις δημοσίων υπηρεσιών κ.λπ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ, ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΠΟΚΕΝΤΡΩΣΗΣ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΗΛΕΚΤΡΟΝΙΚΗΣ ΔΙΑΚΥΒΕΡΝΗΣΗΣ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΔΙΟΙΚΗΤΙΚΗΣ ΟΡΓΑΝΩΣΗΣ & ΔΙΑΔΙΚΑΣΙΩΝ ΔΙΕΥΘΥΝΣΗ

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

σχετικά µε τις «Αναθέσεις µαθηµάτων Γυµνασίου, Γενικού Λυκείου, ΕΠΑ.Λ. και ΕΠΑ.Σ.»

σχετικά µε τις «Αναθέσεις µαθηµάτων Γυµνασίου, Γενικού Λυκείου, ΕΠΑ.Λ. και ΕΠΑ.Σ.» Κοινό Υπόµνηµα ΠΕΚΑΠ, +++? σχετικά µε τις «Αναθέσεις µαθηµάτων Γυµνασίου, Γενικού Λυκείου, ΕΠΑ.Λ. και ΕΠΑ.Σ.» Αξιότιµε Κύριε Υφυπουργέ Σε συνέχεια των εγγράφων που σας έχουµε αποστείλει σε σχέση µε τις

Διαβάστε περισσότερα

Τ.Υ.Π.Ε.Τ. ΠΡΟΚΗΡΥΞΗ ΕΣΩΤΕΡΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΤΗΝ ΚΑΛΥΨΗ ΘΕΣΕΩΝ ΔΙΟΙΚΗΤΙΚΩΝ ΥΠΑΛΛΗΛΩΝ Τ.Υ.Π.Ε.Τ. για ΑΘΗΝΑ

Τ.Υ.Π.Ε.Τ. ΠΡΟΚΗΡΥΞΗ ΕΣΩΤΕΡΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΤΗΝ ΚΑΛΥΨΗ ΘΕΣΕΩΝ ΔΙΟΙΚΗΤΙΚΩΝ ΥΠΑΛΛΗΛΩΝ Τ.Υ.Π.Ε.Τ. για ΑΘΗΝΑ Τ.Υ.Π.Ε.Τ. Αθήνα, 18 Μαρτίου 2014 ΠΡΟΚΗΡΥΞΗ ΕΣΩΤΕΡΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΥ Τ.Υ.Π.Ε.Τ. για ΑΘΗΝΑ ΔΙΚΑΙΩΜΑ ΣΥΜΜΕΤΟΧΗΣ ΕΧΟΥΝ ΜΟΝΟ ΤΕΚΝΑ ΕΡΓΑΖΟΜΕΝΩΝ Ή ΣΥΝΤΑΞΙΟΥΧΩΝ ΣΤΗΝ Ε.Τ.Ε., ΣΤΟ Τ.Υ.Π.Ε.Τ. ΚΑΙ ΤΟΥΣ ΣΥΛΛΟΓΟΥΣ Ε.Τ.Ε.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΚΩΔΙΚΟΠΟΙΗΣΗ ΕΠΑΓΓΕΛΜΑΤΟΣ 3121 ΠΕΡΙΓΡΑΦΗ ΕΠΑΓΓΕΛΜΑΤΟΣ Οι πτυχιούχοι του τμήματος Ηλεκτρονικών Υπολογιστικών Συστημάτων (ΗΥΣ) του Τ.Ε.Ι. Πειραιά διαθέτουν τις εξειδικευμένες

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

ΙΕΥΘΥΝΣΗ Οργάν. & ιεξ. Εξετάσεων. - Όλα τα Ενιαία Λύκεια (δια των /ντων Ε)

ΙΕΥΘΥΝΣΗ Οργάν. & ιεξ. Εξετάσεων. - Όλα τα Ενιαία Λύκεια (δια των /ντων Ε) ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝ. ΠΑΙ ΕΙΑΣ & ΘΡΗΣΚ/ΤΩΝ ΙΕΥΘΥΝΣΗ Οργάν. & ιεξ. Εξετάσεων ΤΜΗΜΑ B Αθήνα 2/ 11 / 2005 Αρ.Πρωτ. Βαθµός Φ.252/ 121456 / Β6 Μητροπόλεως 15 101 85 ΑΘΗΝΑ Πληροφορίες: Τηλέφωνο:

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 4 Η Ευκλείδεια Γεωμετρία στην εκπαίδευση και στην κοινωνία. Κώστας Μαλλιάκας, Καθηγητής Δ.Ε., 1 ο ΓΕΛ Ρόδου, kmath@otenet.gr

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 6. Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ. Ορισµός της συνάρτησης Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται µια διαδικασία (κανόνας τρόπος ), µε την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

ΕΠΕΑΕΚ 2.5.1.α «Ανάπτυξη των Ι ΒΕ και λειτουργία Προγραµµάτων δια βίου εκπαίδευσης»

ΕΠΕΑΕΚ 2.5.1.α «Ανάπτυξη των Ι ΒΕ και λειτουργία Προγραµµάτων δια βίου εκπαίδευσης» ΕΠΕΑΕΚ...α «Ανάπτυξη των Ι ΒΕ και λειτουργία Προγραµµάτων δια βίου εκπαίδευσης» ΠΡΟΤΑΣΗ ΙΕΞΑΓΩΓΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ ΜΕΤΕΚΠΑΙ ΕΥΣΗΣ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΙΝΣΤΙΤΟΥΤΟΥ ΙΑ ΒΙΟΥ ΕΚΠΑΙ ΕΥΣΗΣ ια του Συµβουλίου του Τ.Ε.Ι.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα