Μεταθέσεις και πίνακες μεταθέσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μεταθέσεις και πίνακες μεταθέσεων"

Transcript

1 Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, Α.1 Μεταθέσεις Μια μετάθεση (permutation σ είναι μια ένα-προς-ένα απεικόνιση του συνόλου S n = {1, 2,..., n}, με n 2, στον εαυτό του. Έστω σ(i η εικόνα του φυσικού αριθμού i μέσω της μετάθεσης σ. Ο χαρακτηρισμός ένα-προς-ένα σημαίνει ότι: σ(i σ(j, εάν i j. Επομένως, το σύνολο {σ(1, σ(2,..., σ(n} περιέχει n διακεκριμένα στοιχεία που δεν είναι άλλα από τους φυσικούς αριθμούς 1, 2,..., n, σε μια διαφορετική όμως διάταξη. Ένας πρακτικός τρόπος προσδιορισμού μιας μετάθεσης σ είναι ο εξής ( 1 2 n σ =, (Α.1 σ(1 σ(2 σ(n δηλ. κάτω από κάθε στοιχείο του S n τοποθετούμε την αντίστοιχη εικόνα του. Προφανώς, δεν είναι αναγκαίο να γράφουμε τα στοιχεία του S n πάντα στη διάταξη 1, 2,..., n, αρκεί κάτω από κάθε στοιχείο να βρίσκεται η αντίστοιχη εικόνα. Για παράδειγμα, έστω S 4 = {1, 2, 3, 4}. Η μετάθεση σ για την οποία σ(1 = 2, σ(2 = 4, σ(3 = 3, σ(4 = 1, μπορεί να προσδιοριστεί με τους παρακάτω ισοδύναμους τρόπους σ = ( ή ( ή ( (Α.2 Η σύνθεση μιας μετάθεσης σ με μια μετάθεση ρ δημιουργεί τη μετάθεση ρ σ, η οποία ορίζεται με τον συνήθη τρόπο σύνθεσης δύο συναρτήσεων. Συγκεκριμένα, η ρ σ ορίζεται ως η μετάθεση που αντιστοιχεί στο στοιχείο i την εικόνα ρ(σ(i, δηλ. (ρ σ(i = ρ(σ(i. Για παράδειγμα, εάν σ είναι η μετάθεση (Α.2 και ρ είναι η μετάθεση ( ρ =, (Α

2 52 Παρ. Α Μεταθέσεις και πίνακες μεταθέσεων τότε και ρ σ = σ ρ = ( ( , (Α.4. (Α.5 Παρατηρούμε λοιπόν ότι, εν γένει, ρ σ σ ρ. Η μετάθεση που αφήνει όλα τα στοιχεία του S n σταθερά ονομάζεται ταυτοτική μετάθεση και συμβολίζεται με ϵ ( 1 2 n ϵ =. (Α n Προφανώς, ισχύει ότι σ ϵ = σ = ϵ σ, για κάθε μετάθεση σ, και επιπλέον η ϵ είναι η μοναδική μετάθεση που έχει αυτήν τη χαρακτηριστική ιδιότητα. Για κάθε μετάθεση σ, υπάρχει μία μοναδική μετάθεση σ 1, τέτοια ώστε: σ σ 1 = ϵ = σ 1 σ, δηλ. σ 1 (σ(i = i, για κάθε i = 1, 2,..., n. Η σ 1 ονομάζεται η αντίστροφη της σ και έχουμε ( σ 1 σ(1 σ(2 σ(n =. (Α n Εάν για ένα ζεύγος στοιχείων i < j του S n ισχύει ότι σ(i > σ(j, τότε λέγεται ότι η σ περιέχει μια αναστροφή (inversion. Ο ολικός αριθμός αναστροφών της σ θα συμβολίζεται με N(σ. Για τη μετάθεση του παραδείγματος (Α.2 έχουμε: N(σ = 4. Γενικά, ισχύει ότι: N(σ = N(σ 1, για κάθε μετάθεση σ. Επιπλέον, είναι προφανές ότι: N(ϵ = 0. Ως πρόσημο μιας μετάθεσης σ ορίζεται ο αριθμός: ( 1 N(σ. Εάν ο ολικός αριθμός αναστροφών N(σ της σ είναι άρτιος, τότε προφανώς ( 1 N(σ = 1 και η μετάθεση λέγεται ότι είναι άρτια. Αντιστοίχως, εάν ο ολικός αριθμός αναστροφών είναι περιττός, τότε ( 1 N(σ = 1 και η μετάθεση λέγεται ότι είναι περιττή. Από τον ορισμό του προσήμου και τις προηγούμενες παρατηρήσεις έπονται οι απλές ταυτότητες: ( 1 N(ϵ = +1, ( 1 N(σ = ( 1 N(σ 1. (Α.8 Γενικότερα, έχουμε το παρακάτω πολύ χρήσιμο θεώρημα. Θεώρημα Α.1 Έστω δύο μεταθέσεις ρ και σ. Ισχύει ότι ( 1 N(ρ σ = ( 1 N(ρ ( 1 N(σ. Απόδειξη: Η ρ μπορεί να παρασταθεί με τη μορφή ( σ(i σ(j ρ = ρ(σ(i ρ(σ(j (Α.9, (Α.10 δεδομένου ότι κάθε στοιχείο του S n εμφανίζεται στην πρώτη γραμμή. Επομένως, για να μετρήσουμε τις αναστροφές της ρ, αρκεί να συγκρίνουμε τα σ(i και σ(j με τα ρ(σ(i και ρ(σ(j. Για ένα δοσμένο ζεύγος i < j έχουμε τέσσερις μόνο δυνατότητες: 1. i < j, σ(i < σ(j, ρ(σ(i < ρ(σ(j: καμία αναστροφή στην σ, καμία αναστροφή στην ρ, καμία αναστροφή στην ρ σ.

3 Α.1 Μεταθέσεις i < j, σ(i < σ(j, ρ(σ(i > ρ(σ(j: καμία αναστροφή στην σ, μία αναστροφή στην ρ, μία αναστροφή στην ρ σ. 3. i < j, σ(i > σ(j, ρ(σ(i > ρ(σ(j: μία αναστροφή στην σ, καμία αναστροφή στην ρ, μία αναστροφή στην ρ σ. 4. i < j, σ(i > σ(j, ρ(σ(i < ρ(σ(j: μία αναστροφή στην σ, μία αναστροφή στην ρ, καμία αναστροφή στην ρ σ. Εξετάζοντας τις παραπάνω δυνατότητες, συμπεραίνουμε ότι ο N(ρ σ διαφέρει από τον N(ρ + N(σ πάντα κατά έναν άρτιο αριθμό. Επομένως, ισχύει ότι: ( 1 N(ρ σ = ( 1 N(ρ ( 1 N(σ. Θεώρημα Α.2 Εάν μια μετάθεση σ αφήνει κάποιο στοιχείο του S n σταθερό, τότε οι αναστροφές που περιέχουν το στοιχείο αυτό μπορούν να αγνοηθούν στον υπολογισμό του προσήμου της σ. Απόδειξη: Υποθέτουμε ότι σ(j = j. Υπάρχουν j 1 στοιχεία του S n μικρότερα του j και n j στοιχεία του S n μεγαλύτερα του j. Επομένως, η σ έχει τη γενική μορφή j 1 n j σ = 1,, j 1, j, j + 1,, n. (Α.11 σ(1,, σ(j 1, j, σ(j + 1,, σ(n Για i < j μια αναστροφή εμφανίζεται εάν και μόνο εάν σ(i > σ(j = j. Αντιστοίχως, για i > j μια αναστροφή εμφανίζεται εάν και μόνο εάν σ(i < σ(j = j. Έστω l ο αριθμός των στοιχείων i του S n τέτοια ώστε: i < j και σ(i > j. Ομοίως, έστω m ο αριθμός των στοιχείων i του S n τέτοια ώστε: i > j και σ(i < j. Ο αριθμός l + m ταυτίζεται λοιπόν με τον αριθμό των αναστροφών που περιέχουν το στοιχείο j. Παρατηρούμε τώρα ότι n j = (αριθμός των στοιχείων του S n μεγαλύτερων του j = l + [(n j m], (Α.12 άρα l = m. Επομένως, υπάρχουν l + m = 2l αναστροφές που περιέχουν το στοιχείο j. Δεδομένου ότι ο αριθμός 2l είναι άρτιος, μπορεί να αγνοηθεί στον υπολογισμό του πρόσημου ( 1 N(σ. Μια μετάθεση τ χαρακτηρίζεται ως αντιμετάθεση (transposition εάν υπάρχει ένα ζεύγος στοιχείων, i j, τέτοιο ώστε τ(i = j και τ(j = i, (Α.13 ενώ για όλα τα υπόλοιπα στοιχεία του S n έχουμε: τ(k = k. Με άλλα λόγια, μια αντιμετάθεση έχει τη μορφή ( 1 i j n τ =. (Α.14 1 j i n Προφανώς, για κάθε αντιμετάθεση τ ισχύει ότι: τ τ = ϵ, ή ισοδύναμα τ 1 = τ.

4 54 Παρ. Α Μεταθέσεις και πίνακες μεταθέσεων Θεώρημα Α.3 Κάθε αντιμετάθεση είναι περιττή. Απόδειξη: Έστω τ μια αντιμετάθεση των στοιχείων i και j. Σύμφωνα με το θεώρημα Α.2, στον υπολογισμό του προσήμου ( 1 N(τ μπορούμε να αγνοήσουμε τις αναστροφές που περιέχουν στοιχεία του S n διάφορα του i και j. Παραμένει λοιπόν ακριβώς μία αναστροφή που πρέπει να ληφθεί υπ όψιν και επομένως: ( 1 N(τ = ( 1 1 = 1. Θεώρημα Α.4 Κάθε μετάθεση μπορεί να εκφρασθεί ως μια σύνθεση αντιμεταθέσεων. Απόδειξη: Θα αποδείξουμε το θεώρημα με τη μέθοδο της επαγωγής ως προς την παράμετρο n του συνόλου S n = {1, 2,..., n}. Για n = 2 υπάρχουν συνολικά 2! = 2 μεταθέσεις των στοιχείων του συνόλου S 2 = {1, 2}; συγκεκριμένα οι εξής ϵ = ( , ρ = ( (Α.15 Προφανώς, η μετάθεση ρ είναι μια αντιμετάθεση ενώ για την ταυτοτική μετάθεση ϵ έχουμε την ισότητα: ρ ρ = ϵ. Επομένως, για n = 2 το θεώρημα ισχύει. Έστω n > 2 και ας υποθέσουμε ότι το θεώρημα ισχύει για n 1, δηλ. ισχύει για όλες τις μεταθέσεις του συνόλου S n 1 = {1, 2,..., n 1}. Έστω σ μια τυχαία μετάθεση του συνόλου S n = {1, 2,..., n}. Ορίζουμε τον φυσικό αριθμό l από τη σχέση: l = σ(n. Εάν l n, τότε ορίζουμε ως τ την αντιμετάθεση του S n με: τ(l = n και τ(n = l. Εάν l = n, τότε ορίζουμε ως τ την ταυτοτική μετάθεση του S n, δηλ. τ = ϵ. Σε κάθε περίπτωση, η τ σ είναι μια μετάθεση του S n τέτοια ώστε (τ σ(n = τ(σ(n = τ(l = n. (Α.16 Με άλλα λόγια, η μετάθεση τ σ αφήνει το στοιχείο n σταθερό. Επομένως, μπορούμε να θεωρήσουμε την τ σ ως μια μετάθεση του συνόλου S n 1 = {1, 2,..., n 1} για την οποία, από την υπόθεση της επαγωγής, θα υπάρχουν αντιμεταθέσεις τ 1,..., τ s του S n 1, τέτοιες ώστε τ σ = τ 1 τ s. (Α.17 Η τετριμμένη επέκταση της δράσης των τ 1,..., τ s στο σύνολο S n, θέτοντας εξ ορισμού τ 1 (n = = τ s (n = n, διατηρεί τον αντιμεταθετικό τους χαρακτήρα αλλά και την ισχύ της εξίσωσης (Α.17, που θεωρείται πλέον ως μια εξίσωση μεταξύ μεταθέσεων του S n. Μπορούμε τώρα να γράψουμε σ = τ 1 τ 1 τ s = τ τ 1 τ s, (Α.18 ολοκληρώνοντας έτσι την απόδειξή μας. Από τα θεωρήματα Α.1, Α.3, και Α.4 συνάγεται αμέσως η παρακάτω σημαντική πρόταση. Πρόταση Α.5 Ανεξάρτητα από τον τρόπο με τον οποίο μια μετάθεση σ έχει εκφρασθεί ως σύνθεση αντιμεταθέσεων τ 1,..., τ s, το πλήθος s των αντιμεταθέσεων είναι πάντοτε άρτιο ή πάντοτε περιττό, σύμφωνα με το εάν η μετάθεση σ είναι αντιστοίχως άρτια ή περιττή, όπως αυτό καθορίζεται από το πρόσημο της μετάθεσης: ( 1 N(σ = ( 1 s.

5 Α.1 Μεταθέσεις 55 Παράδειγμα Α.1 Θεωρούμε τη μετάθεση σ = ( , (Α.19 όπου N(σ = 3, καθώς και τις παρακάτω τρεις αντιμεταθέσεις: ( ( ( τ 1 =, τ =, τ = (Α.20 Προφανώς, έχουμε ότι σ = τ 2. (Α.21 Είναι επίσης εύκολο να ελεγχθεί ότι η μετάθεση σ εκφράζεται ισοδύναμα και ως σύνθεση των τριών αντιμεταθέσεων, τ 1, τ 2, τ 3, με την παρακάτω μορφή σ = τ 1 τ 2 τ 3. (Α.22 Παρατηρούμε ότι, και στις δύο περιπτώσεις (Α.21 (Α.22, η μετάθεση σ εκφράζεται ως σύνθεση ενός περιττού πλήθους αντιμεταθέσεων, όπως είναι αναμενόμενο από το γεγονός ότι η εν λόγω μετάθεση είναι περιττή: ( 1 N(σ = 1. Σύμφωνα με την πρόταση Α.5, είναι αδύνατον να εκφράσουμε τη μετάθεση (Α.19, σ, ως σύνθεση ενός άρτιου πλήθους αντιμεταθέσεων. Το θεώρημα Α.3 αποδεικνύει, μεταξύ άλλων, και την ύπαρξη τουλάχιστον μίας περιττής μετάθεσης. Από την άλλη μεριά, γνωρίζουμε ήδη την ύπαρξη τουλάχιστον μίας άρτιας μετάθεσης, της ταυτοτικής. Γενικότερα, ισχύει το παρακάτω θεώρημα. Θεώρημα Α.6 Το πλήθος των άρτιων μεταθέσεων ισούται με το πλήθος των περιττών μεταθέσεων. Απόδειξη: Έστω ρ μια δοσμένη περιττή μετάθεση. Εάν σ είναι μια τυχαία άρτια μετάθεση, τότε λόγω του θεωρήματος Α.1 η μετάθεση ρ σ είναι περιττή. Έχουμε λοιπόν μιαν απεικόνιση σ ρ σ, (Α.23 του συνόλου των άρτιων μεταθέσεων στο σύνολο των περιττών μεταθέσεων. Παρατηρούμε τώρα ότι, για κάθε περιττή μετάθεση ρ 0, υπάρχει μια άρτια μετάθεση σ 0 (συγκεκριμένα, η σ 0 ρ 1 ρ 0, τέτοια ώστε: ρ σ 0 = ρ 0. Επιπλέον, εάν σ 1 και σ 2 είναι δύο μεταθέσεις τέτοιες ώστε ρ σ 1 = ρ σ 2, τότε πολλαπλασιάζοντας από αριστερά με ρ 1 και χρησιμοποιώντας το γεγονός ότι ρ 1 ρ = ϵ, θα έχουμε: ϵ σ 1 = ϵ σ 2 και συνεπώς σ 1 = σ 2. Συνοψίζοντας, βλέπουμε ότι η (Α.23 αποτελεί μια αμφιμονοσήμαντη απεικόνιση των άρτιων μεταθέσεων στις περιττές. Επομένως, το πλήθος των άρτιων μεταθέσεων είναι αναγκαστικά ίσο με το πλήθος των περιττών μεταθέσεων. Το πλήθος των μεταθέσεων του συνόλου S n ισούται με το πλήθος των δυνατών διατάξεων των στοιχείων 1, 2,..., n, δηλ. ισούται με n! = 1 2 n. Επομένως, από το θεώρημα Α.6 συμπεραίνουμε ότι υπάρχουν n!/2 το πλήθος άρτιες μεταθέσεις και n!/2 το πλήθος περιττές μεταθέσεις.

6 56 Παρ. Α Μεταθέσεις και πίνακες μεταθέσεων Το σύνολο των μεταθέσεων ως μια ομάδα Το σύνολο των μεταθέσεων των n το πλήθος στοιχείων του συνόλου S n = {1, 2,..., n} διαπιστώσαμε ότι έχει, μεταξύ άλλων, τις εξής ιδιότητες: (α η ταυτοτική μετάθεση είναι μια μετάθεση, (β το αντίστροφο μιας μετάθεσης είναι επίσης μια μετάθεση, (γ η σύνθεση δύο μεταθέσεων είναι επίσης μια μετάθεση. Επομένως, το σύνολο των μεταθέσεων των n το πλήθος στοιχείων του συνόλου S n = {1, 2,..., n} αποτελεί μια ομάδα κάτω από την προσεταιριστική διμελή πράξη της σύνθεσης μεταθέσεων. Α.2 Πίνακες μεταθέσεων Έστω μια μετάθεση σ σ = ( 1 2 n σ(1 σ(2 σ(n και ο n n ταυτοτικός πίνακας I I = = e T e T 1 e T n., (Α.24 (Α.25 Εξ ορισμού, ο n n τετραγωνικός πίνακας μετάθεσης P σ που αντιστοιχεί στη μετάθεση σ ισούται με P σ = e T σ(1 e T σ(2. e T σ(n. (Α.26 Με άλλα λόγια, η γραμμή i του πίνακα μετάθεσης P σ ισούται με τη γραμμή σ(i του ταυτοτικού πίνακα I. Πιο αναλυτικά, έχουμε ότι (P σ ij = δ σ(i,j, για κάθε i, j = 1, 2,..., n. (Α.27 Είναι φανερό ότι κάθε πίνακας μετάθεσης είναι ένας τετραγωνικός πίνακας που έχει ένα μόνο 1 σε κάθε γραμμή και σε κάθε στήλη και μηδενικά οπουδήποτε αλλού. Το αποτέλεσμα του πολλαπλασιασμού από τα αριστερά με τον n n τετραγωνικό πίνακα μετάθεσης P σ ενός n p παραλληλόγραμμου πίνακα A είναι μια αντίστοιχη μετάθεση σ των γραμμών του A a σ(11 a σ(12 a σ(1p a σ(21 a σ(22 a σ(2p P σ A = (Α.28 a σ(n1 a σ(n2 a σ(np Ο πίνακας μετάθεσης που αντιστοιχεί στην ταυτοτική μετάθεση ισούται με τον ταυτοτικό πίνακα: P ϵ = I. Από τον ορισμό (Α.26 έπεται ότι: δύο πίνακες μετάθεσης είναι ίσοι εάν και μόνον εάν αντιστοιχούν στην ίδια μετάθεση, με άλλα λόγια, ισχύει ότι P σ = P σ σ = σ. (Α.29

7 Α.2 Πίνακες μεταθέσεων 57 Παράδειγμα Α.2 Για τη μετάθεση σ = ( , (Α.30 ο αντίστοιχος πίνακας μετάθεσης P σ έχει τη μορφή P σ = e T σ(1 e T σ(2 e T σ(3 = e T 2 e T 3 e T 1 = (Α.31 Με άλλα λόγια, σύμφωνα με τον τύπο (Α.27, έχουμε ότι (P σ 1,j = δ σ(1,j = δ 2,j, για κάθε j = 1, 2, 3, (Α.32 (P σ 2,j = δ σ(2,j = δ 3,j, για κάθε j = 1, 2, 3, (Α.33 (P σ 3,j = δ σ(3,j = δ 1,j, για κάθε j = 1, 2, 3. (Α.34 Λήμμα Α.7 Έστω δύο μεταθέσεις ρ και σ. Ισχύει ότι P ρ σ = P σ P ρ. (Α.35 Με άλλα λόγια, ο πίνακας μετάθεσης που αντιστοιχεί στη σύνθεση δύο μεταθέσεων ισούται με το γινόμενο των επιμέρους πινάκων μετάθεσης σε αντίστροφη διάταξη. Απόδειξη: Με τη βοήθεια του γνωστού κανόνα πολλαπλασιασμού πινάκων και του τύπου (Α.27 έχουμε διαδοχικά ότι (P σ P ρ ij = = n (P σ ik (P ρ kj k=1 n δ σ(i,k δ ρ(k,j k=1 = δ ρ(σ(i,j = δ (ρ σ(i,j = (P ρ σ ij, (Α.36 για κάθε i, j = 1, 2,..., n, ολοκληρώνοντας έτσι την απόδειξή μας. Το αποτέλεσμα του λήμματος Α.7 μπορεί να γενικευθεί για οποιοδήποτε πλήθος μεταθέσεων, όπως σημειώνεται στο παρακάτω θεώρημα. Θεώρημα Α.8 Έστω ένα σύνολο μεταθέσεων σ 1, σ 2,..., σ s. Ισχύει ότι P σ1 σ 2 σ s = P σs P σ2 P σ1. (Α.37 Με άλλα λόγια, ο πίνακας μετάθεσης που αντιστοιχεί στη σύνθεση ενός συνόλου μεταθέσεων ισούται με το γινόμενο των επιμέρους πινάκων μετάθεσης σε αντίστροφη διάταξη.

8 58 Παρ. Α Μεταθέσεις και πίνακες μεταθέσεων Απόδειξη: Θα αποδείξουμε το θεώρημα με τη μέθοδο της επαγωγής για τον θετικό ακέραιο δείκτη s, δηλ. για το πλήθος εμφανιζόμενων μεταθέσεων σ 1, σ 2,..., σ s. Για s = 1 το θεώρημα προφανώς ισχύει δεδομένου ότι η (Α.37 ανάγεται στην τετριμμένη ταυτότητα: P σ1 = P σ1. Υποθέτουμε τώρα ότι s > 1 και ότι το θεώρημα ισχύει για κάθε s 1 το πλήθος μεταθέσεις. Στη συνέχεια, θεωρούμε τις s το πλήθος μεταθέσεις σ 1, σ 2,..., σ s. Αξιοποιώντας την προσεταιριστική ιδιότητα της σύνθεσης μεταθέσεων έχουμε ότι σ 1 σ 2 σ s = (σ 1 σ 2 σ s 1 σ s. (Α.38 Συνεπώς, εφαρμόζοντας το λήμμα Α.7 έχουμε διαδοχικά ότι P σ1 σ 2 σ s = P (σ1 σ 2 σ s 1 σ s = P σs P σ1 σ 2 σ s 1 = P σs (P σs 1 P σ2 P σ1 = P σs P σ2 P σ1. (Α.39 Τονίζουμε ότι στην τρίτη ισότητα της (Α.39 χρησιμοποιήσαμε την επαγωγική μας υπόθεση σύμφωνα με την οποία: P σ1 σ 2 σ s 1 = P σs 1 P σ2 P σ1. Επιπλέον, στην τέταρτη ισότητα της (Α.39 αγνοήσαμε τις παρενθέσεις ενόψει της προσαιτεριστικής ιδιότητας του πολλαπλασιασμού πινάκων. Με τις παρατηρήσεις αυτές ολοκληρώνουμε την απόδειξή μας. Υπενθυμίζουμε ότι κάθε μετάθεση σ ικανοποιεί τη σχέση: σ σ 1 = ϵ = σ 1 σ. Συνεπώς, εφαρμόζοντας το λήμμα Α.7 συμπεραίνουμε ότι: P σ 1P σ = I = P σ P σ 1, ή ισοδύναμα (P σ 1 = P σ 1. Το τελευταίο αυτό αποτέλεσμα συνοψίζεται στο πόρισμα που ακολουθεί. Πόρισμα Α.9 Κάθε πίνακας μετάθεσης P σ, που αντιστοιχεί σε μια μετάθεση σ, είναι αντιστρέψιμος. Συγκεκριμένα, ισχύει ότι (P σ 1 = P σ 1. (Α.40 Με άλλα λόγια, ο αντίστροφος του P σ ισούται με τον πίνακα μετάθεσης P σ 1, που αντιστοιχεί στην αντίστροφη μετάθεση σ 1. Στην ειδική περίπτωση μιας αντιμετάθεσης (Α.14, τ, όπου εναλλάσσονται δύο στοιχεία i j, ο αντίστοιχος πίνακας μετάθεσης P τ P ij λέγεται πίνακας εναλλαγής. Το αποτέλεσμα του πολλαπλασιασμού από τα αριστερά με τον n n τετραγωνικό πίνακα εναλλαγής P τ P ij ενός n p παραλληλόγραμμου πίνακα A είναι η εναλλαγή των δύο γραμμών i και j του A. 1 Αξίζει να παρατηρήσουμε ότι P τ P ij = I (e i e j (e i e j T. (Α.41 Υπενθυμίζουμε ότι κάθε αντιμετάθεση τ ικανοποιεί τη σχέση: τ τ = ϵ, ή ισοδύναμα τ 1 = τ. Συνεπώς, εφαρμόζοντας το λήμμα Α.7 συμπεραίνουμε ότι: (P τ 2 = I, ή ισοδύναμα (P τ 1 = P τ. Με τη βοήθεια της ταυτότητας (Α.41 ελέγχεται επίσης εύκολα ότι: (P τ T = P τ. Συνοψίζουμε τις δύο αυτές χρήσιμες ιδιότητες των πινάκων εναλλαγής σε μια πρόταση. 1 Το αποτέλεσμα του πολλαπλασιασμού από τα δεξιά με τον n n τετραγωνικό πίνακα εναλλαγής P τ P ij ενός p n παραλληλόγραμμου πίνακα A είναι η εναλλαγή των δύο στηλών i και j του A.

9 Α.2 Πίνακες μεταθέσεων 59 Πρόταση Α.10 Κάθε πίνακας εναλλαγής P τ, που αντιστοιχεί σε μια αντιμετάθεση τ, ικανοποιεί τις σχέσεις (P τ 1 = P τ = (P τ T. (Α.42 Με άλλα λόγια, κάθε πίνακας εναλλαγής ισούται με τον αντίστροφό του καθώς και με τον ανάστροφό του. Από το θεώρημα Α.4 γνωρίζουμε ότι κάθε μετάθεση σ μπορεί να εκφρασθεί ως μια σύνθεση αντιμεταθέσεων, τ 1, τ 2,..., τ s, σ = τ 1 τ 2 τ s, (Α.43 όπου το πλήθος s των αντιμεταθέσεων αυτών είναι πάντοτε άρτιο εάν η μετάθεση είναι άρτια, ή πάντοτε περιττό εάν η μετάθεση είναι περιττή, όπως αυτό καθορίζεται από το πρόσημο της μετάθεσης: ( 1 N(σ = ( 1 s. Ενόψει των (Α.37 και (Α.29 έπεται ισοδύναμα από την (Α.43 ότι ο αντίστοιχος πίνακας μετάθεσης, P σ, μπορεί να εκφρασθεί ως το γινόμενο των πινάκων εναλλαγής, P τ1, P τ2,..., P τs, P σ = P τs P τ2 P τ1. (Α.44 Συνοπτικά λοιπόν, έχουμε αποδείξει και τυπικά το παρακάτω εύλογο θεώρημα. Θεώρημα Α.11 Κάθε πίνακας μετάθεσης μπορεί να εκφρασθεί ως ένα γινόμενο πινάκων εναλλαγής. Η πρόταση που ακολουθεί αναδεικνύει το γεγονός ότι οι πίνακες μετάθεσης αποτελούν μέλη μιας ευρύτερης οικογένειας πινάκων, των λεγόμενων ορθογώνιων πινάκων. Πρόταση Α.12 Κάθε πίνακας μετάθεσης P σ, που αντιστοιχεί σε μια μετάθεση σ, ικανοποιεί τη σχέση: (P σ 1 = (P σ T. Το αποτέλεσμα διατυπώνεται ισοδύναμα και ως εξής (P σ T P σ = I = P σ (P σ T. (Α.45 Με άλλα λόγια, κάθε πίνακας μετάθεσης είναι ένας ορθογώνιος πίνακας. Απόδειξη: Με αφετηρία την έκφραση (Α.44 ενός οποιουδήποτε πίνακα μετάθεσης P σ ως γινομένου κατάλληλων πινάκων εναλλαγής, και αξιοποιώντας την ιδιότητα (Α.42, έχουμε διαδοχικά ότι (P σ 1 = (P τs P τ2 P τ1 1 = (P τ1 1 (P τ2 1 (P τs 1 = (P τ1 T (P τ2 T (P τs T = (P τs P τ2 P τ1 T = (P σ T. (Α.46 Το αποτέλεσμα (Α.46 μπορεί προφανώς να διατυπωθεί και με τη μορφή της εξίσωσης (Α.45 η οποία αποτελεί την ιδιότητα-ορισμό ενός ορθογώνιου πίνακα, ολοκληρώνοντας έτσι την απόδειξή μας.

10 60 Παρ. Α Μεταθέσεις και πίνακες μεταθέσεων Στο σημείο αυτό αξίζει να παρουσιάσουμε και μια δεύτερη εναλλακτική απόδειξη της εξίσωσης (Α.45 η οποία δεν χρησιμοποιεί την παραγοντοποίηση (Α.44 του πίνακα μετάθεσης σε γινόμενο πινάκων εναλλαγής. Συγκεκριμένα, με αφετηρία τον ορισμό (Α.26 του πίνακα μετάθεσης P σ και χρησιμοποιώντας τον κανόνα πολλαπλασιασμού πινάκων γραμμές επί στήλες έχουμε διαδοχικά ότι (P σ (P σ T ij = e T σ(i e σ(j = δ σ(i,σ(j = δ ij = (I ij, για κάθε i, j = 1, 2,..., n, (Α.47 ή ισοδύναμα P σ (P σ T = I. Με ανάλογο τρόπο, χρησιμοποιώντας τον κανόνα πολλαπλασιασμού πινάκων στήλες επί γραμμές έχουμε διαδοχικά ότι ((P σ T P σ ij = (e σ(1 e T σ(1 + + e σ(ne T σ(n ij n = (e σ(l i1 (e T σ(l 1j = l=1 n δ i,σ(l δ σ(l,j l=1 = δ ij = (I ij, για κάθε i, j = 1, 2,..., n, (Α.48 ή ισοδύναμα (P σ T P σ = I, ολοκληρώνοντας έτσι τη δεύτερη απόδειξή μας. Δεδομένου ότι για κάθε πίνακα εναλλαγής ισχύει ότι (P τ 2 = I, η (Α.44 γράφεται ισοδύναμα με τη μορφή (P τ1 P τ2 P τs P σ = I. (Α.49 Η ισοδυναμία της (Α.49 με την (Α.43 οδηγεί αμέσως σε μια σημαντική πρόταση. Πρόταση Α.13 Ανεξάρτητα από την ειδική ακολουθία εναλλαγών γραμμών που οδηγούν έναν πίνακα μετάθεσης P σ στον ταυτοτικό πίνακα I, το πλήθος s των εναλλαγών είναι πάντοτε άρτιο ή πάντοτε περιττό, σύμφωνα με το εάν η μετάθεση σ είναι αντιστοίχως άρτια ή περιττή, όπως αυτό καθορίζεται από το πρόσημο της μετάθεσης: ( 1 N(σ = ( 1 s. Η παραπάνω πρόταση αποδεικνύει ότι δεν υπάρχει ασάφεια στην τιμή της ορίζουσας ενός πίνακα μετάθεσης, det(p σ, όπως αυτή προκύπτει από την εφαρμογή των γνωστών κανόνων 1, 2, 3 της ορίζουσας. H εν λόγω τιμή είναι, πράγματι, καλώς ορισμένη και ίση με το πρόσημο της μετάθεσης σ, δηλαδή det(p σ = ( 1 N(σ = ±1. (Α.50 Επαναλαμβάνουμε ότι: το πρόσημο που εμφανίζεται στην (Α.50 είναι το πρόσημο της μετάθεσης σ και ισούται με (+ ή (, σύμφωνα με το εάν η μετάθεση σ είναι άρτια ή περιττή, δηλ. σύμφωνα με το εάν o ολικός αριθμός αναστροφών N(σ της μετάθεσης είναι άρτιος ή περιττός, αντιστοίχως. Ισοδύναμα μπορούμε να πούμε ότι: το πρόσημο που εμφανίζεται στην (Α.50 ισούται με (+ ή (, σύμφωνα με το εάν το πλήθος s των εναλλαγών γραμμών που οδηγούν τον πίνακα μετάθεσης P σ στον ταυτοτικό πίνακα I είναι άρτιο ή περιττό, αντιστοίχως.

11 Α.2 Πίνακες μεταθέσεων 61 Το σύνολο των πινάκων μετάθεσης ως μια ομάδα Το σύνολο των n n τετραγωνικών πινάκων μετάθεσης διαπιστώσαμε ότι έχει, μεταξύ άλλων, τις εξής ιδιότητες: (α ο ταυτοτικός πίνακας είναι ένας πίνακας μετάθεσης, (β ο αντίστροφος ενός πίνακα μετάθεσης είναι επίσης ένας πίνακας μετάθεσης, (γ το γινόμενο δύο πινάκων μετάθεσης είναι επίσης ένας πίνακας μετάθεσης. Επομένως, το σύνολο των n n τετραγωνικών πινάκων μετάθεσης αποτελεί μια ομάδα κάτω από την προσεταιριστική διμελή πράξη του πολλαπλασιασμού πινάκων. Το αποτέλεσμα αυτό συνάδει με το γεγονός ότι το αντίστοιχο σύνολο των μεταθέσεων των n το πλήθος στοιχείων του συνόλου S n = {1, 2,..., n} αποτελεί επίσης μια ομάδα κάτω από την προσεταιριστική διμελή πράξη της σύνθεσης μεταθέσεων. Ο μεγάλος τύπος για την ορίζουσα Θεωρούμε έναν n n τετραγωνικό πίνακα A a 11 a 12 a 1n a 21 a 22 a 2n A = a n1 a n2 a nn. (Α.51 Με αφετηρία τους γνωστούς κανόνες 1, 2, 3 για τον ορισμό της ορίζουσας, det(a A, έχουμε δείξει ότι a 11 a 12 a 1n a 21 a 22 a 2n det(a =..... = det(p σ a. 1σ(1 a 2σ(2 a nσ(n, (Α.52 σ a n1 a n2 a nn όπου το σ-άθροισμα εκτείνεται πάνω σε όλες τις n! το πλήθος μεταθέσεις των στοιχείων του συνόλου S n = {1, 2,..., n}. Το αποτέλεσμα (Α.52 αναφέρεται ως ο μεγάλος τύπος για την ορίζουσα και ενόψει της (Α.50 μπορεί να γραφεί ισοδύναμα με τη μορφή a 11 a 12 a 1n a 21 a 22 a 2n det(a =..... = ( 1 N(σ a. 1σ(1 a 2σ(2 a nσ(n. (Α.53 σ a n1 a n2 a nn Από το δεξιό μέλος της (Α.53, ή ισοδύναμα της (Α.52, γίνεται φανερό ότι η ορίζουσα ενός n n τετραγωνικού πίνακα αποτελείται από ένα άθροισμα n! όρων, καθένας εκ των οποίων είναι ένα γινόμενο n στοιχείων. [ ] a11 a Παράδειγμα Α.3 Έστω A = 12 ένας 2 2 τετραγωνικός πίνακας. Υπάρχουν συνολικά a 21 a 22 2! = 2 μεταθέσεις των στοιχείων του συνόλου S 2 = {1, 2}, συγκεκριμένα οι εξής: ( 1 2 ϵ =, με ( 1 N(ϵ = +1, (Α ( 1 2 τ =, με ( 1 N(τ = 1. (Α

12 62 Παρ. Α Μεταθέσεις και πίνακες μεταθέσεων Επομένως, η ορίζουσα του τετραγωνικού πίνακα A δίνεται από τον τύπο det(a = a 11 a 12 a 21 a 22 = ( 1 N(ϵ a 1ϵ(1 a 2ϵ(2 + ( 1 N(τ a 1τ(1 a 2τ(2 = a 11 a 22 a 12 a 21. (Α.56 a 11 a 12 a 13 Παράδειγμα Α.4 Έστω A = a 21 a 22 a 23 ένας 3 3 τετραγωνικός πίνακας. Υπάρχουν a 31 a 32 a 33 συνολικά 3! = 6 μεταθέσεις των στοιχείων του συνόλου S 3 = {1, 2, 3}, συγκεκριμένα οι εξής: ϵ = ( 1 2 3, με ( 1 N(ϵ = +1, (Α.57 ρ 1 = ( 1 2 3, με ( 1 N(ρ1 = +1, (Α.58 ρ 2 = ( 1 2 3, με ( 1 N(ρ2 = +1, (Α.59 τ 1 = ( 1 2 3, με ( 1 N(τ1 = 1, (Α.60 τ 2 = ( 1 2 3, με ( 1 N(τ2 = 1, (Α.61 τ 3 = ( 1 2 3, με ( 1 N(τ3 = 1. (Α.62 Επομένως, η ορίζουσα του τετραγωνικού πίνακα A δίνεται από τον τύπο a 11 a 12 a 13 det(a = a 21 a 22 a 23 a 31 a 32 a 33 = a 11 a 22 a 33 + a 12 a 23 a 31 +a 13 a 21 a 32 a 12 a 21 a 33 a 13 a 22 a 31 a 11 a 23 a 32. (Α.63

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282 Συνεχή Κλάσματα Εμμανουήλ Καπνόπουλος Α.Μ 282 5 Νοεμβρίου 204 Ορισμός και ιδιότητες: Ορισμός: Έστω a 0, a, a 2,...a n ανεξάρτητες μεταβλητές, n N σχηματίζουν την ακολουθία {[a 0, a,..., a n ] : n N} όπου

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. ΑΣΚΗΣΗ 1: Είναι το ακόλουθο γράφημα απλό; Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. v 2 ΑΠΑΝΤΗΣΗ 1: Το παραπάνω γράφημα δεν είναι απλό, αφού υπάρχουν δύο ακμές που

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ. 2.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Η εξίσωση αx β 0

ΕΞΙΣΩΣΕΙΣ. 2.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Η εξίσωση αx β 0 ΕΞΙΣΩΣΕΙΣ.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ Η εξίσωση α 0 Στο Γυμνάσιο μάθαμε τον τρόπο επίλυσης των εξισώσεων της μορφής α 0 για συγκεκριμένους αριθμούς α,,με α 0 Γενικότερα τώρα, θα δούμε πώς με την οήθεια των

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ»

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο «ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» ΜΠΙΘΗΜΗΤΡΗ ΒΑΣΙΛΙΚΗ ΣΤΕΛΛΑ Επιβλέπουσα: Αν. Καθηγήτρια

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 13 1.2 ΣΥΝΑΡΤΗΣΕΙΣ Σύνθεση συναρτήσεων

ΜΑΘΗΜΑ 13 1.2 ΣΥΝΑΡΤΗΣΕΙΣ Σύνθεση συναρτήσεων ΜΑΘΗΜΑ 3. ΣΥΝΑΡΤΗΣΕΙΣ Σύνθεση συναρτήσεων Θεωρία Σχόλια Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Έστω οι συναρτήσεις : A R, :Β R Το τυχαίο A, µε την A. αντιστοιχίζεται στην τιµή Αν η τιµή αυτή ( ) B θα αντιστοιχίζεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ 1. Δίνεται η αριθμητική πρόοδος με α 2 =0 και α 4 =4. α) Να δείξετε ότι ω=2 και α 1 = 2. β) Να δείξετε ότι α ν =2ν 4 και να βρείτε ποιος όρος της είναι το 98. (51 ος ) 2. α) Να

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων:. c d c c. d c. d c. d c. e d e c 6. d c 7. d c 8. d ln c 9. d c. d c,. Β. Οι παρακάτω τύποι

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

Μέση τιμή - Διάμεσος

Μέση τιμή - Διάμεσος Μέσ τιμή - Διάμεσος Ονομάζεται μέσ τιμή μιας μεταβλτής x και συμβολίζεται x το πλίκο του αθροίσματος όλων των τιμών τς μεταβλτής δια του πλήθους τους. Δλαδή: Όταν έχουμε ένα δείγμα μεγέθους ν με τιμές

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Το ακτίνιο ως μονάδα μέτρησης γωνιών: Το ακτίνιο (ή rad) είναι η γωνία που, όταν γίνει επίκεντρη κύκλου (Ο, ρ), βαίνει σε τόξο που έχει μήκος ίσο με την ακτίνα

Διαβάστε περισσότερα

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ 1 1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΘΕΩΡΙΑ 1. Φυσικοί αριθµοί : Είναι οι αριθµοί 0, 1, 2, 3,, 10000, 10001,.50000 2. Προηγούµενος επόµενος : Κάθε φυσικός αριθµός εκτός από το 0 έχει έναν προηγούµενο

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD ΚΕΦΑΛΑΙΟ ΙΙΙ ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD Εισαγωγή To παρόν κεφάλαιο χωρίζεται σε μέρη. Στο (Α), μεταξύ άλλων, εξηγούμε γιατί μας ενδιαφέρει η λεγόμενη ανάλυση σε παράγοντες ειδικούς πίνακες (decompositio)

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ÅÉÓÁÃÙÃÇ ÓÔÇÍ ÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ

ÅÉÓÁÃÙÃÇ ÓÔÇÍ ÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ ÐÁÍÅÐÉÓÔÇÌÉÏ ÉÙÁÍÍÉÍÙÍ ÓïöïêëÞò Ä. ÃáëÜíçò ÁíáðëçñùôÞò ÊáèçãçôÞò ÅÉÓÁÃÙÃÇ ÓÔÇÍ ÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ É Ù Á Í Í É Í Á 0 0 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Γενικά. Αλγόριθμος του Συμπληρώματος 6.3

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Κεφάλαιο 1.Εντολές κίνησης

Κεφάλαιο 1.Εντολές κίνησης Προγραμματίζω με το ΒΥΟΒ 1 Κεφάλαιο 1.Εντολές κίνησης Από το μάθημα της Φυσικής γνωρίζουμε ότι κίνηση σημαίνει αλλαγή της θέσης ενός αντικειμένου. Οι εντολές κίνησης που μας παρέχει το ΒΥΟΒ χωρίζονται

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα