ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες."

Transcript

1 ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ Ονοµάζουµε πίνκ Α n m µί διάτξη n m ριθµών κι j,,, m, σε n γρµµές κι m στήλες ηλδή: Α ( σµβ ij ) ορσ n n m m nm a ij όπου i,,, n Έτσι όπως γράφετι ο πίνκς Α, ο ριθµός a ij, που λέγετι στοιχείο του πίνκ, βρίσκετι στην i - γρµµή κι στην j - στήλη Ένς πίνκς Α n µε n γρµµές κι µί στήλη ονοµάζετι πίνκς στήλη, δηλδή: Α n Ενώ ένς πίνκς Α, n µε µί γρµµή κι n στήλες ονοµάζετι πίνκς γρµµή, δηλδή: Α ( ) n Πρτήρηση Κάθε στοιχείο του χώρου σν πίνκς γρµµή n n R µπορεί ν θεωρηθεί σν πίνκς στήλη n ή Έν πίνκς Α n n όπου το πλήθος των γρµµών είνι ίσο µε το πλήθος των στηλών λέγετι τετργωνικός ηλδή: Α n n n n nn στοιχεί,,, nn του προηγούµενου τετργωνικού πίνκ Α ποτελούν την κύρι διγώνιό του Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

2 Ένς τετργωνικός πίνκς Α n n θ λέγετι άνω τριγωνικός ότν τ στοιχεί κάτω της κύρις διγωνίου είνι µηδέν ηλδή ότν έχουµε γι i k i > k Όµοι θ λέγετι κάτω τριγωνικός ότν τ στοιχεί πάνω π' την κύρι διγώνιο είνι µηδέν ηλδή έχουµε, γι i < k i k Ότν ο τετργωνικός πίνκς Α είνι πάνω κι κάτω τριγωνικός θ λέγετι διγώνιος Πράδειγµ Γι τους τετργωνικούς πίνκες Α, Β, Γ έχουµε ότι ο Α είνι πάνω τριγωνικός, ο Β είνι διγώνιος κι ο Γ είνι κάτω τριγωνικός ΠΡΑΞΕΙΣ ΠΙΝΑΚΩΝ ) Πρόσθεση πινάκων Ας είνι οι n m πίνκες ( ), B (βi j) µε i,,, n κι j,,, m Ορίζουµε σν άθροισµ των πινάκων Α, Β τον n m πίνκ Α+Β µε στοιχεί τ + β ηλδή: Ιδιότητες Α + Β ( + β ) i n, j m Α + Β Β + Α, ( Α + Β) + Γ Α + ( Β + Γ) Α + Α, Α + ( Α) Με συµβολίζουµε τον πίνκ που έχει όλ τ στοιχεί του ίσ µε β) Βθµωτός πολλπλσισµός Ορίζουµε τον πολλπλσισµό πργµτικού ριθµού λ R µε τον πίνκ Α, σν τον πίνκ που προκύπτει πό τον πολλπλσισµό όλων των στοιχείων του Α µε το λ ηλδή: λ Α λ( i j) ( λi j), i,,,n, j,,,m πχ λ λ λ λ λ Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

3 Ιδιότητες λ ( Α + Β) λα + λβ, ( λ + µ ) Α λα + µ Α Α Α, ( λµ ) Α λ( µ Α) γ) Πολλπλσισµός πινάκων Ας είνι οι πίνκες: Α n m µε ( ), i n, j m κι Β m k µε B ( β ), j m, k j Ορίζουµε το γινόµενο ΑΒ των πινάκων Α, Β τον n k πίνκ του οποίου τ στοιχεί προκύπτουν πό τ εσωτερικά γινόµεν των γρµµών του Α µε τις στήλες του Β ηλδή το γ i στοιχείο του ΑΒ προκύπτει ν πάρουµε το εσωτερικό γινόµενο της i-γρµµής του Α κι της στήλης του Β γ,,, ), ( β, β,, β ) i ( i i im m Συνεπώς i β + iβ + + imβ m i jβ m j j ΑΒ ( γ i ) µε i n, k κι γ i m j β j Γι ν γίνετι ο πολλπλσισµός πρέπει το πλήθος των στηλών του Α ν είνι ίσο µε το πλήθος των γρµµών του Β ιότι προφνώς, γι ν έχουµε το γ στοιχείο του ΑΒ το διάνυσµ γρµµή του Α κι το διάνυσµ στήλη του Β, είνι πρίτητο ν έχουν το ίδιο πλήθος συντετγµένων i ΠΑΡΑ ΕΙΓΜΑ Ν βρεθεί το γινόµενο του πίνκ Α µε τον πίνκ Β, όπου: Α, Β 6 ΑΒ Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

4 Άρ ΑΒ Πρτήρηση Μπορεί το γινόµενο δύο πινάκων ΑΒ ν ορίζετι κι ν µην ορίζετι το ΒΑ, πχ ν ο Α είνι κι ο Β είνι ο ΑΒ ορίζετι κι είνι πίνκς ενώ ο ΒΑ δεν ορίζετι Ιδιότητες ( ΑΒ ) Γ Α( ΒΓ) Α ( Β + Γ) ΑΒ + ΑΓ ή ( Α + Β) Γ ΑΓ + ΒΓ Α( λ Β) ( λα) Β λ( ΑΒ) Φυσικά θ πρέπει τ πρπάνω γινόµεν ν ορίζοντι Προσοχή: Αν ορίζοντι τ ΑΒ κι ΒΑ δεν ισχύει γενικά ότι ΑΒ ΒΑ ΠΑΡΑ ΕΙΓΜΑ Γι τους πίνκες εξετάστε ν ΑΒ ΒΑ Α, Β Έχουµε: ΑΒ + + ΒΑ Προφνώς ΑΒ ΒΑ Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

5 ΜΟΝΑ ΙΑΙΟΣ ΑΝΑΣΡΟΦΟΣ ΑΝΙΣΡΟΦΟΣ ΠΙΝΑΚΑΣ Ο n n πίνκς µε, γι i j κι, γι i j λέγετι µονδιίος κι συµβολίζετι µε n I ή πλώς Ι Πρτηρούµε εύκολ ότι γι ένν n m πίνκ θ ισχύει: Ι m, I n Oρισµός Ας είνι ο n m πίνκς Α ) Λέµε νάστροφο του πίνκ Α, τον m n ( πίνκ Α ( βi j), όπου β ji µε i,,,m, j,,, n ηλδή ο Α έχει στήλες τις γρµµές του Α κι γρµµές τις στήλες του Α Πράδειγµ 7 7 Συνεπώς ν σ' έν πίνκ Α κάνουµε τις γρµµές στήλες πίρνουµε τον νάστροφό του Α Ιδιότητες του νάστροφου πίνκ ( Α ) Α ( Α + Β) Α + Β ( ΑΒ ) Β Α Ένς τετργωνικός n n πίνκς που έχει ίσ τ συµµετρικά στοιχεί ως προς την κύρι διγώνιο λέγετι συµµετρικός ηλδή ότν Α Α Πράδειγµ Ο πίνκς Α είνι συµµετρικός, φού Α Α Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

6 6 Ένς τετργωνικός n n πίνκς Α κλείτι ντιστρέψιµος ή οµλός ότν υπάρχει n n πίνκς, που συµβολίζετι µε Α, τέτοιος ώστε: ΑΑ Α Α Ι n Ιδιότητες του ντίστροφου πίνκ : ( Α ) Α k k ( ) ( ) Α (B) B T ( ) ( ) T OΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Ένς n n πίνκς ( ), µε R, λέγετι ορθογώνιος, ότν το σύνολο των δινυσµάτων των στηλών του (, x,, ) x x n είνι ορθοκνονικό ηλδή το εσωτερικό γινόµενο των στηλών νά δύο είνι µηδέν γι i j (τ δινύσµτ νά δύο είνι κάθετ) κι έν γι i j (µονδιί) x x i j, ν i j, ν i j Πρότση Ένς n n πίνκς ( ), µε R, είνι ορθογώνιος, ότν κι µόνο ότν έχει ντίστροφο (είνι οµλός) που ισούτι µε τον νάστροφό του ηλδή: Α Α Πρότση Αν ο n n πίνκς ( ), µε R, είνι ορθογώνιος τότε έχει ορίζουσ ίση µε ± ηλδή: det ± Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

7 7 Πράδειγµ ίνετι ο πίνκς Α Επειδή τ δινύσµτ : x (,, ), x,, κι x,, είνι µονδιί, δηλδή x x x κι κάθετ δηλδή x x, x x, x x ο πίνκς Α είνι ορθογώνιος Πρτηρούµε ότι Α Α διότι Α Α Ι Πράδειγµ Έστω ο πίνκς Α Επειδή τ δινύσµτ: x (,, ), ( ) T x,, x,, είνι µονδιί, δηλδή x x x κι κάθετ x x, x x, x x ο πίνκς Α είνι ορθογώνιος Επίσης πρτηρούµε ότι Α Α κι ( ) T διότι Α Α Ι Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

α β γ δ β γ α α α α α α Α = α α α = α α + α α α α α α α α α D Α

α β γ δ β γ α α α α α α Α = α α α = α α + α α α α α α α α α D Α ΟΡΙΖΟΥΣΕΣ β Έστω πίνκς Α Χ = γ δ Σε κάθε τετργωνικό πίνκα ντιστοιχίζοµε ένν πργµτικό ριθµό τον οποίο ονοµάζοµε ορίζουσ του πίνκ κι ορίζετι ως β Α = = δ β γ Η έννοι της ορίζουσς είνι νγκί προκειµένου ν

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟ Ο : ΙΑΝΥΣΜΑΤΑ Ιδιότητες πρόσθεσης δινυσµάτων () + = + () ( + ) + γ = + ( + γ) (3) + = (4) + ( ) =. Αν Ο είνι έν σηµείο νφοράς, τότε γι κάθε διάνυσµ ΑΒ έχουµε: AB = OB OA

Διαβάστε περισσότερα

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Μθηµτικά Ιβ Σελίδ πό 7 Μάθηµ 7 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Θεωρί : Γρµµική Άλγεβρ : εδάφιο 6, σελ. (µέχρι Πρότση 4.6), εδάφιο 7, σελ. 5 (όχι την πόδειξη της Πρότσης 4.9). πρδείγµτ που ντιστοιχούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

ΟΡΙΖΟΥΣΕΣ. άθροισµα του δείκτη (θέση) του στοιχείου είναι άρτιο ή περιττό δηλαδή ( 1) = ( + ), στο στοιχείο α 32 είναι ( 1)

ΟΡΙΖΟΥΣΕΣ. άθροισµα του δείκτη (θέση) του στοιχείου είναι άρτιο ή περιττό δηλαδή ( 1) = ( + ), στο στοιχείο α 32 είναι ( 1) ΟΡΙΖΟΥΣΕΣ ΈΝΝΟΙ ΤΗΣ ΟΡΙΖΟΥΣΣ Γι ένν ν ν τετρωνικό πίνκ, έµε ορίζουσ του πίνκ κι ράφουµε deta A, τον πρµτικό ριθµό που προκύπτει πό µί συκεκριµένη διδικσί υποοισµού ν ο είνι πίνκς η ορίζουσά του υποοίζετι

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΓΕΝΙΚΑ ΠΕΡΙ ΕΞΙΣΩΣΕΩΝ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Έστω f (x), g(x) είνι δύο πρστάσεις µις µετβλητής x πού πίρνει τιµές στο σύνολο Α. Εξίσωση µε ένν άγνωστο λέγετι κάθε ισότητ της µορφής f (x) =

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

1. Κάθε πολυώνυµο που µετά από αναγωγή οµοίων όρων και διάταξη κατά τις φθίνουσες

1. Κάθε πολυώνυµο που µετά από αναγωγή οµοίων όρων και διάταξη κατά τις φθίνουσες Εξίσωση ο υ βθµού Σελ. 8 Ορισµοί - πρτηρήσεις. Κάθε πολυώνυµο που µετά πό νγωγή οµοίων όρων κι διάτξη κτά τις φθίνουσες δυνάµεις του έχει πάρει την µορφή βγ όπου,β,γ πργµτικοί ριθµοί κι λέγετι τριώνυµο

Διαβάστε περισσότερα

ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα

ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα ΙΔΙΟΤΙΜΕΣ Σημείωση Προς το πρόν, κινούμεθ στο σώμ R των πργμτικών ριθμών Έν ιδιοδιάνυσμ ή χρκτηριστικό διάνυσμ ενός πίνκ Α, που ντιστοιχεί στην ιδιοτιμή, είνι εκείνο το μη μηδενικό διάνυσμ το οποίο πηροί

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

Καρτεσιανές Συντεταγµένες

Καρτεσιανές Συντεταγµένες Γρφική Πράστση Συνάρτησης Κρτεσινές Συντετγµένες Κρτεσινό σύστηµ συντετγµένων ή ορθογώνιο σύστηµ ξόνων O είνι έν σύστηµ δύο κθέτων ξόνων O κι O ( 0 0) µε κοινή ρχή το σηµείο O,. O Ορθοκνονικό σύστηµ ξόνων

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω Ερωτήσεις πολλπλής επιλογής 1. ** Αν η εξίσωση µε δύο γνώστους f (, ) = 0 (1) είνι εξίσωση µις γρµµής C, τότε Α. οι συντετγµένες µόνο µερικών σηµείων της C επληθεύουν την (1) Β. οι συντετγµένες των σηµείων

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

Η έννοια της συνάρτησης

Η έννοια της συνάρτησης Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

Ο Ρ Ι Ζ Ο Υ Σ Ε Σ. το σύνολο των μεταθέσεων (βλέπε σελ. 19) Ν. Την μετάθεση p [permutation] την συμβολίζουν ως εξής:

Ο Ρ Ι Ζ Ο Υ Σ Ε Σ. το σύνολο των μεταθέσεων (βλέπε σελ. 19) Ν. Την μετάθεση p [permutation] την συμβολίζουν ως εξής: III Ο Ρ Ι Ζ Ο Υ Σ Ε Σ Μετθέσεις Θεωρούμε έν σύνολο Ν με πεπερσμένο το πλήθος ντικείμεν Τ ριθμούμε υτά κτά κάποιο τρόπο, κι στη συνέχει, νφερόμεθ σ υτά με τον ριθμό τους Εστω, λοιπόν, Ν {,,, } το δοσμένο

Διαβάστε περισσότερα

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν.

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν. 367 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΞΗΣ 368 ΡΩΤΗΣΙΙΣ ΘΩΡΙΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ!! ΤΞΗΣ 1. Τι ονομάζετε δύνμη ν ; Ονομάζετι δύνμη ν με άση τον ριθμό κι εκθέτη το φυσικό ν > 1, το γινόμενο πό ν πράγοντες ίσους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για 3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική

Διαβάστε περισσότερα

Minimum night coastal temperature in O C. Mean daily Sunshine ( Hours)

Minimum night coastal temperature in O C. Mean daily Sunshine ( Hours) 3. ΠΙΝΑΚΕΣ 3.1. Ορισµοί, είδη, µορφές, ισότητ πινάκων. Μονδιίος κι µηδενικός πίνκς. Πλοίο πρόκειτι ν προσεγγίσει το λιµάνι της Πάφου στη νοτιοδυτική Κύπρο. όκιµος πλοίρχος που νζητά περισσότερ στοιχεί

Διαβάστε περισσότερα

τετραγωνικό εκατοστόµετρο 1 cm 2 1 10000 m2 =

τετραγωνικό εκατοστόµετρο 1 cm 2 1 10000 m2 = 3.5 ΜΟΝΑ ΕΣ ΜΕΤΡΗΣΗΣ ΘΕΩΡΙΑ. Μονάδες µέτρησης µήκους Βσική µονάδ το µέτρο. Συµβολίζετι m Υποδιιρέσεις του µέτρου : δεκτόµετρο dm = 0 m = 0, m Πολλπλάσιο του µέτρου : εκτοστόµετρο cm = 00 m = 0,0 m χιλιοστόµετρο

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη.

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη. ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Δυνάμεις με ρητό ή άρρητο εκέτη. Με την οήει των ορίων κι των δυνάμεων με ρητό εκέτη ορίζετι κι η δύνμη, με > 0 κι. Ισχύουν κι σε υτή την περίπτωση

Διαβάστε περισσότερα

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή ΔΙΑΝΥΣΜΑΤΑ Εισγωγή Το διάνυσμ είνι έν χρκτηριστικό πράδειγμ έννοις που νπτύχθηκε μέσ πό τη στενή λληλεπίδρση Μθημτικών κι Φυσικής Ο κνόνς του πρλληλόγρμμου, σύμφων με τον οποίο το μέτρο κι η κτεύθυνση

Διαβάστε περισσότερα

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση Γ. ΕΛΛΕΙΨΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) κι στθερό άθροισµ.. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι.

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι. ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Α ΟΜΑΔΑΣ (i Ο συντεεστής διεύθυνσης της ευθείς ΑΒ είνι: 6 ( (ii Ο συντεεστής διεύθυνσης της ευθείς ΓΔ είνι: ( (iii Ο συντεεστής διεύθυνσης κάθε ευθείς κάθετης προς την ΓΔ έχει

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ

ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ «Αρχή σοφίς φόος Κυρίου» ( Ψλµός 110, 10.) ΓΥΜΝΑΣΙΟ: ΤΑΞΗ : Γ ΓΥΜΝΑΣΙΟΥ ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ ΟΙ ΜΑΘΗΤΕΣ ΠΡΕΠΕΙ: Ν γνωρίζουν πότε µι ισότητ

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση:

ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση: Λυµέν Θέµτ κι Ασκήσεις κ.λ.π. ΚΕΦΑΛΑΙΟ 4 Επιµέλει: Σκουφά Σωτήρη Βούρβχη Κώστ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Λογριθµική συνάρτηση >. Γνωρίζουµε ότι γι κάθε ( 0, + ) l οg. Αυτό σηµίνει ότι σε κάθε ( 0, ) Θεωρούµε

Διαβάστε περισσότερα

3.3 ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ

3.3 ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ . ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ. Η γενική µορφή της β βάθµις εξίσωσης + β + γ 0, 0. Οι λύσεις της β βάθµις εξίσωσης β 4γ Η εξίσωση + β + γ 0, 0 Ότν > 0 Έχει δύο ρίζες άνισες, τις, Ότν 0 Έχει µί διπλή ρίζ,

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a, ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Μάρτιος 1998.

ΠΡΟΛΟΓΟΣ. Μάρτιος 1998. ΠΡΟΛΟΓΟΣ Το βιβλίο υτό περιλμβάνει την ύλη των Μθημτικών, που προβλέπετι πό το πρόγρμμ σπουδών της Θετικής Κτεύθυνσης της Β τάξης του Ενιίου Λυκείου, του οποίου η εφρμογή ρχίζει πό το σχολικό έτος 998-999

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος.

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος. ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ ΕΦΑΡΜΟΓΕΣ Αν ο είνι κέριος κι ο ( ) είνι κέριος ΑΠΟΔΕΙΞΗ Επειδή τ δυντά υπόλοιπ του με τον είνι 0,,, ο κέριος έχει μί πό τις μορφές κ ή κ, κ Z Αν κ, κ Z ) κ (κ ) κ(9κ

Διαβάστε περισσότερα

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η ποτελεσμτική μάθηση δεν θέλει κόπο λλά τρόπο, δηλδή ma8eno.gr Συνοπτική Θεωρί Μθημτικών Α Γυμνσίου Αριθμητική - Άλγερ Γεωμετρί Αριθμητική πράστση ονομάζετι

Διαβάστε περισσότερα

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ. 995 ΘΕΜΑΤΑ. ίνοντι οι πργµτικοί ριθµοί κ, λ µε κ < λ κι η συνάρτηση f() ( κ) 5 ( λ) µε. Ν ποδείξετε ότι: ) f () f() 5 κ, γι κάθε κ κι λ. λ ) Η συνάρτηση g() ln f() στρέφει τ κοίλ προς τ κάτω στο διάστηµ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Ενιαίου Λυκείου Θετική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Ενιαίου Λυκείου Θετική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ Β Τάξη Ενιίου Λυκείου Θετική Κτεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ Με πόφση της ελληνικής

Διαβάστε περισσότερα

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη 255 ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣΣ Α! ΤΑΞΗΣΣ Ο Ρωµίος που µχίρωσσε ε τον Αρχιµήδη Μ' έν κλά µελετηµένο κτύπηµ, σκότωσε τον κύκλο, την εφπτόµενη κι το σηµείο τοµής στο άπειρο. "'Επί ποινή" διµελισµού εξόρισε

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµ 1ο Α. Έστω µι συνεχής συνάρτηση f ορισµένη σε έν διάστηµ.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ 0 ΜΑΘΗΜΑΤΙΚΑ κτεύθυνσης Β ΛΥΚΕΙΟΥ Συνοπτικη θεωρι με ποδειξεις Λυμεν θεμτ γι εξετάσεις Θέμτ πό εξετάσεις Βγγέλης Α Νικολκάκης Μθημτικός ΠΕΡΙΕΧΟΜΕΝΑ ENOTHTA ΘΕΜΑ ΣΕΛΙΔΕΣ ΤΥΠΟΛΟΓΙΑ-ΑΠΟΔΕΙΞΕΙΣ-ΕΡΩΤΗΣΕΙΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i Οι Κτνομές χ, t κι F Οι Κτνομές χ, t κι F Σε υτή την ενότητ προυσιάζουμε συνοπτικά τρεις συνεχείς κτνομές οι οποίες, όπως κι η κνονική κτνομή, είνι πολύ χρήσιμες στη Σττιστική Συμπερσμτολογί Είνι ξιοσημείωτο,

Διαβάστε περισσότερα

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ Όπως είναι γνωστό από τη φυσική, τα διάφορα µεγέθη διακρίνονται σε βαθµωτά και διανυσµατικά. αθµωτά είναι τα µεγέθη τα οποία χαρακτηρίζονται µόνο από το µέτρο τους. Τέτοια µεγέθη είναι

Διαβάστε περισσότερα

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα. 1 9.1 9. Μετρικές σχέσεις στο ορθογώνιο τρίγωνο ΘΕΩΡΙ 1. προβολή του στην ε προβολή του στην ε προβολή του στην ε ε. Τρίγωνο ορθογώνιο στο κι ύψος. Τότε = = = = β + γ κι ντίστροφ = 1 υ = 1 β + 1 γ ν δίνοντι

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Στην προηγούµενη ενότητ συζητήσµε µετσχηµτισµούς της µορφής Y g( µίς τυχίς µετβλητής Όµως σε έν πολυµετβλητό φινόµενο ενδέχετι ν θέλουµε ν µετσχηµτίσουµε τις ρχικές

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΕΣ, ΙΓΡΑΜΜΙΚΕΣ, ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ

ΓΡΑΜΜΙΚΕΣ, ΙΓΡΑΜΜΙΚΕΣ, ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΓΡΑΜΜΙΚΕΣ, ΙΓΡΑΜΜΙΚΕΣ, ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ Γρµµικές µορφές Έστω V δινυσµτικός ώρος επί ενός σώµτος F, όπου F το σώµ των πργµτικών ή µιγδικών ριθµών Μί πεικόνιση f : V F θ κλείτι γρµµική µορφή (lear form)

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ.

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ. Ιόνιο Πνεπιστήμιο - Τμήμ Πληροορικής Μθημτικός Λογισμός Ενότητ: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ Πνγιώτης Βλάμος Αδειες Χρήσης Το πρόν εκπιδευτικό υλικό υπόκειτι σε άδειες χρήσης Cativ Commo

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 4 ΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΕΦΑΛΑΙΟ 4 ΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Στη Φυσική εµφνίζοντι πολλά µεγέθη, όπως µεττοπίσεις, τχύτητες, ροπές, δυνάµεις, τ οποί γι ν προσδιοριστούν πλήρως δεν ρκεί µόνο ν είνι γνωστό το µέτρο τους, λλά πρέπει

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1]

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1] ΛΓΕΒΡ ΛΥΚΕΙΟΥ Οι ερωτήσεις του σχολικού βιβλίου [] Εισγωγικό Κεφάλιο. 9 3 Γι = - 3, η υπόθεση είνι ληθής, ενώ το συμπέρσμ ψευδές Το σύνολο λήθεις της υπόθεσης είνι το = 3, 3, ενώ του συμπεράσμτος είνι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑ.Λ (ΟΜΑ Α Β ) 2009 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑ.Λ (ΟΜΑ Α Β ) 2009 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ ΟΜΑ Α Β 9 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Έστω µί συνάρτηση ορισµένη σε έν διάστηµ Αν η είνι συνεχής στο ι γι άθε εσωτεριό σηµείο του ισχύει, ν ποδείετε ότι η είνι στθερή σε όο το διάστηµ Μονάδες

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ ε ω μ ε τ ρ ί AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΩΝΩΝ 1. Σε ισοσκελές τρίγωνο ΑΒ (ΑΒ=Α) προεκτείνουμε τη βάση Β κτά ίσ τμήμτ Β=Ε. Ν δείξετε ότι το τρίγωνο ΑΕ είνι ισοσκελές. 2. Ν κτσκευάσετε σε ισοσκελές τρίγωνο

Διαβάστε περισσότερα

Γενικές ασκήσεις σελίδας

Γενικές ασκήσεις σελίδας Γενικές σκσεις σελίδς 9 3. ίνετι η εξίσωση + λ 0 (), όπου λ R. Ν ποδείξετε ότι γι κάθε τιµ του λ, η () πριστάνει κύκλο, του οποίου ζητείτι ν ρεθεί το κέντρο κι η κτίν. (ii) Ν ποδείξετε ότι όλοι οι κύκλοι

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ() ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α.. Α.. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνί: Κυρική 7 Απριλίου ιάρκει Εξέτσης: ώρες ΑΠΑΝΤΗΣΕΙΣ Βλέπε πόδειξη () σελ.75 σχολικού βιβλίου

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo. Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι

Διαβάστε περισσότερα

Εκθετική - Λογαριθµική συνάρτηση

Εκθετική - Λογαριθµική συνάρτηση Εκθετική - ογριθµική συνάρτηση Ορισµός δύνµης µε εκθέτη θετικό κέριο..., νν> ν 0 Ορίζουµε: ν πράγοντες,, γι 0., ν ν Αν ν θετικός κέριος, ορίζουµε: ν -ν. ν µ ν ν µ ν Αν >0, µ κέριος κι ν θετικός κέριος,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ. ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ. ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ ΑΝΤΩΝΗΣ ΚΥΡΙΑΚΟΠΟΥΛΟΣ Μθηµτικός Συγγρφές µέλος του Σ της ΕΜΕ Πρόεδρος της Συντκτικής Επιτροπής του περιοδικού «Ευκλείδης Β» ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ

Διαβάστε περισσότερα

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή ΙΝΥΣΜΤ Εισγωγή Το διάνυσμ είνι έν χρκτηριστικό πράδειγμ έννοις που νπτύχθηκε μέσ πό τη στενή λληλεπίδρση Μθημτικών κι Φυσικής Ο κνόνς του πρλληλόγρμμου, σύμφων με τον οποίο το μέτρο κι η κτεύθυνση δύο

Διαβάστε περισσότερα

για την εισαγωγή στο Λύκειο

για την εισαγωγή στο Λύκειο Τυπολόγιο 1 Μθημτικά γι την εισγωγή στο Λύκειο Νίκος Κρινιωτάκης ΠΡΓΜΤΙΚΟΙ ΡΙΘΜΟΙ Σύνολ ριθμών Φυσικοί ριθμοί Ν {,1,,3,...,} Οι φυσικοί δικρίνοντι σε: Άρτιους είνι της μορφής ν κ, κ Ν (διιρούντι με το

Διαβάστε περισσότερα

2.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ 1.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΘΕΩΡΙΑ 1. Ιδιότητες των πράξεων ( β ι γ δ) + γ β + δ ( β ι γ δ) γ βδ β + γ β + γ Αν γ 0, τότε : β 0 0 ή β 0 β γ βγ. Ιδιότητες των δυνάµεων λ +λ β ( β ( ) λ λ ) λ β λ

Διαβάστε περισσότερα

Σελ. 1. Ι. Σωτηρόπουλος - Φ. Πετσιάς -. Κάτσιος Μαθηµατικά Γ Γυµνασίου ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Σελ. 1. Ι. Σωτηρόπουλος - Φ. Πετσιάς -. Κάτσιος Μαθηµατικά Γ Γυµνασίου ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Ι. Σωτηρόπουλος - Φ. Πετσιάς -. Κάτσιος ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Φυσικοί ριθµοί (Ν :,,,,... Ακέριοι ριθµοί (Ζ :...,,,,,... Ρητοί (Q λέγοντι οι ριθµοί που µπορούν ν γρφούν µε τη µορφή κλάσµτος δηλδή, στη µορφή

Διαβάστε περισσότερα

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2.

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2. Ευθεί Ενότητ 7. Απόστση σημείου πό ευθεί Εμβδόν τριγώνου Εφρμογές 7.1 Ν βρεθεί η πόστση: i) του σημείου Μ(1,3) πό την ευθεί (ε) με εξίσωση 3x-4y- 11=0, ii) του σημείου Ρ(,-3) πό την (η) με εξίσωση 5x+1y-=0.

Διαβάστε περισσότερα

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστ Βκλόπουλου, Βσίλη Κρκάνη, Άννς Βκλοπούλου Άσκηση η Δίνοντι τ δινύσμτ, β διάφορ του μηδνικού γι τ οποί ισχύι: β, β κι β i) Ν βρθούν τ μέτρ των δινυσμάτων,

Διαβάστε περισσότερα

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6.

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6. Γ.3 3.3 Εξισώσεις ου θμού Απρίτητες νώσεις Θεωρίς Θεωρί 5. Τι ονομάζουμε εξίσωση δευτέρου θμού (ή δευτεροάθμι εξίσωση) μ ένν άνωστο κι τι δικρινουσά της; Ονομάζουμε εξίσωση δευτέρου θμού μ ένν άνωστο κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη

Διαβάστε περισσότερα

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για 165 4.5 ΠΡΩΤΟΙ ΑΡΙΘΜΟΙ Εισγωγή Δύο πό τ σημντικότερ ποτελέσμτ σχετικά με τους πρώτους ριθμούς ήτν γνωστά ήδη πό την ρχιότητ. Το γεγονός ότι κάθε κέριος νλύετι με μονδικό τρόπο ως γινόμενο πρώτων εμφνίζετι

Διαβάστε περισσότερα

Σημειωση Αν καποια προταση απο τις επομενες χρησιμοποιηθει χρειαζεται αποδειξη. Εξαιρεση αποτελουν οι(3),(13),(21)

Σημειωση Αν καποια προταση απο τις επομενες χρησιμοποιηθει χρειαζεται αποδειξη. Εξαιρεση αποτελουν οι(3),(13),(21) È Ö Ñ Ø Ä Ó Ù Ð ËÕÓÐ ËÑ ÖÒ ¾½ÆÓ Ñ ÖÓÙ¾¼¼ È Ö ØÛÔ Ö Ð Ñ ÒÓÒØ Ñ Ö ÔÖÓØ Ñ Ö Ð ÑÑ Ø ÕÖ Ñ È ÖÐ Ý Ø Ü Ø ØÓÑ Ñ Ø ÙÒ Ø ³ÄÙ ÓÙº Σημειωση Αν κποι προτση πο τις επομενες χρησιμοποιηθει χρειζετι ποδειξη. Εξιρεση ποτελουν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη στο σηµείο

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης 4. -4.5 σκήσεις σχολικού βιβλίου σελίδς 8 83 ρωτήσεις Κτνόησης. i) Πώς ονοµάζοντι οι γωνίες κι β του πρκάτω σχήµτος κι τι σχέση έχουν µετξύ τους; ii) Tι ισχύει γι τις γωνίες γ κι δ ; ε δ ε ε ε γ β ε πάντηση

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά.

ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά. ΣΗΜΕΙΩΣΗ: Προυσίσ τις ποδείξεις κάπως νλυτικά ώστε ν γίνουν πιο κτνοητές.εσείς μπορείτε ν τις προυσιάσετε πιο λιτά. Δίνετι τυχόν ορθογώνιο τρίγωνο ΑΒΓ( ˆΑ=1 =1 ορθή) κι Δ η προβολή της κορυφής Α στην υποτείνουσ.ν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE ΚΕΦΑΛΑΙΟ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE 1. Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α

Διαβάστε περισσότερα

Η θεωρία στα μαθηματικά της

Η θεωρία στα μαθηματικά της Η θεωρί στ μθημτικά της Γ γυμνσίου ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ ΤΑΞΗΣ ((ΑΛΓΕΒΡΑ)) ο ΚΕΦΑΛΑΙΙΟ 1 Αλγγεεριικέέςς Πρσττάσεειιςς Α. 1. 1 1. Τι ονομάζετε δύνμη ν με άση τον πργμτικό κι εκθέτη το φυσικό

Διαβάστε περισσότερα

Σηµειώσεις στις ακολουθίες

Σηµειώσεις στις ακολουθίες Σηµειώσεις στις κολουθίες Η έννοι της κολουθίς Ας ρίξουµε µι µτιά στην επόµενη πράθεση ριθµών: 7,, 5, 9,, 7,, Όπως κτλβίνει κνείς, υπάρχουν άπειροι ριθµοί που διδέχοντι ο ένς τον άλλο, µε κάποι λογική

Διαβάστε περισσότερα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα Ερωτήσεις νάπτυξης 1 * Ν κτσκευάσετε το άθροισµ των δινυσµάτων + + 3 όπου 2 * ι ποιες τιµές του πρµτικού ριθµού λ ισχύει ( λ ) < 5 0 ; 3 ** Στο επίπεδο δίνοντι τ µη µηδενικά δινύσµτ, κι, τ οποί νά δυο

Διαβάστε περισσότερα

Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών

Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών 0. 0.5 Άλλοι τύποι γι το εµβδόν τριγώνου κι λόγος εµβδών ΘΕΩΡΙ. Ε= τ( τ )( τ β)( τ γ ) Ε = τ ρ Ε = β γ R Ε = β γ ηµ = γ ηµ = β ηµ ηµ = β ηµ = γ ηµ = R. ν δύο τρίγων έχουν ίσες βάσεις, τότε ο λόγος των

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 05 ΘΕΜΑ Α. Γι μι συνεχή συνάρτηση f ν γράψετε τις τρείς κτηγορίες σημείων, τ οποί εινι πιθνές θέσεις τοπικών κροτάτων. (6 Μονάδες). Ν χρκτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ Περιέχει την ύλη που διδάσκετι στ Μθημτικά της Κτεύθυνσης στη Γ Λυκείου Στους δσκάλους μου με ευγνωμοσύνη Στους μθητές μου με ελπίδ Κάθε γνήσιο ντίτυπο έχει την ιδιόχειρη υπογρφή του συγγρφέ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς

Διαβάστε περισσότερα

Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ

Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟ ΟΙ 6 Ακολουθίες Ορισµός Ακολουθί λέγετι κάθε συάρτηση, η οποί έχει πεδίο ορισµού το σύολο τω φυσικώ ριθµώ N *. Μί κολουθί συµβολίζετι συήθως µε το γράµµ όπου κάτω δεξιά βάζουµε το δείκτη,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα