ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες."

Transcript

1 ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ Ονοµάζουµε πίνκ Α n m µί διάτξη n m ριθµών κι j,,, m, σε n γρµµές κι m στήλες ηλδή: Α ( σµβ ij ) ορσ n n m m nm a ij όπου i,,, n Έτσι όπως γράφετι ο πίνκς Α, ο ριθµός a ij, που λέγετι στοιχείο του πίνκ, βρίσκετι στην i - γρµµή κι στην j - στήλη Ένς πίνκς Α n µε n γρµµές κι µί στήλη ονοµάζετι πίνκς στήλη, δηλδή: Α n Ενώ ένς πίνκς Α, n µε µί γρµµή κι n στήλες ονοµάζετι πίνκς γρµµή, δηλδή: Α ( ) n Πρτήρηση Κάθε στοιχείο του χώρου σν πίνκς γρµµή n n R µπορεί ν θεωρηθεί σν πίνκς στήλη n ή Έν πίνκς Α n n όπου το πλήθος των γρµµών είνι ίσο µε το πλήθος των στηλών λέγετι τετργωνικός ηλδή: Α n n n n nn στοιχεί,,, nn του προηγούµενου τετργωνικού πίνκ Α ποτελούν την κύρι διγώνιό του Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

2 Ένς τετργωνικός πίνκς Α n n θ λέγετι άνω τριγωνικός ότν τ στοιχεί κάτω της κύρις διγωνίου είνι µηδέν ηλδή ότν έχουµε γι i k i > k Όµοι θ λέγετι κάτω τριγωνικός ότν τ στοιχεί πάνω π' την κύρι διγώνιο είνι µηδέν ηλδή έχουµε, γι i < k i k Ότν ο τετργωνικός πίνκς Α είνι πάνω κι κάτω τριγωνικός θ λέγετι διγώνιος Πράδειγµ Γι τους τετργωνικούς πίνκες Α, Β, Γ έχουµε ότι ο Α είνι πάνω τριγωνικός, ο Β είνι διγώνιος κι ο Γ είνι κάτω τριγωνικός ΠΡΑΞΕΙΣ ΠΙΝΑΚΩΝ ) Πρόσθεση πινάκων Ας είνι οι n m πίνκες ( ), B (βi j) µε i,,, n κι j,,, m Ορίζουµε σν άθροισµ των πινάκων Α, Β τον n m πίνκ Α+Β µε στοιχεί τ + β ηλδή: Ιδιότητες Α + Β ( + β ) i n, j m Α + Β Β + Α, ( Α + Β) + Γ Α + ( Β + Γ) Α + Α, Α + ( Α) Με συµβολίζουµε τον πίνκ που έχει όλ τ στοιχεί του ίσ µε β) Βθµωτός πολλπλσισµός Ορίζουµε τον πολλπλσισµό πργµτικού ριθµού λ R µε τον πίνκ Α, σν τον πίνκ που προκύπτει πό τον πολλπλσισµό όλων των στοιχείων του Α µε το λ ηλδή: λ Α λ( i j) ( λi j), i,,,n, j,,,m πχ λ λ λ λ λ Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

3 Ιδιότητες λ ( Α + Β) λα + λβ, ( λ + µ ) Α λα + µ Α Α Α, ( λµ ) Α λ( µ Α) γ) Πολλπλσισµός πινάκων Ας είνι οι πίνκες: Α n m µε ( ), i n, j m κι Β m k µε B ( β ), j m, k j Ορίζουµε το γινόµενο ΑΒ των πινάκων Α, Β τον n k πίνκ του οποίου τ στοιχεί προκύπτουν πό τ εσωτερικά γινόµεν των γρµµών του Α µε τις στήλες του Β ηλδή το γ i στοιχείο του ΑΒ προκύπτει ν πάρουµε το εσωτερικό γινόµενο της i-γρµµής του Α κι της στήλης του Β γ,,, ), ( β, β,, β ) i ( i i im m Συνεπώς i β + iβ + + imβ m i jβ m j j ΑΒ ( γ i ) µε i n, k κι γ i m j β j Γι ν γίνετι ο πολλπλσισµός πρέπει το πλήθος των στηλών του Α ν είνι ίσο µε το πλήθος των γρµµών του Β ιότι προφνώς, γι ν έχουµε το γ στοιχείο του ΑΒ το διάνυσµ γρµµή του Α κι το διάνυσµ στήλη του Β, είνι πρίτητο ν έχουν το ίδιο πλήθος συντετγµένων i ΠΑΡΑ ΕΙΓΜΑ Ν βρεθεί το γινόµενο του πίνκ Α µε τον πίνκ Β, όπου: Α, Β 6 ΑΒ Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

4 Άρ ΑΒ Πρτήρηση Μπορεί το γινόµενο δύο πινάκων ΑΒ ν ορίζετι κι ν µην ορίζετι το ΒΑ, πχ ν ο Α είνι κι ο Β είνι ο ΑΒ ορίζετι κι είνι πίνκς ενώ ο ΒΑ δεν ορίζετι Ιδιότητες ( ΑΒ ) Γ Α( ΒΓ) Α ( Β + Γ) ΑΒ + ΑΓ ή ( Α + Β) Γ ΑΓ + ΒΓ Α( λ Β) ( λα) Β λ( ΑΒ) Φυσικά θ πρέπει τ πρπάνω γινόµεν ν ορίζοντι Προσοχή: Αν ορίζοντι τ ΑΒ κι ΒΑ δεν ισχύει γενικά ότι ΑΒ ΒΑ ΠΑΡΑ ΕΙΓΜΑ Γι τους πίνκες εξετάστε ν ΑΒ ΒΑ Α, Β Έχουµε: ΑΒ + + ΒΑ Προφνώς ΑΒ ΒΑ Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

5 ΜΟΝΑ ΙΑΙΟΣ ΑΝΑΣΡΟΦΟΣ ΑΝΙΣΡΟΦΟΣ ΠΙΝΑΚΑΣ Ο n n πίνκς µε, γι i j κι, γι i j λέγετι µονδιίος κι συµβολίζετι µε n I ή πλώς Ι Πρτηρούµε εύκολ ότι γι ένν n m πίνκ θ ισχύει: Ι m, I n Oρισµός Ας είνι ο n m πίνκς Α ) Λέµε νάστροφο του πίνκ Α, τον m n ( πίνκ Α ( βi j), όπου β ji µε i,,,m, j,,, n ηλδή ο Α έχει στήλες τις γρµµές του Α κι γρµµές τις στήλες του Α Πράδειγµ 7 7 Συνεπώς ν σ' έν πίνκ Α κάνουµε τις γρµµές στήλες πίρνουµε τον νάστροφό του Α Ιδιότητες του νάστροφου πίνκ ( Α ) Α ( Α + Β) Α + Β ( ΑΒ ) Β Α Ένς τετργωνικός n n πίνκς που έχει ίσ τ συµµετρικά στοιχεί ως προς την κύρι διγώνιο λέγετι συµµετρικός ηλδή ότν Α Α Πράδειγµ Ο πίνκς Α είνι συµµετρικός, φού Α Α Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

6 6 Ένς τετργωνικός n n πίνκς Α κλείτι ντιστρέψιµος ή οµλός ότν υπάρχει n n πίνκς, που συµβολίζετι µε Α, τέτοιος ώστε: ΑΑ Α Α Ι n Ιδιότητες του ντίστροφου πίνκ : ( Α ) Α k k ( ) ( ) Α (B) B T ( ) ( ) T OΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Ένς n n πίνκς ( ), µε R, λέγετι ορθογώνιος, ότν το σύνολο των δινυσµάτων των στηλών του (, x,, ) x x n είνι ορθοκνονικό ηλδή το εσωτερικό γινόµενο των στηλών νά δύο είνι µηδέν γι i j (τ δινύσµτ νά δύο είνι κάθετ) κι έν γι i j (µονδιί) x x i j, ν i j, ν i j Πρότση Ένς n n πίνκς ( ), µε R, είνι ορθογώνιος, ότν κι µόνο ότν έχει ντίστροφο (είνι οµλός) που ισούτι µε τον νάστροφό του ηλδή: Α Α Πρότση Αν ο n n πίνκς ( ), µε R, είνι ορθογώνιος τότε έχει ορίζουσ ίση µε ± ηλδή: det ± Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

7 7 Πράδειγµ ίνετι ο πίνκς Α Επειδή τ δινύσµτ : x (,, ), x,, κι x,, είνι µονδιί, δηλδή x x x κι κάθετ δηλδή x x, x x, x x ο πίνκς Α είνι ορθογώνιος Πρτηρούµε ότι Α Α διότι Α Α Ι Πράδειγµ Έστω ο πίνκς Α Επειδή τ δινύσµτ: x (,, ), ( ) T x,, x,, είνι µονδιί, δηλδή x x x κι κάθετ x x, x x, x x ο πίνκς Α είνι ορθογώνιος Επίσης πρτηρούµε ότι Α Α κι ( ) T διότι Α Α Ι Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα

ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα ΙΔΙΟΤΙΜΕΣ Σημείωση Προς το πρόν, κινούμεθ στο σώμ R των πργμτικών ριθμών Έν ιδιοδιάνυσμ ή χρκτηριστικό διάνυσμ ενός πίνκ Α, που ντιστοιχεί στην ιδιοτιμή, είνι εκείνο το μη μηδενικό διάνυσμ το οποίο πηροί

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Μάρτιος 1998.

ΠΡΟΛΟΓΟΣ. Μάρτιος 1998. ΠΡΟΛΟΓΟΣ Το βιβλίο υτό περιλμβάνει την ύλη των Μθημτικών, που προβλέπετι πό το πρόγρμμ σπουδών της Θετικής Κτεύθυνσης της Β τάξης του Ενιίου Λυκείου, του οποίου η εφρμογή ρχίζει πό το σχολικό έτος 998-999

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Ενιαίου Λυκείου Θετική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Ενιαίου Λυκείου Θετική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ Β Τάξη Ενιίου Λυκείου Θετική Κτεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ Με πόφση της ελληνικής

Διαβάστε περισσότερα

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i Οι Κτνομές χ, t κι F Οι Κτνομές χ, t κι F Σε υτή την ενότητ προυσιάζουμε συνοπτικά τρεις συνεχείς κτνομές οι οποίες, όπως κι η κνονική κτνομή, είνι πολύ χρήσιμες στη Σττιστική Συμπερσμτολογί Είνι ξιοσημείωτο,

Διαβάστε περισσότερα

Σηµειώσεις στις ακολουθίες

Σηµειώσεις στις ακολουθίες Σηµειώσεις στις κολουθίες Η έννοι της κολουθίς Ας ρίξουµε µι µτιά στην επόµενη πράθεση ριθµών: 7,, 5, 9,, 7,, Όπως κτλβίνει κνείς, υπάρχουν άπειροι ριθµοί που διδέχοντι ο ένς τον άλλο, µε κάποι λογική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη στο σηµείο

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ Περιέχει την ύλη που διδάσκετι στ Μθημτικά της Κτεύθυνσης στη Γ Λυκείου Στους δσκάλους μου με ευγνωμοσύνη Στους μθητές μου με ελπίδ Κάθε γνήσιο ντίτυπο έχει την ιδιόχειρη υπογρφή του συγγρφέ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (7 /5/ 4) ΘΕΜΑ ο Α. Έστω μι συνάρτηση f ορισμένη σ' έν διάστημ Δ κι έν εσωτερικό σημείο του Δ. Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιμη

Διαβάστε περισσότερα

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ ΠΕΡΙΚΛΗΣ Γ ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΚΕΝΤΡΙΚΗ ΔΙΑΘΕΣΗ Τρυλντώνη 8, 577 Ζωγράφου Τηλ: 747344 747395 email:info@orosimoeu wwworosimoeu ISBN: 978-68-873--4 ΕΚΔΟΣΕΙΣ

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:... ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση

Διαβάστε περισσότερα

ΣΥΝΟΛΑ Σηµείωση. Γράφουµε νν ντί του ν κι µόνον ν.. Προλεγόµεν. Σε ότι κολουθεί, ο νγνώστης θ έρθει σε επφή µε έννοιες πό την Μθηµτική Λογική, την Θεωρί Συνόλων, κι την Άλγεβρ. Σύµφων µε την Πλτωνική ντίληψη

Διαβάστε περισσότερα

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική

Διαβάστε περισσότερα

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι

Διαβάστε περισσότερα

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ 1 3.1 σκήσεις σχ. ιλίου σελίδς 144 146 Ο Σ 1. Έν κουτί έχει τρεις µπάλες, µι άσπρη, µι µύρη κι µι κόκκινη. άνουµε το εξής πείρµ : πίρνουµε πό το κουτί µι µπάλ, κτγράφουµε το χρώµ της κι την ξνάζουµε στο

Διαβάστε περισσότερα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα Θέμ: Ολοκληρώμτ Υολογισμός ολοκληρωμάτων Μέθοδοι ολοκλήρωσης Εμβδά Η συνάρτηση ου ορίζετι ό ολοκλήρωμ Ενλητικές σκήσεις ολοκληρωμάτων ΥΠΟΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΜΕ ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΚΑΤΑΣΚΕΥΩΝ Ι

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΚΑΤΑΣΚΕΥΩΝ Ι ΔΗΜΟΣΘΕΝΗΣ ΤΑΛΑΣΛΙΔΗΣ ΗΛΙΑΣ ΜΠΟΥΓΑΪΔΗΣ ΙΩΑΝΝΗΣ ΝΤΙΝΟΠΟΥΛΟΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΚΑΤΑΣΚΕΥΩΝ Ι ΤΕΥΧΟΣ A Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Α Κ Ε Σ Σ Η Μ Ε Ι Ω Σ Ε Ι Σ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.Π.Θ. ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ

Διαβάστε περισσότερα

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟ ΒΑΙΗ - ΜΑΥΡΑΓΑΝΗ ΤΑΘΗ ΠΑΝΕΗΝΙΕ ΕΞΕΤΑΕΙ 5 - - Οι πρκάτω σημειώσεις βσίστηκν στ έντυπ του Κ.Ε.Ε. (999 ) κι στη θεμτοδοσί των Πνελλδικών Εξετάσεων στ Μθημτικά Κτεύθυνσης της Γ υκείου. τις επόμενες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

Περιεκτικότητα στα εκατό κατά βάρος (% W/W): εκφράζει τα γραµµάρια της διαλυµένης ουσίας που περιέχονται σε 100 g διαλύµατος.

Περιεκτικότητα στα εκατό κατά βάρος (% W/W): εκφράζει τα γραµµάρια της διαλυµένης ουσίας που περιέχονται σε 100 g διαλύµατος. 1 ΚΕΦΑΛΑΙΟ 1 ο 1. ΙΑΛΥΜΑΤΑ (ΠΕΡΙΕΚΤΙΚΟΤΗΤΑ - ΙΑΛΥΤΟΤΗΤΑ) Όπως νφέρµε διάλυµ είνι έν οµογενές µίγµ που ποτελείτι πό δύο ή περισσότερες χηµικές ουσίες. Περιεκτικότητ διλύµτος είνι η ποσότητ της διλυµένης

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ημιτελείς προτάσεις Α1 έως Α5 κι δίπλ το γράμμ που

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΟ φροντιστήριο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. ώστε τον ορισµό της υπερβολής και γράψτε τις εξισώσεις των ασύµπτωτων της ( C ): (Μονάδες 9) α β Β. Να διατυπώσετε τέσσερις

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

ΣΧΕΣΕΙΣ ΙΑΤΑΞΗΣ, Α Α.

ΣΧΕΣΕΙΣ ΙΑΤΑΞΗΣ, Α Α. ΣΧΕΣΕΙΣ ΙΑΤΑΞΗΣ, Α Α. 1. ΣΧΕΣΕΙΣ ΔΙΑΤΑΞΗΣ: επνεπίσκεψη. Η εξής πρτήρηση γι τις (μονομερείς) διμελείς σχέσεις, εξυπηρετεί την τξινόμησή τους: τ ζεύγη μις οποιδήποτε τέτοις σχέσης εμπίπτουν σε τρείς κτηγορίες:

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα» 1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 4 IOYNIOY 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α.1.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική & Τεχνολογική Κατεύθυνση

ΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΜΑΘΗΜΑΤΙΚΑ Γ Τάξης Ειίου Λυκείου Θετική & Τεχολογική Κτεύθυση ΣΥΓΓΡΑΦΕΙΣ Αδρεδάκης Στυλιός Κτσργύρης Βσίλειος Μέτης Στέφος Μπρουχούτς Κω/ος Ππστυρίδης Στύρος Πολύζος Γεώργιος Κθηγητής Πεπιστημίου Αθηώ

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

3.10 ΕΠΙΛΥΣΗ ΤΡΙΓΩΝΟΥ

3.10 ΕΠΙΛΥΣΗ ΤΡΙΓΩΝΟΥ 3. ΕΠΙΛΥΣΗ ΤΡΙΩΝΟΥ σκήσεις σχολικού βιβλίου σελίδς - A Οµάδς. ύο πύργοι κι βρίσκοντι εκτέρωθεν ενός ποτµού. Ένς πρτηρητής Π βρίσκετι προς το ίδιο µέρος του ποτµού µε τον πύργο. ν στο τρίγωνο Π είνι Π 3m,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Σταυρινού Γιώργος. Δεκέμβριος 2007. ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ Βασίλειος Χατζής

Σταυρινού Γιώργος. Δεκέμβριος 2007. ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ Βασίλειος Χατζής ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΔΙΑΚΥΒΕΡΝΗΣΗΣ ΓΙΑ ΤΗΝ ΔΙΑΔΙΚΤΥΑΚΗ ΣΥΝΕΔΡΙΑΣΗ ΣΥΛΛΟΓΙΚΩΝ ΟΡΓΑΝΩΝ, ΜΕ ΧΡΗΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ. Μιλτιάδης Γ. Ζώης Α.Μ.: 200113

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ. Μιλτιάδης Γ. Ζώης Α.Μ.: 200113 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩ ΩΝ ΣΩΜΑΤΙΩΝ Μιλτιάδης Γ. Ζώης Α.Μ.: 00113 ΤΑΛΑΝΤΩΣΕΙΣ ΝΕΤΡΙΝΩΝ: ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΡΙΣΗΣ ΤΟΥ ΑΝΙΧΝΕΥΤΗ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ MINOS

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων ικριτά Μηµτικά κι Μηµτική Λογική ΠΛΗ Ε ρ γ σ ί 4η Θεωρί Γρφηµάτων Α π ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµ. ίετι το ένρο του πρκάτω σχήµτος. e d f b l i a k m p c g h n o Θεωρώντς σν ρίζ του ένρου

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

H Ευκλείδεια Γεωµετρία είναι και εδώ : Οι Κωνικές Τοµές της Β Λυκείου

H Ευκλείδεια Γεωµετρία είναι και εδώ : Οι Κωνικές Τοµές της Β Λυκείου H Ευκλείδει Γεωµετρί είνι κι εδώ : Οι Κωνικές Τοµές της Β Λυκείου (EΥΚΛΕΙ ΗΣ Γ, Τ. 73,010) ηµήτρης Ι. Μπουνάκης Σχολικός Σύµβουλος Μθηµτικών dimitrmp@sch.gr Περίληψη Η µελέτη των κωνικών τοµών η οποί γίνετι,

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΑ ΑΠΟΣΠΑΣΜΑ. Από το πρακτικό της αριθμ.15-11 ης Συνεδρίασης της Οικονομικής Επιτροπής Δήμου Λεβαδέων Αριθμός απόφασης : 142.

ΑΝΑΡΤΗΤΕΑ ΑΠΟΣΠΑΣΜΑ. Από το πρακτικό της αριθμ.15-11 ης Συνεδρίασης της Οικονομικής Επιτροπής Δήμου Λεβαδέων Αριθμός απόφασης : 142. ΑΝΑΡΤΗΤΕΑ Λιβδειά 24 04-2015 Αριθ Πρωτ: 10259 ΑΠΟΣΠΑΣΜΑ Από το πρκτικό της ριθμ15-11 ης Συνεδρίσης της Οικονομικής Επιτροπής Δήμου Λεβδέων Αριθμός πόφσης : 142 Περίληψη Εκθεση ποτελεσμάτων εκτέλεσης προϋπολογισμού

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ

ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ ΞΕΠΑΠΑΔΕΑΣ ΓΙΑΝΝΙΚΟΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΛΥΣΕΙΣ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΕΙΣ Αν Α κι Β είνι δύο σύνο ν ποδείξετε ότι Α Β c BB Α c B Εφρμόζοντς την επιμεριστική ιδιότητ της ένωσης

Διαβάστε περισσότερα

6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο

6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο 6. ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤ ΕΠΙΠΕ ΘΕΩΡΙΑ. Σύστηµα καθέτων ηµιαξόνων: Είναι δύο κάθετες µεταξύ τους ηµιευθείες µία οριζόντια και µία κατακόρυφη. Την οριζόντια την ονοµάζουµε και την λέµε ηµιάξονα των ή ηµιάξονα

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΣΚΗΣΗ 1 Να αποδειχθεί ότι οι γεωμετρικές εικόνες των μιγαδικών ριζών της εξίσωσης (συν θ)z (4συνθ)z + (5 συν θ) = 0 με θ π, π κινούνται σε υπερβολή, της οποίας να ευρεθούν τα στοιχεί ΑΣΚΗΣΗ Στο μιγαδικό

Διαβάστε περισσότερα

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο .4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0 Σελίδα από 53 Κεφάλαιο 3 Πίνακες Περιεχόµενα 3 Ορισµοί Επεξεργασµένα Παραδείγµατα Ασκήσεις 3 3 Πράξεις µε Πίνακες Πρόσθεση Πινάκων Πολλαπλασιασµός Πίνακα µε Αριθµό Πολλαπλασιασµός Πινάκων ιωνυµικό Ανάπτυγµα

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ. Óõíåéñìüò ΑΠΑΝΤΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ. Óõíåéñìüò ΑΠΑΝΤΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ο α. I. Σχολικό βιβλίο σελ. 41. ΙΙ. Σχολικό βιβλίο σελ. 89. β. Σχολικό βιβλίο σελ. 71. γ. Σχολικό βιβλίο σελ.60. δ. Σ, Λ,

Διαβάστε περισσότερα

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ 1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005. Κυριακή 10-4-2005

ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005. Κυριακή 10-4-2005 ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005 ΚΛΑ ΟΣ ΠΕ 70 ΑΣΚΑΛΩΝ EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείµενο» Κυρική 10-4-2005 Α.

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

ΙΣΤΟΡΙΕΣ ΦΩΤΟΣ (Ερωτήσεις δικαιολόγησης στη Γεωµετρική Οπτική)

ΙΣΤΟΡΙΕΣ ΦΩΤΟΣ (Ερωτήσεις δικαιολόγησης στη Γεωµετρική Οπτική) ΙΣΤΡΙΕΣ ΦΩΤΣ (Ερωτήσεις δικιολόγησης στη εωµετρική πτική). Η πργκωνισµένη νάκλση στο προσκήνιο Τις περισσότερες ορές που ντιµετωπίζουµε έν έµ το οποίο σχετίζετι µε έν πρίσµ δινούς υλικού, έχουµε συνηίσει

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ συγκέντρωση Μόλυνση ονομάζετι η είσοδος ενός πθογόνου μικροίου στον οργνισμό. Χρονικά, προηγείτι η είσοδος του μικροίου κι κολουθεί η ενεργοποίηση

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj Qwφιertuiopasdfghjklzερυυξnmηq σwωψertuςiopasdρfghjklzcvbn mqwertuiopasdfghjklzcvbnφγιmλι qπςπζwωeτrtuτioρμpκaλsdfghςj ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnmqwertuiopasdfghjklz ΤΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΔΕΙΞΕΙΣ

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ, ΥΠΟΔΟΜΩΝ, ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΚΤΥΩΝ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ, ΥΠΟΔΟΜΩΝ, ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΚΤΥΩΝ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ ΤΜΗΜΤΡΧΗΣ : Δ. ΓΡΟΥΖΗΣ ΤΗΛ. 210-3332990 ΠΛΗΡΟΦΟΡΙΕΣ : Ι.ΖΡΦΕΤ ΤΗΛ.210-3332864 ΝΡΤΗΤΕ ΣΤΟ ΔΙΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΤΙ ΥΠΟΥΡΓΕΙΟ ΝΠΤΥΞΗΣ, ΝΤΓΩΝΙΣΤΙΚΟΤΗΤΣ, ΠΛΤΕΙ ΣΥΝΤΓΜΤΟΣ, ΘΗΝ 2013 ΦΟΡΕΣ : ΠΟΚΕΝΤΡΩΜΕΝΗ ΔΙΟΙΚΗΣΗ

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΩΡΗΜΑΤΑ ΠΡΟΤΑΣΕΙΣ µε ΑΠΟ ΕΙΞΕΙΣ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ µε ΑΠΑΝΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΙ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Αιστάι 30 Αµφιάλη 43890-43

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

4.3 ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ

4.3 ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ ΜΡΟΣ Β 4. ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ 81 4. ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ Μονάδες μέτρησης όγκου Ως µονάδα µέτρησης όγκου θεωρούµε έναν κύο µε ακµή µήκους 1 µέτρο(m). Ο όγκος του ισούται µε 1 κυικό µέτρο

Διαβάστε περισσότερα

ΠΛΕΟΝΑΣΜΑ ΚΑΤΑΝΑΛΩΤΗ ΚΑΙ ΠΑΡΑΓΩΓΟΥ. Το πλεόνασµα του καταναλωτή είναι ωφέλεια που προκύπτει από το γεγονός

ΠΛΕΟΝΑΣΜΑ ΚΑΤΑΝΑΛΩΤΗ ΚΑΙ ΠΑΡΑΓΩΓΟΥ. Το πλεόνασµα του καταναλωτή είναι ωφέλεια που προκύπτει από το γεγονός ΠΛΕΟΝΑΣΜΑ ΚΑΤΑΝΑΛΩΤΗ ΚΑΙ ΠΑΡΑΓΩΓΟΥ Β.1. Το Πλεόνασµα του Καταναλωτή Το πλεόνασµα του καταναλωτή είναι ωφέλεια που προκύπτει από το γεγονός ότι κάποιοι καταναλωτές πληρώνουν για ένα αγαθό λιγότερο από αυτό

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

Αφιέρωση Στα παιδιά µας Στους µαθητές που ατενίζουν µε αισιοδοξία το µέλλον

Αφιέρωση Στα παιδιά µας Στους µαθητές που ατενίζουν µε αισιοδοξία το µέλλον Αφιέρωση Σταπαιδιάµας Στουςµαθητέςπουατενίζουν µεαισιοδοξίατοµέλλον Φίληµαθήτρια,φίλεµαθητή Τοβιβλίοαυτόέχειδιπλόσκοπό: Νασεβοηθήσειστηνάρτιαπροετοιµασίατουκαθηµερινούσχολικού µαθήµατος. Νασουδώσειόλατααπαραίτηταεφόδια,ώστενααποκτήσειςγερές

Διαβάστε περισσότερα

Αθ.Κεχαγιας. Σηµειωσεις Αναλυτικης Γεωµετριας. Θ. Κεχαγιας. Σεπτεµβρης 2009, υ.0.95

Αθ.Κεχαγιας. Σηµειωσεις Αναλυτικης Γεωµετριας. Θ. Κεχαγιας. Σεπτεµβρης 2009, υ.0.95 Σηµειωσεις Αναλυτικης Γεωµετριας Θ. Κεχαγιας Σεπτεµβρης 2009, υ.0.95 Περιεχόµενα Εισαγωγη 1 Επιπεδα στον Τρισδιαστατο Χωρο 1 1.1 Θεωρια.................................... 1 1.2 Λυµενες Ασκησεις..............................

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ, ΥΠΟΔΟΜΩΝ, ΝΑΥΤΙΛΙΑΣ ΚΑΙ ΤΟΥΡΙΣΜΟΥ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ, ΥΠΟΔΟΜΩΝ, ΝΑΥΤΙΛΙΑΣ ΚΑΙ ΤΟΥΡΙΣΜΟΥ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ ΠΛΗΡΟΦΟΡΙΕΣ :.ΜΡΙΝΟΥ ΤΗΛ.210-3332926 ΝΡΤΗΤΕ ΣΤΟ ΔΙΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΤΙ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΣ, ΥΠΟΔΟΜΩΝ, ΠΛΤΕΙ ΣΥΝΤΓΜΤΟΣ, ΘΗΝ 2015 ΦΟΡΕΣ : ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΣ, ΥΠΟΔΟΜΩΝ, ΤΟΜΕΣ : ΠΕΡΙΦΕΡΕΙΚ ΠΡΟΓΡΜΜΤ ΥΠΟΤΟΜΕΣ

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα