3. Βασικά µαθηµατικά µεγέθη, συµβολισµοί και σχέσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3. Βασικά µαθηµατικά µεγέθη, συµβολισµοί και σχέσεις"

Transcript

1 ρ.χ. Στρουθόπουλος, ΑΤΕΙ Σερρώ 3. Βαικά µαθηµατικά µεγέθη, υµβολιµοί και χέεις 3.. Πίακας τήλης Α το πλήθος τω προτύπω, το πλήθος τω χαρακτηριτικώ που µετράµε ε κάθε πρότυπο και Τ το πλήθος τω τάξεω, µπορούµε α χρηιµοποιήουµε έα δείκτη κ=,,..., για κάθε πρότυπο, έα δείκτη =,,..., για κάθε χαρακτηριτικό και έα δείκτη τ=,,...,τ για κάθε κλάη. Ο διαυµατικός χώρος τω προτύπω έχει διάταη (π.χ. Ε. Για τη τιµή του χαρακτηριτικού του κ προτύπου που αήκει τη κλάη τ γράφουµε τ κ. Συχά κάποιοι δείκτες δε χρηιµοποιούται ότα έχου προφαή τιµή ή ότα η ααφορά τους δε είαι απαραίτητη. Η µαθηµατική περιγραφή τω πραγµάτω τη ααγώριη προτύπω γίεται µε τη χρήη όρω της γραµµικής άλγεβρας. Το διάυµα που περιέχει χαρακτηριτικά εός προτύπου θα θεωρείται πίακας µε γραµµές και µία τήλη και θα υµβολίζεται N ή χάρι υτοµίας. Τα οόµατα όλω τω πιάκω θα γράφοται µε παχείς χαρακτήρες. Συχά θα χρηιµοποιούµε το αάτροφο πίακα Α Τ εός πίακα Α (Παράρτηµα Α. Όπου εδείκυται για εξοικοόµηη χώρου το πίακα τήλης εός προτύπου θα το γράφουµε ως πίακα γραµµής T =[,,...,,..., N ]. Με βάη το οριµό του πολλαπλαιαµού δύο πιάκω (Παράρτηµα Α η Ευκλέιδια απόταη d E,y τω πιάκω τήλης, y δύο προτύπω Π, Π υ δίεται από τη χέη (3.. d E,y = [-y T -y] / Ααγώριη Προτύπω-ευρωικά ίκτυα 3- Τµήµα Πληροφορικής & Επικοιωιώ

2 ρ.χ. Στρουθόπουλος, ΑΤΕΙ Σερρώ 3.. Εωτερικό γιόµεο Α δύο πρότυπα Π και Π y περιγράφοται διαυµατικά από τα διαύµατα,,,,, και y ( y, y,,y,,y ή ατίτοιχα από τους πίακες = [,,,,,, ] Τ, και y = [ y, y,,y,,y N ] T, όπου το πλήθος τω χαρακτηριτικώ τους, το εωτερικό γιόµεό τους ορίζεται από τη χέη (3.. y = y + y v yv +... N y N = y = Τ = y Α το διάυµα έχει µέτρο (µήκος ίο µε τη µοάδα, το γιόµεο y είαι ' η αλγεβρική τιµή της προβολής y του y επάω τη ευθεία που διέρχεται από το διάυµα (φορέας του. Ότα η γωία θ τω και y µικραίει το εωτερικό τους γιόµεο y = Τ y αυξάει και µεγιτοποιείται ότα τα και y βρίκοται τη ίδια ευθεία και έχου τη ίδια φορά (Σχ.3.-. y y θ θ y θ 3 = 0 y y = 3 y 3 Σχήµα 3.- Αυτό ηµαίει ότι τότε ιχύει η χέη y y y v y (3.. y = λ, y = λ όπου λ R και = = = = λ Υπό αυτές έας υθήκες το εωτερικό γιόµεο µπορεί α χρηιµοποιηθεί ως κριτήριο οµοιότητας (όχι υποχρεωτικά ιότητας δύο προτύπω. Παροτρύεται ο ααγώτης α εφαρµόει τα παραπάω το «κόµο» τω Ααγώριη Προτύπω-ευρωικά ίκτυα 3- Τµήµα Πληροφορικής & Επικοιωιώ

3 ρ.χ. Στρουθόπουλος, ΑΤΕΙ Σερρώ τριγώω όπου κάθε τρίγωο περιγράφεται διαυµατικά το τριδιάτατο χώρο µε υτεταγµέες τα µήκη τω πλευρώ του. Υπεθυµίζεται ότι κριτήριο ιότητας δύο προτύπω είαι η απόταή έας d(, y = Στατιτικά χαρακτηριτικά του χώρου τω προτύπω Για έα πλήθος προτύπω που περιγράφοται ε έα χώρο µε διατάεις η µέη τιµή µ είαι έας πίακας-τήλης που ορίζεται από τη χέη K Τ (3.3. µ = k = [µ,µ,...,µ...µ ] όπου µ = K κ= Η µέη τιµή µ ααφέρεται και ως η µαθηµατική προδοκία Ε όπου µεταβλητή για τους πίακες-τήλης τω προτύπω. Α υπάρχου λ πρότυπα που οι τιµές τω πιάκω-τήλης τους είαι ίες, λαµβάοται υπόψη λ φορές το άθροιµα της (3.3. και ως εκ τούτου δε χρηιµοποιείται το τύπο (3.3. η υάρτηη υχότητας εµφάιης f κάθε τιµής της µεταβλητής. Οι τιµές µ όπου = ορίζου το µέο διάυµα µ τω προτύπω το -διάτατο χώρο τους. Ο πίακας υµµεταβλητότητας ή πίακας υδιαποράς C ο ορίζεται από τη χέη κ= κ (3.3. C ο Τ = = k µ k µ κ = κ = κ κ κ κ [ κ, κ,..., κ κ,... κ ] = κ= κ κ κ κ λ κ κ κ κ κ κ -µ λ κ κ κ κ κ λ κ κ κ κ κ κ λ κ Nκ κ κ Ααγώριη Προτύπω-ευρωικά ίκτυα 3-3 Τµήµα Πληροφορικής & Επικοιωιώ

4 ρ.χ. Στρουθόπουλος, ΑΤΕΙ Σερρώ = λ λ λ λ N = Ε( -µ -µ Τ όπου λ = λ κ κ = Η ποότητα είαι η µεταβλητότητα ή διαπορά (vaiance τω µετρήεω του -οτού χαρακτηριτικού τω προτύπω. Η ποότητα λ = λ λέγεται υµµεταβλητότητα ή υδιαπορά τω τιµώ τω λ και χαρακτηριτικώ τω προτύπω και χρηιµοποιείται για το υπολογιµό του υτελετή υχέτιης P λ δύο χαρακτηριτικώ µ, ύµφωα µε τη χέη (3.3.3 Ρ λ λ = λ Η ποότητα = λέγεται τυπική απόκλιη. Οι παραπάω ποότητες χρηιµοποιούται για τη αξιολόγηη και αάλυη τω µετρούµεω χαρακτηριτικώ Αποτάεις Εκτός από τη Ευκλείδεια απόταη υπάρχου και άλλοι τύποι αποτάεω ε διαυµατικούς χώρους. Για α θεωρηθεί απόταη µια χέη d, y θα πρέπει για οποιοδήποτε διάυµα, y, z α ικαοποιούται οι χέεις: (3.4. d, y = d(y, d, y d, z + d(z, y d, y 0 Α d, y = 0 = y Συήθεις τύποι αποτάεω είαι οι παρακάτω: α inkowski τάξης s (3.4. d N s µ, y = = /s Ααγώριη Προτύπω-ευρωικά ίκτυα 3-4 Τµήµα Πληροφορικής & Επικοιωιώ

5 ρ.χ. Στρουθόπουλος, ΑΤΕΙ Σερρώ β City Block Είαι ειδική περίπτωη της inkowski µε s= (3.4.3 d c, y = = γ Ευκλείδεια Είαι ειδική περίπτωη της inkowski για s= (3.4.4 d / N T / ε, y = = [( - y ( - y] = δ Chebychev (3.4.5 d T, y = ma( ε ahalanobis T - (3.4.6 d, y = d (, y = ( - y Cov ( - y R R όπου Cov ο πίακας υµµεταβλητότητάς τω και y. τ Μη γραµµική (Non inea (3.4.7 O α d, y T d N, y = α d, y > T Η όπου Η,Τ R παράµετροι της απόταης και d, y µια άλλη απόταη του χώρου. Ααγώριη Προτύπω-ευρωικά ίκτυα 3-5 Τµήµα Πληροφορικής & Επικοιωιώ

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 5 5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ ΠΛΗΘΥΣΜΟΣ ΚΑΙ ΕΙΓΜΑ. ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στην πράξη θέλουµε υχνά να βγάλουµε υµπεράµατα για µια µεγάλη οµάδα ατόµων ή αντικειµένων. Αντί να µελετήουµε ολόκληρη την οµάδα,

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί φαίνονται οι παρατηρήσεις που πήραμε για το ύψος και το βάρος 16 εργατών μιας βιομηχανίας.

Στον πίνακα που ακολουθεί φαίνονται οι παρατηρήσεις που πήραμε για το ύψος και το βάρος 16 εργατών μιας βιομηχανίας. Συσέτιση δύο μεταβλητώ Συσέτιση δύο μεταβλητώ Θεωρούμε δύο τυαίες μεταβλητές X, Y και ζεύγη παρατηρήσεω,,,,...,, από τυαίο δείγμα μεγέθους. Ααφερόμαστε, δηλαδή, σε μη πειραματικά δεδομέα ο ερευητής δε

Διαβάστε περισσότερα

11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο

11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο 1 11.1 11. ρισµός ιδιότητες εγγραφή κα. πολυγώω σε κύκλο ΘΩΡΙ 1. Έα πολύγωο λέγεται καοικό, ότα έχει όλες τις πλευρές του ίσες και όλες τις γωίες του ίσες.. ύο καοικά πολύγωα µε το ίδιο αριθµό πλευρώ είαι

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ ΚΕΦΑΛΑΙΟ 14 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Έτω Χ 1, Χ,..., Χ και Υ 1, Υ,..., Υ m δύο τυχαία δείγματα μεγέθους και m αντίτοιχα από δύο ανεξάρτητους κανονικούς πληθυμούς

Διαβάστε περισσότερα

Σχ. 1 Eναλλασσόμενες καταπονήσεις

Σχ. 1 Eναλλασσόμενες καταπονήσεις Πανεπιτήμιο Θεαλίας Διδάκων: Αλ. Κερμανίδης Σχεδιαμός Στοιχείων Μηχανών ε μεταβαλλόμενα φορτία Μεταβαλλόμενα με τον χρόνο φορτία χαρακτηρίζονται τα φορτία που μεταβάλλουν το μέγεθος ή την διεύθυνη τους

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση - 4 o Γεικό Λύκειο Χαίω Γ τάξη Μαθηματικά Γεικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mpapagr 4 ο Γεικό Λύκειο Χαίω ΚΑΤΑΝΟΜΕΣ ΣΥΧΝΟΤΗΤΩΝ 95 ΝΑ ΣΥΜΠΛΗΡΩΘΟΥΝ ΟΙ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)

Διαβάστε περισσότερα

1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού

1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού . Έλεγχος Υποθέεων. Έλεγχοι για την µέη τιµή πληθυµού Ας υποθέουµε ένα πληθυµό µε µέη τιµή (µ.τ.) µ και τυπική απόκλιη (τ.α.). Έχει δειχτεί το κεφ.0 ο έλεγχος µιας µηδενικής υπόθεης H 0 δεδοµένης µιας

Διαβάστε περισσότερα

Δυνάμεις πραγματικών αριθμών

Δυνάμεις πραγματικών αριθμών Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.

Διαβάστε περισσότερα

Β.2.6. Γεωµετρικός µέσος.

Β.2.6. Γεωµετρικός µέσος. 6 Β..6. Γεωετρικός έος. α) Τα δεδοέα δίοται ααλυτικά Οριός Β.. Έτω ότι τα δεδοέα είαι δοέα ααλυτικά ( τιές που ατιτοιχού τα άτοα του πληθυού): i, i,,,..., Οοάζουε Γεωετρικό έο τω δεδοέω i, τη -οτή ρίζα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΙΟΥΝΙΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή

ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή Μέρος πέµπτο ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ Εισαγωγή Στα προηγούµεα κεφάλαια είδαµε τις διάφορες µεθόδους συλλογής και επεξεργασίας του βιοµετρικού υλικού. Κάθε βιοµετρική επεξεργασία όµως έχει

Διαβάστε περισσότερα

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών Παράρτηµα Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 1. ΤΑΣΕΙΣ Οι ξωτρικές δυνάµις που πιβάλλονται ένα ώµα µπορούν να χωριθούν δύο κατηγορίς, τις καθολικές δυνάµις και τις πιφανιακές δυνάµις. Οι καθολικές

Διαβάστε περισσότερα

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = =

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = = Παράδειγα Το γωστό παράδειγα ε τα βάρη 0 ατόω ταξιοηέα σε 5 οάδες. Η έση τιή για το δείγα έχει βρεθεί 77. Τάξη Απόλυτες συχότητες Κετρική τιή τάξης Απόκλιση από το έσο 65-69 67,5 9,5 70-7 6 7,5,5 75-79

Διαβάστε περισσότερα

στους μιγαδικούς αριθμούς

στους μιγαδικούς αριθμούς Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα Ιγάτιος Ιωαίδης Στατιστική Όριο - Συέχεια συάρτησης Παράγωγοι Ολοκληρώματα Περιέχει: Συοπτική Θεωρία Μεθοδολογία Λύσης τω Ασκήσεω Λυμέα Παραδείγματα Ασκήσεις με τις απατήσεις τους ΘΕΣΣΑΛΟΝΙΚΗ Το βιβλίο

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη B

Γυμνάσιο Μαθηματικά Τάξη B 113 Θέματα εξετάσεω περιόδου Μαΐου-Ιουίου στα Μαθηματικά Τάξη B! 114 a. Να διατυπώσετε το ορισμό της δύαμης α με βάση το ρητό α και εκθέτη το φυσικό αριθμό > 1. b. Να συμπληρωθού οι παρακάτω τύποι, δυάμεις

Διαβάστε περισσότερα

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1 Στατιτικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος : t - Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύµανη Έλεγχος 4: t-έλεγχος για την ύγκριη

Διαβάστε περισσότερα

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας Στα Μαθηματιά Γειής Παιδείας Tι οομάζουμε συάρτηση Tι οομάζουμε παραγματιή συάρτηση πραγματιής μεταβλητής Μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α πεδίο ορισμού ατιστοιχίζεται σε έα αριβώς στοιχείο

Διαβάστε περισσότερα

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ,

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ, Προβλήματα Πιθαοτήτω Προβλήματα Πιθαοτήτω Από εξετάσεις που έγια σε 5000 ζώα μιας κτηοτροφικής μοάδας, διαπιστώθηκε ότι 000 είχα προσβληθεί από μια ασθέεια Α, 800 είχα προσβληθεί από μια ασθέεια Β εώ 00

Διαβάστε περισσότερα

Εφαρµογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχοµηχανική

Εφαρµογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχοµηχανική Εφαρµογή κριτηρίου παραβολοειδούς εκ περιτροφής τη Βραχοµηχανική Appliaion of a paaboloid ieion in Rok Mehanis ΣΑΚΕΛΛΑΡΙΟΥ, Μ.Γ., ρ Μηχ., Π.Μ. & Α.Τ.Μ., Αναπληρωτής Καθηγητής, Ε.Μ.Π. ΠΕΡΙΛΗΨΗ : Στο παρόν

Διαβάστε περισσότερα

( Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ)

( Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ) ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΤΗ ΣΤΑΤΙΣΤΙΚΗ Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Χ. ΑΜΙΑΝΟΥ, Ν. ΠΑΠΑ ΑΤΟΣ, Χ. Α. ΧΑΡΑΛΑΜΠΙ ΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ ΑΘΗΝΑ 003 Στη Ρίτα Στη Χρυούλα Στη Λέα ΠΕΡΙΕΧΟΜΕΝΑ Ατί

Διαβάστε περισσότερα

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ Η ερµιονική εκποµπή ηλεκτρονίων είναι ένα φαινόµενο το οποίο βαίζεται η λειτουργία της λυχνίας κενού. Η δίοδος λυχνία κενού αποτελεί ορόηµο τον πολιτιµό του ύγχρονου ανρώπου

Διαβάστε περισσότερα

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x) 7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ VIII. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΕ ΥΝΑΜΙΚΕΣ ΚΑΤΑΠΟΝΗΣΕΙΣ 1. Ειαγωγή Ήδη από το 180 είχε διαπιτωθεί ότι τα µεταλλικά υλικά, όταν καταπονούνται από επαναλαµβανόµενες ή χρονικά µεταβαλλόµενες

Διαβάστε περισσότερα

Γραπτή Εργασία 2 Διαχείριση Χαρτοφυλακίου. Γενικές οδηγίες

Γραπτή Εργασία 2 Διαχείριση Χαρτοφυλακίου. Γενικές οδηγίες ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ 3 Χρηματοοικονομική Διοίκηη Ακαδημαϊκό Έτος: 009-0 Γραπτή Εργαία Διαχείριη Χαρτοφυλακίου Γενικές

Διαβάστε περισσότερα

συναρτησιακό μοντέλο: Ax=l+v (γεωμετρική απόσταση δορυφόρων-δέκτη) μετρήσεις: l στοχαστικό μοντέλο: W=σ 02 V (ψευδοαποστάσεις) (σ i =c cosecφ i )

συναρτησιακό μοντέλο: Ax=l+v (γεωμετρική απόσταση δορυφόρων-δέκτη) μετρήσεις: l στοχαστικό μοντέλο: W=σ 02 V (ψευδοαποστάσεις) (σ i =c cosecφ i ) Τύποι μετρήεων μέθοδοι δορυφορικού εντοπιμού μετρήεις ψευδοαποτάεων μετρήεις φάεων ΑΚΡΙΒΙΑ απόλυτος εντοπιμός χετικός εντοπιμός τατικός εντοπιμός κινηματικός εντοπιμός εκ των υτέρων εντοπιμός εντοπιμός

Διαβάστε περισσότερα

Επίπεδο εκπαίδευσης πατέρα 2

Επίπεδο εκπαίδευσης πατέρα 2 Περιγραφική Στατιστική Όπως, ήδη έχουμε ααφέρει, στόχος της Περιγραφικής Στατιστικής είαι, «η αάπτυξη μεθόδω για τη συοπτική και τη αποτελεσματική παρουσίαση τω δεδομέω» Για το σκοπό αυτό, έχου ααπτυχθεί,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΕΣ ΕΠΕΝ ΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ

ΑΝΑΛΥΣΗ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΕΣ ΕΠΕΝ ΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΑΝΑΛΥΣΗ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΕΣ ΕΠΕΝ ΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ 1 1. ΕΙΣΑΓΩΓΗ 1. Η Αγορά Κεφαλαίου Η αγορά κεφαλαίου αποτελεί ένα από τους ηµαντικότερους χρηµατοοικονοµικούς θεµούς

Διαβάστε περισσότερα

Κεφάλαιο 2. Αξιοπιστία μονάδων - συστημάτων στο χρόνο. Κατανομές χρόνων ζωής

Κεφάλαιο 2. Αξιοπιστία μονάδων - συστημάτων στο χρόνο. Κατανομές χρόνων ζωής Κεφάαιο Αξιοπιτία μονάδων - υτημάτων το χρόνο Κατανομές χρόνων ζωής Στο προηγούμενο κεφάαιο εξετάαμε την αξιοπιτία μονάδων ή υτημάτων τατικά δηαδή υποθέταμε ότι η μεέτη γίνονταν πάντα ε κάποια υγκεκριμένη

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μαθηματιά Γειής Παιδείας Γ Λυείου Δημήτρης Αργυράης Γεράσιμος Κουτσαδρέας Μαθηματιά Γειής Παιδείας Στατιστιή Γ. Λυείου ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

Διαβάστε περισσότερα

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΙΔΑ: «ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ, ΜΙΑ ΕΜΠΕΙΡΙΑ ΖΩΗΣ» ΣΤΡΑΤΗ ΣΤΑΜΑΤΙΑ Επιβλέπων Καθηγητής: ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΚΑΡΛΟΒΑΣΙ, ΜΑΪΟΣ 2012 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Στις φυσικές επιστήµες για να λύσουµε προβλήµατα ακολουθούµε συνήθως τα εξής βήµατα: 1. Μαθηµατική διατύπωση. Για να διατυπώσουµε µαθηµατικά ένα πρόβληµα

Διαβάστε περισσότερα

Συσκευασίες από αλουμίνιο, π.χ. αναψυκτικά, μπίρες κ.ά. Συσκευασίες από λευκοσίδηρο, π.χ. από γάλα εβαπορέ, τόνο, ζωοτροφές, τοματοπολτό κ.ά.

Συσκευασίες από αλουμίνιο, π.χ. αναψυκτικά, μπίρες κ.ά. Συσκευασίες από λευκοσίδηρο, π.χ. από γάλα εβαπορέ, τόνο, ζωοτροφές, τοματοπολτό κ.ά. ΑΝΑΚΥΚΛΩΣΗ ΣΥΣΚΕΥΑΣΙΩΝ Η Αακύκλωση σήμερα αποτελεί σηματική προτεραιότητα για το περιβάλλο και το μέλλο μας. Δε είαι μια εφήμερη τάση της εποχής, αλλά ατίθετα, υποχρέωση κάθε πολιτισμέης κοιωίας που συμβάλει

Διαβάστε περισσότερα

ΚΛΑΔΙΚΕΣ/ ΟΜΟΙΟ-ΕΠΑΓΓΕΛΜΑΤΙΚΕΣ 2010

ΚΛΑΔΙΚΕΣ/ ΟΜΟΙΟ-ΕΠΑΓΓΕΛΜΑΤΙΚΕΣ 2010 ΚΛΑΔΙΚΕ ΟΜΟΙΟ-ΕΠΑΓΓΕΛΜΑΤΙΚΕ 2010 ΚΛΑΔΟ ΕΠΑΓΓΕΛΜΑ ΟΔΗΓΟΙ ΤΟΥΡΙΤΙΚΩΝ ΛΕΩΦΟΡΕΙΩΝ ΑΡΧΑΙΟΛΟΓΩΝ ΜΕΛΩΝ ΕΚΑ ΤΕΧΝΙΤΩΝ ΚΑΙ ΒΟΗΘΩΝ ΞΥΛΟΥΡΓΙΚΩΝ ΜΕΤΑΛΛΙΚΩΝ ΕΡΓΑΙΩΝ ΝΖΩΝΗ ΟΞΟΠΟΙΙΑ, ΠΟΤΟΠΟΙΙΑ, ΟΙΝΟΠΟΙΙΑ, ΟΙΝΟΠΝΕΥΜΑΤΟΠΟΙΙΑ,

Διαβάστε περισσότερα

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β.

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β. Βασικές έοιες και τύποι πιθαοτήτω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός πειράματος τύχης (πεπερασμέος, απείρως αριθμήσιμος, συεχής) Εδεχόμεα Α, Β, (απλά, σύθετα) Βέβαιο εδεχόμεο Αδύατο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ ΦΟΥΝΤΟΥΚΙ ΗΣ Γ. ΕΥΑΓΓΕΛΟΣ Ρ. ΧΗΜΙΚΟΣ ΜΗΧΑΝΙΚΟΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΥΠΟ ΟΜΩΝ ΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΝΟΤΗΤΑΣ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΥΠΟ ΟΜΩΝ ΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΝΟΤΗΤΑΣ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΥΠΟ ΟΜΩΝ ΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΝΟΤΗΤΑΣ ΠΕΙΡΑΙΩΣ Ταχ. διεύθυση: Ακτή Ποσειδώος 14-16 Ταχ. κώδικας:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

4. Αντιδράσεις πολυμερισμού

4. Αντιδράσεις πολυμερισμού 4. Ατιδράσεις πολυμερισμού Ποια μόρια οομάζοται μακρομόρια Τα μακρομόρια είαι μόρια μεγάλου μοριακού βάρους που σχηματίζοται από τη συέωση (= πολυμερισμό) απλούστερω δομικά μορίω (= μοομερή) σύμφωα με

Διαβάστε περισσότερα

Η ΚΑΤΑΛΟΓΟΓΡΑΦΗΣΗ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΒΙΒΛΙΩΝ

Η ΚΑΤΑΛΟΓΟΓΡΑΦΗΣΗ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΒΙΒΛΙΩΝ Η ΚΑΤΑΛΟΟΑΦΗΣΗ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΒΙΒΛΙΩΝ ΣΤΙΣ ΒΙΒΛΙΟΘΗΚΕΣ ΤΟΥ Ε: ΞΩΤΕΙΚΟΥ Υπό κ. Evl Col, της Βιβλιοθήκης του K' Coll. Σηματικό μέρος του HELEN αφιερώεται ο ι η εξέταση της πολιτικής, που ακολουθού οι βιβλιοθήκες

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις : ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/05/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

ΕΓΚΕΚΡΙΜΕΝΑ ΣΧΕ ΙΑ ΚΙΝΗΤΙΚΟΤΗΤΑΣ-ΕΠΑΓΓΕΛΜΑΤΙΕΣ ΤΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΚΑΙ ΚΑΤΑΡΤΙΣΗΣ EMAIL ΤΙΤΛΟΣ ΣΧΕ ΙΟΥ ΑΡΙΘΜΟ ΥΠΕΥΘΥΝΟΣ Σ

ΕΓΚΕΚΡΙΜΕΝΑ ΣΧΕ ΙΑ ΚΙΝΗΤΙΚΟΤΗΤΑΣ-ΕΠΑΓΓΕΛΜΑΤΙΕΣ ΤΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΚΑΙ ΚΑΤΑΡΤΙΣΗΣ EMAIL ΤΙΤΛΟΣ ΣΧΕ ΙΟΥ ΑΡΙΘΜΟ ΥΠΕΥΘΥΝΟΣ Σ ΕΓΚΕΚΡΙΜΕΝΑ ΧΕ ΙΑ ΚΙΝΗΤΙΚΟΤΗΤΑ-ΕΠΑΓΓΕΛΜΑΤΙΕ ΤΗ Η ΕΚΠΑΙ ΕΥΗ ΚΑΙ ΚΑΤΑΡΤΙΗ Α/Α Α.Π ΚΩ ΙΚΟ ΜΑΤΟ ΙΚΑΙΧΟ - ΦΟΡΕΑ 2013 ΕΡΓΑΤΗΡΙΟ LEO03-01705 ΕΙ ΙΚΗ Η ΕΚΠΑΙ ΕΥΗ ΚΑΙ ΚΑΤΑΡΤΙΗ ΑΙΓΑΛΕΩ Ε.Ε.Ε.Ε.Κ. ΥΠΕΥΘΥΝΟ ΕΠΙΚΟΙΝΙΑ

Διαβάστε περισσότερα

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι

Διαβάστε περισσότερα

121 [101] 124 [104] 8-9 ΦΥΣΙΚΗ. Εργ. Τ2 Οµάδα 7. Εργ. ΕΦ2 ΚΡΟΥΠΗΣ 9-10 ΖΕΙΜΠΕΚΗΣ ΖΑΧΑΡΟΥΛΗΣ ΠΕΡΑΚΗΣ

121 [101] 124 [104] 8-9 ΦΥΣΙΚΗ. Εργ. Τ2 Οµάδα 7. Εργ. ΕΦ2 ΚΡΟΥΠΗΣ 9-10 ΖΕΙΜΠΕΚΗΣ ΖΑΧΑΡΟΥΛΗΣ ΠΕΡΑΚΗΣ Τελ. Ενηµέρωση: 27/2/2009 ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΩΝ ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΑΚΑ. ΕΤΟΥ 2008-09 1 ο ΕΞΑΜΗΝΟ ΤΖΑΤΖΙΟ ΖΑΧΑΡΟΥΛΗ ΖΕΪΜΠΕΚΗ ΠΕΡΑΚΗ ΖΕΪΜΠΕΚΗ ΤΖΑΤΖΙΟ [101 Φυσική I] Αµφ. ΓΤΘΕ ΖΑΧΑΡΟΥΛΗ 120 [100] ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ. 5 ο ΕΞΑΜΗΝΟ ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ. 5 ο ΕΞΑΜΗΝΟ ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ο ΕΞΑΜΗΝΟ ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ Ι Ι ΑΣΚΩΝ ΣΤΕΛΙΟΣ ΖΗΜΕΡΑΣ Σάος 3 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ...3. ΣΤΑΤΙΣΤΙΚΗ ΣΤΑΤΙΣΤΙΚΟΣ ΑΝΑΛΥΤΗΣ...3.

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

... λέγονται στοιχεία του πίνακα Α και οι δείκτες i και j δηλώνουν τη γραμμή και τη στήλη, αντίστοιχα, που ανήκει το στοιχείο α

... λέγονται στοιχεία του πίνακα Α και οι δείκτες i και j δηλώνουν τη γραμμή και τη στήλη, αντίστοιχα, που ανήκει το στοιχείο α ΚΕΦΑΛΑΙΟ 2 ΠΙΝΑΚΕΣ Στο Κεφάλαιο αυτό θα ασχοληθούε ε το ορισό και τις στοιχειώδεις ιδιότητες τω πιάκω, που είαι ορθογώιες παρατάξεις αριθώ ή άλλω στοιχείω Οι πίακες εφαίζοται στη θεωρία τω γραικώ συστηάτω,

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗΣ 1. Τεχνικός Εφαρµογών Πληροφορικής 2. Τεχνικός Η/Υ και ικτύων Η/Υ 3. Τεχνικός Εφαρµογών Λογισµικού

ΠΛΗΡΟΦΟΡΙΚΗΣ 1. Τεχνικός Εφαρµογών Πληροφορικής 2. Τεχνικός Η/Υ και ικτύων Η/Υ 3. Τεχνικός Εφαρµογών Λογισµικού ΕΠΑΓΓΕΛΜΑΤΙΚΟ ΛΥΚΕΙΟ (05-06) ΕΠΑΛ ΛΑΜΙΑΣ ΟΜΑ Α ΠΡΟΣΑΝΑ- ΤΟΛΙΣΜΟΥ ΤΟΜΕΑΣ Β & Γ ΤΑΞΗ ΕΙ ΙΚΟΤΗΤΑ Τεχνολογικών Εφαρµογών ΠΛΗΡΟΦΟΡΙΚΗΣ. Τεχνικός Εφαρµογών Πληροφορικής. Τεχνικός Η/Υ και ικτύων Η/Υ 3. Τεχνικός

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β]

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β] ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Ε Π Α Γ Γ Ε Λ Μ Α Τ Ι Κ Α Λ Υ Κ Ε Ι Α Ν Ο Μ Ο Υ Φ Θ Ι Ω Τ Ι Α Σ ( 2 0 1 5-2 0 1 6 )

Ε Π Α Γ Γ Ε Λ Μ Α Τ Ι Κ Α Λ Υ Κ Ε Ι Α Ν Ο Μ Ο Υ Φ Θ Ι Ω Τ Ι Α Σ ( 2 0 1 5-2 0 1 6 ) Ε Π Α Γ Γ Ε Λ Μ Α Τ Ι Κ Α Λ Υ Κ Ε Ι Α Ν Ο Μ Ο Υ Φ Θ Ι Ω Τ Ι Α Σ ( 0 5-0 6 ) Α ΤΑΞΗ ΟΜΑ Α ΠΡΟΣΑ- ΝΑΤΟΛΙ- ΤΟΜΕΑΣ ΕΙ ΙΚΟΤΗΤΑ (ΑΡΧΙΖΕΙ ΑΠΟ Β ΤΑΞΗ) ο ο 3 ο ΕΣΠΕΡΙ ΝΟ ΑΤΑΛΑ- ΝΤΗΣ ΜΑΚΡΑ- ΚΩΜΗΣ Τεχνολο γικών γών

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

1 ο ΕΤΟΣ 1 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ. 2 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ

1 ο ΕΤΟΣ 1 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ. 2 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ 1 ο ΕΤΟΣ 1 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Α1Υ Α2Υ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΚΑΙ ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ 3 1 1 5 2 2 5 Α3Υ ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Ι 3 1 1 6 Α10Υ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΟΥ ΜΠ&Δ

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται:

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται: Το διανυσματικό άθροισμα f Μ γράφεται: f Μ = x ΜΑ+ x ΜΑ+ΑΒ + x ΜΑ+ΑΓ = ΜΑ + ΜΑ + ΜΑ + ΑΒ + ΑΓ ( x) ( x) ( x ) ( x) ( x ) = ( x + x + x ) ΜΑ + ( x) ΑΒ + ( x ) ΑΓ = ( x 4x+ ) ΜΑ+ ( x) ΑΒ+ ( x ) Α Γ f Μ είναι

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IV. ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ. Ειαγωγή Η θωρία πλαικόηας αχολίαι µ ην υµπριφορά ων µαλλικών υλικών, όαν οι παραµορφώις ίναι πλέον αρκά µγάλς και ο νόµος ου Hooke παύι να

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν

Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν Ψ η φ ί σ τ η κ ε α π ό τ η Γ ε ν ι κ ή Σ υ ν έ λ ε υ σ η τ ω ν Μ ε λ ώ ν τ ο υ Σ Ε Π Ε τ η ν 24 η Μ α ΐ ο υ 2003 Δ ι ά τ α ξ η Ύ λ η ς 1. Π

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1.1 16950 Β (ΑΝΑΡΤΗΘΗΚΕ 08-11-14) α) Να κατασκευάσετε ένα γραµµικό σύστηµα δυο εξισώσεων µε δυο αγνώστους µε συντελεστές διάφορους του µηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΗ ΔΗΛΩΣΕΩΝ ΜΑΘΗΜΑΤΩΝ ΓΙΑ ΤΟ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2012-2013

ΑΝΑΝΕΩΣΗ ΔΗΛΩΣΕΩΝ ΜΑΘΗΜΑΤΩΝ ΓΙΑ ΤΟ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2012-2013 ΑΝΑΝΕΩΣΗ ΔΗΛΩΣΕΩΝ ΜΑΘΗΜΑΤΩΝ ΓΙΑ ΤΟ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2012-2013 (εξάμηνα εγγραφής από 09-10 Εαρινό έως και 06-07 Χειμερινό) Οι φοιτητές που θα κάνουν ανανέωση από το 2 ο έως και το 7 ο εξάμηνο σπουδών θα

Διαβάστε περισσότερα

Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος

Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Διαπανεπιστημιακό Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών ΔΙΔΑΚΤΙΚΗ ΚΑΙ

Διαβάστε περισσότερα

329 Στατιστικής Οικονομικού Παν. Αθήνας

329 Στατιστικής Οικονομικού Παν. Αθήνας 329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 6. Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ. Ορισµός της συνάρτησης Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται µια διαδικασία (κανόνας τρόπος ), µε την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε

Διαβάστε περισσότερα

ΘΕΟ ΩΡΟΣ Ζ. ΝΙΚΟΛΟΠΟΥΛΟΣ

ΘΕΟ ΩΡΟΣ Ζ. ΝΙΚΟΛΟΠΟΥΛΟΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟ ΟΜΗΣ ΜΑΚΡΟΣΚΟΠΙΚΗ ΣΥΣΧΕΤΙΣΗ ΚΑΙΡΙΚΩΝ ΣΥΝΘΗΚΩΝ, ΕΠΙΚΙΝ ΥΝΟΤΗΤΑΣ ΚΑΙ ΣΟΒΑΡΟΤΗΤΑΣ ΣΤΟ ΥΠΕΡΑΣΤΙΚΟ Ο ΙΚΟ ΙΚΤΥΟ ΤΗΣ

Διαβάστε περισσότερα

ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ)

ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ) ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ) Α1. ΣΥΝΤΟΜΗ ΠΕΡΙΓΡΑΦΗ ΦΥΣΙΚΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ Tο Πρόγραµµα Μεταπτυχιακών Σπουδών του Τµήµατος Μαθηµατικών του Πανεπιστηµίου Κρήτης είναι ένα από τα πρώτα οργανωµένα µεταπτυχιακά

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΑΛΛΗΛΟΤΟΜΙΕΣ ΕΠΙΦΑΝΕΙΩΝ 2 ου ΒΑΘΜΟΥ

ΑΛΛΗΛΟΤΟΜΙΕΣ ΕΠΙΦΑΝΕΙΩΝ 2 ου ΒΑΘΜΟΥ ΑΛΛΗΛΟΤΟΜΙΕΣ ΕΠΙΦΑΝΕΙΩΝ 2 ου ΒΑΘΜΟΥ ΟΡΙΣΜΟΙ - ΚΑΤΑΣΚΕΥΕΣ 1. ΟΡΙΣΜΟΙ ύο επιφάνειες βαθµών µ και ν αντιστοίχως, τέµνονται κατά καµπύλη βαθµού (µ. ν). Η αλληλοτοµία, εποµένως, δύο επιφανειών 2 ου βαθµού,

Διαβάστε περισσότερα

Μέχρι σήµερα πολλά έχουν αλλάξει στο Ελληνικό εκπαιδευτικό σύστηµα και κυρίως στο τρόπο των εξετάσεων, χωρίς όµως κάποια ουσιαστική αλλαγή.

Μέχρι σήµερα πολλά έχουν αλλάξει στο Ελληνικό εκπαιδευτικό σύστηµα και κυρίως στο τρόπο των εξετάσεων, χωρίς όµως κάποια ουσιαστική αλλαγή. 1 Ε ι σ α γ ω γ ή Μέχρι σήµερα πολλά έχουν αλλάξει στο Ελληνικό εκπαιδευτικό σύστηµα και κυρίως στο τρόπο των εξετάσεων, χωρίς όµως κάποια ουσιαστική αλλαγή. Όλα τα εκπαιδευτικά συστήµατα είχαν πάντα εξετάσεις

Διαβάστε περισσότερα

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου) Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,

Διαβάστε περισσότερα

(ΕΞΆΜΗΝΟ εγγραφής 05-06 Εαρινό)

(ΕΞΆΜΗΝΟ εγγραφής 05-06 Εαρινό) (ΕΞΆΜΗΝΟ εγγραφής 05-06 Εαρινό) Για τη λήψη του πτυχίου τους απαιτείται να επιτύχουν σε 36 υποχρεωτικά και σε 4 μαθήματα επιλογής. Από τα προηγούμενα εξάμηνα οφείλουν να έχουν επιτύχει στα κάτωθι μαθήματα:

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD ΚΕΦΑΛΑΙΟ ΙΙΙ ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD Εισαγωγή To παρόν κεφάλαιο χωρίζεται σε μέρη. Στο (Α), μεταξύ άλλων, εξηγούμε γιατί μας ενδιαφέρει η λεγόμενη ανάλυση σε παράγοντες ειδικούς πίνακες (decompositio)

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

ΗΜΕΡΟΜΗΝΙΑ ΑΝΑΡΤΗΣΗΣ : 16-1-15 ΠΡΟΣΟΧΗ: Η ΠΡΟΣΦΕΡΟΜΕΝΗ ΤΙΜΗ ΔΕΝ ΘΑ ΠΡΕΠΕΙ ΣΕ ΚΑΜΙΑ ΠΕΡΙΠΤΩΣΗ ΝΑ ΞΕΠΕΡΝΑ ΑΥΤΉ ΤΟΥ ΠΑΡΑΤΗΡΗΤΗΡΙΟΥ ΤΙΜΩΝ ΤΗΣ ΕΠΥ

ΗΜΕΡΟΜΗΝΙΑ ΑΝΑΡΤΗΣΗΣ : 16-1-15 ΠΡΟΣΟΧΗ: Η ΠΡΟΣΦΕΡΟΜΕΝΗ ΤΙΜΗ ΔΕΝ ΘΑ ΠΡΕΠΕΙ ΣΕ ΚΑΜΙΑ ΠΕΡΙΠΤΩΣΗ ΝΑ ΞΕΠΕΡΝΑ ΑΥΤΉ ΤΟΥ ΠΑΡΑΤΗΡΗΤΗΡΙΟΥ ΤΙΜΩΝ ΤΗΣ ΕΠΥ Ο ΧΡΟΝΟ ΙΧΥ ΠΑΡΑΔΟΗ ΤΩΝ ΕΙΔΩΝ ΕΙΝΑΙ ΕΝΤΟ 5 ΕΡΓΑΙΜΩΝ ΗΜΕΡΩΝ ΜΕΤΑ ΤΟ ΠΕΡΑ ΑΥΤΩΝ ΘΑ ΓΕΝΙΚΟ ΝΟΟΚΟΜΕΙΟ ΧΑΝΙΩΝ ΑΝΑΛΥΤΙΚΟ ΠΙΝΑΚΑ ΜΙΚΡΟΠΡΟΜΗΘΕΙΩΝ ΑΝΑΛΩΙΜΟΥ ΥΓΕΙΟΝΟΜΙΚΟΥ ΥΛΙΚΟΥ (ΦΑΡΜΑΚΕΙΟΥ) ΤΗΝ ΠΡΟΦΟΡΑ ΑΝΑΓΡΑΦΕΤΑΙ

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

ΤΑ ΠΕΙΡΑΜΑΤΙΚΑ ΣΧΟΛΕΙΑ ΜΠΟΡΟΥΝ ΝΑ ΒΟΗΘΗΣΟΥΝ ΤΟΥΣ ΧΑΡΙΣΜΑΤΙΚΟΥΣ ΜΑΘΗΤΕΣ; ΜΙΑ ΠΡΟΤΑΣΗ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΤΑ ΠΕΙΡΑΜΑΤΙΚΑ ΣΧΟΛΕΙΑ ΜΠΟΡΟΥΝ ΝΑ ΒΟΗΘΗΣΟΥΝ ΤΟΥΣ ΧΑΡΙΣΜΑΤΙΚΟΥΣ ΜΑΘΗΤΕΣ; ΜΙΑ ΠΡΟΤΑΣΗ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑ ΠΕΙΡΑΜΑΤΙΚΑ ΣΧΟΛΕΙΑ ΜΠΟΡΟΥΝ ΝΑ ΒΟΗΘΗΣΟΥΝ ΤΟΥΣ ΧΑΡΙΣΜΑΤΙΚΟΥΣ ΜΑΘΗΤΕΣ; ΜΙΑ ΠΡΟΤΑΣΗ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Βασίλης Καρκάνης 2 ο Πρότυπο Πειραματικό Λύκειο Αθήνας vkarkan@yahoo.gr Γιάννης Τυρλής 2 ο Πρότυπο

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης Τμήματα Μαθηματικών και Εφαρμοσμένων Μαθηματικών. Πρόγραμμα Μεταπτυχιακών Σπουδών

Πανεπιστήμιο Κρήτης Τμήματα Μαθηματικών και Εφαρμοσμένων Μαθηματικών. Πρόγραμμα Μεταπτυχιακών Σπουδών Πανεπιστήμιο Κρήτης Τμήματα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πρόγραμμα Μεταπτυχιακών Σπουδών Το Πρόγραμμα λειτουργεί από το ακαδημαϊκό έτος 2002-2003 και αποτελεί μετεξέλιξη του Προγράμματος Μεταπτυχιακών

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

Επιλογή πέντε (5) εξωτερικών συνεργατών ειδικότητας Μαιών-Μαιευτών για το πρόγραμμα «ΠΡΟΑΣΠΙΖΩ» Διάρκεια σύμβασης. ΤΕ Μαιών- Μαιευτών

Επιλογή πέντε (5) εξωτερικών συνεργατών ειδικότητας Μαιών-Μαιευτών για το πρόγραμμα «ΠΡΟΑΣΠΙΖΩ» Διάρκεια σύμβασης. ΤΕ Μαιών- Μαιευτών ΕΡΓΟ : Στοχευμέες Παρεμβάσεις στη Πρωτοβάθμια Φροτίδα Υγεία σε περιοχές με υγειοομικές ιδιαιτερότητες (γεωγραφικές και πληθυσμιακές): «Πρόγραμμα ΠΡΟΑΣΠΙ- ΖΩ» - ΕΚΔΟΣΗ 2 (ver.2) στο πλαίσιο του Ε.Π. «ΑΝΑΠΤΥΞΗ

Διαβάστε περισσότερα