Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης"

Transcript

1 Σύνοψη Προηγούμενου Πίνακες (Arrays Ορέστης Τελέλης Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Διαδικαστικά θέματα. Aντικείμενο Μαθήματος. Aντικείμενα, Κλάσεις, Μέθοδοι, Μεταβλητές. Κληρονομικότητα, Πολυμορφισμός. Πειραματική Aνάλυση. Πολυπλοκότητα Aσυμπτωτική Ανάλυση. Τελέλης Δομές Δεδομένων 1 / 48 Τελέλης Δομές Δεδομένων 2 / 48 Πίνακες (Arrays Πίνακες (Arrays: Βασικές Λειτουργίες Aπλή, π.χ., arr[10] = 77; Διαδεδομένη δομή αποθήκευσης δεδομένων ίδιου τύπου. Aποθήκευση δεδομένων σε Προσπέλαση δεδομένων με βάση τη θέση τους στη μνήμη. i A A[i] Δισδιάστατος Πίνακας m n είναι πίνακας με m γραμμές και n στήλες. Τα m και n αντιστοιχούν στις δύο διαστάσεις του πίνακα. Αν απαιτείται, μπορεί να χρησιμοποιούνται πολυδιάστατοι πίνακες. Π.χ., του στοιχείου με τιμή 77. από την αρχή, μέχρι να εντοπίσουμε τη θέση όπου είναι αποθηκευμένο το 77. η θέση του στοιχείου προς διαγραφή. Τα στοιχεία σε μεγαλύτερες θέσεις μετακινούνται μία θέση αριστερά. (είναι όμως δυνατό να υλοποιηθεί και με αυτό τον τρόπο. Τελέλης Δομές Δεδομένων 3 / 48 Τελέλης Δομές Δεδομένων 4 / 48

2 Εισαγωγή Στοιχείου Εστω πίνακας A χωρητικότητας 10 θέσεων Ένα νέο στοιχείο εισάγεται στο πρώτο κενό κελί Aναζήτηση Στοιχείου Η αναζήτηση γίνεται με βάση την τιμή του στοιχείου, έστω το 58. Διατρέχουμε τον πίνακα κελί-κελί από την πρώτη θέση μέχρι την τελευταία θέση στην οποία υπάρχει αποθηκευμένο στοιχείο. Εισαγωγή στοιχείου 37 στη θέση 0: a[0] = 37. Εάν συναντήσουμε το 58, σταματάμε (επιτυχής αναζήτηση. Εισαγωγή στοιχείου 22 στη θέση 1: a[1] = 22. Εισαγωγή στοιχείου 99 στη θέση 2: a[2] = 99. O( Μπορεί να μην το συναντήσουμε (αποτυχημένη αναζήτηση. Η αναζήτηση εξετάζει στη χειρότερη περίπτωση όλα τα n στοιχεία = ( Τελέλης Δομές Δεδομένων 5 / 48 Τελέλης Δομές Δεδομένων 6 / 48 Συνέπεια και Διπλές Εγγραφές Άρα, δεν προβλέπεται εν γένει να περιέχει το ίδιο στοιχείο 2 φορές. Ο περιορισμός αυτός μπορεί να επιβληθεί από την υλοποίησή μας: Κατά την πράξη της ενός στοιχείου. Ελέγχουμε αν το προς εισαγωγή στοιχείο υπάρχει ήδη αποθηκευμένο. Ο έλεγχος αυτός προϋποθέτει πριν από την Στην περίπτωση αυτή η γίνεται O(n σε χρόνο O(1 Σημειώνεται ότι ίσως η εφαρμογή να απαιτεί διπλές εγγραφές. Διαγραφή Στοιχείου Η διαγραφή ενός στοιχείου απαιτεί πρώτα τον εντοπισμό του. Aφού εντοπιστεί το στοιχείο και διαγραφεί, όλα τα επόμενά του μεταφέρονται μία θέση αριστερά, ώστε να καλυφθεί το κενό. (, διότι: Aναζήτηση χρόνου O(n. Μετακίνηση O(n στοιχείων Τελέλης Δομές Δεδομένων 7 / 48 Τελέλης Δομές Δεδομένων 8 / 48

3 Διαγραφή: Εναλλακτική Υλοποίηση Διαγραφή και Διπλές Εγγραφές Αποφεύγουμε την ολίσθηση O(n στοιχείων προς τα αριστερά. Το τελευταίο στοιχείο αντιγράφεται στη θέση του διαγραφόμενου Η υλοποίηση αυτή είναι επίσης χρόνου O(n. Εξαιτίας της του στοιχείου προς διαγραφή. (από την πράξη : Πρέπει να αποφασίσουμε συμπεριφορά και. του στοιχείου με τιμή X? του στοιχείου με τιμή X? των στοιχείων με τιμή X? Η πρώτη είναι συνήθης επιλογή (τερματισμός στο πρώτο στοιχείο. Μπορούν να υλοποιηθούν όλες οι επιλογές ως χωριστές πράξεις. Τελέλης Δομές Δεδομένων 9 / 48 Τελέλης Δομές Δεδομένων 10 / 48 Πίνακες στη Java: Δημιουργία Πίνακα Πίνακες στη Java: Προσπέλαση Στοιχείων Πίνακα Με χρήση του τελεστή new. [ ] i n t A r r a y ; i n t A r r a y = [ ] Τα στοιχεία ενός πίνακα προσπελαύνονται με δείκτη μέσα σε αγκύλες. tmp = i n t A r r a y [ 3 ] ; i n t A r r a y [ 7 ] = 6 6 ; [ ] i n t A r r a y = [ ] ; Εύρεση μεγέθους πίνακα με χρήση του πεδίου length. a r r a y L e n g t h = i n t A r r a y. l e n g t h ; < 0 1 Τελέλης Δομές Δεδομένων 11 / 48 Τελέλης Δομές Δεδομένων 12 / 48

4 Πίνακες στη Java: Aρχικοποίηση Μερικά Παραδείγματα Ένας πίνακας ακεραίων αρχικοποιείται με το 0 όταν δημιουργείται. Aυτό μπορείτε να το αλλάξετε με τον εξής τρόπο: [ ] i n t A r r a y = { 0, 3, 6, 9, 12, 15, 18, 21, 24, 2 7 ; Ένας πίνακας περιέχει στοιχεία null, ώσπου αυτά να πάρουν τιμές AutoData [ ] c a r A r r a y = AutoData [ ] ; [ ] x, y, z ; S t r i n g [ ] a ; x = [ 3 ] ; y = x ; a = S t r i n g [ 3 ] ; x [ 1 ] = 2 ; y [ 1 ] = 3 ; a [ 1 ] = H e l l o ; [ ] q ; q = [ ] { 1, 2, 3 ; [ ] r = { 7, 8, 9 ; Τελέλης Δομές Δεδομένων 13 / 48 Τελέλης Δομές Δεδομένων 14 / 48 Οργάνωση της Δομής σε Κλάση Η κλάση MyArray (και Αναζήτηση Ενσωμάτωση του πίνακα σε μία κλάση. Η κλάση αυτή θα παρέχει μια διεπαφή μεθόδων υψηλού επιπέδου: insert ( elem find ( elem delete ( elem Δε χρειάζεται ο χρήστης να ασχολείται με το δείκτη του πίνακα. Άρα, ο χρήστης επικεντρώνεται στο τι (όχι στο πώς πρόκειται να εισαχθεί, διαγραφεί και αναζητηθεί. MyArray { [ ] a ; nelems ; H i g h A r r a y ( max { a = [ max ] ; nelems = 0 ; f i n d ( s e a r c h K e y { j ; ( j = 0 ; j < nelems ; j ++ ( a [ j ] == s e a r c h K e y ; ( j == nelems ; ; Τελέλης Δομές Δεδομένων 15 / 48 Τελέλης Δομές Δεδομένων 16 / 48

5 Εισαγωγή, Διαγραφή Μία μέθοδος εκτύπωσης i n s e r t ( v a l u e { ( nelems >= a. l e n g t h ( ; a [ nelems ] = v a l u e ; nelems + + ; ( ; d e l e t e ( v a l u e { j ; ( j = 0 ; j < nelems ; j ++ ( v a l u e == a [ j ] ; ( j == nelems ; { ( k = j ; k < nelems ; k + + a [ k ] = a [ k + 1 ] ; nelems ; ; d i s p l a y ( { ( j = 0 ; j < nelems ; j ++ System. out. p r i n t ( a [ j ] + ; System. out. p r i n t l n ( ; Τελέλης Δομές Δεδομένων 17 / 48 Τελέλης Δομές Δεδομένων 18 / 48 Σχόλια Σχόλια: Εναλλακτική Υλοποίηση Αναζήτησης/Διαγραφής Η υλοποίηση αυτή επιτρέπει διπλές εγγραφές. Η ελέγχει μόνο αν υπάρχει αρκετός χώρος στον πίνακα. Αν όχι, επιστρέφει, διαφορετικά, επιστρέφει. Στην πράξη της υλοποιείται εκ νέου η αναζήτηση: Διότι απαιτείται η ακριβής θέση του στοιχείου προς διαγραφή. Η ακριβής θέση δε χρησιμεύει σε «εξωτερικό» χρήστη της find. Για το λόγο αυτόν η find επιστρέφει /. Οπότε, επαναλαμβάνεται ο κώδικας της αναζήτησης στη μέθοδο delete. myfind ( s e a r c h K e y { j ; ( j = 0 ; j < nelems ; j ++ ( a [ j ] == s e a r c h K e y ; ( j ; f i n d ( s e a r c h K e y { pos = myfind ( s e a r c h K e y ; ( pos == nelems ; ( ; Τελέλης Δομές Δεδομένων 19 / 48 Τελέλης Δομές Δεδομένων 20 / 48

6 Σχόλια: Εναλλακτική Υλοποίηση Αναζήτησης/Διαγραφής Σχόλια: Πίνακες Δυναμικού Μεγέθους d e l e t e ( v a l u e { j = myfind ( v a l u e ; ( j == nelems ; { ( k = j ; k < nelems ; k ++ a [ k ] = a [ k + 1 ] ; nelems ; ; Όταν διαπιστώνεται ότι ο πίνακας είναι πλήρης. Δημιουργείται νέος πίνακας, μεγαλύτερου μεγέθους. διπλασιασμός του μεγέθους. Αντιγράφεται όλος ο παλιός πίνακας στον νέο πίνακα. Πραγματοποιείται εισαγωγή του νέου στοιχείου. Η γίνεται στην περίπτωση αυτή O(n χρόνου. Λόγω της αντιγραφής όλων των στοιχείων του παλιού πίνακα. Τελέλης Δομές Δεδομένων 21 / 48 Τελέλης Δομές Δεδομένων 22 / 48 Ταξινομημένοι Πίνακες Ένας πίνακας στον οποίο τα δεδομένα διευθετούνται σε αύξουσα σειρά κλειδιού (ή και φθίνουσα. Η μικρότερη τιμή κλειδιού βρίσκεται στο κελί με δείκτη 0. Κάθε κελί περιέχει τιμή μεγαλύτερη από το προηγούμενο κελί Τελέλης Δομές Δεδομένων 23 / 48 Τελέλης Δομές Δεδομένων 24 / 48

7 Γραμμική Aναζήτηση Δυαδική Aναζήτηση Μπορώ να εφαρμόσω την αναζήτηση όπως ακριβώς στην περίπτωση του μη ταξινομημένου πίνακα. Διατρέχω τον πίνακα κελί-κελί από την πρώτη θέση μέχρι την τελευταία θέση στην οποία υπάρχει αποθηκευμένο στοιχείο. Εάν συναντήσουμε το 58, σταματάμε (επιτυχής αναζήτηση. Μπορεί να μην το συναντήσουμε (αποτυχημένη αναζήτηση. Λέγεται και και έχει πολυπλοκότητα O(n, όπου n το πλήθος στοιχείων του πίνακα. Πολύ ταχύτερη από τη γραμμική αναζήτηση. Πώς λειτουργεί η εύρεση του στοιχείου με τιμή X? Χωρίζει τον πίνακα στη μέση, σε αριστερό και δεξιό κομμάτι, ελέγχει το κλειδί M που περιέχεται στο μεσαίο κελί, αν X = M, τότε η αναζήτηση είναι επιτυχής. αν X < M επαναλαμβάνει τη διαδικασία στο αριστερό κομμάτι, αν X > M επαναλαμβάνει τη διαδικασία στο δεξιό κομμάτι, Τελέλης Δομές Δεδομένων 25 / 48 Τελέλης Δομές Δεδομένων 26 / 48 Παράδειγμα Δυαδικής Aναζήτησης Δυαδική Aναζήτηση η Επανάληψη: η Επανάληψη: η Επανάληψη: Κάθε επανάληψη χωρίζει το εύρος των πιθανών τιμών στη μέση. Σε κάθε επανάληψη, υποδιπλασιάζεται το μέγεθος του πίνακα στο οποίο αναζητούμε. (log O(n Τελέλης Δομές Δεδομένων 27 / 48 Τελέλης Δομές Δεδομένων 28 / 48

8 Τυπική Aπόδειξη Έστω ταξινομημένος πίνακας (π.χ., ακεραίων μήκους L(0 = n. Εκτελούμε δυαδική αναζήτηση, που διαρκεί k επαναληπτικά βήματα. Στο i-οστό βήμα, εκτελούμε σταθερό αριθμό στοιχειωδών πράξεων: βρίσκουμε το μεσαίο στοιχείο ενός (υπο-πίνακα, O(1 συγκρίσεις του στοιχείου προς αναζήτηση. Επίσης, στο i-οστό βήμα δουλεύουμε σε υποπίνακα μήκους L(i 1/2: L(i = L(i 1 2 = L(i = = L(0 2 i = n 2 i Ο αλγόριθμος τερματίζει όταν το μήκος του (υπο-πίνακα που εξετάζουμε σε κάποιο βήμα είναι 1: άρα, όταν L(k = 1 = n/2 k. Τότε: 2 k = n = log(2 k = log n = k = log n Υλοποίηση Ταξινομημένου Πίνακα OrderedArray { [ ] a ; nelems ; OrderedArray ( max { a = [ max ] ; nelems = 0 ; s i z e ( { nelems ; Τελέλης Δομές Δεδομένων 29 / 48 Τελέλης Δομές Δεδομένων 30 / 48 Υλοποίηση Δυαδικής Αναζήτησης myfind ( s e a r c h K e y { lowerbound = 0 ; upperbound = nbelems 1; c u r I n ; ( { c u r I n = ( lowerbound + upperbound / 2 ; ( a [ c u r I n ]== s e a r c h K e y c u r I n ; ( lowerbound > upperbound nelems ; ( a [ c u r I n ] < s e a r c h K e y lowerbound = c u r I n + 1 ; upperbound = c u r I n 1 ; f i n d ( s e a r c h K e y { j = myfind ( s e a r c h K e y ; ( j == nelems ( ; ( ; Τελέλης Δομές Δεδομένων 31 / 48 Υλοποίηση Εισαγωγής και Διαγραφής i n s e r t ( v a l u e { ( nelems >= a. l e n g t h ( ; j ; ( j = 0 ; j < nelems ; j ++ ( a [ j ] > v a l u e ; ( k = nelems ; k > j ; k a [ k ] = a [ k 1]; a [ j ] = v a l u e ; nelems + + ; ( ; d e l e t e ( v a l u e { j = myfind ( v a l u e ; ( j == nelems ; ( k = j ; k < nelems ; k ++ a [ k ] = a [ k + 1 ] ; nelems ; ; Τελέλης Δομές Δεδομένων 32 / 48

9 Μία Μέθοδος Εκτύπωσης Σχόλια O(n d i s p l a y ( { ( j = 0 ; j < nelems ; j ++ System. out. p r i n t ( a [ j ] + ; System. out. p r i n t l n ( ; Διότι ολισθαίνει O(n στοιχεία προς τα δεξιά, προκειμένου να τοποθετήσει το νέο στοιχείο στη σωστή θέση. Χρησιμοποιεί γραμμική αναζήτηση προς εύρεση της σωστής θέσης. Δεν επιβαρύνει την ασυμπτωτική της πολυπλοκότητα O(n: αλλά μπορεί να αποφευχθεί, με χρήση δυαδικής αναζήτησης. Απαιτείται κατάλληλη υλοποίηση της myfind, που να επιστρέφει τη θέση του αμέσως προηγούμενου στοιχείου. Τελέλης Δομές Δεδομένων 33 / 48 Τελέλης Δομές Δεδομένων 34 / 48 Σχόλια Χαρακτηριστικά Ταξινομημένων Πινάκων Κάθε νέο στοιχείο ίδιας τιμής θα εγγραφεί στη θέση του παλαιού. Διότι, γίνεται πρώτα (γραμμική αναζήτηση: για τη θέση του 1ου στοιχείου που είναι μεγαλύτερο του εισαγόμενου. Στη γραμμή: (a[ j ] > value ; Αυτό είναι συνεπές και με την υλοποίηση της δυαδικής αναζήτησης: που επιστρέφει μία θέση μόνο, εφόσον το στοιχείο υπάρχει. Εκθετικά ταχύτερη αναζήτηση από ότι σε μη ταξινομημένο πίνακα. Τίμημα: ακριβή εισαγωγή O(n χρόνου, για διατήρηση ταξινόμησης. Aν a είναι η τιμή του εισαγόμενου κλειδιού, απαιτείται ολίσθηση κατά 1 θέση των στοιχείων με μεγαλύτερα κλειδιά, για να δημιουργηθεί χώρος για το στοιχείο με τιμή a. Διαγραφή αργή, O(n χρόνου σε ταξινομημένους ή μη πίνακες. Οι ταξινομημένοι πίνακες είναι χρήσιμοι όταν οι αναζητήσεις είναι σημαντικά συχνότερες από εισαγωγές και διαγραφές. Τελέλης Δομές Δεδομένων 35 / 48 Τελέλης Δομές Δεδομένων 36 / 48

10 Σύνοψη Πολυπλοκότητας Γιατί δε Χρησιμοποιούμε τους Πίνακες για όλα? Γραμμική Aναζήτηση O(n Δυαδική Aναζήτηση O(log n Εισαγωγή σε ταξινομημένο πίνακα O(1 Εισαγωγή σε ταξινομημένο πίνακα O(n Διαγραφή σε ταξινομημένο πίνακα O(n Θέματα απόδοσης. Μη ταξινομημένοι πίνακες. Γρήγορη εισαγωγή O(1, όμως αργή αναζήτηση/διαγραφή O(n Ταξινομημένοι πίνακες. Γρήγορη αναζήτηση O(log n, όμως αργή εισαγωγή/διαγραφή O(n Σταθερό μέγεθος πινάκων κατά τη δημιουργία. Πρέπει να εκτιμήσουμε από πριν το μέγιστο πλήθος των στοιχείων: Διαγραφή σε ταξινομημένο πίνακα O(n Υπερεκτίμηση μεγέθους = κατανάλωση μνήμης άσκοπα. Υποτίμηση μεγέθους = ο πίνακας δεν επαρκεί. Τελέλης Δομές Δεδομένων 37 / 48 Τελέλης Δομές Δεδομένων 38 / 48 (1 Aναπαράσταση Υποσυνόλων του {0,..., n 1 (1: Aναπαράσταση Υποσυνόλων του {0,..., n 1 Ζητείται δομή αναπαράστασης υποσυνόλων του {0, 1,..., n 1. Θέλουμε να υποστηρίξουμε τις εξής βασικές πράξεις: στοιχείου a {0,..., n 1 στο τρέχον υποσύνολο. στοιχείου a {0,..., n 1 από το τρέχον υποσύνολο. αν το στοιχείο a {0,..., n 1 ανήκει στο υποσύνολο. Πόσο αποδοτικά μπορούμε να τις υλοποιήσουμε με χρήση πίνακα? Χρησιμοποιούμε πίνακα n δυαδικών στοιχείων (με τιμές true/false του a { 0,..., n 1 : A[a] = χρόνος O(1 του a { 0,..., n 1 : A[a] = χρόνος O(1 του a { 0,..., n 1 : (A[a ] ; χρόνος O(1 Τελέλης Δομές Δεδομένων 39 / 48 Τελέλης Δομές Δεδομένων 40 / 48

11 (2: Πιο αποδοτικοί πίνακες (2: Πιο αποδοτικοί πίνακες Θέλουμε να υλοποιήσουμε την σε πίνακα: Δίνεται απλώς μια θέση i του πίνακα (και όχι ένα στοιχείο/κλειδί. Διαγράφουμε το στοιχείο στη θέση i θέτοντας απλώς A[i ] =. Μπορούμε να έχουμε ταυτόχρονα και σε χρόνο O(1 δίχως χρήση επιπλέον δομής/μνήμης? (στον οποίο αποθηκεύουμε δεδομένα και, θα πρέπει να κάνουμε πριν από κάθε, για «κενές» θέσεις, με τιμή null. Επομένως, η θα έχει πλέον χρόνο χειρότερης περίπτωσης O(n. Είναι εφικτό εν γένει (π.χ., με χρήση δεύτερου πίνακα? Τελέλης Δομές Δεδομένων 41 / 48 Τελέλης Δομές Δεδομένων 42 / 48 Πρόβλημα 2: Πιο αποδοτικοί πίνακες Πρόβλημα 3: Κατασκευή Ομοιόμορφα Τυχαίας Μετάθεσης Aπάντηση στη δεύτερη ερώτηση: Ναι! Χρησιμοποιούμε βοηθητικό πίνακα ακεραίων, B, και έναν μετρητή last, που αρχικοποιείται στο 0. Υλοποιούμε την στη θέση i ως εξής: A [ i ] = ; B [ l a s t ] = i ; l a s t + + ; Υλοποιούμε την στοιχείου a ως εξής: A [ B [ l a s t 1]] = a ; l a s t ; Και οι δύο πράξεις σε χρόνο χειρότερης περίπτωσης O(1. Δίνεται πίνακας A με n στοιχεία. Ζητείται αλγόριθμος που: Δέχεται σαν είσοδο τον πίνακα A, «ανακατεύει» τη σειρά των στοιχείων στον A, ώστε: η τελική σειρά είναι οποιαδήποτε από τις n! μεταθέσεις των στοιχείων, με πιθανότητα 1 n!. μπορούμε να επιλέξουμε αριθμό στο {0,..., k 1 με πιθανότητα 1/k (τυχαία και ομοιόμορφα. Τελέλης Δομές Δεδομένων 43 / 48 Τελέλης Δομές Δεδομένων 44 / 48

12 Κατασκευή Ομοιόμορφα Τυχαίας Διάταξης Υλοποίηση σε Java Ένας αλγόριθμος με βέλτιστη πολυπλοκότητα (Donald Knuth Είσοδος: πίνακας A i = 0,..., n 1 επίλεξε μια θέση j {i,..., n 1 αντάλλαξε τα περιεχόμενα των A[i] και A[j]. A Πολυπλοκότητα: O(n. Δίνει τυχαία μετάθεση των περιεχομένων του A, με πιθανότητα 1 n!. j a v a. u t i l. Random ; s h u f f l e ( [ ] A { Random rndgen = Random ( System. c u r r e n t T i m e M i l l i s ( ; ( i = 0 ; i < A. l e n g t h ; i + + { pos = i + rndgen. n e x t I n t ( A. l e n g t h i ; tmp = A [ i ] ; A [ i ] = A [ pos ] ; A [ pos ] = tmp ; Τελέλης Δομές Δεδομένων 45 / 48 Τελέλης Δομές Δεδομένων 46 / 48 Aνάλυση Κατασκευής Ομοιόμορφα Τυχαίας Μετάθεσης Aνάλυση Κατασκευής Ομοιόμορφα Τυχαίας Μετάθεσης Η πιθανότητα του A[1] να έχει στην έξοδο την τιμή που παρατηρούμε, είναι Pr( A[1] = 1 n. Η πιθανότητα του A[2] να έχει στην έξοδο την τιμή που παρατηρούμε, A[1] είναι Pr( A[2] A[1] = 1 n 1. Η πιθανότητα του A[3] να έχει στην έξοδο την τιμή που παρατηρούμε, A[1], A[2], είναι Pr( A[3] A[1] A[2] = 1 n Η πιθανότητα του A[i] να έχει στην έξοδο την τιμή που παρατηρούμε, A[1], A[2],, A[i 1] είναι: ( Pr A[i] A[1] A[2] A[i 1] = 1 n i + 1 Η πιθανότητα να δούμε στην έξοδο τη διάταξη A που υποθέσαμε είναι: ( Pr( A = Pr A[1] A[2] A[n] ( = Pr A[n] A[1] A[2] A[n 1] ( = Pr A[n] A[1] A[2] A[n 1] ( Pr A[1] A[2] A[n 2] = n ( Pr A[i] A[1] A[2] A[i 1] i=1 = n = 1 n! ( Pr A[1] A[2] A[n 1] ( Pr A[n 1] A[1] A[2] A[n 2] Τελέλης Δομές Δεδομένων 47 / 48 Τελέλης Δομές Δεδομένων 48 / 48

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 12/10/2017

Διαβάστε περισσότερα

Ανάλυση. Ο εσωτερικός ϐρόχος εκτελείται i + 1 ϕορές, για i = 0,..., n 1.

Ανάλυση. Ο εσωτερικός ϐρόχος εκτελείται i + 1 ϕορές, για i = 0,..., n 1. Σύνοψη Προηγούµενου Πίνακες Arrays Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Πληροφορίες Μαθήµατος. ιαδικαστικά ϑέµατα. Αντικείµενο Μαθήµατος. Αντικειµενοστρεφής

Διαβάστε περισσότερα

Ταξινόμηση: Εισαγωγικά. Ταξινόμηση (Sor ng) Αλγόριθμοι Απλής Ταξινόμησης. Βασικά Βήματα των Αλγορίθμων

Ταξινόμηση: Εισαγωγικά. Ταξινόμηση (Sor ng) Αλγόριθμοι Απλής Ταξινόμησης. Βασικά Βήματα των Αλγορίθμων Ταξινόμηση: Εισαγωγικά Ταξινόμηση (Sor ng) Ορέστης Τελέλης Βασικό πρόβλημα για την Επιστήμη των Υπολογιστών. π.χ. αλφαβητική σειρά, πωλήσεις ανά τιμή, πόλεις με βάση πληθυσμό, Μπορεί να είναι ένα πρώτο

Διαβάστε περισσότερα

Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης

Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης Ουρές Προτεραιότητας: Υπενθύμιση Σωροί / Αναδρομή / Ταξινόμηση Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς (Abstract Data Type) με μεθόδους: Μπορεί να υλοποιηθεί με

Διαβάστε περισσότερα

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η

Διαβάστε περισσότερα

Στοιχεία Αλγορίθµων και Πολυπλοκότητας

Στοιχεία Αλγορίθµων και Πολυπλοκότητας Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις

Διαβάστε περισσότερα

Σύνοψη Προηγούμενου. Λίστες (Lists) Συνδεδεμένες Λίστες: Εισαγωγή (1/2) Συνδεδεμένες Λίστες. Ορέστης Τελέλης

Σύνοψη Προηγούμενου. Λίστες (Lists) Συνδεδεμένες Λίστες: Εισαγωγή (1/2) Συνδεδεμένες Λίστες. Ορέστης Τελέλης Σύνοψη Προηγούμενου Λίστες (Lists) Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Στοίβες (Stacks) : στην κορυφή της στοίβας ( ) από την κορυφή της στοίβας ( ) Ουρές

Διαβάστε περισσότερα

Πληροφορική 2. Δομές δεδομένων και αρχείων

Πληροφορική 2. Δομές δεδομένων και αρχείων Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης

Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης Δοµές Δεδοµένων 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι Ε. Μαρκάκης Περίληψη Bubble Sort Selection Sort Insertion Sort Χαρακτηριστικά επιδόσεων Shellsort Ταξινόµηση συνδεδεµένων λιστών Δοµές Δεδοµένων

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 2

Αλγόριθμοι Ταξινόμησης Μέρος 2 Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 3 1. Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή 2. Δυναμικές είναι οι δομές που αποθηκεύονται σε συνεχόμενες θέσεις μνήμης 3. Ένας πίνακας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων

ΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων ΠΕΡΙΕΧΟΜΕΝΑ Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων Εισαγωγή Η χρήση των μεταβλητών με δείκτες στην άλγεβρα είναι ένας ιδιαίτερα

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6α: Αναζήτηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 1

Αλγόριθμοι Ταξινόμησης Μέρος 1 Αλγόριθμοι Ταξινόμησης Μέρος 1 Μανόλης Κουμπαράκης 1 Το Πρόβλημα της Ταξινόμησης Το πρόβλημα της ταξινόμησης (sorting) μιας ακολουθίας στοιχείων με κλειδιά ενός γνωστού τύπου (π.χ., τους ακέραιους ή τις

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Σύνοψη Προηγούμενου (1/2) Στοίβες, Ουρές, Ουρές Προτεραιότητας. Σύνοψη Προηγούμενου (2/2) Σημερινό Μάθημα. Πίνακες. Εισαγωγή, σε χρόνο O(1).

Σύνοψη Προηγούμενου (1/2) Στοίβες, Ουρές, Ουρές Προτεραιότητας. Σύνοψη Προηγούμενου (2/2) Σημερινό Μάθημα. Πίνακες. Εισαγωγή, σε χρόνο O(1). Σύνοψη Προηγούμενου (1/2) Στοίβες, Ουρές, Ουρές Προτεραιότητας Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Πίνακες Εισαγωγή, σε χρόνο O(1). Αναζήτηση, σε χρόνο O(n).

Διαβάστε περισσότερα

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου

Διαβάστε περισσότερα

Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα

Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα Ιεραρχία Μνήμης Υπολογιστή Εξωτερική Μνήμη Εσωτερική Μνήμη Κρυφή Μνήμη (Cache) μεγαλύτερη χωρητικότητα Καταχωρητές (Registers) Κεντρική Μονάδα (CPU) μεγαλύτερη ταχύτητα Πολλές σημαντικές εφαρμογές διαχειρίζονται

Διαβάστε περισσότερα

Κατακερµατισµός. Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Κατακερµατισµός. Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινομημένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Δυναμική Διατήρηση Γραμμικής Διάταξης

Δυναμική Διατήρηση Γραμμικής Διάταξης Διατηρεί μια γραμμική διάταξη δυναμικά μεταβαλλόμενης συλλογής στοιχείων. Υποστηρίζει τις λειτουργίες: Εισαγωγή νέου στοιχείου y αμέσως μετά από το στοιχείο x. x y Διαγραφή στοιχείου y. y Έλεγχος της σειράς

Διαβάστε περισσότερα

I. ΑΛΓΟΡΙΘΜΟΣ II. ΠΡΑΞΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ III. ΕΠΑΝΑΛΗΨΕΙΣ. 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι:

I. ΑΛΓΟΡΙΘΜΟΣ II. ΠΡΑΞΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ III. ΕΠΑΝΑΛΗΨΕΙΣ. 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι: ΑΕσΠΠ 1 / 8 I. ΑΛΓΟΡΙΘΜΟΣ 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι: i. Είσοδος : χρήση μιας μεταβλητής που δεν έχει πάρει προηγουμένως τιμή. ii. Έξοδος : ο αλγόριθμος δεν εμφανίζει

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

Δείκτες & Πίνακες Δείκτες, Πίνακες

Δείκτες & Πίνακες Δείκτες, Πίνακες Δείκτες & Πίνακες Δείκτες, Πίνακες Δείκτες Δείκτης είναι μια μεταβλητή που ως δεδομένο περιέχει τη θέση μνήμης (διεύθυνση) μιας άλλης μεταβλητής. Μεταβλητές Τιμές. (*) Δείκτης p Μεταβλητή v Δ1. Δ2. τιμή

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης

Αλγόριθμοι Αναζήτησης Αλγόριθμοι Αναζήτησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 3 ο Μέρος

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 3 ο Μέρος Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 6 εκεµβρίου 2008 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2008-09 Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 3 ο Μέρος Ηµεροµηνία Παράδοσης:

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης Περιεχόμενα Δομές δεδομένων 37. Δομές δεδομένων (θεωρητικά στοιχεία)...11 38. Εισαγωγή στους μονοδιάστατους πίνακες...16 39. Βασικές επεξεργασίες στους μονοδιάστατους πίνακες...25 40. Ασκήσεις στους μονοδιάστατους

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος

Διαβάστε περισσότερα

Προγραμματιστικές Τεχνικές

Προγραμματιστικές Τεχνικές Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωμύλος Κορακίτης

Διαβάστε περισσότερα

δυαδική αναζήτηση Παύλος Σ. Εφραιμίδης

δυαδική αναζήτηση Παύλος Σ. Εφραιμίδης δυαδική αναζήτηση Παύλος Σ. Εφραιμίδης περιεχόμενα δυαδική αναζήτηση ασύμμετρη δυαδική αναζήτηση δυαδική αναζήτηση με σφάλματα 2 Το πρόβλημα της αναζήτησης 3 Αναζήτηση Το πρόβλημα της αναζήτησης: Δίνεται

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας

Διαβάστε περισσότερα

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά

Διαβάστε περισσότερα

Ουρά Προτεραιότητας: Heap

Ουρά Προτεραιότητας: Heap Ουρά Προτεραιότητας: Heap Επιμέλεια διαφανειών: Δ. Φωτάκης (λίγες τροποποιήσεις: Α. Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Δομές Δεδομένων (Αναπαράσταση,)

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 3. Στοίβες & Ουρές 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 19/10/2017 Ανακεφαλαίωση:

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 3. Στοίβες & Ουρές 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 4/11/2016 Ανακεφαλαίωση:

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Κανάρη 36, Δάφνη Τηλ. 210 9713934 & 210 9769376 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ο.Π. ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα Α A1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι - Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

4. Συνδεδεμένες Λίστες

4. Συνδεδεμένες Λίστες Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 4. Συνδεδεμένες Λίστες 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 10/11/2016 Εισαγωγή

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Η τακτοποίηση των δεδομένων με ιδιαίτερη σειρά είναι πολύ σημαντική λειτουργία που ονομάζεται

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ. Πίνακες και βασικές επεξεργασίες αυτών

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ. Πίνακες και βασικές επεξεργασίες αυτών ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ Πίνακες και βασικές επεξεργασίες αυτών Σκοπιές από τις οποίες μελετά η πληροφορική τα δεδομένα Γλωσσών προγραμματισμού Υλικού Δομών δεδομένων Ανάλυσης δεδομένων 22/11/08 Παρουσιάσεις

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 3 ο : ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 9 ο : ΠΙΝΑΚΕΣ ΜΕΡΟΣ 1 ο : ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΠΙΝΑΚΕΣ 1 & 2 ΔΙΑΣΤΑΣΕΩΝ http://eclass.sch.gr/courses/el594100/

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Εγχειρίδιο Οδηγιών. BrainStorm. Διαχείριση Πινάκων. Εισαγωγή, Μεταβολή, Διαγραφή Κατάταξη, Εντοπισμός Εγγραφών

Εγχειρίδιο Οδηγιών. BrainStorm. Διαχείριση Πινάκων. Εισαγωγή, Μεταβολή, Διαγραφή Κατάταξη, Εντοπισμός Εγγραφών Εγχειρίδιο Οδηγιών BrainStorm Διαχείριση Πινάκων Εισαγωγή, Μεταβολή, Διαγραφή Κατάταξη, Εντοπισμός Εγγραφών Στο κείμενο που ακολουθεί δίδονται οδηγίες για τον τρόπο με τον οποίο ο χειριστής δύναται : Να

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΠΕΞΕΡΓΑΣΙΕΣ ΜΟΝΟΔΙΑΣΤΑΤΩΝ ΚΑΙ ΔΙΣΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΟΙ ΠΙΟ ΣΗΜΑΝΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ

ΒΑΣΙΚΕΣ ΕΠΕΞΕΡΓΑΣΙΕΣ ΜΟΝΟΔΙΑΣΤΑΤΩΝ ΚΑΙ ΔΙΣΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΟΙ ΠΙΟ ΣΗΜΑΝΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΒΑΣΙΚΕΣ ΕΠΕΞΕΡΓΑΣΙΕΣ ΜΟΝΟΔΙΑΣΤΑΤΩΝ ΚΑΙ ΔΙΣΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΟΙ ΠΙΟ ΣΗΜΑΝΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗ ΜΕΓΑΛΥΤΕΡΟΥ/ΜΙΚΡΟΤΕΡΟΥ ΣΤΟΙΧΕΙΟΥ ΜΟΝΟΔΙΑΣΤΑΤΟΥ -1 Ολα τα στοιχεία του πίνακα είναι διαφορετικά μεταξύ τους.

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 15: Διασυνδεμένες Δομές - Λίστες Διασυνδεδεμένες δομές δεδομένων Η μνήμη ενός πίνακα δεσμεύεται συνεχόμενα. Η πρόσβαση στο i-οστό στοιχείο είναι άμεση καθώς η διεύθυνση

Διαβάστε περισσότερα

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή

Διαβάστε περισσότερα

Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8

Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8 Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 1000 1001 1002 1003 1004 1005 12 9.8 9976 3 1010 26 1006 1007 1008 1009 1010 1011 16 125 1299 a 13 1298 Δήλωση Δήλωση Τύπος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6β: Ταξινόμηση με εισαγωγή και επιλογή Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 2

Δομές Δεδομένων Ενότητα 2 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Θέματα Απόδοσης Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή

Διαβάστε περισσότερα

Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση. Ταξινόμηση με Εισαγωγή. Ταξινόμηση με Επιλογή Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση Η ταξινόμηση sortg τοποθετεί ένα σύνολο κόμβων ή εγγραφών σε μία συγκεκριμένη διάταξη

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.:

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ,

Διαβάστε περισσότερα

Ουρά Προτεραιότητας (priority queue)

Ουρά Προτεραιότητας (priority queue) Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει τις ακόλουθες λειτουργίες PQinsert : εισαγωγή στοιχείου PQdelmax : επιστροφή του στοιχείου με το μεγαλύτερο* κλειδί και διαγραφή του

Διαβάστε περισσότερα

ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Επιμέλεια: Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα 1 ο Α. Να χαρακτηρίσετε κάθε μία από

Διαβάστε περισσότερα

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης: Α. SelectoSort Ταξινόμηση με Επιλογή Β. IsertoSort Ταξινόμηση με Εισαγωγή Γ. MergeSort

Διαβάστε περισσότερα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου

Διαβάστε περισσότερα

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing)

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear

Διαβάστε περισσότερα

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Ενότητα : Κατακερματισμός Ασκήσεις και Λύσεις Άσκηση 1 Χρησιμοποιήστε τη συνάρτηση κατακερματισμού της διαίρεσης ως πρωτεύουσα συνάρτηση κατακερματισμού και τη συνάρτηση

Διαβάστε περισσότερα

Συμβουλές και Μεθοδολογία Ασκήσεων Ψευδογλώσσας / ΓΛΩΣΣΑΣ

Συμβουλές και Μεθοδολογία Ασκήσεων Ψευδογλώσσας / ΓΛΩΣΣΑΣ Ψευδογλώσσας / ΓΛΩΣΣΑΣ Χρήση εντολών Εισόδου Εξόδου Α) Εντολές εισόδου Όσον αφορά στη Ψευδογλώσσα, για την κατάλληλη επιλογή εντολής εισόδου διαβάζουμε προσεχτικά την εκφώνηση. Αν η εκφώνηση αναφέρει «να

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος εδοµένα οµές δεδοµένων και αλγόριθµοι Τα δεδοµένα είναι ακατέργαστα γεγονότα. Η συλλογή των ακατέργαστων δεδοµένων και ο συσχετισµός τους δίνει ως αποτέλεσµα την πληροφορία. Η µέτρηση, η κωδικοποίηση,

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 1

Εργαστηριακή Άσκηση 1 Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 21: Υπολογισμοί ΜΤ - Αναδρομικές Γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Cuckoo Hashing. Αλγόριθμοι και Πολυπλοκότητα. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Cuckoo Hashing. Αλγόριθμοι και Πολυπλοκότητα. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Cuckoo Hashing Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο β Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη συλλογή αντικειμένων που αναγνωρίζονται με «κλειδί» (π.χ.

Διαβάστε περισσότερα

Κεφάλαιο 6 Ουρές Προτεραιότητας

Κεφάλαιο 6 Ουρές Προτεραιότητας Κεφάλαιο 6 Ουρές Προτεραιότητας Περιεχόμενα 6.1 Ο αφηρημένος τύπος δεδομένων ουράς προτεραιότητας... 114 6.2 Ουρές προτεραιότητας με στοιχειώδεις δομές δεδομένων... 115 6.3 Δυαδικός σωρός... 116 6.3.1

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 12. Ανασκόπηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 13/01/2017 Εξεταστέα Ύλη

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

Κεφάλαιο 14 Προηγμένες Ουρές Προτεραιότητας

Κεφάλαιο 14 Προηγμένες Ουρές Προτεραιότητας Κεφάλαιο 14 Προηγμένες Ουρές Προτεραιότητας Περιεχόμενα 14.1 Διωνυμικά Δένδρα... 255 14.2 Διωνυμικές Ουρές... 258 14.1.1 Εισαγωγή στοιχείου σε διωνυμική ουρά... 258 14.1.2 Διαγραφή μεγίστου από διωνυμική

Διαβάστε περισσότερα

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών,, τα οποίo είναι υποσύνολο του. Υποστηριζόμενες λειτουργίες αναζήτηση(s,x): εισαγωγή(s,x): διαγραφή(s,x): διάδοχος(s,x): προκάτοχος(s,x):

Διαβάστε περισσότερα

Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση

Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση Δομές Αναζήτησης χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης

Διαβάστε περισσότερα

Αναζήτηση και ταξινόμηση

Αναζήτηση και ταξινόμηση Αναζήτηση και ταξινόμηση Περιεχόμενα Αναζήτηση (searching): εύρεση ενός στοιχείου σε έναν πίνακα Ταξινόμηση (sorting): αναδιάταξη των στοιχείων ενός πίνακα ώστε να είναι τοποθετημένα με μια καθορισμένη

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες

Διαβάστε περισσότερα

Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

HY240 : Δομές Δεδομένων. Φροντιστήριο Προγραμματιστικής Εργασίας 2 ο και 3 ο Μέρος

HY240 : Δομές Δεδομένων. Φροντιστήριο Προγραμματιστικής Εργασίας 2 ο και 3 ο Μέρος HY240 : Δομές Δεδομένων Φροντιστήριο Προγραμματιστικής Εργασίας 2 ο και 3 ο Μέρος Εισαγωγή Στο 2 ο μέρος της εργασίας θα πρέπει να γίνουν τροποποιήσεις στο πρόγραμμα που προέκυψε κατά την υλοποίηση του

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2015-2016 Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις προτάσεις 1-4 και δίπλα τη λέξη ΣΩΣΤΟ,

Διαβάστε περισσότερα

Κεφάλαιο 13 Αντισταθμιστική Ανάλυση

Κεφάλαιο 13 Αντισταθμιστική Ανάλυση Κεφάλαιο 13 Αντισταθμιστική Ανάλυση Περιεχόμενα 13.1 Αντισταθμιστική Ανάλυση... 248 13.2 Μέθοδοι Αντισταθμιστικής Ανάλυσης... 250 13.2.1 Η χρεωπιστωτική μέθοδος... 250 13.2.2 Η ενεργειακή μέθοδος... 251

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι

Διαβάστε περισσότερα

ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2017 Διδάσκουσα: Παναγιώτα Φατούρου Προγραμματιστική Εργασία - 2o Μέρος

ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2017 Διδάσκουσα: Παναγιώτα Φατούρου Προγραμματιστική Εργασία - 2o Μέρος ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2017 Διδάσκουσα: Παναγιώτα Φατούρου Προγραμματιστική Εργασία - 2o Μέρος Ημερομηνία Παράδοσης: Δευτέρα, 15 Μαΐου 2017, ώρα 23:59. Τρόπος Παράδοσης:

Διαβάστε περισσότερα