ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ"

Transcript

1 Τµ. Επιστήµης των Υλικών

2 εσµευµένες Πιθανότητες Εστω (Ω, A, P) ένας πιθανοθεωρητικός χώρος. Αξιωµατικός Ορισµός της Πιθανότητας (Kolmogorov) Θεωρούµε (Ω, A) έναν µετρήσιµο χώρο. Ενα πιθανοθεωρητικό µέτρο (ή µια πιθανότητα) P είναι µια συνολοσυνάρτηση, P : A R, µε τις εξής ιδιότητες, 1 A A, P(A) 0. 2 P(Ω) = 1. 3 Αν A 1, A 2,... γεγονότα ανά δύο ξένα µεταξύ τους (δηλ. A i A j =, i j), τότε P( i=1a i) = i=1 P(Ai). Οταν συµβαίνει κάποιο γεγονός A, τότε P(A) > 0. Ποια είναι η πιθανότητα να συµβεί ένα γεγονός B, όταν γνωρίζουµε (δηλ. είµαστε ϐέβαιοι) ότι συµβαίνει το γεγονός A; P(B A) συµβολίζεται ως η πιθανότητα να συµβεί το γεγονός Β, δοθέντος ότι συµβαίνει το γεγονός Α (δεσµευµένη πιθανότητα) Ορισµός P(B A) = P(A B) P(A), όπου P(A) > 0.

3 εσµευµένες Πιθανότητες Πρόταση Η συνολοσυνάρτηση P( A) είναι ένα µέτρο πιθανότητας, δηλαδή ισχύουν τα αξιώµατα του Kolmogorov 1 B A, P(B A) 0. 2 P(Ω A) = 1. 3 Αν B 1, B 2,... γεγονότα ανά δύο ξένα µεταξύ τους (δηλ. B i B j =, i j), τότε P( i=1b i A) = i=1 P(Bi A). Παράδειγµα 1 Μία δίτεκνη οικογένεια λαµβάνεται στην τύχη από ένα καθορισµένο σύνολο τέτοιων οικογενειών. 1 Ποια είναι η πιθανότητα να πάρουµε παιδί του ίδιου γένους; 2 Ποια είναι η πιθανότητα να πάρουµε παιδί του ίδιου γένους όταν γνωρίζουµε ότι υπάρχει τουλάχιστον ένα κορίτσι;

4 εσµευµένες Πιθανότητες Πολλαπλασιαστικό Θεώρηµα Εστω ότι συµβαίνουν τα γεγονότα A 1, A 2,...,A n, µε P( n 1 j=1 A j) > 0, τότε P( n j=1 A j) = P(A 1 )P(A 2 A 1 )P(A 3 A 1 A 2 )...P(A n n 1 j=1 A j) Απόδειξη. (Επαγωγικά) n = 2, P(A 1 A 2) = P(A 1)P(A 2 A 1) (ισχύει εξ ορισµού.) Υποθέτω ότι ισχύει για n = k, ϑα δείξω ότι ισχύει για n = k + 1. n = k, P( k j=1 Aj) = P(A1)P(A2 A1)P(A3 A1 A2)...P(A k k 1 j=1 Aj) n = k + 1, P( k+1 j=1 Aj) = P(( k j=1 Aj) A k+1) = P(A k+1 k j=1 Aj)P( k j=1 Aj) = P(A 1)P(A 2 A 1)P(A 3 A 1 A 2)...P(A k k 1 j=1 Aj)P(A k+1 k j=1 Aj). Παράδειγµα 2 Από µια κληρωτίδα που περιέχει 10 πανοµοιότυπα σφαιρίδια, εκτός του ότι 5 είναι µαύρα, 3 είναι κόκκινα και 2 είναι λευκά, 4 σφαιρίδια λαµβάνονται στην τύχη. Ποια είναι η πιθανότητα το 1ο σφαιρίδιο να είναι µαύρο, το 2ο να είναι κόκκινο, το 3ο λευκό και το 4ο µαύρο;

5 εσµευµένες Πιθανότητες Ορισµός Τα σύνολα A 1, A 2,...,A n,... αποτελούν µια διαµέριση του συνόλου Ω, εάν αυτά είναι ξένα µεταξύ τους ανά δύο (δηλ. A i A j =, i j) και Θεώρηµα Ολικής Πιθανότητας (Θ.Ο.Π.) j=1aj = Ω. Εστω {A j, j = 1, 2,...} µια διαµέριση του δειγµατοχώρου Ω, τότε για κάθε σύνολο Β του δειγµατοχώρου ισχύει η σχέση Θεώρηµα Bayes P(B) = P(A j)p(b A j). Υπό τις προϋποθέσεις του Θ.Ο.Π. και εφ οσον P(B) > 0, j=1 P(A j B) = P(Aj)P(B Aj) P(B), j = 1, 2,..., όπου P(A j) ονοµάζεται εκ των προτέρων πιθανότητα και P(A j B) ονοµάζεται εκ των υστέρων πιθανότητα.

6 εσµευµένες Πιθανότητες Παράδειγµα 3 Ενας ϕοιτητής γράφεται ως πρωτοετής στο τµ. Επιστήµης των Υλικών. Η πιθανότητα να πάρει υποτροφία είναι Αν πάρει υποτροφία η πιθανότητα να πάρει πτυχίο στα 5 χρόνια είναι 0.85 και αν δεν πάρει υποτροφία είναι µόνο Να ϐρεθεί η πιθανότητα να πάρει πτυχίο ο ϕοιτητής στα 5 χρόνια. 2 Αν ο ϕοιτητής πήρε το πτυχίο του στα 5 χρόνια, ποια είναι η πιθανότητα να έχει πάρει υποτροφία; Παράδειγµα 4 Κατά την εξέταση ενός ασθενούς υπάρχει η υποψία ότι αυτός πάσχει από µία από τις 3 ασθένειες A 1 ή A 2 ή A 3. Υποθέτουµε ότι, υπό ορισµένες συνθήκες, το 50% του πληθυσµού πάσχουν από την ασθένεια A 1, 25% από την ασθένεια A 2 και 25% από την ασθένεια A 3. Για καλύτερη διάγνωση ο ασθενής υποβάλλεται σε ορισµένο τεστ του οποίου το αποτέλεσµα είναι ϑετικό µε 25% στην περίπτωση της ασθένειας A 1, 50% στην περίπτωση της ασθένειας A 2 και 90% στην περίπτωση της ασθένειας A 3. Ποια είναι η πιθανότητα ο ασθενής να µην έχει την ασθένεια A 1, παρ όλο ότι το παραπάνω τεστ είναι ϑετικό.

7 Ανεξάρτητα Γεγονότα Ορισµός Αν P(B A) = P(B), τότε τα γεγονότα Α και Β ονοµάζονται ανεξάρτητα. Παράδειγµα 5 Εστω µια κάλπη που περιέχει 10 πανοµοιότυπα σφαιρίδια, όπου τα 7 είναι µαύρα και τα 3 είναι άσπρα, λαµβάνω δύο σφαιρίδια, (i) χωρίς επανατοποθέτηση και (ii) µε επανατοποθέτηση. Ορίζω τα εξής γεγονότα, M 1 = {Το 1ο σφαιρίδιο είναι µαύρο.} M 2 = {Το 2ο σφαιρίδιο είναι µαύρο.} A 1 = {Το 1ο σφαιρίδιο είναι άσπρο.} A 2 = {Το 2ο σφαιρίδιο είναι άσπρο.} Είναι τα γεγονότα M 1 και M 2 ανεξάρτητα µεταξύ τους;

8 Ανεξάρτητα Γεγονότα Ορισµός Εστω (Ω,A, P) ένας πιθανοθεωρητικός χώρος και γεγονότα A 1, A 2,...,A n A, τα οποία ϑα ονοµάζονται ανεξάρτητα µεταξύ τους, αν για οποιαδήποτε k γεγονότα από αυτά, A i1, A i2,...,a ik ισχύει η σχέση, P(A i1 ) P(A i2 )... P(A ik ) = P(A i1 )P(A i2 )...P(A ik ), k = 1, 2,...,n. Παρατήρηση A 1, A 2, A 3 ανεξάρτητα γεγονότα, εάν P(A 1 A 2 A 3 ) = P(A 1 )P(A 2 )P(A 3 ) P(A 1 A 2 ) = P(A 1 )P(A 2 ) P(A 1 A 3 ) = P(A 1 )P(A 3 ) P(A 2 A 3 ) = P(A 2 )P(A 3 ). Αν έχουµε, δηλ., n γεγονότα πρέπει να πάρουµε 2 n n 1 σχέσεις. Ορισµός Τα γεγονότα A 1, A 2,...,A n καλούνται ανεξάρτητα κατά Ϲεύγη αν

9 Παραδείγµατα Παράδειγµα 6 ιαθέτουµε τρία δοχεία U 1, U 2 και U 3. Το 1ο δοχείο περιέχει 5 µαύρα και 5 άσπρα σφαιρίδια, το 2ο δοχείο περιέχει 4 µαύρα και 8 άσπρα σφαιρίδια και το 3ο δοχείο περιέχει 8 µαύρα και 6 άσπρα σφαιρίδια. Ρίχνω ένα Ϲάρι. Αν έρθει η πλευρά «1», τότε ϐγάζω 2 σφαιρίδια από το U 1, αν έρθουν οι πλευρές «2» ή «3» ϐγάζω 3 σφαιρίδια από το U 2, ενώ αν έρθουν οι πλευρές «4» ή «5» ή «6» ϐγάζω 4 σφαιρίδια από το U 3. 1 Αν ϱίξω το Ϲάρι µία ϕορά, ποια είναι η πιθανότητα να ϐγάλω ακριβώς 2 µαύρα σφαιρίδια; 2 Αν ϱίξω το Ϲάρι για δεύτερη ϕορά, ποια είναι η πιθανότητα και την πρώτη και τη δεύτερη ϕορά να πάρω 2 µαύρα σφαιρίδια;

10 Παραδείγµατα Παράδειγµα 7 Ενα Ϲευγάρι (άντρας και γυναίκα) ϑέλει να πάει διακοπές σε ένα ελληνικό νησί. Τελικά καταλήγουν να πάνε σε ένα από τα παρακάτω, ή Σκιάθο ή Ζάκυνθο ή Πάρο (µε την ίδια πιθανότητα). Αν επιλέξουν τη Σκιάθο, η πιθανότητα να τσακωθούν µεταξύ τους κατά τη διάρκεια των διακοπών είναι 20%. Αν επιλέξουν τη Ζάκυνθο αυτή η πιθανότητα γίνεται 30%, ενώ αν πάνε στην Πάρο η πιθανότητα να τσακωθούν είναι 40%. 1 Ποια είναι η πιθανότητα, για το Ϲευγάρι, να τσακωθούν µεταξύ τους κατά τη διάρκεια των διακοπών; 2 Ποια είναι η πιθανότητα να πάνε για διακοπές στη Ζάκυνθο ή στην Πάρο, όταν είναι γνωστό ότι δεν πρόκειται να τσακωθούν;

11 Παραδείγµατα Παράδειγµα 8 Μέσα σε ένα δοχείο υπάρχουν 4 µαύρα και 6 άσπρα σφαιρίδια. Ρίχνω 3 νοµίσµατα ταυτόχρονα, και ϐγάζουµε τόσα σφαιρίδια από το δοχείο, όσα και το πλήθος των κορώνων από την ϱίψη των 3 νοµισµάτων. 1 Ποια είναι η πιθανότητα να ϐγάλω ένα µαύρο σφαιρίδιο από το δοχείο όταν η δειγµατοληψία γίνεται (i) µε επανάθεση, (ii) χωρίς επανάθεση. 2 Αν γνωρίζω ότι έχω ϐγάλει ένα µαύρο σφαιρίδιο από το δοχείο, ποια είναι η πιθανότητα κατά την ϱίψη των τριών νοµισµάτων να έχω 2 κορώνες, όταν η δειγµατοληψία γίνεται χωρίς επανάθεση.

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ Τµ. Επιστήµης των Υλικών Εστω (Ω,A, P) ένας πιθανοθεωρητικός χώρος. Αξιωµατικός Ορισµός της Πιθανότητας (Kolmogorov) Θεωρούµε (Ω, A) έναν µετρήσιµο χώρο. Ενα πιθανοθεωρητικό µέτρο (ή µια πιθανότητα) P

Διαβάστε περισσότερα

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 εσµευµένη Πιθανότητα Πολλαπλασιαστικός Νόµος Ανεξάρτητα Γεγονότα Θεώρηµα Ολικής Πιθανότητας Κανόνας Bayes

Διαβάστε περισσότερα

εσµευµένες Πιθανότητες-Λυµένα Παραδείγµατα 3. Επιλέγουµε έναν που δεν είναι άνεργος. Ποια είναι η πιθανότητα να είναι πτυχιούχος; = 0.

εσµευµένες Πιθανότητες-Λυµένα Παραδείγµατα 3. Επιλέγουµε έναν που δεν είναι άνεργος. Ποια είναι η πιθανότητα να είναι πτυχιούχος; = 0. Τµήµα Επιστήµης των Υλικών Μάθηµα: Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες ιδάσκων: Κ. Πετρόπουλος εσµευµένες Πιθανότητες-Λυµένα Παραδείγµατα Παράδειγµα. Το 0% του ενεργού πληθυσµού (εργαζόµενοι

Διαβάστε περισσότερα

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Χώρος Πιθανότητας Συµµετρικός Χώρος Πιθανότητας 1 Θεωρούµε ότι ο δειγµατοχώρος Ω είναι πεπερασµένος, Ω= {ω 1,ω 2,...,ω n }. 2 Κάθε δειγµατοσηµείο έχει τις ίδιες ευκαιρίες εµφάνισης

Διαβάστε περισσότερα

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Ορισµός Πιθανότητας Στοιχεία Συνδυαστικής Κλασικός Ορισµός της Πιθανότητας Εστω Ω ο δειγµατοχώρος ενός πειράµατος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 204 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /0/206 Ηµεροµηνία Παράδοσης : 20/0/206

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Τµ. Επιστήµης των Υλικών ειγµατοληψία Με ιάταξη ειγµατοληψία Χωρίς ιάταξη Χωρίς Επανατοποθέτηση (n)k Με Επανατοποθέτηση n k Χωρίς Επανατοποθέτηση ( n k) Με Επανατοποθέτηση ( n+k 1 ) k ειγµατοληψία Με ιάταξη

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ Τµ. Επιστήµης των Υλικών Βασικές Αρχές Αρχή της Απαρίθµησης Εστω ότι ϑέλουµε να εκτελέσουµε ένα έργο Τ και το έργο εκτελείται σε κάποιες ϐαθµίδες, οι οποίες ϐαθµίδες εκτελούνται σε υποέργα, T j, j = 1,

Διαβάστε περισσότερα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ 3ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 3ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

ΙΙΙ εσµευµένη Πιθανότητα

ΙΙΙ εσµευµένη Πιθανότητα ΙΙΙ εσµευµένη Πιθανότητα 1 Λυµένες Ασκήσεις Ασκηση 1 Στρίβουµε ένα νόµισµα δύο ϕορές. Υποθέτοντας ότι και τα τέσσερα στοιχεία του δειγµατοχώρου Ω {(K, K, (K, Γ, (Γ, K, (Γ, Γ} είναι ισοπίθανα, ποια είναι

Διαβάστε περισσότερα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ Πιθανότητες και Αρχές Στατιστικής (3η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 38 Περιεχόμενα

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Δεσμευμένη (ή υπο-συνθήκη) Πιθανότητα (Conditional Probability)

Δεσμευμένη (ή υπο-συνθήκη) Πιθανότητα (Conditional Probability) Δεσμευμένη (ή υπο-συνθήκη) Πιθανότητα (Condtonal robablty) Συχνά μας ενδιαφέρει η συσχέτισή 2 ενδεχομένων Α και Β, δηλ. να δούμε το κατά πόσο η γνώση του ενός από τα δύο (π.χ. Β) επηρεάζει τη πιθανότητα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα Πιθανότητες και Αρχές Στατιστικής (2η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 54 Περιεχόμενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 19 Οκτωβρίου 2009 ΑΞΙΩΜΑΤΙΚΗ ΘΕΜΕΛΙΩΣΗ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Εστω Ω δειγµατικός χώρος στοχαστικού (τυχαίου) πειράµατος (ή ϕαινοµένου).

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 2 Νοεµβρίου 2009 1.3. Ας ϑεωρήσουµε ένα σύνολο 11 ατόµων {α 0, α 1,..., α 10 } των οποίων καταγράφουµε τα γενέθλια. Να υπολογισθεί

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 7 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I ΟΔΗΓΙΕΣ Να μην αντιγράψετε τα θέματα στην κόλα σας. Να γράψετε το ονοματεπώνυμό σας και τον αριθμό μητρώου σας (ΑΜ) στα θέματα και σε κάθε κόλα που θα χρησιμοποιήσετε. Τα θέματα

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

10/10/2016. Στατιστική Ι. 2 η Διάλεξη

10/10/2016. Στατιστική Ι. 2 η Διάλεξη Στατιστική Ι 2 η Διάλεξη 1 2 Δεσμευμένη πιθανότητα του Α δοθέντος του Β (1) Αν Α και Β δύο ενδεχόμενα του δειγματικού χώρου Ω ενός πειράματος τύχης και P(Β)>0, τότε η δεσμευμένη πιθανότητα του Α δοθέντος

Διαβάστε περισσότερα

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ). Υπενθυμίσεις Παραδείγματα Ασκήσεις Μελέτη 31 Οκτωβρίου 2014 Πιθανότητες και Στατιστική Διάλεξη 7 Ασκήσεις ΙΙ Δεσμευμένη πιθανότητα, Συνδυαστικά επιχειρήματα Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016 Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 06 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ Χαράλαµπος Α. Χαραλαµπίδης 12 Οκτωβρίου 2009 ΠΡΑΞΕΙΣ ΣΤΑ ΕΝ ΕΧΟΜΕΝΑ Ενωση ενδεχοµένων Η ένωση δύο ενδεχοµένων A και B (ως προς ένα δειγµατικό χώρο Ω), συµβολιζόµενη

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ κεφ - ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ Σε ένα συρτάρι υπάρχουν δύο κάρτες, μία άσπρη και μία κόκκινη Παίρνουμε στην τύχη μία κάρτα από το συρτάρι, καταγράφουμε το χρώμα της και την ξαναβάζουμε

Διαβάστε περισσότερα

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /11/011 Ηµεροµηνία Παράδοσης : 1/11/011

Διαβάστε περισσότερα

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά Εισαγωγή Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά μοντέλα, είτε σε στοχαστικά ή αλλοιώς πιθανοτικά μοντέλα. προσδιοριστικά μοντέλα : επιτρέπουν προσδιορισμό

Διαβάστε περισσότερα

Συνδυαστική Ανάλυση. Υπολογισμός της πιθανότητας σε διακριτούς χώρους με ισοπίθανα αποτελέσματα:

Συνδυαστική Ανάλυση. Υπολογισμός της πιθανότητας σε διακριτούς χώρους με ισοπίθανα αποτελέσματα: Συνδυαστική Ανάλυση Υπολογισμός της πιθανότητας σε διακριτούς χώρους με ισοπίθανα αποτελέσματα: P( A) N( A) N ( ) Ν(Α): πλήθος ευνοϊκών αποτελεσμάτων του Α Ν(Ω): πλήθος συνολικών αποτελεσμάτων του Ω Χρειαζόμαστε

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Γνωριµία και ερµηνεία των πιθανοτήτων Χρήση σε πρακτικά προβλήµατα και σε θέµατα στατιστικής συµπερασµατολογίας. Προσθετικός και πολλαπλασιαστικός κανόνας των πιθανοτήτων Έννοια της

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 12/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/13/2016 1 1 Θεωρία πιθανοτήτων 5/13/2016 2 2 Τι είδαµε την προηγούµενη φορά Μίατυχαία µεταβλητή Vείναι κάθε

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Έντυπο Υποβολής Αξιολόγησης Γ.Ε.

Έντυπο Υποβολής Αξιολόγησης Γ.Ε. Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

P (B) = P (B/A) P (A) + P (B/Γ) P (Γ) =

P (B) = P (B/A) P (A) + P (B/Γ) P (Γ) = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ασκηση 1. Θεωρούµε τα παρακάτω : A: Το ένδεχοµενο να

Διαβάστε περισσότερα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

P (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 )

P (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 2 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Μία κότα ϑέλει να διασχίσει το

Διαβάστε περισσότερα

Πιθανότητες και Στοχαστικές ιαδικασίες Θόρυβος µετρήσεων είκτης Χρηµατιστηρίου Σήµα Πληροφορίας (φωνή, data) Ατµοσφαιρικός Θόρυβος Πως δηµιουργείται

Πιθανότητες και Στοχαστικές ιαδικασίες Θόρυβος µετρήσεων είκτης Χρηµατιστηρίου Σήµα Πληροφορίας (φωνή, data) Ατµοσφαιρικός Θόρυβος Πως δηµιουργείται Πιθανότητες και Στοχαστικές ιαδικασίες Θόρυβος µετρήσεων είκτης Χρηµατιστηρίου Σήµα Πληροφορίας (φωνή, data) Ατµοσφαιρικός Θόρυβος Πως δηµιουργείται το τυχαίο I do not believe that God rolls dice Μακροσκοπική

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 2 η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα

Διαβάστε περισσότερα

Στην Ξένια και στην Μαίρη

Στην Ξένια και στην Μαίρη Στην Ξένια και στην Μαίρη Περιεχόμενα 3 ΠΡΟΛΟΓΟΣ Πολλές φορές θέλουμε να μελετήσουμε φαινόμενα ή συστήματα τα οποία εξελλίσονται, κυρίως αναφορικά με τον χρόνο, και των οποίων η μελλοντική συμπεριφορά

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 2: Θεωρία Πιθανοτήτων Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Σηµειώσεις στη Θεωρία Πιθανοτήτων

Σηµειώσεις στη Θεωρία Πιθανοτήτων Σηµειώσεις στη Θεωρία Πιθανοτήτων Μέρος Α. Τι είναι οι Πιθανότητες. Είναι συνηθισµένο να ορίζουµε λοιπόν µαθηµατικές διαδικασίες, τις οποίες ονοµάζουµε µοντέλα ή πρότυπα, ώστε να περιγράψουν φαινόµενα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-: Πιθανότητες - Χειµερινό Εξάµηνο 0 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο - Συνδυαστική Ανάλυση Επιµέλεια : Σοφία Σαββάκη Θεωρία. Η ϐασική αρχή της απαρίθµησης

Διαβάστε περισσότερα

Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Αντώνιος Οικονόμου Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής κ

Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Αντώνιος Οικονόμου Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής κ Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Παράδειγμα δεσμευμένης κλασικής πιθανότητας

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. (α) Βρέστε την πιθανότητα κανείς από

Διαβάστε περισσότερα

Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

= 14 = 34 = Συνδυαστική Ανάλυση

= 14 = 34 = Συνδυαστική Ανάλυση 1. Συνδυαστική Ανάλυση 1.1 Ένα κουτί περιέχει 8 κόκκινες, 3 άσπρες και 9 μπλε σφαίρες. Εάν βγάλουμε 3 σφαίρες στην τύχη χωρίς επανατοποθέτηση, ποια είναι η πιθανότητα (α) να είναι και οι 3 κόκκινες, (β)

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΑΣΚΗΣΕΙΣ

ΠΙΘΑΝΟΤΗΤΕΣ - ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΑΣΚΗΣΕΙΣ. Η πιθανότητα να είναι ένα νεογέννητο αγόρι είναι ½. Αν ένα αντρόγυνο κάνει δύο παιδιά, ποια η πιθανότητα να κάνει α πρώτα ένα αγόρι και μετά ένα κορίτσι, β ένα αγόρι και ένα κορίτσι

Διαβάστε περισσότερα

Πιθανότητες και βακτηριουρία πυελονεφρίτιδα Πιθανότητες και ο καρκίνος της μήτρας Ιατρική διάγνωση με υπολογιστές

Πιθανότητες και βακτηριουρία πυελονεφρίτιδα Πιθανότητες και ο καρκίνος της μήτρας Ιατρική διάγνωση με υπολογιστές ΠΙΘΑΝΟΤΗΤΕΣ Πιθανότητες και Στατιστική ειγματικός χώρος Ενδεχόμενα Ορισμοί και νόμοι των πιθανοτήτων εσμευμένη πιθανότητα Ολική πιθανότητα Κανόνας του Bayes Υποκειμενική πιθανότητα Πιθανότητες και βακτηριουρία

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017. HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 04/05/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 07-May-18 1 1 Θεωρία πιθανοτήτων 07-May-18 2 2 Τι είδαμε την προηγούμενη φορά Μία τυχαία μεταβλητή Vείναι κάθε

Διαβάστε περισσότερα

Τι είδαμε την προηγούμενη φορά

Τι είδαμε την προηγούμενη φορά HY8-Διακριτά Μαθηματικά Πέμπτη, 04/05/207 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mal: argyros@csd.uoc.gr 04-May-7 04-May-7 2 2 Τι είδαμε την προηγούμενη φορά Μίατυχαία μεταβλητήvείναι κάθε μεταβλητή η

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 2 η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ. Νίκος Μυλωνάς Βασίλης Παπαδόπουλος. Βοήθηµα διδάσκοντα

ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ. Νίκος Μυλωνάς Βασίλης Παπαδόπουλος. Βοήθηµα διδάσκοντα ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ Νίκος Μυλωνάς Βασίλης Παπαδόπουλος Βοήθηµα διδάσκοντα Εκδόσεις Τζιόλα Περιεχόµενα Πιθανότητες 5 3 ιακριτές τυχαίες µεταβλητές 37 4 Συνεχείς τυχαίες µεταβλητές

Διαβάστε περισσότερα

Πρόχειρες σηµειώσεις στις Πιθανότητες

Πρόχειρες σηµειώσεις στις Πιθανότητες Η Ι Η Η Ο Α ΙΑ Α Ι Η ΙΟ Η Η Εφα ο αν α α Π όχε ε Σ ε ώ ε Π α ό ε Κεφά α ο 1 ο Ν α α,ν α αν αφ Ν(α α ώ,ν υ π ώ ) ανεπ Ν α Ν χ ο ογ α Ν ώ Τµήµα Επιστήµης και Τεχνολογίας Υλικών Πρόχειρες σηµειώσεις στις

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 ιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 03 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολουποθέσεωνκαιτουοποίουτο αποτέλεσμα

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 18 Νοεµβρίου 2009 ΑΣΚΗΣΕΙΣ 2.16. Εστω ότι το ετήσιο εισόδηµα X ενός µισθωτού µπορεί να ϑεωρηθεί ως µία συνεχής τυχαία µεταβλητή

Διαβάστε περισσότερα

3ο Φροντιστηριο ΗΥ217

3ο Φροντιστηριο ΗΥ217 3ο Φροντιστηριο ΗΥ217 Επιµέλεια : Γ. Καφεντζής 30 Οκτωβρίου 2013 Ασκηση 0.1 Εχουµε 3 κέρµατα. Το ένα από αυτά έχει κορώνα και στις δύο πλευρές, το άλλο έχει γράµµατα και στις δύο πλευρές, και το τελευταίο

Διαβάστε περισσότερα

Τι είδαμε την προηγούμενη φορά

Τι είδαμε την προηγούμενη φορά HY118-Διακριτά Μαθηματικά Παρασκευή, 04/05/2018 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mal: argyros@csd.uoc.gr 07-May-18 1 1 07-May-18 2 2 Τι είδαμε την προηγούμενη φορά Μίατυχαία μεταβλητήvείναι κάθε

Διαβάστε περισσότερα

Διάλεξη 4: Θεωρία Πιθανοτήτων Ασκήσεις 4

Διάλεξη 4: Θεωρία Πιθανοτήτων Ασκήσεις 4 Διάλεξη 4: ΑΣΚΗΣΕΙΣ. Η πιθανότητα εμφάνισης βλάβης σε ένα μηχάνημα εργοστασίου ισούται με 0.03, η πιθανότητα εμφάνισης σε ένα δεύτερο ισούται με 0.0 και η πιθανότητα βλάβης και στα δυο ισούται με 0.05.

Διαβάστε περισσότερα

(365)(364)(363)...(365 n + 1) (365) k

(365)(364)(363)...(365 n + 1) (365) k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 21//2016 Ηµεροµηνία Παράδοσης :

Διαβάστε περισσότερα

P (A) + P (B), [Α,Β: ξένα µεταξύ τους] P (C A B) [P (A) + P (B)] P (C A) P (A) P (B) 3 4 ( ) 1 7 = 3 7 =

P (A) + P (B), [Α,Β: ξένα µεταξύ τους] P (C A B) [P (A) + P (B)] P (C A) P (A) P (B) 3 4 ( ) 1 7 = 3 7 = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217 - Θεωρία Πιθανοτήτων ιδάσκων : Π. Τσακαλίδης Λύσεις Προόδου- 22 Νοεµβρίου 2014 Θέµα 1 - (15 µονάδες) Εχουµε ότι : P (C A B) P (C (A B)) P (CA CB)

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Πρόχειρες σηµειώσεις στις Πιθανότητες

Πρόχειρες σηµειώσεις στις Πιθανότητες Τµήµα Επιστήµης και Τεχνολογίας Υλικών Πρόχειρες σηµειώσεις στις Πιθανότητες Νίκος Λαζαρίδης Για το µάθηµα Εφαρµοσµένα Μαθηµατικά (ΤΕΤΥ 116) Αναθεώρηση, συµπληρώσεις : Μαρία Καφεσάκη 1 Κεφάλαιο 1: Η έννοια

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. (i Υποθέτοντας ότι επιτρέπονται επαναλήψεις

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 26 Οκτωβρίου 2009 Η διερεύνηση, σε γενικές γραµµές, της δεσµευµένης πιθανότητας και η σύγκρισή της µε την απόλυτη πιθανότητα αποκαλύπτει

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων, Τμήμα Μηχανικών Η/Υ & Πληροφορικής. Προπτυχιακό Μάθημα: Πιθανότητες (Διδάσκων: Κων/νος Μπλέκας)

Πανεπιστήμιο Ιωαννίνων, Τμήμα Μηχανικών Η/Υ & Πληροφορικής. Προπτυχιακό Μάθημα: Πιθανότητες (Διδάσκων: Κων/νος Μπλέκας) Πανεπιστήμιο Ιωαννίνων, Τμήμα Μηχανικών Η/Υ & Πληροφορικής Προπτυχιακό Μάθημα: Πιθανότητες (Διδάσκων: Κων/νος Μπλέκας) Διάφορες Ασκήσεις πάνω στην η Ενότητα: (Αξιωματικός Ορισμός, Δεσμευμένη-Ολική Πιθανότητα,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 Διδάσκουσα: Β. Πιπερίγκου Σε μια ενδονοσοκομειακή έρευνα, καταγράφηκε ο χρόνος ύπνου, μετά τη χορήγηση ενός συγκεκριμένου αναισθητικού, σε 33 ασθενείς και πήραμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017 Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 07 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου

Διαβάστε περισσότερα

1.1 Πείραμα Τύχης - δειγματικός χώρος

1.1 Πείραμα Τύχης - δειγματικός χώρος 1. ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Πείραμα Τύχης - δειγματικός χώρος Κάθε πείραμα στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό πείραμα. Τέτοια πειράματα

Διαβάστε περισσότερα

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ

ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος Τµ. Επιστήµης των Υλικών Στοχαστικές ιαδικασίες Ορισµός Μία στοχαστική διαδικασία είναι µία οικογένεια τυχαίων µεταβλητών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους

Διαβάστε περισσότερα

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 25 Νοεµβρίου 2009 Ορισµός Εστω X µια διακριτή τυχαία µεταβλητή µε συνάρτηση πιθανότητας f(x) = e λ λx, x = 0, 1,..., (1) x! όπου 0 < λ

Διαβάστε περισσότερα

Βασικά στοιχεία της θεωρίας πιθανοτήτων

Βασικά στοιχεία της θεωρίας πιθανοτήτων Η έννοια του Πειράµατος Τύχης. 9 3 Το σύνολο των πιθανών εκβάσεων ενός πειράµατος τύχης καλείται δειγµατοχώρος ήδειγµατικόςχώρος (sample space)καισυµβολίζεταιµεωήµε S.Έναστοιχείοω ή s του δειγµατικού χώρου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Θέματα Στατιστικής. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Στατιστική. Δημόσια Διοίκηση Πάντειο. 24 θέματα σε 5 σελίδες

Θέματα Στατιστικής. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Στατιστική. Δημόσια Διοίκηση Πάντειο. 24 θέματα σε 5 σελίδες Θέματα Στατιστικής Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Στατιστική Δημόσια Διοίκηση Πάντειο 24 θέματα σε 5 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 2 9 / 3 / 2 0

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ι. Ενότητα: Πιθανότητες. Διδάσκων: Επίκ. Καθ. Αθανάσιος Λαπατίνας. Τμήμα: Οικονομικών Επιστημών

Τίτλος Μαθήματος: Στατιστική Ι. Ενότητα: Πιθανότητες. Διδάσκων: Επίκ. Καθ. Αθανάσιος Λαπατίνας. Τμήμα: Οικονομικών Επιστημών Τίτλος Μαθήματος: Στατιστική Ι Ενότητα: Πιθανότητες Διδάσκων: Επίκ. Καθ. Αθανάσιος Λαπατίνας Τμήμα: Οικονομικών Επιστημών Διάλεξη 4: ΑΣΚΗΣΕΙΣ. Η πιθανότητα εμφάνισης βλάβης σε ένα μηχάνημα εργοστασίου

Διαβάστε περισσότερα