Παρατηρήσεις και ενδεχόμενα. Πληθυσμοί και δείγματα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παρατηρήσεις και ενδεχόμενα. Πληθυσμοί και δείγματα"

Transcript

1 Ενότητα 0 Εισαγωγή Βασικές Έννοιες. Παρατηρήσεις και ενδεχόμενα. Πληθυσμοί και δείγματα Τα δεδομένα με τα οποία ασχολείται η Στατιστική προέρχονται από παρατηρήσεις και πειράματα που εμπίπτουν σε οποιονδήποτε τομέα, της Φυσικής, της Χημείας, των λεγόμενων Ανθρωπιστικών Επιστημών κλπ. Αυτές οι παρατηρήσεις μπορεί να είναι οσοδήποτε απλές ή περίπλοκες, αλλά τελικά καταλήγουν στην καταγραφή ορισμένων αριθμητικών τιμών ή μη αριθμητικών ιδιοτήτων που σχετίζονται με ένα ή περισσότερα συγκεκριμένα μεγέθη ή πειραματικά αποτελέσματα. Στο πιο απλό πείραμα προσφερόμενο για στατιστική επεξεργασία, το γνωστό και χιλιοειπωμένο κορώνα-γράμματα, καταγράφουμε τα αποτελέσματα κάθε ρίψης του νομίσματος ως κορώνα ή γράμματα. Κάθε δυνατό αποτέλεσμα (αριθμητική τιμή ή μη αριθμητική ιδιότητα) μιας παρατήρησης (αλλά και κάθε σύνολο τέτοιων αποτελεσμάτων) αποτελεί ένα ενδεχόμενο. Έτσι, στη ρίψη νομίσματος έχουμε δύο δυνατά αποτελέσματα: κορώνα και γράμματα. Αν μετρούσαμε το ύψος και το βάρος των φοιτητών του ΤΜΕΥ, τα δυνατά ενδεχόμενα είναι θετικοί πραγματικοί αριθμοί που αποτελούν ένα συνεχές σύνολο, καθώς και τα διαστήματα αυτών των αριθμών. Επειδή όμως πάντα κάνουμε κάποια προσέγγιση ή στρογγύλευση (π.χ. μετράμε το βάρος σε kg, το ύψος σε cm) θα πάρουμε ένα διακριτό σύνολο ρητών ή ακεραίων αριθμών ως πιθανά ενδεχόμενα. Τέλος, τόσο στη ρίψη νομίσματος όσο και σε παρατηρήσεις τύπου χρώμα ματιών ή μαλλιών τα ενδεχόμενα σχηματίζουν ένα διακριτό σύνολο μη αριθμητικών τιμών. Συνοψίζοντας, τα στατιστικά δεδομένα κατηγοριοποιούνται ως εξής: Μη αριθμητικά Αριθμητικά: διακριτά συνεχή Όπως είπαμε, συνήθως, ακόμη και για συνεχή αριθμητικά δεδομένα, μας ενδιαφέρει η καταγραφή τους ως διακριτά, για πρακτικούς λόγους. Εξ άλλου, τίποτα δε μας εμποδίζει να αντιστοιχίσουμε έναν αριθμό και στα στοιχεία ενός συνόλου μη αριθμητικών δεδομένων, π.χ. Κορώνα = 0, Γράμματα = 1, αν και ορισμένοι τρόποι επεξεργασίας τους δε θα έχουν φυσικό νόημα σε αυτή την περίπτωση. Επομένως, σε κάθε περίπτωση μπορούμε να ορίσουμε μια αντιστοιχία ανάμεσα στα δυνατά αποτελέσματα των παρατηρήσεων ενός μεγέθους ή ιδιότητας και στο σύνολο των πραγματικών, εν γένει, αριθμών. Αυτή, από μαθηματική άποψη, είναι μια συνάρτηση και στα πλαίσια της στατιστικής ορίζει αυτό που είναι γνωστό ως τυχαία μεταβλητή. Οι τυχαίες μεταβλητές συνήθως παριστάνονται με κεφαλαία γράμματα Χ, Υ, Ζ, π.χ. το βάρος Β και το ύψος Υ των φοιτητών του ΤΜΕΥ. Οι τιμές μιας τυχαίας μεταβλητής είναι ή κωδικοποιούν το σύνολο των ενδεχομένων. Αν το

2 μέγεθος ή ιδιότητα που καταγράφουμε διεπόταν από έναν γνωστό νόμο, π.χ. τύπου αιτίαςαποτελέσματος, που μας επέτρεπε να προβλέψουμε με ακρίβεια το αποτέλεσμα κάθε πειράματος ή παρατήρησης, τότε δε θα υπήρχε ανάγκη στατιστικής μελέτης αυτού. Ένας νόμος τέτοιου είδους δεν υπάρχει πάντα και αν υπάρχει δεν είναι πάντα γνωστός. Ένας από τους στόχους της στατιστικής επεξεργασίας είναι η ανακάλυψη τέτοιων νόμων. Αν αυτό δε γίνεται, θέλουμε τουλάχιστον να γνωρίζουμε πόσο συχνά εμφανίζεται κάθε ενδεχόμενο και επομένως, ποια ενδεχόμενα θα είναι περισσότερο αναμενόμενα σε κάθε μελλοντική παρατήρηση, θα θέλαμε δε, να εκφράσουμε αυτή την πληροφορία ποσοτικά και με όσο το δυνατό μεγαλύτερη ακρίβεια. Προς αυτή την κατεύθυνση βοηθά η καταγραφή της συχνότητας με την οποία εμφανίζεται κάθε δυνατό αποτέλεσμα και το σύνολο των συχνοτήτων κάθε τιμής μιας τυχαίας μεταβλητής Χ, βοηθά να ορίσουμε την κατανομή αυτής της μεταβλητής. Η έννοια της κατανομής είναι κεντρικής σημασίας και αποτελεί το σημαντικότερο εργαλείο με το οποίο επωφελούμαστε από τις μεθόδους στατιστικής επεξεργασίας. Επιδίωξή μας είναι να προσεγγίσουμε την κατανομή της τυχαίας μεταβλητής με μια μαθηματική έκφραση που μπορεί να γραφεί αναλυτικά. Σε πολλές και σημαντικές περιπτώσεις αυτό είναι εφικτό και έτσι μπορούμε να βρούμε τουλάχιστον ένα στατιστικό νόμο αντί για ένα νόμο αιτίας-αποτελέσματος που εκφράζει ποσοτικά τι είδους ενδεχόμενα να περιμένουμε και με ποια συχνότητα εμφάνισης. Πρέπει να τονίσουμε όμως ότι η συσχέτιση μεταξύ δυό μεταβλητών δεν είναι απαραίτητα αιτιακή σχέση! Αυτή μπορεί να είναι βαθύτερα κρυμμένη σε πιο περίπλοκες συνδέσεις των φαινομένων από τις οποίες εμείς βλέπουμε μόνο την επιφάνεια. Οι παρατηρήσεις μας αφορούν ένα σύνολο στοιχείων συγκεκριμένης κατηγορίας ή είδους που μας ενδιαφέρει να μελετήσουμε. Το σύνολο όλων αυτών των στοιχείων είναι ο πληθυσμός που μας ενδιαφέρει. Π.χ. όταν γίνονται δημοσκοπήσεις για τις προτιμήσεις ψήφου των πολιτών, πληθυσμός θεωρείται ολόκληρο το εκλογικό σώμα. Αυτός είναι πολύ μεγάλος αλλά πεπερασμένος. Υπάρχουν και περιπτώσεις όπου ο πληθυσμός έχει άπειρο μέγεθος. Το πείραμα τύπου κορώνα-γράμματα αναφέρεται σε πληθυσμό με άπειρο μέγεθος γιατί αυτό περιλαμβάνει όλες τις δυνατές ρίψεις για τις οποίες δεν υπάρχει κανένα όριο (εκτός ίσως από την ηλικία του σύμπαντος...). Δεν πρέπει λοιπόν να συγχέουμε τον πληθυσμό με το σύνολο των δυνατών αποτελεσμάτων (κορώνα, γράμματα) που μπορεί να έχει πεπερασμένο μέγεθος ή εύρος. Αν μπορούσαμε να μελετήσουμε ολόκληρο τον υπό μελέτη πληθυσμό δε θα χρειαζόταν περαιτέρω στατιστική μελέτη αυτού, ακόμη και αν δεν ήταν γνωστός κάποιος νόμος που να διέπει την εμφάνιση των δυνατών ενδεχομένων. Τα αποτελέσματα των παρατηρήσεών μας θα ήταν η μόνη βέβαιη απάντηση σε όλα τα σχετικά ερωτήματά μας, όπως το αποτέλεσμα μιας εκλογικής αναμέτρησης απαντά σε όλες τις εικασίες των δημοσκοπήσεων που προηγήθηκαν. Συνήθως όμως, η εξέταση ολόκληρου του πληθυσμού, δεν είναι εφικτή γιατί αυτός μπορεί να είναι πολύ μεγάλος ή απλά, άπειρος. Αν όμως μπορούμε να μελετήσουμε ένα αρκετά μικρό υποσύνολο του πληθυσμού το οποίο έχουμε λόγους να πιστεύουμε ότι δε θα είχε κάτι το ξεχωριστό σε σχέση με το γενικό πληθυσμό, τότε δικαιούμαστε να πούμε ότι η κατανομή των εξεταζόμενων τυχαίων μεταβλητών ως προς αυτό το υποσύνολο θα μοιάζει, ως προς τα ουσιώδη χαρακτηριστικά της, με την κατανομή του πληθυσμού. Ένα τέτοιο υποσύνολο το λέμε δείγμα του πληθυσμού. Έστω ότι ο πληθυσμός μας είναι οι φοιτητές του ΤΜΕΥ και μεταβλητή μας το ύψος τους. Ας πούμε ότι τους μετρήσαμε όλους (εδώ, ο πληθυσμός είναι ευτυχώς αρκετά μικρός!) και βρήκαμε ότι έχουνε ύψος από 1.40 μέχρι 2.10 μέτρα. Τότε, αν πάρουμε ένα οποιοδήποτε υποσύνολο των φοιτητών, αναγκαστικά κάθε μέλος του υποσυνόλου θα έχει ύψος ανάμεσα στα παραπάνω όρια. Επίσης, αν το 50% των φοιτητών έχει ύψος μεταξύ 1.60 και 1.80 και πάρουμε ένα δείγμα 10 φοιτητών, δε θα ήταν παράξενο αν οι 5 από αυτούς είχαν ύψος σε αυτό το διάστημα. Δεν είναι απαραίτητο ότι θα είναι ακριβώς 5 και αν βρίσκαμε 6 ή 4 σε αυτά τα όρια θα το περιμέναμε. Καταλαβαίνουμε όμως, ότι αν και οι 10 ήταν μεταξύ αυτών των ορίων, θα μας φαινόταν κάπως παράξενο να απουσιάζουν τελείως οι πιο ακραίες τιμές. Αν, από την άλλη και οι 10 ήταν εκτός των

3 ορίων, δηλαδή ή κάτω από 1.60 ή πάνω από 1.90, θα ήταν κάτι το απροσδόκητο και θα το θεωρούσαμε πολύ σπάνιο. Τι είναι αυτό που θα μας επέτρεπε να έχουμε τέτοιες προσδοκίες από το δείγμα μας και γενικότερα, πού μπορούμε να βασιστούμε για να πούμε ότι το δείγμα μας δεν ξεχωρίζει ιδιαίτερα από τον πληθυσμό ως προς τα βασικά χαρακτηριστικά του (όπως κι αν τα εννοούμε); Στην πραγματικότητα, εφόσον ο πληθυσμός αρχικά μας είναι άγνωστος, δε μπορούμε ποτέ να ξέρουμε από πριν αν το δείγμα μας μοιάζει με τον πληθυσμό ή διαφέρει από αυτόν. Μπορούμε όμως να δικαιολογήσουμε την προσδοκία μας ότι το δείγμα θα μοιάζει με αυτόν, με βάση τον τρόπο που το επιλέξαμε, δηλαδή, με βάση τη διαδικασία δειγματοληψίας. Συγκεκριμένα, η σωστή δειγματοληψία είναι αυτή που δίνει ίσες ευκαιρίες σε όλα τα δυνατά δείγματα και δεν περιέχει καμία φανερή ή έμμεση προτίμηση προς επιμέρους κατηγορίες του πληθυσμού. Π.χ. αν κατά τη μέτρηση του ύψους των φοιτητών επιλέγουμε μόνο αγόρια ή μόνο κορίτσια, καταλαβαίνουμε ότι αυτό δε θα ήταν η καλύτερη τακτική 1. Για να δώσουμε ένα εξίσου απλό αλλά πιο γενικό παράδειγμα, ας φανταστούμε ένα πολύ μικρό πληθυσμό Π = {α, β, γ, δ, ε}, από τον οποίο θέλουμε να πάρουμε ένα δείγμα των τριών στοιχείων. Τα δυνατά δείγματα είναι {α, β, γ}, {α, β, δ}, {α, β, ε}, {β, γ, δ}, {β, γ, ε}, {γ, δ, ε}. Η δειγματοληψία πρέπει να γίνει έτσι ώστε να μπορεί να επιλεγεί οποιοδήποτε από τα παραπάνω, εξίσου εύκολα. Για παράδειγμα, δε θα ήταν επιτρεπτό να επιλέγαμε μόνο δείγματα που περιέχουν το στοιχείο α γιατί έτσι θα στερούσαμε από ένα μέρος του πληθυσμού την ευκαιρία να καταγραφεί. Ως ένα άλλο παράδειγμα, ας φανταστούμε ένα μεγάλο σύνολο από σφαίρες ίσης διαμέτρου φτιαγμένες από δύο υλικά Α και Β γνωστών διαφορετικών πυκνοτήτων, ρ Α και ρ Β, με διαφορετικές αναλογίες των υλικών σε κάθε σφαίρα, έτσι ώστε τα βάρη τους να διαφέρουν. Θέλουμε να βρούμε την κατανομή βάρους των σφαιρών και από αυτή, την κατανομή των ποσοστών του υλικού Α, από ένα δείγμα 50 σφαιρών. Αν το Α είναι άσπρο και το Β μαύρο, οπότε οι σφαίρες είναι χρωματισμένες σε διαβαθμίσεις του γκρίζου, τότε, προφανώς, θα ήταν λάθος να διαλέγουμε π.χ. μόνο ανοιχτόχρωμες ή μόνο σκουρόχρωμες σφαίρες. Το καλύτερο θα ήταν να τις διαλέγαμε με κλειστά μάτια! Ας πούμε ότι η κατανομή του πληθυσμού των σφαιρών είναι τέτοια ώστε το 70% των σφαιρών έχει περιεκτικότητα μεταξύ 40% και 60% σε υλικό Α, κατά βάρος, ενώ το υπόλοιπο 30% έχει πιο ακραίες αναλογίες, είτε μικρότερες είτε μεγαλύτερες. Αν κατά τη δειγματοληψία δεν είμαστε μεροληπτικοί με βάση την απόχρωση κάθε σφαίρας, όλα τα δυνατά δείγματα έχουν ίσες ευκαιρίες. Αυτό βέβαια, δεν αποκλείει το ενδεχόμενο να επιλεγεί δείγμα με ακραία κατανομή που να διαφέρει σημαντικά από αυτή του πληθυσμού. Αν έχουμε έναν αρκετά μεγάλο πληθυσμό, τότε ένα ή και περισσότερα από τα δυνατά δείγματα μπορεί να αποτελείται αποκλειστικά από σφαίρες με περιεκτικότητα κάτω από 40% σε Α. Τότε, πώς μπορούμε να ισχυριζόμαστε ότι η δειγματοληψία μας είναι σωστή; Το ισχυριζόμαστε γιατί είναι πολύ σπάνιο να συμβεί μια τέτοια ακραία περίπτωση. Πράγματι, μπορεί να δειχθεί με συνδυαστικά επιχειρήματα ότι τα πιο πολλά δείγματα θα έχουν κατανομή παρόμοια με αυτή του πληθυσμού και ότι όσο πιο μεγάλα είναι, τόσο πιο μεγάλο είναι και το ποσοστό τους που θα προσομοιάζει τον πληθυσμό. Καθώς μεγαλώνει το μέγεθος δείγματος, το να πετύχουμε μια ακραία περίπτωση που αποκλίνει σημαντικά από τον πληθυσμό, μπορεί να παρομοιαστεί με το να κερδίσουμε το λαχείο! 2 Αυτό το πετύχαμε δίνοντας ίσες 1 Δεν είναι μικρής σημασίας το ότι γνωρίζουμε εμπειρικά την ύπαρξη σχέσης ύψους-φύλου. Όσο περισσότερα γνωρίζουμε για τον πληθυσμό τόσο πιο καλή ( = αμερόληπτη) δειγματοληψία μπορούμε να κάνουμε. Και φυσικά, αν θέλαμε να διερευνήσουμε τη σχέση ύψους-φύλου σε βάθος εννοείται ότι θα κάναμε το αντίθετο: θα παίρναμε δείγματα αποκλειστικά αγοριών και αποκλειστικά κοριτσιών. 2 Μπορούμε να πειστούμε γι' αυτό ως εξής: Αν πάρουμε το μικρότερο δυνατό δείγμα (μία σφαίρα) από ένα πληθυσμό π.χ σφαιρών, τότε μόνο 300 σφαίρες έχουν ακραίες τιμές αναλογιών. Αν πάρουμε δείγματα Ν=2 σφαιρών, τότε οι δυνατοί συνδυασμοί θα είναι 1000 Χ 999 δηλ. περίπου 10 6 ενώ οι συνδυασμοί όπου και οι δυο σφαίρες έχουν ακραίες αναλογίες είναι 300 Χ 299 δηλ. περίπου 3 Χ Το

4 ευκαιρίες σε κάθε δείγμα και για να δώσουμε ίσες ευκαιρίες, αγνοήσαμε κατά τη δειγματοληψία, ακριβώς τον παράγοντα που θέλουμε να μελετήσουμε (περιεκτικότητα σε Α) αποκλείοντας από τα κριτήρια επιλογής κάθε άλλον παράγοντα που σχετίζεται με αυτόν (εν προκειμένω, απόχρωση). Δείγματα που λαμβάνονται με τέτοια διαδικασία ονομάζονται αντιπροσωπευτικά γιατί πιστεύουμε ότι η διαδικασία με την οποία επιλέγονται συνήθως οδηγεί σε κατανομές παρόμοιες με αυτές του δειγματιζόμενου πληθυσμού. Κλείνοντας και αυτή την παράγραφο, θα πρέπει να πούμε ότι η συσχέτιση μεταξύ διαφόρων παραγόντων (εδώ, απόχρωση και βάρος σφαίρας) είναι καλά ορισμένη έννοια που μπορεί να μελετηθεί στατιστικά και να εκφραστεί με ακριβή ποσοτικά μέτρα, όπως θα δούμε παρακάτω, αλλά, όπως είπαμε και στο παράδειγμα για το ύψος των φοιτητών, για να επιλέξουμε το δείγμα μας, αναγκαστικά θα πρέπει να προβλέψουμε κάποιες δυνατές σχέσεις που δεν έχουμε μετρήσει ακόμη, βασισμένοι σε εύλογα φυσικά επιχειρήματα (εδώ: βάρος περιεκτικότητα απόχρωση). Κατανομές και πιθανότητες Διαβάζοντας τα παραπάνω είναι λογικό να σκεφτεί κάποιος ότι η δειγματοληψία είναι και αυτή ένα είδος παρατήρησης και τα δυνατά δείγματα είναι τα δυνατά αποτελέσματα αυτής. Μέριμνά μας είναι αυτά τα αποτελέσματα να έχουν ίση ευκαιρία να παρουσιαστούν. Επομένως αν παίρναμε πάρα πολλές φορές διάφορα δείγματα και καταγράφαμε τη συχνότητα με την οποία εμφανίστηκε το καθένα, θα βλέπαμε ότι οι μεταξύ τους διαφορές θα ήταν μικρές. Αυτό ισχύει γενικότερα για κάθε πείραμα όπου τα δυνατά αποτελέσματα δεν έχουν λόγο να υπερτερούν το ένα σε σχέση με το άλλο. Κατά τις ρίψεις ενός νομίσματος δεν έχουμε λόγο να περιμένουμε ότι η μια όψη θα εμφανίζεται συχνότερα από την άλλη. Αν κάνουμε ένα μικρό αριθμό πειραμάτων μπορεί να παίρναμε διαφορετικούς αριθμούς για κάθε όψη, π.χ. 7 φορές κορώνα και 3 γράμματα, αλλά καθώς θα προχωρούσαμε σε περισσότερες δοκιμές θα διαπιστώναμε ότι το ποσοστό της συχνότητας εμφάνισης κάθε ενδεχομένου θα πλησίαζε στο 0.5 (ή 50%, αν προτιμούμε να εκφραζόμαστε με εκατοστιαίες αναλογίες). Το παραπάνω παράδειγμα εισάγει δύο έννοιες ταυτόχρονα. Η μία έννοια είναι αυτή της ομοιόμορφης κατανομής. Τέτοια είναι κάθε κατανομή όπου τα ενδεχόμενα ή οι δυνατές τιμές μιας τυχαίας μεταβλητής έχουν ίσες ευκαιρίες εμφάνισης και επομένως οι συχνότητες με τις οποίες παρατηρούνται τείνουν να εξισωθούν, δηλαδή να έχουν όλο και μικρότερες ποσοστιαίες διαφορές μεταξύ τους, για όλο και μεγαλύτερα δείγματα. Πολύ συχνά η κατανομή ενός πληθυσμού υπακούει σε αρκετά απλές μορφές, οι οποίες μπορούν να εκφραστούν με αναλυτικές μαθηματικές εκφράσεις. Η ομοιόμορφη κατανομή είναι η πιο απλή τέτοια περίπτωση. Αν με f x παριστάνεται η συχνότητα εμφάνισης της τιμής x μιας μεταβλητής Χ, τότε για τις ρίψεις f K νομισμάτων ισχύει ότι 1 καθώς αυξάνεται το μέγεθος του δείγματος. Ένας άλλος τρόπος f Γ για να το εκφράσουμε είναι να γράψουμε το ποσοστό της συχνότητας κάθε ενδεχομένου: f Γ f, K 0.5 f K f Γ f K f Γ Γενικότερα, για ένα πείραμα με Ν διαφορετικά δυνατά αποτελέσματα μπορούμε να γράψουμε: f p i = i 1 f 1 f 2... f Ν Ν, i=1, 2,..., Ν. Ονομάζουμε τον αριθμό pi, ποσοστό εμφάνισης του αποτελέσματος i και τη διαίρεση κάθε συχνότητας με το άθροισμα όλων των συχνοτήτων για τη λήψη των ποσοστών, ονομάζουμε κανονικοποίηση της κατανομής. Ο παράγοντας 1 με τον οποίο πολλαπλασιάζεται κάθε συχνότητα για να δώσει το ποσοστό, f 1 f 2... f Ν ποσοστό τους επί του συνόλου είναι, άρα, 3%. Παρόμοια, για μεγαλύτερα δείγματα βρίσκουμε ότι οι συνδυασμοί με ακραίες αναλογίες γίνονται ακόμη πιο σπάνιοι.

5 λέγεται παράγοντας κανονικοποίησης. Η κανονικοποίηση της κατανομής έχει μεγάλη σημασία γιατί μας επιτρέπει να συγκρίνουμε διαφορετικές κατανομές συχνοτήτων από διαφορετικά, ακόμη και διαφορετικής φύσης πειράματα και να διαπιστώσουμε ότι συμπεριφέρονται με τον ίδιο τρόπο. Έτσι, ομοιόμορφη κατανομή για ένα πείραμα με Ν ενδεχόμενα είναι αυτή για την οποία τα ποσοστά εμφάνισης υπακούνε στην παρακάτω έκφραση: p i σταθερά, i=1, 2,..., Ν και η κανονικοποιημένη μορφή της είναι: p i σταθερά= 1 Ν, i=1, 2,..., Ν Αυτές οι εκφράσεις δεν εξαρτώνται από το μέγεθος του δείγματος ή άλλες λεπτομέρειες του πειράματος και εκφράζουν με γενικό τρόπο αυτό που είναι πιο ουσιώδες: ότι κάθε ενδεχόμενο έχει ίση ευκαιρία εμφάνισης. Ως εδώ μιλήσαμε για ομοιόμορφες κατανομές διακριτών ενδεχομένων. Όπως έχουμε ήδη πει, τα πειραματικά αποτελέσματά μας μπορεί να είναι συνεχή αριθμητικά δεδομένα. Τότε, το άθροισμα 1 στον παράγοντα κανονικοποίησης N, αντικαθίσταται από ένα ολοκλήρωμα: i=1 f i 1 b, όπου a, b τα όρια μεταξύ των οποίων κυμαίνονται οι τιμές της μεταβλητής Χ. Από a f x dx τους μέχρι τώρα ορισμούς, προκύπτει ότι το άθροισμα ή ολοκλήρωμα των ποσοστών εμφάνισης N b είναι μονάδα: i=1 p i =1 για διακριτά δεδομένα και a p x dx=1 για συνεχή δεδομένα. Δηλαδή, η κανονικοποίηση μετατρέπει τις συχνότητες σε ποσοστά από το διάστημα [0, 1]. Επειδή αναφερθήκαμε σε δείγματα, χρησιμοποιήσαμε το σύμβολο των ορίων,, αντί για την ισότητα στους παραπάνω ορισμούς. Αν έχουμε ένα πληθυσμό για τον οποίο γνωρίζουμε ότι περιγράφεται από την ομοιόμορφη κατανομή, μπορούμε να χρησιμοποιήσουμε το σύμβολο της ισότητας, =, στους ορισμούς. Τότε, π.χ. για συνεχή δεδομένα και αντίστοιχη κατανομή, θα ισχύει ότι f(x) = c (κάποια σταθερά) και p(x) = 1/(b-a), a < x < b. Για το πέρασμα από το διακριτό στο συνεχές όριο, ας θυμηθούμε τις γενικές μαθηματικές αρχές για τον ορισμό και τη σημασία του ολοκληρώματος. Στο συνεχές όριο δε μιλάμε για ποσοστό εμφάνισης μιας τιμής αλλά για το ποσοστό εμφάνισης τιμών από ένα διάστημα (x, x+δx] το οποίο θα είναι ίσο με το εμβαδό κάτω από την καμπύλη p(x) για αυτό το διάστημα. Για απειροστό πλάτος dx αυτού, το ποσοστό εμφάνισης θα είναι p(x)dx. Η παραπάνω συζήτηση μας επιτρέπει να εισάγουμε και να χρησιμοποιούμε την έννοια της πιθανότητας. Η πιθανότητα είναι ουσιαστικά, ένα ποσοτικό μέτρο αυτού που ονομάσαμε, κάπως χαλαρά μέχρι εδώ, ευκαιρίες εμφάνισης ενός ενδεχομένου. Έχοντας ορίσει τα ποσοστά εμφάνισης των ενδεχομένων απέχουμε ένα βήμα από τον ορισμό της πιθανότητας που δε θα ήταν άλλος από αυτά τα ποσοστά αν ο πληθυσμός ήταν γνωστός. Η δε κατανομή των ποσοστών του πληθυσμού θα ήταν η κατανομή πιθανότητας (για την τυχαία μεταβλητή που μας ενδιαφέρει) όσον αφορά το συγκεκριμένο πληθυσμό. Για να ξεχωρίζουμε την πιθανότητα από το ποσοστό εμφάνισης που μπορεί να αναφέρεται σε διάφορα δείγματα, υποσύνολα του πληθυσμού, χρησιμοποιούμε κεφαλαίο γράμμα για αυτή και την αντίστοιχη μεταβλητή, Ρ(Χ) και μικρά γράμματα για το ποσοστό εμφάνισης κάθε τιμής της μεταβλητής: p(x). Συνήθως, ο πληθυσμός δεν είναι και ούτε καν μπορεί να γίνει γνωστός στο σύνολό του. Επομένως, τόσο η πιθανότητα όσο και η κατανομή αυτής μας είναι κατ' αρχήν άγνωστες. Τι μπορούμε να κάνουμε τότε; Βασικά, υπάρχουν δύο τρόποι για να γνωρίσουμε την κατανομή πιθανότητας που περιγράφει κάποιο πληθυσμό: Υπολογισμός με βάση εύλογα επιχειρήματα που αναφέρονται στη φύση των

6 παρατηρήσεών μας και των δυνατών ενδεχομένων, καθώς και του τρόπου διεξαγωγής του πειράματος. Αυτή είναι η εκ των προτέρων ή a priori πιθανότητα. Εκτίμηση με βάση επαρκή, αντιπροσωπευτικά δείγματα που έχουμε επιλέξει (εκ των υστέρων ή a posteriori πιθανότητα). Πριν προχωρήσουμε σε συγκεκριμένα παραδείγματα, πρέπει να διευκρινίσουμε ορισμένα σημεία: Η κατανομή πιθανότητας μπορεί να καθορίζεται από το συνολικό πληθυσμό, αλλά η πιθανότητα Ρ(Χ=x) ενός συγκεκριμένου ενδεχομένου X = x, αναφέρεται σε ένα σύνολο παρατηρήσεων ή και μία και μόνη παρατήρηση. Για να το έχουμε πιο σαφές αυτό, μπορούμε να μεταφράζουμε ως εξής: πιθανότητα εμφάνισης του τάδε ενδεχομένου σε μια παρατήρηση (ή Ν παρατηρήσεις) είναι το ποσοστό των ευκαιριών που δίνονται σε αυτό το ενδεχόμενο να εμφανιστεί κατά την παρατήρηση (ή τις παρατηρήσεις). Η πιθανότητα εμφάνισης ενός ενδεχομένου δε συνεπάγεται δεσμευτική ή υποχρεωτική εμφάνιση αυτού σε προκαθορισμένες αναλογίες. Π.χ. κατά τη ρίψη νομίσματος δύο φορές, δεν είναι υποχρεωτικό να έρθει κορώνα τη μία. Μπορεί να έρθει και τις δύο ή καμία. Είναι μετά από πολλές επαναλήψεις ρίψεων δύο φορές που θα φανεί ότι η αναλογία των εμφανίσεων ακολουθεί το νόμο των a priori πιθανοτήτων. Αν μας επιτρέπεται η έκφραση, η ευκαιρία που ορίζουν οι πιθανότητες υπάρχει, αλλά είναι δυνατό να χαθεί προσωρινά για ένα ενδεχόμενο και υπέρ ενός άλλου. Οι πιθανότητες εκφράζουν το βαθμό της δικής μας γνώσης ή άγνοιας για το υπό μελέτη φαινόμενο, σύνολο, σύστημα κλπ. Π.χ. αν έχουμε ένα σάκκο με 50 λευκά και 50 μαύρα σφαιρίδια, και βγάλουμε ένα, τότε, πριν ανοίξουμε το χέρι μας για να το δούμε, θα πούμε πολύ σωστά, ότι η πιθανότητα να έχουμε επιλέξει μαύρο σφαιρίδιο είναι 50%. Όταν όμως ανοίξουμε το χέρι μας, γνωρίζουμε πλέον το χρώμα του και δεν έχει νόημα η οποιαδήποτε αναφορά στην πιθανότητα με βάση τη γνωστή κατανομή του πληθυσμού. Πριν ανοίξουμε το χέρι μας γνωρίζαμε την κατανομή του πληθυσμού και από αυτή προσπαθούσαμε να συμπεράνουμε το χρώμα της σφαίρας αυτό είναι το αντίστροφο από την προσπάθεια να γνωρίσουμε την κατανομή του πληθυσμού από ένα μικρότερο δείγμα. Όταν ανοίξαμε το χέρι, δε μας χρειαζόταν πλέον η κατανομή και η αναφορά σε πιθανότητες. Όταν η θεωρούμενη τυχαία μεταβλητή Χ, είναι συνεχής, τότε δεν έχει νόημα να αναφερόμαστε σε πιθανότητα μιας συγκεκριμένης τιμής x. Όπως είπαμε προηγουμένως σε σχέση με τα ποσοστά εμφάνισης, μας ενδιαφέρει το εμβαδό κάτω από την καμπύλη p(x) για ένα διάστημα (x, x+δx]. Αν περιοριστούμε σε μια τιμή x, είναι σα να θέτουμε Δx = 0, οπότε το διάστημα και άρα το αντίστοιχο εμβαδόν, είναι μηδέν. Αυτό που έχει νόημα είναι να αντιστοιχίσουμε σε μια τιμή x το εμβαδόν p(x)dx, αναφερόμενοι δηλαδή, στο απειροστό διάστημα (x, x+dx]. Σε μια τέτοια περίπτωση (συνεχούς μεταβλητής και αντίστοιχης κατανομής) λέμε ότι η p(x) παριστάνει την πυκνότητα πιθανότητας στο σημείο x, ενώ η πιθανότητα μεταξύ δύο τιμών x και x+δx, δίνεται από το ολοκλήρωμα της p(x) μεταξύ αυτών των ορίων. Όπως και τα ποσοστά στα οποία αναφερθήκαμε πιο πάνω, οι κατανομές πιθανότητας δίνονται σε κανονικοποιημένη μορφή, έτσι ώστε να ισχύει p x =1 (διακριτά δεδομένα) ή x p x dx=1 (συνεχή δεδομένα). Στη δεύτερη περίπτωση, το ολοκλήρωμα κανονικά είναι ορισμένο και τα όρια μπορεί να εκτείνονται μέχρι το ±, ανάλογα και με τη φύση του εκάστοτε προβλήματος. Παράδειγμα υπολογισμού εκ των προτέρων πιθανότητας, είναι και πάλι η ρίψη νομίσματος: αφού κανένα από τα δύο δυνατά ενδεχόμενα δεν υπάρχει λόγος να ευνοείται έναντι του άλλου, θα ισχύει Ρ(Χ=κ) = Ρ(Χ=γ) = 0.5, ή 50%. x

7 Άλλο παράδειγμα με την ίδια λογική είναι το εξής: ρίχνουμε δύο ζάρια και θέλουμε να βρούμε την πιθανότητα εμφάνισης σε κάθε ζαριά, μιας τιμής x = a + b, όπου a και b, η τιμή που δίνει κάθε ζάρι χωριστά. Σε αυτό το πρόβλημα θα μας διευκολύνει ο παρακάτω πίνακας. Στην πρώτη στήλη και πρώτη γραμμή του πίνακα έχουμε τις τιμές a και b και στα υπόλοιπα κελλιά, τα αντίστοιχα αθροίσματα x = a + b Τώρα, η ζαριά είναι το ζεύγος (a, b) και έχουμε 36 τέτοια ζεύγη που έχουν όλα ίσες ευκαιρίες να εμφανιστούν σε κάθε ρίψη. Επομένως, η πιθανότητα εμφάνισης κάθε τέτοιου ζεύγους σε μία και μόνη ζαριά θα είναι 1/36. Αλλά η τιμή x κυμαίνεται από 2 μέχρι 12, δηλαδή έχει μόνο 11 δυνατές τιμές. Επιπλέον, από τον πίνακα βλέπουμε ότι η κάθε τιμή εμφανίζεται με διαφορετική συχνότητα που μπορούμε να βρούμε μετρώντας κατά μήκος των διαγωνίων από κάτω αριστερά προς τα πάνω δεξιά και να κάνουμε έναν πίνακα συχνοτήτων όπου ουσιαστικά, μετράμε τις ευκαιρίες εμφάνισης κάθε τιμής: Τιμή, x i Πλήθος συνδυασμών με X=x i, f i A priori πιθανότητα, p i = f i/σf i Τιμή, x i Πλήθος συνδυασμών με X=x i, f i A priori πιθανότητα, p i = f i/σf i Άθροισμα, Σf i Το άθροισμα των συχνοτήτων είναι φυσικά και πάλι 36, αλλά βλέπουμε ότι οι μεσαίες τιμές εμφανίζονται συχνότερα από τις ακραίες. Καταλαβαίνουμε ότι αν κάθε συνδυασμός (a, b) έχει 1 στις 36 πιθανότητες να παρατηρηθεί σε μια και μόνη ζαριά, τότε, κάθε τιμή x = a+b έχει f(x) στις 36 πιθανότητες. Έτσι, οι τιμές 2 και 12 (άσσοι και εξάρες) είναι οι πιο απίθανοι με P(X) = 1/36, ενώ η τιμή 7 είναι η πιο πιθανή (Ρ = 6/36 = 1/6) αφού προκύπτει από τους πιο πολλούς συνδυασμούς. Σημειώνουμε ότι το άθροισμα των πιθανοτήτων είναι εξ ορισμού μονάδα αλλά στον παραπάνω πίνακα υπολογίζεται ίσο με λόγω σφαλμάτων στρογγύλευσης στον

8 υπολογισμό των επιμέρους πιθανοτήτων. Μερικοί ορισμοί και κανόνες Στο σημείο αυτό μπορούμε να δώσουμε μερικούς πιο αυστηρούς ορισμούς μερικών βασικών εννοιών που χρησιμοποιήσαμε χαλαρά μέχρι εδώ. Κάναμε λόγο για παρατηρήσεις και πειράματα. Ορίζουμε ως πείραμα τύχης εκείνο το πείραμα του οποίου το αποτέλεσμα δεν είναι δυνατό να προβλέψουμε. Θα αναφερόμαστε σε αυτό για συντομία, απλά ως πείραμα. Ο,τι προκύψει από μια μοναδική εκτέλεση του πειράματος είναι το αποτέλεσμα ή παρατήρηση και το σύνολο των δυνατών αποτελεσμάτων είναι ο δειγματικός χώρος (συνήθως συμβολίζετα με S) του πειράματος. Ενδεχόμενο είναι κάθε υποσύνολο του δειγματικού χώρου. Π.χ. αν ρίχνουμε ένα ζάρι, μπορούμε να θεωρήσουμε το υποσύνολο των αποτελεσμάτων {1, 2, 5} ως ένα δυνατό ενδεχόμενο, δεν είναι δηλαδή μόνο τα μεμονωμένα αποτελέσματα που θεωρούμε ως ενδεχόμενα αλλά κα σύνολα περισσότερων του ενός δυνατών αποτελεσμάτων. Ακόμη και το κενό σύνολο ορίζεται ως το αδύνατο ενδεχόμενο. Ένα ενδεχόμενο πραγματοποιείται όταν τουλάχιστον ένα από τα αποτελέσματα που περιλαμβάνει, έχει συμβεί. Ορίζοντας τα ενδεχόμενα ως σύνολα, μπορούμε να κάνουμε πράξεις συνόλων μεταξύ δύο ενδεχομένων, όπως η ένωση Α U Β (όλα τα αποτελέσματα που ανήκουν είτε στο Α είτε στο Β), η τομή Α Β (μόνο τα αποτελέσματα που ανήκουν και στο Α και στο Β) και η διαφορά Α Β (τα αποτελέσματα που ανήκουν στο Α αλλά όχι στο Β). Ασυμβίβαστα είναι τα ενδεχόμενα που η τομή τους είναι το κενό σύνολο. Αυτό πρακτικά σημαίνει ότι θα πραγματοποιηθεί ή το ένα ή το άλλο (ή κανένα), αλλά ποτέ και τα δύο. Τα μεμονωμένα αποτελέσματα ενός πειράματος είναι, φυσικά, ασυμβίβαστα (π.χ. κορώνα ή γράμματα, το αποτέλεσμα ρίψης ενός ζαριού κλπ). Στη συνέχεια μπορούμε να ορίσουμε την πιθανότητα και να διατυπώσουμε ορισμένους κανόνες για το μαθηματικό χειρισμό των πιθανοτήτων διαφόρων ενδεχομένων. Έστω ο δειγματικός χώρος S. Για κάθε ενδεχόμενο Α S, ορίζουμε τον αριθμό Ρ(Α), για τον οποίο ισχύουν τα εξής: 0 Ρ(Α) 1 Ρ(S) = 1 Για ασυμβίβαστα ενδεχόμενα Α, Β: Ρ(Α U Β) = Ρ(Α) + Ρ(Β) Τότε, μπορούμε να δώσουμε δύο ορισμούς για την πιθανότητα: Ορισμός a priori πιθανότητας (κατά Laplace). Αν για τα αποτελέσματα ενός πειράματος δεν έχουμε λόγο να υποθέσουμε ότι το ένα θα υπερτερεί, δηλ. θα έχει περισσότερες ευκαιρίες να εμφανιστεί, από τα άλλα, τότε για κάθε ενδεχόμενο Α, η πιθανότητα Ρ(Α) δίνεται διαιρώντας τον αριθμό των αποτελεσμάτων του δια τον αριθμό όλων των αποτελεσμάτων του S: Ρ(Α) = Ν(Α)/Ν(S) Ορισμός a posteriori πιθανότητας (κατά von Mises): αν δε γνωρίζουμε ούτε μπορούμε να υποθέσουμε ότι τα αποτελέσματα έχουν ίσες ευκαιρίες εμφάνισης, εκτελούμε το πείραμα n φορές όπου n πολύ μεγάλος αριθμός, καταγράφουμε τις συχνότητες εμφάνισης των αποτελεσμάτων και ορίζουμε βάσει αυτών την πιθανότητα κάθε ενδεχομένου, με τρόπο ανάλογο με αυτό που χρησιμοποιήσαμε τον αριθμό των δυνατών αποτελεσμάτων στον προηγούμενο ορισμό. Με τα παραπάνω αξιώματα και ορισμούς, μπορούμε να διατυπώσουμε και αποδείξουμε ορισμένους σημαντικούς κανόνες. Όταν δύο ενδεχόμενα είναι ανεξάρτητα, δηλαδή η πραγματοποίηση του ενός δεν εξαρτάται από την πραγματοποίηση του άλλου, ισχύει ο ειδικός νόμος του πολλαπλασιασμού: P( Α Β) = P(A) P(B).

9 Αυτή η σχέση χρησιμεύει και ως ορισμός της ανεξαρτησίας των ενδεχομένων: δύο ενδεχόμενα Α, Β, είναι ανεξάρτητα το ένα από το άλλο αν και μόνο αν για αυτά ισχύει ο ειδικός νόμος του πολλαπλασιασμού. Στην πραγματικότητα, αυτή η σχέση αποτελεί ειδική περίπτωση του αντίστοιχου γενικού νόμου του πολλαπλασιασμού. Για να γίνει κατανοητός αυτός, πρέπει να εισάγουμε την έννοια της πιθανότητας υπό συνθήκη ή δεσμευμένης πιθανότητας. Αυτή είναι η πιθανότητα για ένα ενδεχόμενο όταν θεωρούμε ότι πραγματοποιείται ένα άλλο ευρύτερο ενδεχόμενο, π.χ. όταν ένα ζάρι φέρει άρτιο αριθμό, ποια η πιθανότητα αυτός να είναι ίσος με 2; Εδώ, το ενδεχόμενο Β άρτιου αριθμού {2, 4, 6} παίζει το ρόλο ενός νέου δειγματικού χώρου, υποσυνόλου του αρχικού S={1, 2, 3, 4, 5, 6} και η πιθανότητα για το ενδεχόμενο Α = {2} πρέπει να υπολογιστεί με βάση αυτόν. Θα τη συμβολίσουμε με Ρ(Α Β) και θα είναι ίση με Ρ(Α Β) = 1/3, προφανώς. Επειδή ένα ενδεχόμενο πραγματοποιείται όταν παρατηρείται ένα οποιοδήποτε από τα αποτελέσματά του, μπορούμε να επεκτείνουμε αυτή την έννοια και στην περίπτωση όπου το Β δεν είναι υπερσύνολο του Α αλλά απλώς ένα άλλο ενδεχόμενο. Π.χ. ποια είναι η πιθανότητα του Α = {1, 2} όταν πραγματοποιείται το Β = {2, 4, 6}. Ιδιαίτερη σημασία έχουν τα παραπάνω όταν κάνουμε πειράματα λήψης χωρίς επαναποτοθέτηση, για παράδειγμα: Έστω ότι σε ένα κουτί υπάρχουν 8 λευκές και 12 μαύρες σφαίρες. Παίρνουμε ένα σφαιρίδιο και από αυτά που μένουν, παίρνουμε άλλο ένα. Ποια η πιθανότητα το πρώτο να είναι μαύρο και το δεύτερο λευκό; Για το πρώτο ερώτημα: η πιθανότητα να είναι το πρώτο μαύρο είναι προφανώς Ρ(1= Μ ) = 12/20. Η πιθανότητα για το δεύτερο να είναι λευκό είναι η υπό συνθήκη πιθανότητα το δεύτερο να είναι λευκό όταν το πρώτο ήταν μαύρο. Αφού το πρώτο σφαιρίδιο δεν επανατοποθετήθηκε, έχουμε πλέον 8 λευκές και 11 μαύρες σφαίρες, άρα Ρ(2= Λ 1= Μ ) = 8/19. Τώρα, για να υπολογίσουμε την πιθανότητα Ρ(1= Μ 2= Λ ) πρέπει να σκεφτούμε ως εξής: η παρατήρησή μας είναι το χρώμα και των δύο σφαιριδίων, δηλαδή το ζεύγος Χ = (Χρώμα 1, Χρώμα 2). Επομένως, ο δειγματικός χώρος είναι το σύνολο που περιέχει όλα τα δυνατά ζεύγη πρώτων και δεύτερων σφαιριδίων, λαμβανομένων χωρίς επανατοποθέτηση. Καταλαβαίνουμε ότι ο αριθμός των συνολικών δυνατών ζευγών είναι 20 Χ (20-1) = 380, ενώ ο συγκεκριμένος συνδυασμός (1= Μ, 2= Λ ) μπορεί να ληφθεί 12 Χ 8 = 96 φορές, γιατί στην αρχή υπάρχουν και τα 12 μαύρα σφαιρίδια ενώ μετά εξακολουθούν να υπάρχουν και τα 8 λευκά. Τότε, βρίσκουμε ότι Ρ(1= Μ, 2= Λ ) = 96/380. Αλλά αυτό είναι ακριβώς ίσο με Ρ(1= Μ ) Ρ(2= Λ 1= Μ ). Αυτό δεν είναι συμπτωματικό και μπορεί να επαληθευθεί με ανάλογα συνδυαστικά επιχειρήματα και να αποδειχθεί στη γενικότητά του. Με βάση τα παραπάνω, μπορεί να διατυπωθεί ο γενικός νόμος του πολλαπλασιασμού για τα ενδεχόμενα Α και Β ισχύοντος του Α, ως εξής: P( Α Β) = P(A) P(B Α), αλλά και P( Α Β) = P(Β) P(Α Β) Αν ως Β πάρουμε το συνολικό δειγματικό χώρο S, τότε προφανώς ισχύει Ρ(Α) = P( Α S) και Ρ(Β) = P( Β S ) (είναι σα να λέμε η πιθανότητα να συμβεί το Α υπό την προϋπόθεση να συμβεί οτιδήποτε ). Επομένως, αν δεν υπάρχει η προϋπόθεση για το Β να έχει πραγματοποιηθεί το Α, αυτό σημαίνει ότι μπορούμε να γράψουμε P( Α Β) = P(Β) P(Α S) = P( Α Β) = P(Β) P(Α ) που είναι ο ειδικός νόμος του πολλαπλασιασμού τον οποίο προαναφέραμε. Εφαρμογή του γενικού νόμου του πολλαπλασιασμό αποτελεί ο νόμος ή κανόνας ή θεώρημα του Bayes. Στο παρακάτω σχήμα παριστάνεται ο δειγματικός χώρος S που υποδιαιρείται στα ασυμβίβαστα ενδεχόμενα Α1, Α2,... Αn. Θεωρούμε ένα ενδεχόμενο Β (σκιασμένη περιοχή)

10 S B Α 1 Α 2... Α n και από το σχήμα καταλαβαίνουμε ότι Β = (Α1 Β) U (Α2 Β)... (Αn Β) και επειδή τα ενδεχόμενα (Α i Β) είναι ασυμβίβαστα, θα ισχύει n P B = i=1 n P A i B = i=1 P A i P B A i όπου η τελευταία ισότητα προκύπτει από το γενικό νόμο του πολλαπλασιασμού και μας δίνει τον τύπο ολικής πιθανότητας. Με τη βοήθειά της μπορούμε να βρούμε και την υπό συνθήκη πιθανότητα Ρ(A i B) η οποία βρίσκεται αν τη γράψουμε με βάση το γενικό νόμο πολλαπλασιασμού και εκφράσουμε το Ρ(Β) με τον τύπο ολικής πιθανότητας: P A i B =P B P A i B P A i B = P A i B P B = P A i P B A i P B = P A i P B A i n P A i P B A i i=1 Η τελευταία έκφραση είναι ο κανόνας ή θεώρημα του Bayes. Παρατηρείστε, ως μνημονικό κανόνα, ότι τα P(B A i ) είναι συντελεστές βαρύτητας των P(A i ). Παράδειγμα: Δυο μηχανές σε εργοστάσιο παράγουν το 10% και 90% της παραγωγής συγκεκριμένων αντικειμένων. Η πιθανότητα να παράγει η πρώτη μηχανή ελαττωματικό αντικείμενο είναι 0.01 και για τη δεύτερη είναι Ποια η πιθανότητα ένα ελαττωματικό αντικείμενο να έχει κατασκευαστεί από την πρώτη μηχανή; Αν Β το ενδεχόμενο να είναι το αντικείμενο ελαττωματικό και Α 1, Α 2 τα ενδεχόμενα να έχει παρασκευαστεί από την πρώτη και τη δεύτερη μηχανή αντίστοιχα, τότε επειδή δίνεται ότι το αντικείμενο είναι ελαττωματικό, εφαρμόζουμε τον τύπο του Bayes και βρίσκουμε: P A P A 1 B = 1 P B A 1 P A 1 P B A 1 P A 2 P B A 2 = = P A 2 B = = Τέλος, ας ξαναδούμε την έννοια της τυχαίας μεταβλητής. Μια τυχαία μεταβλητή Χ, όπως έχουμε ήδη αναφέρει, απεικονίζει τα δυνατά αποτελέσματα ενός πειράματος τύχης στο σύνολο των πραγματικών αριθμών. Κατανομή f(x) της μεταβλητής είναι μια συνάρτηση που απεικονίζει τις τιμές x της μεταβλητής στις πιθανότητες P(x) αυτών. Για συνεχείς μεταβλητές θα ισχύει P a x b = a b f x dx Αθροιστική ή σωρευτική κατανομή, F(x) ονομάζεται η συνάρτηση που ορίζεται ως F x =P X x = f u (διακριτή μεταβλητή) u x F x =P X x = f u du (συνεχής μεταβλητή) Από τους παραπάνω ορισμούς, αν Χ είναι τυχαία μεταβλητή και a < b είναι πραγματικοί αριθμοί, προκύπτουν τα παρακάτω: P (a < x b) = F(b) F(a)

11 P(X = a) = 0 αν η F(x) είναι συνεχής στο σημείο x = a και P(x=a) = μέγεθος άλματος της F στο x = a όταν η F είναι ασυνεχής στο σημείο αυτό. Στη γενική περίπτωση ισχύει: Τέλος, αν η Χ είναι συνεχής μεταβλητή, θα ισχύει: P(Χ < a) = F(a) P(X=a) df(x)/dx = f(x) Εκτός από την ομοιόμορφη, μια άλλη, πολύ σημαντική κατανομή στην οποία θα αναφερθούμε εκτενέστερα στη συνέχεια, είναι η λεγόμενη κανονική κατανομή. Αν παραστήσουμε αυτή και την ομοιόμορφη κατανομή για μια συνεχή μεταβλητή σε ένα διάγραμμα, θα πάρουμε κάτι σαν το σχήμα της επόμενης σελίδας. Δηλαδή, ενώ η ομοιόμορφη κατανομή ισοδυναμεί με ίσες πιθανότητες για όλες τις δυνατές τιμές, η κανονική κατανομή προβλέπει μεγαλύτερη πιθανότητα για τιμές που βρίσκονται κοντά σε μία μέση τιμή (εδώ, ίση με 3) όπου και η p(x) μεγιστοποιείται, ενώ όσο απομακρυνόμαστε από αυτή την τιμή, οι πιθανότητες μικραίνουν και τείνουν ασυμπτωτικά στο μηδέν. Αν και θα αναφερθούμε εκτενέστερα στη συνέχεια, θα πούμε από τώρα ότι τόσο η ομοιόμορφη όσο και η κανονική κατανομή μπορούν να περιγραφούν από σχετικά απλές μαθηματικές εκφράσεις με λίγες χαρακτηριστικές παραμέτρους που σχετίζονται με τα ιδιαίτερα χαρακτηριστικά τους. Για την κανονική κατανομή, μια τέτοια παράμετρος είναι η μέση τιμή, ενώ σημαντική είναι επίσης και η διασπορά, η οποία σχετίζεται με το πόσο πλατειά ή στενή είναι η εικονιζόμενη κωδονοειδής καμπύλη. Το ίδιο ισχύει και για άλλες κατανομές που είναι κατάλληλες για την περιγραφή πληθυσμών διαφόρων ειδών. 0,4 Ομοιόμορφη Κανονική 0,3 p(x) 0,2 0,1 0, Η κατανομή ενός πληθυσμού είναι ο άξονας γύρω από τον οποίο περιστρέφεται η Στατιστική. Μερικά από τα κυριώτερα προβλήματα της Στατιστικής είναι: Από τη μελέτη αντιπροσωπευτικών δειγμάτων ενός πληθυσμού να συμπεράνουμε το είδος και τη μορφή της κατανομής του, Αντίστροφα από το προηγούμενο, αν ξέρουμε ή έχουμε εκτιμήσει την κατανομή ενός πληθυσμού, να προβλέψουμε το πιθανό αποτέλεσμα μιας παρατήρησης ή ενός πειράματος ή τα χαρακτηριστικά ενός δείγματος. Παρόμοια, να προβλέψουμε την πιθανότητα εμφάνισης ακραίων τιμών, x Να εκτιμήσουμε τη βεβαιότητα με την οποία κάποια αποτελέσματα προκύπτουν από τη

12 δεδομένη κατανομή του πληθυσμού και όχι κατά τύχη (ομοιόμορφη κατανομή) ή από άλλη κατανομή βλ. έλεγχος υποθέσεων, όπου θα αναφερθούμε σε επόμενες ενότητες. Σε όλες τις περιπτώσεις γνωρίζουμε ή θέλουμε να μάθουμε την κατανομή του πληθυσμού. Αν γνωρίζουμε τη μορφή της (π.χ. κανονική κατανομή) μπορούμε να την περιγράψουμε επαρκώς με κατάλληλες παραμέτρους, μερικές από τις οποίες υπεισέρχονται και στην αναλυτική μαθηματική έκφραση της κατανομής, όπως αναφέραμε. Ποσότητες ανάλογες με τις παραμέτρους του συνολικού πληθυσμού μπορούμε να ορίσουμε και για τα επιμέρους δείγματα. Αυτές οι ποσότητες λέγονται στατιστικά και οι τιμές τους εν γένει διαφέρουν από αυτές των πληθυσμιακών παραμέτρων, αλλά στο βαθμό που τα δείγματα είναι αντιπροσωπευτικά και το μέγεθός τους αυξάνει, τα στατιστικά τείνουν να ταυτιστούν με τις παραμέτρους όπως και οι αντίστοιχες κατανομές. Η μέση τιμή όσον αφορά τον πληθυσμό και ο αριθμητικός μέσος όσον αφορά τα δείγματα είναι η πιο γνωστή περίπτωση παραμέτρου και στατιστικού αντίστοιχα και δίνει μια βασική ιδέα για την κεντρική τάση των δεδομένων μας. Άλλη γνωστή παράμετρος/στατιστικό είναι η τυπική απόκλιση που δίνει μια ιδέα για το πόσο διεσπαρμένα είναι τα δεδομένα γύρω από τη μέση τιμή. Αυτά και άλλα στατιστικά και παράμετροι θα συζητηθούν αναλυτικότερα στην επόμενη ενότητα.

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ενότητα 2 Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ένας από τους βασικούς σκοπούς της Στατιστικής είναι η εκτίμηση των χαρακτηριστικών ενός πληθυσμού βάσει της πληροφορίας από ένα δείγμα.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες

Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Είπαμε ότι γενικά τα συστηματικά σφάλματα που υπεισέρχονται σε μια μέτρηση ενός φυσικού μεγέθους είναι γενικά δύσκολο να επισημανθούν και να διορθωθούν.

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

3. Βασική Θεωρία Πιθανοτήτων

3. Βασική Θεωρία Πιθανοτήτων Περίληψη 3. Βασική Θεωρία Πιθανοτήτων Η στατιστική μηχανική βασίζεται στη θεωρία πιθανοτήτων για την παραγωγή μακροσκοπικών ιδιοτήτων στην ισορροπία. Οι θερμοδυναμικές μεταβλητές εμφανίζονται ως μέσοι

Διαβάστε περισσότερα

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017. HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f = ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 16 (version 9-6-16) 1. A Να δώσετε τον ορισμό της παραγώγου μιας συνάρτησης σε ένα σημείο x του πεδίο ορισμού της. Απάντηση: Παράγωγος μιας συνάρτησης σε ένα σημείο x του πεδίο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ 1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι

Διαβάστε περισσότερα

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β) ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 04 ΘΕΜΑ ο Α. Πότε δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ονομάζονται ασυμβίβαστα;

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

3/10/2016. Στατιστική Ι. 1 η Διάλεξη

3/10/2016. Στατιστική Ι. 1 η Διάλεξη Στατιστική Ι 1 η Διάλεξη 1 2 Φαινόμενα Πειράματα Αιτιοκρατικά Προσδιοριστικά Τυχαία Στοχαστικά Ένα αιτιοκρατικό πείραμα, κάθε φορά που εκτελείται, έχει το ίδιο αποτέλεσμα το οποίο μπορεί να προβλεφθεί

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση f () είναι παραγωγίσιμη στο R με f () Α Αν είναι οι τιμές μιας μεταβλητής Χ ενός δείγματος παρατηρήσεων μεγέθους ν ( ) να ορίσετε την

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.1: Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (Ι). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα.

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα. Η Διωνυμική Κατανομή Η Διωνυμική κατανομή συνδέεται με ένα πολύ απλό πείραμα τύχης. Ίσως το απλούστερο! Πρόκειται για τη δοκιμή Bernoulli, ένα πείραμα τύχης με μόνο δύο, αμοιβαίως αποκλειόμενα, δυνατά

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) o ΘΕΜΑ A. Aν n

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27 Εισαγωγικό κεφάλαιο 27 Η έννοια του συνόλου Σύνολο είναι κάθε συλλογή αντικειμένων, που προέρχονται από την εμπειρία μας ή τη διανόησή μας, είναι καλά ορισμένα και διακρίνονται το ένα από το άλλο. Αυτός

Διαβάστε περισσότερα

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Πίνακας Περιεχομένων Εργασία η... Θέμα ο :... Θέμα ο :... 4 Θέμα 3 ο :...

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

Δειγματοληψία στην Ερευνα. Ετος

Δειγματοληψία στην Ερευνα. Ετος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

Κεφάλαιο 9 Κατανομές Δειγματοληψίας Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε

Διαβάστε περισσότερα

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πιθανότητες Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 7 / 0 / 0 6 Γενικής κεφάλαιο 3 94 ασκήσεις και τεχνικές σε 8 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.

Διαβάστε περισσότερα

Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή

Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή Όπου χρειάζεται να γίνει χρήση του μικροϋπολογιστή 3xi -2 1) Για την τυχαία διακριτή μεταβλητή Χ ισχύει Ρ(Χ=x i )= 5, x

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test 1 Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου One-Sample t-test 2 Μια σύντομη αναδρομή Στα τέλη του 19 ου αιώνα μια μεγάλη αλλαγή για την επιστήμη ζυμώνονταν στην ζυθοποιία Guinness. Ο William Gosset

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 8 ΧΡΟΝΙ ΕΠΕΙΡΙ ΣΤΗΝ ΕΠΙΔΕΥΣΗ ΘΗΤΙ Ι ΣΤΟΙΧΕΙ ΣΤΤΙΣΤΙΗΣ ΓΕΝΙΗΣ ΠΙΔΕΙΣ ΘΕΤ ΘΕ 1. ν οι συναρτήσεις f και g είναι παραγωγίσιμες στο, να αποδείξετε ότι f x g x f x g x, για κάθε x ονάδες 7. Έστω μια συνάρτηση

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ .5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων

Διαβάστε περισσότερα