Osnovni principi kompresije 2D i 3D signala. 2D transformacija kompakcija energije. Estimacija pokreta u 3D signalima

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Osnovni principi kompresije 2D i 3D signala. 2D transformacija kompakcija energije. Estimacija pokreta u 3D signalima"

Transcript

1 OADP: Kompreija lie i ideo igala Ooi priipi ompreije D i 3D igala D traformaija ompaija eergije Katoaje D igala Kodoaje D igala Etimaija poreta u 3D igalima oi ad 06 traa

2 OADP: Kompreija lie i ideo igala OOVI CILJ KOMPREIJE: majiti oličiu potrebi podataa igala lie i idea bez idljiog gubita aliteta ompreija bez gubitaa lole ompreija a gubiima oji iu idljii loy U oom uru e goori o ompreiji a gubiima oji iu idljii! OOVI PRICIPI KOMPREIJE: ulajaje redudae igala bez gubitaa ulajaje ireleate eidljie iformaije a gubiima OOVI TADARDI ZA KOMPREIJU: JPEG za liu D igal MPEG za ideo 3D igal oi ad 06 traa

3 OADP: Kompreija lie i ideo igala ALGORITMI KOMPREIJE D IGALA: ompaija eergije prelaom u petrali dome D DCT atizaija petrali oefiijeata razlog gubitaa odoaje ariable word legt zig-zag ru-legt Huffma ALGORITMI ZA KOMPREIJU 3D IGALA ito ao D itraframe D DCT atizaija odoaje dodato iterframe : odoaje razlie između uedi lia oriteći etimaiju poreta V C H lia: D frame V5 H5 C3 B8 bit MVHCB6.3 Mb /F40 m lia: D frame V576 H704 C3 B8 bit F5 lia u e MVHCBF433 Mb/ ŽELJEI FAKTORI KOMPREIJE: lia JPEG ~ 00 b fator ompreije puta ideo MPEG ~ 4 Mb/ fator ompreije puta oi ad 06 traa 3

4 OADP: Kompreija lie i ideo igala oi ad 06 traa 4 TRAFORMACIOO KODOVAJE KOMPAKCIJA EERGIJE podela a blooe x tačaa ajčešće 8x8 a taođe i 4x4 i 6x6 etriraje opega redoti: ao je u opegu od 0 do etrira e a opeg od -0.5 do 0.5 D DCT direte i ierze traformaije blooa u petralom domeu: eialeto filter bai 8x o 0.5 o o 0.5 o π π α α π π α α

5 OADP: Kompreija lie i ideo igala TRAFORMACIOO KODOVAJE aaliza opega redoti opeg redoti etriraog d igala lie od -0.5 do 0.5 / 0.5 opeg redoti petrali oefiijeata od -R do R R 0.5α α 0 0 o π 0.5 o π Opeg redoti za realu liu Lea 0.5 R 0.5 R Rdt f : 0... f f R B bita 3 oef B- bita 7 oef B- bita oef B-3 bita 43 oef oi ad 06 traa 5

6 OADP: Kompreija lie i ideo igala oi ad 06 traa 6 KVATIZACIJA PEKTRALIH KOMPOETI B bita po redoti eialeija greše atizaije u petralom domeu i origialom protorom domeu > 3 B dt B B B B dt dt R R R Ierza D DCT e : atizaioe greše u petralom domeu e I : atizaioe greše u domeu lie o 0.5 o I I I e e e e e e π π α α Eialeta alitet u protorom i petralom domeu

7 OADP: Kompreija lie i ideo igala Primeri atizaije a B bita po petralom oefiijetu oi ad 06 traa 7

8 OADP: Kompreija lie i ideo igala KODOVAJE : CIK-CAK KOVERZIJA dodimezioali blo petrali oefiijeata 8x8 : jedodimezioala eea 64 petrala oefiijeta: Cm Lita poziioi adrea a m [ ] m m C m m m Koerzija D u D a m oi ad 06 traa 8

9 OADP: Kompreija lie i ideo igala KODOVAJE : RU-LEGTH CODIG amo e-ulti oefiijeti ratojaja između e-ulti oefiijeata C m r m B bita 6 bita 0 m... L C m 0 L 4 [ ] Primer B8 bita: po blou umeto 64x85 bita biće 4x8656 bita oi ad 06 traa 9

10 OADP: Kompreija lie i ideo igala KODOVAJE : HUFFMA CODIG eparato odoaje e-ulti oefiijeata i ratojaja između ji r tadardi potupa tatitičog odoaja: dužia reči ~ /eroatoća Umeto 5x5x8 ~. Mb dooljo oo 5 b ompreija ~ 40 puta oi ad 06 traa 0

11 OADP: Kompreija lie i ideo igala KOMPREIJA I DEKOMPREIJA D IGALA DCT Q D KODER i-a oder D C ru-legt oder r Huffma oder ompreija ~0 puta ompreija ~5 puta IDCT D DEKODER i-a deoder D C ru-legt deoder r Huffma deoder -ti blo 8x8 {CC.CL-CL} oi ad 06 traa

12 OADP: Kompreija lie i ideo igala KOMPREIJA VIDEO IGALA 3D ibrido odoaje: umeto lie e oduje razlia u odou a pretodu liu pri tome e oriti etimaija poreta između te de lie blo matig preoi e etor pomeraja za ai blo razlia e oduje ao D lie DCT atizaija odoaje {[][CC.CL-CL]} oi ad 06 traa

13 OADP: Kompreija lie i ideo igala oi ad 06 traa 3 Motio mat Etimaija poreta u lii - blo matig y x l W t W t W MAD t- t

14 OADP: Kompreija lie i ideo igala Treba zapamtiti: Kompreija lie i idea je obrada u ojoj e majuje oličia podataa uz miimale idljie gubite. Kompreija može biti bez gubitaa lole ada je ompreija maja i a gubiima loy ada je omreija zaaja. Ooi priipi ompreije u ulajaje redudae e uoe e gubii i ulajaje ireleae uoe e gubii. JPEG je tadard za ompreiju lie a MPEG tadard za ompreiju idea. Oba tadarda u ompreija a gubiima loy. Kompreija lie adrži tri oraa: ompaiju eergije primeom D DCT atizaiju oja uoi ereerzibile greše i odoaje oje e atoji od i-a učitaaja pretaraja D u D truturu podataa ru-legt odig odoaja ratojaja ulti oefiijeata i Hufma odig tatitičog odoaja. D DCT i odoaje u reerzibile obrade e uoe grešu a atizaija je ireerzibila uoi grešu. Proe deompreije ide obrutim redom. Kompreija idea em oraa za ompreiju lie za ai pojediači frame uljučuje i četrti ora ompezaiju poreta oji e bazira a prediiji etora pomeraja blo matig. Kompreija lie i idea je blooa obrada lia e podeli a blooe x 8 ajčešće i i orai ompreije e primejuju a oe blooe. oi ad 06 traa 4

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

,,,,.,.,.,.,,..,.,,.,,.,,,,,,.

,,,,.,.,.,.,,..,.,,.,,.,,,,,,. . OOI, ',..,.,,,,.,, ( ).,..,.,.,.,,..,.,.,,.,,..,... '.,,,,,,.. '. ,,,,,,,.. '.,,,. ',.. '.,, ',,.,,,...,,,.,,,,,,,,... ,,, ',,,.,,,,.,,, ;.,,,,.,,..., ',,,,,,.,,,,,,,,,.,,.,,...,,,.,,.,,,...,,,,, .,,.,,,....,,,,!..

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT OASDSP : 7 FFT Dkompozicija DFT Brzi algoritmi a bazi radix- Brza Furijova trasofrmacija Tačost izračuavaja Komplksa FFT ovi Sad, Oktobar 5 straa OASDSP : 7 FFT Brza trasformacija : itrativa dkompozicija

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ,

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 004 005, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση αποτελείται από δύο µέρη. Το πρώτο περιλαµβάνει

Διαβάστε περισσότερα

Str. 454;139;91.

Str. 454;139;91. Str. 454;39;9 Metod uzorka Predavač: Dr Mirko Savić avicmirko@eccf.u.ac.yu www.eccf.u.ac.yu Statitička maa može da e pomatra a jeda od ledeća dva ačia: potpuo pomatraje, delimičo pomatraje (metod uzorka).

Διαβάστε περισσότερα

Συµπίεση Δεδοµένων: Συµπίεση Ψηφιακού Βίντεο

Συµπίεση Δεδοµένων: Συµπίεση Ψηφιακού Βίντεο Συµπίεση Δεδοµένων: Συµπίεση Ψηφιακού Βίντεο Αλέξανδρος Ελευθεριάδης Αναπ. Καθηγητής & Marie Curie Chair Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών eleft@di.uoa.gr,

Διαβάστε περισσότερα

ΕΙΔΗ ΠΛΑΙΣΙΩΝ Ενδο-πλαισιακή κωδικοποίηση (Intra- frame Coding): Δια-πλαισιακή κωδικοποίηση (Inter-frame Coding):

ΕΙΔΗ ΠΛΑΙΣΙΩΝ Ενδο-πλαισιακή κωδικοποίηση (Intra- frame Coding): Δια-πλαισιακή κωδικοποίηση (Inter-frame Coding): ΕΙΔΗ ΠΛΑΙΣΙΩΝ Ενδο-πλαισιακή κωδικοποίηση (Intraframe Coding): κάθε εικόνα αντιμετωπίζεται και κωδικοποιείται ανεξάρτητα από τις υπόλοιπες (όπως στο JPEG) Δια-πλαισιακή κωδικοποίηση (Inter-frame Coding):

Διαβάστε περισσότερα

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)

Διαβάστε περισσότερα

Juniorski četverac bez kormilara sezona 2014/2015 sa osvrtom na završne pripreme pred EP i SP. Aleksandar Smiljanić

Juniorski četverac bez kormilara sezona 2014/2015 sa osvrtom na završne pripreme pred EP i SP. Aleksandar Smiljanić Juniorski četverac bez kormilara sezona 2014/2015 sa osvrtom na završne pripreme pred EP i SP Aleksandar Smiljanić Generacija 1996 / 1997 8 + SP Hamburg 2014 4 - SP Rio de Janeiro 1. Cvijetić Nikola (1997)

Διαβάστε περισσότερα

Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο

Διαβάστε περισσότερα

Συστήµατα και Αλγόριθµοι Πολυµέσων

Συστήµατα και Αλγόριθµοι Πολυµέσων Συστήµατα και Αλγόριθµοι Πολυµέσων Ιωάννης Χαρ. Κατσαβουνίδης Οµιλία #3: Αρχές Επεξεργασίας Σηµάτων Πολυµέσων 10 Οκτωβρίου 005 Επανάλειψη (1) ειγµατοληψία επανα-δειγµατοληψία Τεχνικές φίλτρων (συνέλειξη)

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 9 : Κωδικοποίηση βίντεο Πρότυπο συμπίεσης MPEG Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Τεχνικές Συµπίεσης Βίντεο. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας

Τεχνικές Συµπίεσης Βίντεο. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας Τεχνικές Συµπίεσης Βίντεο Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας Ενότητα 0: Εισαγωγή στο µάθηµα «Τεχνικές Συµπίεσης Βίντεο» Δρ. Μαρία Κοζύρη Τεχνικές Συµπίεσης Βίντεο Ενότητα 2 Διαδικαστικά

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ

ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΘΕΣΣΑΛΙΑΣ ευρώ) Λήψη προσφορών για δαπάνη ποσού 10.000, ολογράφως ( δεκα χιλιάδων για την προμήθεια Η/Υ, εκτυπωτών, βιντεοπροβολέων, FAX κλπ

Διαβάστε περισσότερα

1. Περιεχόμενα Συσκευασίας... 2. 2. Απαιτήσεις Συστήματος... 2. 4. Τεχνική Υποστήριξη... 7. 5. Τεχνικά Χαρακτηριστικά... 7

1. Περιεχόμενα Συσκευασίας... 2. 2. Απαιτήσεις Συστήματος... 2. 4. Τεχνική Υποστήριξη... 7. 5. Τεχνικά Χαρακτηριστικά... 7 Joker Driverless Webcam Ε γ χ ε ι ρ ί δ ι ο Χ ρ ή σ τ η V e r s i o n 1. 0 Περιεχόμενα Περιεχόμενα... 1 1. Περιεχόμενα Συσκευασίας... 2 2. Απαιτήσεις Συστήματος... 2 3. Joker Web Camera... 2 3.1 Εγκατάσταση

Διαβάστε περισσότερα

Συστήµατα και Βάσεις Πολυµέσων. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας

Συστήµατα και Βάσεις Πολυµέσων. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας Συστήµατα και Βάσεις Πολυµέσων Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας Ενότητα : Μετασχηµατισµός/Κβαντοποίηση Δρ. Μαρία Κοζύρη Συστήµατα & Βάσεις Πολυµέσων Ενότητα 2 Διαδικαστικά Παράδοση:

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2. Vele u ehc Rd, g eegj D. do. Sl. Veo 3. Tezo II. ed 4. Tezo IV. ed. Sl: 3 0 pod je jedc (ezo ulog ed). Veo: 3 3 pod je jedc (ezo pog ed) 3. Tezo dugog ed 3 9 pod je jedc 4. Tezoeog ed 3 4 8 pod je jedc

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Ραδιοτηλεοπτικά Συστήματα Ενότητα 4: Ψηφιοποίηση και συμπίεση σημάτων εικόνας

Ραδιοτηλεοπτικά Συστήματα Ενότητα 4: Ψηφιοποίηση και συμπίεση σημάτων εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ραδιοτηλεοπτικά Συστήματα Ενότητα 4: Ψηφιοποίηση και συμπίεση σημάτων εικόνας Δρ. Νικόλαος- Αλέξανδρος Τάτλας Τμήμα Ηλεκτρονικών

Διαβάστε περισσότερα

Η κωδικοποίηση των συντελεστών DC

Η κωδικοποίηση των συντελεστών DC Η κωδικοποίηση των συντελεστών DC Γιακάθευποπίνακαηδιαφορά, d,του DC συντελεστήτουαπότοσυντελεστή DC τουπροηγούµενουυποπίνακαοδηγούνταιστονκωδικοποιητήεντροπίας (variable length coding VLC). Στονκωδικοποιητήηδιαφοράκατατάσσεταιανάλογαµετοµέγεθόςτηςστοακόλουθοπίνακα,

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Συστήµατα και Αλγόριθµοι Πολυµέσων

Συστήµατα και Αλγόριθµοι Πολυµέσων Συστήµατα και Αλγόριθµοι Πολυµέσων Ιωάννης Χαρ. Κατσαβουνίδης Οµιλία #5: Αρχές Επεξεργασίας Σηµάτων Πολυµέσων 7 Νοεµβρίου 2005 Επανάληψη Θεωρία Πληροφορίας Εντροπία: H ( P) i= 0 Κωδικοποίηση Huffman 3

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

Δ11 Δ12. Συμπίεση Δεδομένων

Δ11 Δ12. Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2013-2014 Κωδικοποιητές εικονοροής (Video) Δρ. Ν. Π. Σγούρος 2 Κωδικοποιητές Εικονοροών ITU-T VCEG H.261 (1990) ISO/IEC MPEG H.263 (1995/9 6) MPEG-2 (H.262) (1994/9 5) H.263+ (1997/98)

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα Φώτης Ε. Ψωμόπουλος, Περικλής Α. Μήτκας

Αλγόριθμοι και Πολυπλοκότητα Φώτης Ε. Ψωμόπουλος, Περικλής Α. Μήτκας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρονικής και Υπολογιστών Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών Καθηγητής: Περικλής

Διαβάστε περισσότερα

ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Περιεχόµενα. Βιβλιογραφία. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT

ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Περιεχόµενα. Βιβλιογραφία. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων Συµπίεση εικόνων: Το πρότυπο JPEG Περιεχόµενα Εισαγωγή Ο µετασχηµατισµός DCT Το πρότυπο JPEG Προετοιµασία εικόνας / µπλοκ Ευθύς µετασχηµατισµός DCT Κβαντισµός Κωδικοποίηση

Διαβάστε περισσότερα

Group (JPEG) το 1992.

Group (JPEG) το 1992. Μέθοδοι Συμπίεσης Εικόνας Πρωτόκολλο JPEG Συμπίεση Εικόνας: Μείωση αποθηκευτικού χώρου Ευκολία στη μεταφορά αρχείων Δημιουργήθηκε από την ομάδα Joint Photographic Experts Group (JPEG) το 1992. Ονομάστηκε

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Βιβλιογραφία. Εισαγωγή. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT

Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Βιβλιογραφία. Εισαγωγή. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT Περιεχόµενα ΕΠΛ : Συστήµατα Πολυµέσων Συµπίεση εικόνων: Το πρότυπο JPEG Εισαγωγή Ο µετασχηµατισµός DCT Το πρότυπο JPEG Προετοιµασία εικόνας / µπλοκ Ευθύς µετασχηµατισµός DCT Κβαντισµός Κωδικοποίηση ηµιουργία

Διαβάστε περισσότερα

Η ανάγκη για συμπίεση

Η ανάγκη για συμπίεση Πρότυπα συμπίεσης Η ανάγκη για συμπίεση High-Definition Television (HDTV) 1920x1080 30 frames per second (full motion) 8 bits για κάθε κανάλι χρώματος 1.5 Gb/sec! Κάθε κανάλι 6 MHz Max data rate: 19.2

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Συστήµατα και Αλγόριθµοι Πολυµέσων

Συστήµατα και Αλγόριθµοι Πολυµέσων Συστήµατα και Αλγόριθµοι Πολυµέσων Ιωάννης Χαρ. Κατσαβουνίδης Οµιλία #: ιεθνές στάνταρ συµπίεσης βίντεο H.264 28 Νοεµβρίου 2005 Επανάληψη Ανθεκτικότητα στο θόρυβο κατά τη µετάδοση ψηφιακού βίντεο MPEG4

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Συστήματα Πολυμέσων. Ενότητα 15: Συμπίεση Ψηφιακού Βίντεο. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 15: Συμπίεση Ψηφιακού Βίντεο. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Συστήματα Πολυμέσων Ενότητα 15: Συμπίεση Ψηφιακού Βίντεο Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Τεχνικά χαρακτηριστικά

Τεχνικά χαρακτηριστικά Τεχνικά χαρακτηριστικά Ευκολία σύνδεσης µε ένα µόνο πλήκτρο: Το ειδικό πλήκτρο Direct Link σας βοηθάει να συνδεθείτε γρήγορα στα ασύρµατα δίκτυα, ενώ οι λειτουργίες AutoShare, Social Sharing, Cloud, email,

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 12: Κωδικοποίηση βίντεο: H.26x Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 12: Κωδικοποίηση βίντεο: H.26x Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 12: Κωδικοποίηση βίντεο: H.26x Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Πολυμέσα. Συμπίεση δεδομένων Κωδικοποίηση JPEG. Δρ. Γεώργιος Π. Παυλίδης ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ

Πολυμέσα. Συμπίεση δεδομένων Κωδικοποίηση JPEG. Δρ. Γεώργιος Π. Παυλίδης ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Πολυμέσα Συμπίεση δεδομένων Δρ. Γεώργιος Π. Παυλίδης Συμπίεση Δεδομένων Περιεχόμενα Γνωστοίαλγόριθμοισυμπίεσης JPEG, Οικογένεια H.26x, H.32x Χρησιμοποίηση Εφαρμογές Εκμάθηση Σχεδίαση Διασύνδεση χρήστη

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ CD-DVD Ανάπτυξη Υποστηρικτικού Εκπαιδευτικού Λογισµικού Πολυµέσων

ΤΕΧΝΟΛΟΓΙΑ CD-DVD Ανάπτυξη Υποστηρικτικού Εκπαιδευτικού Λογισµικού Πολυµέσων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ανθούλα Μπαµπούλη Α.Ε.Μ 512 ΤΕΧΝΟΛΟΓΙΑ CD-DVD Ανάπτυξη Υποστηρικτικού Εκπαιδευτικού Λογισµικού Πολυµέσων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 004 005, Χειµερινό Εξάµηνο Θεωρητικές Ασκήσεις (# 3): 1. Ο διακριτός µετασχηµατισµός συνηµίτονου (Discrete Cosine Transform)

Διαβάστε περισσότερα

Συµπίεση (ΙΙ) Ψηφιακή τηλεόραση [από το Α έως το Ω]

Συµπίεση (ΙΙ) Ψηφιακή τηλεόραση [από το Α έως το Ω] EΝΙΣΧΥΤΙΚΗ Ι ΑΣΚΑΛΙΑ ΨΗΦΙΑΚH ΤΗΛΕOΡΑΣΗ Ψηφιακή τηλεόραση [από το Α έως το Ω] Συµπίεση (ΙΙ) Του Κωνσταντίνου Λεµπιδάκη Μέρος Στο παρόν άρθρο θα αναφερθούµε κυρίως στην συµπίεση που χρησιµοποιείται κατά

Διαβάστε περισσότερα

Πίνακες και ερµάρια. διανοµής. ƒ 2010. Plexo 3 στεγανοί πίνακες από 2 έως 72 στοιχεία (σ. 59) Practibox χωνευτοί πίνακες από 6 έως 36 τοιχεία (σ.

Πίνακες και ερµάρια. διανοµής. ƒ 2010. Plexo 3 στεγανοί πίνακες από 2 έως 72 στοιχεία (σ. 59) Practibox χωνευτοί πίνακες από 6 έως 36 τοιχεία (σ. χωνευτοί σ. 56 Nedbox χωνευτοί από 12 έως 56 στοιχεία σ. 58 από 1 έως 6 στοιχεία σ. 62 XL 3 160 από 48 έως 144 στοιχεία και ερµάρια διανοµής ισχύος XL 3 σ. 68 Ράγες, πλάτες στήριξης και µετώπες σ. 77 0

Διαβάστε περισσότερα

Συµπίεση Εικόνας: Το πρότυπο JPEG

Συµπίεση Εικόνας: Το πρότυπο JPEG ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων ΒΕΣ Συµπίεση και Μετάδοση Πολυµέσων Συµπίεση Εικόνας: Το πρότυπο JPEG ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων Εισαγωγή Σχεδιάστηκε από την οµάδα Joint Photographic Experts

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Συµπίεση Δεδοµένων: Συµπίεση Ψηφιακού Βίντεο

Συµπίεση Δεδοµένων: Συµπίεση Ψηφιακού Βίντεο Συµπίεση Δεδοµένων: Συµπίεση Ψηφιακού Βίντεο Αλέξανδρος Ελευθεριάδης Αναπ. Καθηγητής & Marie Curie Chair Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών eleft@di.uoa.gr,

Διαβάστε περισσότερα

Συστήµατα και Αλγόριθµοι Πολυµέσων

Συστήµατα και Αλγόριθµοι Πολυµέσων Συστήµατα και Αλγόριθµοι Πολυµέσων Ιωάννης Χαρ. Κατσαβουνίδης Οµιλία #12: Αρχιτεκτονική Texas Instruments OMAP (διπλού πυρήνα ARM + DSP) και Intel XScale 29 Νοεµβρίου 2005 Επανάληψη ιεθνές στάνταρ H.264/MPEG4-10/AVC

Διαβάστε περισσότερα

Συστήματα Πολυμέσων. Ενότητα 3: Εισαγωγικά θέματα Συμπίεσης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 3: Εισαγωγικά θέματα Συμπίεσης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Εισαγωγικά θέματα Συμπίεσης Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος 2006 2007, Χειμερινό Εξάμηνο

Ακαδημαϊκό Έτος 2006 2007, Χειμερινό Εξάμηνο ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ ΔΙΔΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΤΨΣ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 2006 2007, Χειμερινό Εξάμηνο ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση αποτελείται από

Διαβάστε περισσότερα

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους

Διαβάστε περισσότερα

χωρίςναδηµιουργείταιαίσθησηαπώλειαςτηςποιότηταςτηςανακατασκευασµένηςεικόνας.

χωρίςναδηµιουργείταιαίσθησηαπώλειαςτηςποιότηταςτηςανακατασκευασµένηςεικόνας. Το πρότυπο JPEG για κωδικοποίησηση εικόνας Το JPEG, που υιοθετήθηκε από την Joint Photographic Experts Group, είναι ένα πρότυπο που χρησιµοποιείταιευρέωςγιατησυµπίεσηακίνητωνεικόνων, µε µέσο λόγο συµπίεσης

Διαβάστε περισσότερα

Izvori jednosmernog napona (nastavak) - Stabilizatori - regulatori napona 1. deo - linearni regulatori

Izvori jednosmernog napona (nastavak) - Stabilizatori - regulatori napona 1. deo - linearni regulatori vri jednmerng napajanja Sadržaj vri jednmerng napna (nasvak) - Sbiliatri - regulatri napna 1. de - linearni regulatri 1. Uvd 2. Usmerači napna 2.1 Jedntran usmeravanje 2.2 Dvtran usmeravanje 2.3 Umnžavažavači

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

Συστήματα Πολυμέσων. Ενότητα 12: Συμπίεση Ψηφιακού Ήχου. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 12: Συμπίεση Ψηφιακού Ήχου. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Συστήματα Πολυμέσων Ενότητα 12: Συμπίεση Ψηφιακού Ήχου Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

SB MB 59638780 08/15

SB MB 59638780 08/15 SB MB 59638780 08/15 2 Πριν χρησιμοποιήσετε τη συσκευή σας για πρώτη φορά, διαβάστε αυτές τις πρωτότυπες οδηγίες χρήσης, ενεργήστε σύμφωνα με αυτές και κρατήστε τις για μελλοντική χρήση ή για τον επόμενο

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Κωδικοποίηση εικόνας

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Κωδικοποίηση εικόνας ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 2 Κωδικοποίηση εικόνας Ακολουθία από ψηφιοποιημένα καρέ (frames) που έχουν συλληφθεί σε συγκεκριμένο ρυθμό frame rate (π.χ. 10fps,

Διαβάστε περισσότερα

DESETA VEŽBA 1. zadatak:

DESETA VEŽBA 1. zadatak: DEETA VEŽBA zadata: Trasformator čiji su podaci: VA cu 4 W W u 5 % radi pri eom opterećeju uz fator sage φ 8 (id) ritom su omiali gubici u baru cu određei pri temperaturi od C Za radu temperaturu trasformatora

Διαβάστε περισσότερα

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση. (, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R

Διαβάστε περισσότερα

Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr

Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr Προς: Μαθητές Α, Β & Γ Λυκείου / Κάθε ενδιαφερόμενο Αγαπητοί Φίλοι Όπως σίγουρα

Διαβάστε περισσότερα

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Lecture- 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6.3. Sơđồ hối và thực hiện hệ thống 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6...

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜΙΙΧΑΝΊΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΤ\ ΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜΙΙΧΑΝΊΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΤ\ ΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜΙΙΧΑΝΊΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΤ\ ΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ ΕΦΑΡΜΟΓΗ ΕΠΕΞΕΡΓΑΣΙΑΣ ΒΙΝΤΕΟ ΜΕ ΤΗ ΧΡΗΣΗ ΦΙΛΤΡΩΝ ΟΝΟΜ/ΝΥΜΟ: ΣΤΑΜΑΤΗΣ ΠΑΝΑΓΙΩΤΗΣ Α.Ε.Μ. : 1047 ΤΣΙΚΤΣΙΡΗΣΛΗΜΗΤΡΗΣ

Διαβάστε περισσότερα

Register your product and get support at PPX2240 PPX2340. Οδηγίες χρήσης

Register your product and get support at  PPX2240 PPX2340. Οδηγίες χρήσης Register your product and get support at www.philips.com/welcome PPX2240 PPX2340 GR Οδηγίες χρήσης μ... 3 Α π π... 3 μ... 3 1... 4 Ε... 4 Επ... 4... 4 2... 6 μ... 6... 6 μ... 6 μ... 7 3... 8 Ε... 8 / μπ...

Διαβάστε περισσότερα

MP4 PLAYER - Εγχειρίδιο Χρήσης -

MP4 PLAYER - Εγχειρίδιο Χρήσης - MP4 PLAYER - Εγχειρίδιο Χρήσης - Περιεχόμενα Περιεχόμενα... 1 ΠΡΟΕΙΔΟΠΟΙΗΣΕΙΣ... 2 Όψη... 4 Πλήκτρα λειτουργιών, υποδοχές και επεξηγήσεις... 5 Ενεργοποίηση/ Απενεργοποίηση... 5 Χαμηλή Στάθμη Μπαταρίας...

Διαβάστε περισσότερα

Οδηγίες χρήσης Έκδοση 1.0E

Οδηγίες χρήσης Έκδοση 1.0E Οδηγίες χρήσης Έκδοση 1.0E Σηµειώσεις σχετικά µε τα πνευµατικά δικαιώµατα και πατέντες Γενικά Το iaudio είναι καταχωρηµένο εµπορικό σήµα της COWON SYSTEMS inc, Aυτό το προϊόν προορίζεται για οικιακή χρήση

Διαβάστε περισσότερα

ΕΙΚΟΝΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΕΙΚΟΝΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΕΙΚΟΝΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Απαραίτητο στοιχείο κάθε σύγχρονης εφαρμογής. Απλά και κατανοητά interfaces. Είδη εικόνων: Διτονικές (bitonal) (π.χ. έγγραφα, διαγράμματα, τεχνικά σχέδια, χάρτες) Κλίμακας του γκρίζου

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr 4 - - 75 - true true - false

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Ιστορική Αναδρομή. Σύγχρονες τάσεις στις τηλεπικοινωνίες και τεχνολογίες αιχμής, ΤΕΕ, Αθήνα, 10 Ιαν., 2006 2

Ιστορική Αναδρομή. Σύγχρονες τάσεις στις τηλεπικοινωνίες και τεχνολογίες αιχμής, ΤΕΕ, Αθήνα, 10 Ιαν., 2006 2 Σύγχρονες τεχνικές μετάδοσης σημάτων video & audio Ιστορική Αναδρομή Αναλογική Τηλεόραση Συστήματα PAL, SECAM, NTSC Εύρος Ζώνης Σήματος 6MHz, Καναλιού 8MHz Μετάδοση μέσω ασυρματικών ζεύξεων μέσω ΟΕ και

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B . písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c

Διαβάστε περισσότερα

Iz poznate entropije pare izračunat ćemo sadržaj pare u točki 2, a zatim i specifičnu entalpiju stanja 2. ( ) = + 2 x2

Iz poznate entropije pare izračunat ćemo sadržaj pare u točki 2, a zatim i specifičnu entalpiju stanja 2. ( ) = + 2 x2 1. zadata Vodena para vrši promjene stanja po desnoretnom Ranineovom cilusu. Kotao proizvodi vodenu paru tlaa 150 bar i temperature 560 o C. U ondenzatoru je tla 0,06 bar, a snaga turbine je 0 MW. otrebno

Διαβάστε περισσότερα

TIMOΚΑΤΑΛΟΓΟΣ ΔΙΑΦΗΜΙΣΤΙΚΩΝ ΠΑΡΟΧΩΝ ΔΙΑΔΙΚΤΥΑΚΩΝ ΤΟΠΩΝ ΤΗΣ ΕΡΤ Α.Ε. 2015

TIMOΚΑΤΑΛΟΓΟΣ ΔΙΑΦΗΜΙΣΤΙΚΩΝ ΠΑΡΟΧΩΝ ΔΙΑΔΙΚΤΥΑΚΩΝ ΤΟΠΩΝ ΤΗΣ ΕΡΤ Α.Ε. 2015 TIMOΚΑΤΑΛΟΓΟΣ ΔΙΑΦΗΜΙΣΤΙΚΩΝ ΠΑΡΟΧΩΝ ΔΙΑΔΙΚΤΥΑΚΩΝ ΤΟΠΩΝ ΤΗΣ ΕΡΤ Α.Ε. 2015 ΕΛΛΗΝΙΚΗ ΡΑΔΙΟΦΩΝΙΑ ΤΗΛΕΟΡΑΣΗ ΕΡΤ Α.Ε. ΓΕΜΗ 127248401000 ΚΑΤΕΧΑΚΗ ΚΑΙ ΜΕΣΟΓΕΙΩΝ 136 11527 ΑΘΗΝΑ ΑΦΜ:997476074 ΦΑΕ ΑΘΗΝΩΝ ΤΗΛ:2107407143

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Στοιχεία Επεξεργασίας Σήματος Δρ. Ν. Π. Σγούρος 2 Εργοδικές Διαδικασίες Η μέση τιμή διαφόρων στιγμιότυπων της διαδικασίας (στατιστική μέση τιμή) ταυτίζεται με τη χρονική μέση

Διαβάστε περισσότερα

Πολυτεχνείο Κρήτης. Τμήμα Ηλεκτρονικών Μηχανικών και. Μηχανικών Ηλεκτρονικών Υπολογιστών. Διπλωματική εργασία

Πολυτεχνείο Κρήτης. Τμήμα Ηλεκτρονικών Μηχανικών και. Μηχανικών Ηλεκτρονικών Υπολογιστών. Διπλωματική εργασία Πολυτεχνείο Κρήτης Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Διπλωματική εργασία «Μετατροπή της χωροχρονικής ανάλυσης MPEG με χρήση διανυσμάτων κίνησης» Χανιά, Μάρτιος 2005 Ζουρίδης

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v

Διαβάστε περισσότερα

Κωδικοποίηση εικόνων κατά JPEG

Κωδικοποίηση εικόνων κατά JPEG Κωδικοποίηση εικόνων κατά JPEG Εισαγωγή Προετοιµασία της εικόνας ρυθµός Ακολουθιακός απωλεστικός ρυθµός Εκτεταµένος απωλεστικός ρυθµός Μη απωλεστικός ρυθµός Ιεραρχικός ρυθµός Τεχνολογία Πολυµέσων 09-1

Διαβάστε περισσότερα

Εφαρμογές που συνδυάζουν ταυτόχρονα πολλαπλά μέσα : Κείμενο, Εικόνα, Ήχος, Video, Animation Στα πολυμέσα η προσπέλαση της πληροφορίας γίνεται με

Εφαρμογές που συνδυάζουν ταυτόχρονα πολλαπλά μέσα : Κείμενο, Εικόνα, Ήχος, Video, Animation Στα πολυμέσα η προσπέλαση της πληροφορίας γίνεται με Τι είναι Πολυμέσακαι τι Υπερμέσα Εφαρμογές που συνδυάζουν ταυτόχρονα πολλαπλά μέσα : Κείμενο, Εικόνα, Ήχος, Video, Animation Στα πολυμέσα η προσπέλαση της πληροφορίας γίνεται με γραμμικό τρόπο (προκαθορισμένη

Διαβάστε περισσότερα

19/3/2007 Πολυµέσα και Συµπίεση εδοµένων

19/3/2007 Πολυµέσα και Συµπίεση εδοµένων ΓΤΠ 61 Ηλεκτρονικοί Υπολογιστές στις Γραφικές Τέχνες Πολυµέσα και Συµπίεση εδοµένων Εισαγωγή Βασικές Έννοιες Ταξινόµηση Τεχνικών Συµπίεσης Συµπίεση Κειµένου Συµπίεση Εικόνας Συµπίεση Ήχου Συµπίεση Video

Διαβάστε περισσότερα