ΜΕΤΡΗΣΕΙΣ - ΥΠΟΛΟΓΙΣΜΟΙ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΤΡΗΣΕΙΣ - ΥΠΟΛΟΓΙΣΜΟΙ"

Transcript

1 ΜΕΤΡΗΣΕΙΣ - ΥΠΟΛΟΓΙΣΜΟΙ ΜΕΤΡΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΙ Πολλές φορές θα χρειαστεί να κάνεις µετρήσεις αποστάσεων, ύψους ή πλάτους. Βέβαια µια µετροταινία λύνει το πρόβληµα. Ο πρόσκοπος όµως πρέπει να είναι σε θέση να χρησιµοποιήσει διάφορους µεθόδους που θα τον βοηθήσουν να κάνει τις µετρήσεις του. Απαραίτητο πριν προχωρήσοµε στις µεθόδους αυτές είναι να γνωρίζεις τις προσωπικές σου µετρήσεις. ΜΕΤΡΗΣΗ ΑΠΟΣΤΑΣΕΩΝ Από το πόσο ευδιάκριτα φαίνονται ορισµένα αντικείµενα, άνθρωποι ή και τα χαρακτηριστικά τους, καθορίζεται και η απόσταση στην οποία βρίσκονται Να θυµάσαι ότι: Τα αντικείµενα απ' φαίνονται κοντύτερα πραγµατικά είναι: - όταν ο ήλιος λάµπει και κτυπά το αντικείµενο. - όταν µεσολαβεί µία έκταση νερού ή χιονιού. - όταν τα βλέπουµε από ψηλά ή χαµηλά. δηλ δεν βρισκόµαστε στο ίδιο επίπεδο. - όταν η ατµόσφαιρα είναι καθαρή. - όταν το φόντο και το αντικείµενο είναι διαφορετικού χρώµατος Τα αντικείµενα φαίνονται µακρύτερα Ότι από πραγµατικά είναι: - όταν είναι σκιά. - όταν µεσολαβεί κάποια κοιλάδα. - όταν το φόντο είναι του ίδιου χρώµατος. - όταν ο παρατηρητής είναι ξαπλωµένος κατα γης ή στα γόνατα. - όταν υπάρχει πάνω από το έδαφος πάχνη. 1

2 2

3 ΜΕΤΡΗΣΗ ΥΨOYΣ Ας υποθέσοµε ότι θέλοµε να µετρήσοµε το ύψος ενός δένδρου, στύλου, ιστού, καµπαναριού κλπ. Πρώτη Μέθοδος: Ζητάµε από κάποιο πρόσωπο να σταθεί στη βάση του αντικειµένου που θέλοµε να µετρήσοµε το ύψος του. Αν δεν υπάρχει πρόσκοπος διαθέσιµος στήνοµε ένα κοντάρι που ξέροµε το ύψος του. Αν και αυτό δεν υπάρχει, σηµειώνοµε πάνω στο αντικείµενο το δικό µας ύψος αφού σταθούµε στη βάση του. Αποµακρυνόµαστε από το αντικείµενο και κρατώντας µε τεντωµένο το χέρι µας ένα µικρό κλαδί ή µολύβι προσπαθούµε κλείνοντας το ένα µάτι να καλύψοµε µε το κλαδί/µολύβι τον πρόσκοπο ή το κοντάρι που στήσαµε στη βάση ή τη µέτρηση που κάναµε στο αντικείµενο. Στη συνέχεια προσπαθούµε µετακινώντας το µολύβι προς τα πάνω διαδοχικά να δούµε πόσα µήκη του µολυβιού χρειάζονται για να φθάσοµε στην κορυφή του αντικειµένου. Ένας απλός πολλαπλασιασµός της πρώτης µέτρησης (ύψος προσκόπου ή δικού µας ή το µήκος του κονταριού µε τις φορές που µετακινήθηκε το µολύβι) µας δίνει το ύψος του αντικειµένου. εύτερη Μέθοδος: Κρατώντας πάλι ένα κλαδί ή µολύβι µε το χέρι µας τεντωµένο προσπαθούµε κοιτώντας µε το ένα µας µάτι και µετακινώντας τον αντίχειρά µας να καλύψοµε τη βάση και το ύψος του αντικειµένου που θέλοµε να µετρήσοµε. Γυρίζοµε το κλαδί/µολύβι µας µε κέντρο τη βάση του 900 και ζητάµε από ένα πρόσκοπό µας να σταθεί εκεί που θα δείχνει η κορυφή του µολυβιού/κλαδιού. Αν δεν υπάρχει πρόσκοπος διαθέσιµος σηµειώνοµε κάποιο χαρακτηριστικό σηµείο του εδάφους που αγγίζει η άκρη του µολυβιού/κλαδιού. Η απόσταση αυτή από τη βάση του αντικειµένου µέχρι του σηµείου που έδειξε η κορυφή του µολυβιού/κλαδιού είναι ίση µε το ύψος του. Τρίτη Μέθοδος: Σε µια απόσταση που νοµίζοµε είναι ίση µε το ύψος του αντικειµένου που θέλοµε να µετρήσοµε βάζοµε µια λεκάνη µε νερό ή ένα καθρέπτη. Κάνοµε βήµατα προς τα πίσω ώστε η απόστασή µας από τη λεκάνη να είναι ίση µε το ύψος µας. Αν µέσα στη λεκάνη βλέποµε την κορυφή του αντικειµένου τότε η απόσταση της λεκάνης από το αντικείµενο είναι ίση µε το ύψος του. Αν δεν δούµε την κορυφή του µετακινούµε τη λεκάνη ανάλογα µέχρις ότου το πετύχοµε, κρατώντας πάντα την απόσταση µεταξύ µας και της λεκάνης ίση µε το ύψος µας. 3

4 Τέταρτη Μέθοδος: Σε µια απόσταση από το αντικείµενο που θέλουµε να µετρήσoυµε το ύψος του στήνουµε το προσκοπικό µας κοντάρι. Σκύβουµε τότε στο έδαφος και αποµακρυνόµαστε στην ευθεία αντικειµένου/κονταριού µέχρις ότου µπορέσοµε να δούµε σε ευθεία την κορυφή του κονταριού µας και την κορυφή του αντικειµένου. ηµιουργούνται έτσι δυο όµοια τρίγωνα. Μετράµε την απόσταση από το κοντάρι µέχρι του σηµείου που είδαµε την ευθεία των κορυφών κονταριού, αντικειµένου. Μετράµε και την απόσταση από τη βάση του αντικειµένου µέχρι το πιο πάνω πάλι σηµείο και κάνοµε τον εξής συλλογισµό.- Βάση µεγάλου τριγώνου = Βάση µικρού τριγώνου Ύψος αντικειµένου Ύψος κονταριού Ύψος αντικειµένου = Βάση µεγάλου τριγώνου Χ Ύψος Κονταριού Βάση µικρού τριγώνου Πέµπτη Μέθοδος: Εάν υπάρχει σκιά του αντικειµένου µετράµε το µήκος της και µε µια απλή µέθοδο των τριών αφού µετρήσοµε τη σκιά που δίνει το στηµένο προσκοπικό µας κοντάρι ή εµείς οι ίδιοι βρίσκοµε το ύψος του αντικειµένου. Όταν π,χ. το κοντάρι µας του 1.50 εκ. µας δίνει σκιά 3 µέτρα, η σκιά του αντικειµένου των 30 µέτρων µας δίνει το ύψος του που είναι 15 µέτρα. Ύψος κονταριού Χ Μήκος σκιάς αντικειµένου = Ύψος Αντικειµένου Μήκος σκιάς κονταριού ΜΕΤΡΗΣΗ ΠΛΑΤΟΥΣ Υπάρχουν και στην περίπτωση αυτή διάφοροι τρόποι για να µετρήσοµε το πλάτος ενός ποταµού. ΜΕΘΟ ΟΣ ΝΑΠΟΛΕΟΝΤΟΣ Στεκόµαστε στην όχθη του ποταµού ατενίζοντας την αντίπερα όχθη γέρνοντας το κεφάλι µας προς τα µπρος ώστε το πηγούνl µας να αγγίζει το στήθος µας. Βάζοµε τότε την παλάµη µας στο µέτωπό µας και προσπαθούµε να δούµε την άκρη της ναφαίνεταl ότι αγγίζει την αντίπερα όχθη. Το κεφάλl µας είναι πάντα στητό µε το πηγούνl ακουµπισµένο στο στήθος µας. Κάνοµε στη συνέχεια στροφή στα δεξιά χωρίς να µετακινήσοµε τη θέση της παλάµης µας ή του προσώπου µας. Το σηµείο του εδάφους που δείχνει να αγγίζει τώρα η άκρη της παλάµης µας είναι το πλάτος του ποταµού. Ο Ναπολέων πιθανόν αντί της παλάµης του να χρησιµοποιούσε το γείσο του καπέλου του. Αν φοράς πλατύγυρο µπορείς να το χρησιµοποιήσεις και εσύ. 4

5 ΜΕΘΟ ΟΣ ΙΣΩΝ ΤΡΙΓΩΝΩΝ Παίρνοµε σαν βάση ένα χαρακτηριστικό σηµείο (Α) στην αντίπερα όχθη, ένα δένδρο, ένα βράχο, ένα θάµνο. Απέναντί του στην όχθη που βρισκόµαστε (B) στήνοµε το κοντάρι µας. Με γωνία 90 ο πάνω στην νοητή γραµµή του κονταριού µας και του σηµείου στην αντίπερα όχθη περπατάµε κατά µήκος της όχθης για ένα ορισµένο µήκος (Γ). Ας πούµε 60 βήµατα. Στο καινούργιο σηµείο βάζοµε ένα άλλο κοντάρι και συνεχίζοµε για άλλα 60 βήµατα για να στήσοµε ένα τρίτο κοντάρι ( ). Με γωνία πάλι 90 ο στην πορεία που καλύψαµε περπατάµε µέχρι να φθάσοµε σε ένα σηµείο (Ε) ώστε να µπορούµε να βλέπουµε τα σηµεία Α και Γ σε ευθεία. Η απόσταση Ε είναι το πλάτος του ποταµού. Αν η όχθη µας είναι ανώµαλη µπορούµε σαν απόσταση Γ να καλύψοµε το µισό της απόστασης ΒΓ. Οπότε το πλάτος του ποταµού θα είναι το διπλάσιο της απόστασης Ε. ΜΕΘΟ ΟΣ ΤΗΣ ΠΥΞΙ ΑΣ Παίρνουµε πάλι σαν βάση µας ένα χαρακτηριστικό σηµείο (Α) στην αντίπερα όχθη. Στο σηµείο (Β) τοποθετούµε την πυξίδα µας ώστε ο δείκτης κατευθύνσεως να δείχνει το χαρακτηριστικό σηµείο(α). Γυρίζοµε το ανεµολόγιο της πυξίδας ώστε να συµπέσει το Ν του ανεµολογίου µε τη µαγνητική βελόνη. ιαβάζοµε τις µοίρες (Ας υποθέσοµε είναι 120 ο ) και προσθέτοµε άλλες 45 ο. Προχωράµε παράλληλα προς τον ποταµό µε γωνία 90 ο στο σηµείο Β έχοντας το δείκτη κατευθύνσεως στραµµένο προς το σηµείο Α.. Όταν η µαγνητική µας βελόνη συµπέσει µε το Ν του ανεµολογίου µας το σηµείο που φθάσαµε Γ απέχει από το Β όσο είναι το πλάτος του ποταµού. (προσθέσαµε 45 ο που αντιστοιχούν στο άνοιγµα των γωνιών του ορθογωνίου τριγώνου που σχηµατίστηκε). 5

Απαραίτητο πριν προχωρήσουμε στις μεθόδους αυτές είναι να γνωρίζεις τις προσωπικές σου μετρήσεις.

Απαραίτητο πριν προχωρήσουμε στις μεθόδους αυτές είναι να γνωρίζεις τις προσωπικές σου μετρήσεις. Πολλές φορές θα χρειαστεί να κάνεις μετρήσεις αποστάσεων, ύψους ή πλάτους. Βέβαια μια μετροταινία λύνει το πρόβλημα. Ο πρόσκοπος όμως πρέπει να είναι σε θέση να χρησιμοποιήσει διάφο ρους μεθόδους που θα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής

ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής ΚΕΦΑΛΑΙΟ 4 ιατήρηση ορµής Ας θεωρήσοµε δυο υλικά σηµεία και µε µάζες και αντιστοίχως που βρίσκονται την τυχούσα χρονική στιγµή στις αντίστοιχες διανυσµατικές ακτίνες και και έχουν αντίστοιχες ταχύτητες

Διαβάστε περισσότερα

ΚΕ 04-03 ΤΕΣΤ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ

ΚΕ 04-03 ΤΕΣΤ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ ΚΕ 04-03 ΤΕΣΤ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ 1. Στο ελεύθερο η είσοδος του χεριού πρέπει να γίνεται α με το χέρι ελαφρώς λυγισμένο έξω από το ύψος του ώμου β με το χέρι τεντωμένο έξω από το ύψος του ώμου γ με το χέρι

Διαβάστε περισσότερα

Μάθημα 1 ο : Εντολές κίνησης

Μάθημα 1 ο : Εντολές κίνησης Μάθημα 1 ο : Εντολές κίνησης Στο πρώτο µάθηµα θα εξοικειωθείς µε τις βασικές εντολές του Scratch που βρίσκονται στην παλέτα κίνηση. Θα µάθεις να µετακινείς ένα αντικείµενο, να το περιστρέφεις και να το

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

Δρ. Απόστολος Ντάνης. Σχολικός Σύμβουλος Φυσικής Αγωγής

Δρ. Απόστολος Ντάνης. Σχολικός Σύμβουλος Φυσικής Αγωγής Δρ. Απόστολος Ντάνης Σχολικός Σύμβουλος Φυσικής Αγωγής *Βασικές μορφές προσανατολισμού *Προσανατολισμός με τα ορατά σημεία προορισμού στη φύση *Προσανατολισμός με τον ήλιο *Προσανατολισμός από τη σελήνη

Διαβάστε περισσότερα

Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου. Εφαπτομένη Οξείας Γωνίας

Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου. Εφαπτομένη Οξείας Γωνίας Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου 1. Στο ορθογώνιο τρίγωνο ΑΒΓ του διπλανού σχήματος η πλευρά ΒΓ που βρίσκεται απέναντι από την ορθή

Διαβάστε περισσότερα

1.5 ΜΕΤΡΗΣΗ ΣΥΓΚΡΙΣΗ ΓΩΝΙΩΝ

1.5 ΜΕΤΡΗΣΗ ΣΥΓΚΡΙΣΗ ΓΩΝΙΩΝ 1 5 ΜΕΤΡΗΣΗ ΣΥΓΚΡΙΣΗ ΓΩΝΙΩΝ ΘΕΩΡΙ Μονάδα µέτρησης γωνιών : Είναι η 1 µοίρα που γράφεται 1 ο Υποδιαιρέσεις της 1 ο : 1 ο = 60 (πρώτα λεπτά) και 1 = 60 ( δεύτερα λεπτά) 3. Μέτρο γωνίας : Είναι ο αριθµός

Διαβάστε περισσότερα

Φύλλο 1. Δράσεις με το λογισμικό Cabri-geometry II

Φύλλο 1. Δράσεις με το λογισμικό Cabri-geometry II 1 Φύλλο 1 Δράσεις με το λογισμικό Cabri-geometry II Στις δύο παρακάτω γραμμές από το περιβάλλον του λογισμικού αυτού η πρώτη αφορά γενικές επεξεργασίες και δεύτερη με τα εικονίδια περιλαμβάνει τις στοιχειώδεις

Διαβάστε περισσότερα

παράθυρα ιδακτικό υλικό µαθητή Πλήκτρα για να το παράθυρο Λωρίδα τίτλου Πλαίσιο παραθύρου

παράθυρα ιδακτικό υλικό µαθητή Πλήκτρα για να το παράθυρο Λωρίδα τίτλου Πλαίσιο παραθύρου ιδακτικό υλικό µαθητή παράθυρα Κατά τη διάρκεια της µελέτης µας γράφουµε και διαβάζουµε, απλώνοντας πάνω στο γραφείο τετράδια και βιβλία. Ξεκινώντας ανοίγουµε αυτά που µας ενδιαφέρουν πρώτα και συνεχίζουµε

Διαβάστε περισσότερα

Πόσες µαύρες τελείες βλέπετε ; Οι οριζόντιες γραµµές δείχνουν να είναι παράλληλες ;

Πόσες µαύρες τελείες βλέπετε ; Οι οριζόντιες γραµµές δείχνουν να είναι παράλληλες ; Πόσες µαύρες τελείες βλέπετε ; Οι οριζόντιες γραµµές δείχνουν να είναι παράλληλες ; και όµως είναι! 1 Το παρακάτω σχήµα δείχνει για ελικοειδές ; και όµως δεν είναι! Οι κύκλοι είναι ανεξάρτητοι. Πόσα χρώµατα

Διαβάστε περισσότερα

Ασκήσεις εμπιστοσύνης, ισορροπίας και ενδυνάμωσης

Ασκήσεις εμπιστοσύνης, ισορροπίας και ενδυνάμωσης Ασκήσεις εμπιστοσύνης, ισορροπίας και ενδυνάμωσης.. τα δύο σώματα γίνονται ένα σύστημα σωμάτων κι αποκτούν κοινό κέντρο βάρους, με ισοκατανομή δυνάμεων το κεφάλι, η πλάτη, η κοιλιά και οι γλουτοί βρίσκονται

Διαβάστε περισσότερα

Εισηγητής: Καραγιώργος Θωμάς, MSc, PhD candidate in Sport Management & Recreation ΤΜΗΜΑ ΕΠΙΣΤΙΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΑΡΙΣΤOΤΕΛΕΙΟ

Εισηγητής: Καραγιώργος Θωμάς, MSc, PhD candidate in Sport Management & Recreation ΤΜΗΜΑ ΕΠΙΣΤΙΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΑΡΙΣΤOΤΕΛΕΙΟ Εισηγητής: Καραγιώργος Θωμάς, MSc, PhD candidate in Sport Management & Recreation ΤΜΗΜΑ ΕΠΙΣΤΙΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΑΡΙΣΤOΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Γεωδαιτικό σύστημα Χάρτης Πυξίδα Χάραξη

Διαβάστε περισσότερα

Να το πάρει το ποτάµι;

Να το πάρει το ποτάµι; Να το πάρει το ποτάµι; Είναι η σκιά ενός σώµατος που το φωτίζει ο Ήλιος. Όπως η σκιά του γνώµονα ενός ηλιακού ρολογιού που µε το αργό πέρασµά της πάνω απ τα σηµάδια των ωρών και µε το ύφος µιας άλλης εποχής

Διαβάστε περισσότερα

Φύλλο 3. Δράσεις με το λογισμικό The geometer s Sketchpad. Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II

Φύλλο 3. Δράσεις με το λογισμικό The geometer s Sketchpad. Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II Φύλλο 3 1 ράσεις με το λογισμικό The geometer s Sketchpad Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II όμως έχει τη δικιά του φιλοσοφία και το δικό του τρόπο συνεργασίας με το

Διαβάστε περισσότερα

ΣΩΜΑ ΠΡΟΣΚΟΠΩΝ ΚΥΠΡΟΥ ΕΠΑΡΧΙΑΚΗ ΕΦΟΡΕΙΑ ΛΕΥΚΩΣΙΑΣ

ΣΩΜΑ ΠΡΟΣΚΟΠΩΝ ΚΥΠΡΟΥ ΕΠΑΡΧΙΑΚΗ ΕΦΟΡΕΙΑ ΛΕΥΚΩΣΙΑΣ ΣΩΜΑ ΠΡΟΣΚΟΠΩΝ ΚΥΠΡΟΥ ΕΠΑΡΧΙΑΚΗ ΕΦΟΡΕΙΑ ΛΕΥΚΩΣΙΑΣ Εγχειρίδιο Τοπογραφίας Λευκωσία, Νοέμβριος 2005 ΠΕΡΙΕΧΟΜΕΝΑ ΧΑΙΡΕΤΙΣΜΟΣ ΕΠΑΡΧΙΑΚΟΥ ΕΦΟΡΟΥ 3 ΕΙΣΑΓΩΓΗ 4 ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ 8 ΧΑΡΤΗΣ 16 ΟΔΟΙΠΟΡΙΚΟ ΣΧΕΔΙΑΓΡΑΜΜΑ

Διαβάστε περισσότερα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. Μαθηματικά A Γυμνασίου Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. 1. Τι λέμε σημείο; Η άκρη του μολυβιού μας, οι κορυφές ενός σχήματος, η μύτη μιας βελόνας, μας δίνουν την έννοια του σημείου. 2. Τι λέμε

Διαβάστε περισσότερα

ασκήσεις για τον αυχένα

ασκήσεις για τον αυχένα ασκήσεις για τον αυχένα 1 η ΑΣΚΗΣΗ θέση καθιστή ή όρθια Έχοντας σταθερούς τους ώμους, κατεβάζουμε το κεφάλι προς τα κάτω, έτσι ώστε το πηγούνι να ακουμπήσει στο στέρνο. στην αρχική θέση. Σηκώνουμε το κεφάλι

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΟΣ ΧΑΡΤΗΣ. Στοιχεία τοπογραφικών χαρτών

ΤΟΠΟΓΡΑΦΙΚΟΣ ΧΑΡΤΗΣ. Στοιχεία τοπογραφικών χαρτών ΤΟΠΟΓΡΑΦΙΚΟΣ ΧΑΡΤΗΣ Στοιχεία τοπογραφικών χαρτών ρ. Ε. Λυκούδη Αθήνα 2005 Τοπογραφικοί χάρτες Βασικό στοιχείο του χάρτη αποτελεί : το τοπογραφικό υπόβαθρο, που αναπαριστά µε τη βοήθεια γραµµών (ισοϋψών)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ Α.Δ. LAKHSMI

ΑΣΚΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ Α.Δ. LAKHSMI ΑΣΚΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ Α.Δ. LAKHSMI ΑΣΚΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΠΡΩΤΗ ΑΣΚΗΣΗ: Αρχική Στάση : Αριστερό γόνατο στο πάτωμα και δεξί πόδι λυγισμένο σχηματίζοντας μια γωνία 90 μοιρών, Εισπνέεις καθώς σηκώνεις το αριστερό

Διαβάστε περισσότερα

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία.

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία. Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç Σε όλα τα παρακάτω αντικείµενα σχηµατίζονται διάφορες γωνίες ανάλογα µε τη σχετική θέση, κάθε φορά, δύο ηµιευθειών που έχουν ένα κοινό ση- µείο, όπως π.χ. είναι οι δείκτες του ρολογιού,

Διαβάστε περισσότερα

Μάθετε να γράφετε 4/5. ετών. Από τελείες στη γραµµή γραµµές και διακοσµήσεις από τη γραµµή της επιστολής. να κάνετε στο σπίτι

Μάθετε να γράφετε 4/5. ετών. Από τελείες στη γραµµή γραµµές και διακοσµήσεις από τη γραµµή της επιστολής. να κάνετε στο σπίτι Υ Ο Μ Σ Η Φ Α Ρ Γ ΙΟ Α ΤΟ ΤΕΤΡ Μάθετε να γράφετε 4/5 ετών Από τελείες στη γραµµή γραµµές και διακοσµήσεις από τη γραµµή της επιστολής να κάνετε στο σπίτι 2 Από το σχολείο στο σπίτι Από το σχολείο στο σπίτι

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

ΠΟΛΙΚΗ ΕΥΘΥΓΡΑΜΜΙΣΗ ΤΗΛΕΣΚΟΠΙΟΥ. Για έναν ερασιτέχνη αστρονόµο το πρώτο πράγµα που πιθανόν θα θελήσει

ΠΟΛΙΚΗ ΕΥΘΥΓΡΑΜΜΙΣΗ ΤΗΛΕΣΚΟΠΙΟΥ. Για έναν ερασιτέχνη αστρονόµο το πρώτο πράγµα που πιθανόν θα θελήσει ΠΟΛΙΚΗ ΕΥΘΥΓΡΑΜΜΙΣΗ ΤΗΛΕΣΚΟΠΙΟΥ Γενικά Για έναν ερασιτέχνη αστρονόµο το πρώτο πράγµα που πιθανόν θα θελήσει να κάνει, αφού στήσει το τηλεσκόπιό του, είναι να τοποθετήσει ένα προσοφθάλµιο και να κοιτάξει

Διαβάστε περισσότερα

1.4 Λύσεις αντιστρόφων προβλημάτων.

1.4 Λύσεις αντιστρόφων προβλημάτων. .4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ 1. Αν x=-3, με τι ισούται το -3x; Α. -9 Β. -6 Γ. -1 Δ. 1 Ε. 9 ΠΡΟΒΛΗΜΑ 2

ΠΡΟΒΛΗΜΑ 1. Αν x=-3, με τι ισούται το -3x; Α. -9 Β. -6 Γ. -1 Δ. 1 Ε. 9 ΠΡΟΒΛΗΜΑ 2 ΠΡΟΒΛΗΜΑ 1 Αν x=-3, με τι ισούται το -3x; Α. -9 Β. -6 Γ. -1 Δ. 1 Ε. 9 ΠΡΟΒΛΗΜΑ 2 Τα αντικείμενα της παρακάτω ζυγαριάς ισορροπούν τέλεια. Στην αριστερή πλευρά υπάρχει ένα δοχείο 1 κιλού και μισό τούβλο.

Διαβάστε περισσότερα

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί;

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί; 5. 5.2 σκήσεις σχολικού βιβλίου σελίδας 99 00 ρωτήσεις ατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί; 3 Π 5 4 Π 2 5 5 Ο 3 4 Ο 4 Π 3 Ν 3 3 Μ 3,5 3,5 Λ Ρ φ Π 4 φ ω

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Point to Point Navigation Using RMI only

Point to Point Navigation Using RMI only Point to Point Navigation Using RMI only Γειά χαρά, κατόπιν συζητήσεων που εχουν γίνει σε συναντήσεις Ελλήνων FlightSimmers έκρινα σκόπιµο να γίνει µια παρουσίαση του πως γινεται η point-to-point αεροναυτιλία

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΙΚΡΟΣΚΟΠΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ «ΒΙΟΛΟΓΙΑΣ ΚΥΤΤΑΡΟΥ» Ονοµατεπώνυµο...ΑΜ...

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΙΚΡΟΣΚΟΠΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ «ΒΙΟΛΟΓΙΑΣ ΚΥΤΤΑΡΟΥ» Ονοµατεπώνυµο...ΑΜ... ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΙΚΡΟΣΚΟΠΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ «ΒΙΟΛΟΓΙΑΣ ΚΥΤΤΑΡΟΥ» ΑΣΚΗΣΗ 2 η Μετρήσεις µε το µικροσκόπιο Κ. Φασσέας. Ονοµατεπώνυµο...ΑΜ... Σκοπός της άσκησης είναι: Να µάθουµε πώς γίνεται η

Διαβάστε περισσότερα

Παραγωγή εκπαιδευτικού υλικού του δικτύου. «Ακουστική και ιστορική ξενάγηση στα αρχαία θέατρα της Ελλάδας» Αθανασία Μπαλωμένου, ΠΕ03

Παραγωγή εκπαιδευτικού υλικού του δικτύου. «Ακουστική και ιστορική ξενάγηση στα αρχαία θέατρα της Ελλάδας» Αθανασία Μπαλωμένου, ΠΕ03 Παραγωγή εκπαιδευτικού υλικού του δικτύου. «Ακουστική και ιστορική ξενάγηση στα αρχαία θέατρα της Ελλάδας» Αθανασία Μπαλωμένου, ΠΕ03 Μέλος Παιδαγωγικής Ομάδας δικτύου ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ 1: Εύρεση

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

ραστηριότητες Θεµατικής Ενότητας Α ΕΚΠΑΙ ΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Ο ΥΣΣΕΑΣ ΦΥΛΛΟ ραστηριοτήτων 1

ραστηριότητες Θεµατικής Ενότητας Α ΕΚΠΑΙ ΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Ο ΥΣΣΕΑΣ ΦΥΛΛΟ ραστηριοτήτων 1 ραστηριότητες Θεµατικής Ενότητας Α ΕΚΠΑΙ ΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Ο ΥΣΣΕΑΣ ΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΚΟΡΙΝΘΟΥ 4 Ο ΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΜΕΛΙΣΣΙΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Α: ΠΗΓΕΣ ΦΩΤΟΣ, ΧΡΗΣΙΜΟΤΗΤΑ, ΤΟ ΗΛΙΑΚΟ ΡΟΛΟΙ, ΚΑΘΕΤΟΤΗΤΑ, ΥΨΗ

Διαβάστε περισσότερα

Χρησιµοποίηση των τεχνικών του PIAGET (µέθοδος της συνέντευξης) για. την αξιολόγηση της νοητικής ανάπτυξης των παιδιών.

Χρησιµοποίηση των τεχνικών του PIAGET (µέθοδος της συνέντευξης) για. την αξιολόγηση της νοητικής ανάπτυξης των παιδιών. Χρησιµοποίηση των τεχνικών του PIAGET (µέθοδος της συνέντευξης) για την αξιολόγηση της νοητικής ανάπτυξης των παιδιών. 1. Ταξινόµ ηση. Ηλικία: 5-7 ετών. Σκοπός: Να διερευνήσουµε πώς το παιδί ταξινοµεί

Διαβάστε περισσότερα

1.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ

1.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1 1 ΕΙΣΩΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙ Σηµείο : Είναι το σχήµα που δηµιουργείται όταν πιέσουµε την µύτη του στυλό στο τετράδιο µας η την κιµωλία στον πίνακα. Η µορφή ενός σηµείου στο τετράδιο µας είναι η ια να ονοµάσουµε

Διαβάστε περισσότερα

2

2 ΝΑΥΤΙΛΙΑ Ναυτιλία είναι η τέχνη του να γνωρίζεις, µέσα στο απέραντο γαλάζιο της θάλασσας, που βρίσκεσαι και τι πορεία πρέπει να ακολουθήσεις για να φτάσεις στον προορισµό σου. Επιµέλεια : Ηλίας. Γεωργίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9. Μη αδρανειακά συστήµατα αναφοράς

ΚΕΦΑΛΑΙΟ 9. Μη αδρανειακά συστήµατα αναφοράς ΚΕΦΑΛΑΙΟ 9 Μη αδρανειακά συστήµατα αναφοράς Στην Εισαγωγή στη Μηχανική, πριν το Κεφάλαιο 1, είδαµε ότι ο εύτερος Νόµος του Νεύτωνα ισχύει µόνο για αδρανειακούς παρατηρητές, δηλαδή για παρατηρητές που είτε

Διαβάστε περισσότερα

α) Συµπληρώστε τα κενά γνωρίζοντας ότι: β) Αν στη κάτω σειρά χρησιµοποιούνται µονοψήφιοι θετικοί ακέραιοι και διαφορετικοί µεταξύ τους τότε ποιος είναι µεγαλύτερος αριθµός που µπορεί να υπάρχει στην κορυφή;

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΕΠΙΦΑΝΕΙΑΣ Με το σχεδιασµό επιφάνειας (Custom επιφάνεια) µπορούµε να σχεδιάσουµε επιφάνειες και αντικείµενα που δεν υπάρχουν στους καταλόγους του 1992. Τι µπορούµε να κάνουµε µε το σχεδιασµό

Διαβάστε περισσότερα

ΣΕΡΒΙΣ ΒΑΤΣΑΚΛΗΣ ΧΡΗΣΤΟΣ

ΣΕΡΒΙΣ ΒΑΤΣΑΚΛΗΣ ΧΡΗΣΤΟΣ ΣΧΟΛΗ ΠΡΟΠΟΝΗΤΩΝ Γ ΚΑΤΗΓΟΡΙΑΣ ΣΕΡΒΙΣ ΕΙΣΑΓΩΓΗ Ένα καλό σέρβις είναι ένα από τα πιο σημαντικά χτυπήματα επειδή μπορεί να δώσει ένα μεγάλο πλεονέκτημα στην αρχή του πόντου. Το σέρβις είναι το πιο σημαντικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10. Ταλαντώσεις

ΚΕΦΑΛΑΙΟ 10. Ταλαντώσεις ΚΕΦΑΛΑΙΟ 0 Ταλαντώσεις Στο Παράδειγµα 9 είδαµε τη µελέτη της κίνησης υλικού σηµείου µάζας, που βρίσκεται στο ένα άκρο ελατηρίου µε το άλλο άκρο του ελατηρίου σταθερό Θα επανεετάσοµε το ίδιο πρόβληµα εδώ

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ Προσομοιωμένο διαγώνισμα απολυτήριων εξετάσεων στα Μαθηματικά της Γ Γυμνασίου ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 01-01 ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να συμπληρώσετε

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ύο τρίγωνα είναι ίσα όταν µε κατάλληλη µετατόπιση, το ένα συµπίπτει µε το άλλο. Β. Κριτήρια ισότητας τριγώνων Πρώτο κριτήριο Αν όλες οι πλευρές του ενός τριγώνου

Διαβάστε περισσότερα

Ανάλυση της τεχνικής στο ελεύθερο στυλ κολύμβησης

Ανάλυση της τεχνικής στο ελεύθερο στυλ κολύμβησης Ανάλυση της τεχνικής στο ελεύθερο στυλ κολύμβησης Περίγραμμα μαθήματος Αποτύπωση και περιγραφή της κίνησης των χεριών Κινήσεις των ποδιών Συγχρονισμός χεριών ποδιών αναπνοής Ελεύθερο Το ταχύτερο από τα

Διαβάστε περισσότερα

3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ

3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. Διαφορά μετρήσεων από εκτιμήσεις μετρήσεων. Όταν επιλύοµε ένα αντίστροφο πρόβληµα υπολογίζοµε ένα διάνυσµα παραµέτρων est m το οποίο αντιπροσωπεύει

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Από κάθε κορυφή ενός τετραγώνου «κόβουµε» τριγωνική πυραµίδα όπως φαίνεται στο σχήµα, όπου ΚΛΜ µέσα των ακµών του κύβου. Τούτο κάνουµε µε όλες τις κορυφές του κύβου. Να βρείτε πόσες είναι οι κορυφές του

Διαβάστε περισσότερα

ΙΖΟ7-Χ ISO-7X ΙΣΟΜΕΤΡΙΚΗ ΜΠΑΡΑ ΕΚΓΥΜΝΑΣΗΣ Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΣΗΜΑΝΤΙΚΟ:

ΙΖΟ7-Χ ISO-7X ΙΣΟΜΕΤΡΙΚΗ ΜΠΑΡΑ ΕΚΓΥΜΝΑΣΗΣ Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΣΗΜΑΝΤΙΚΟ: Κωδ: ΙΖΟ7-Χ ISO-7X ΙΣΟΜΕΤΡΙΚΗ ΜΠΑΡΑ ΕΚΓΥΜΝΑΣΗΣ Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΣΗΜΑΝΤΙΚΟ: Παρακαλούµε συµβουλευτείτε το γιατρό σας πριν ξεκινήσετε αυτό ή οποιοδήποτε άλλο πρόγραµµα γυµναστικής. ιαβάστε τις οδηγίες προσεκτικά

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

Σε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος.

Σε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος. ΙΩΝΙΣΜ ΕΩΜΕΤΡΙΣ ΥΚΕΙΟΥ 3/0/0 ΕΝΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΘΕΜ ο ) Να αποδείξετε ότι δύο χορδές ενός κύκλου είναι ίσες αν και µόνο αν τα αποστήµατά τους είναι ίσα. Θεωρία, σελίδα 46 σχολικού βιβλίου Θεώρηµα III

Διαβάστε περισσότερα

ΑΣΚΗΣΙΟΛΟΓΙΟ ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2

ΑΣΚΗΣΙΟΛΟΓΙΟ ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 Οι κοιλιακοί είναι από τα σηµαντικότερα σηµεία του σώµατος µας για την να φαινόµαστε γυµνασµένοι. Πέρα από αυτό όµως είναι και από τους σηµαντικότερους µύες για την υγεία µας. Σε αυτόν τον οδηγό θα βρείτε

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ζωγραφίζοντας µε τον υπολογιστή

ζωγραφίζοντας µε τον υπολογιστή ζωγραφίζοντας µε τον υπολογιστή Μια από τις εργασίες που µπορούµε να κάνουµε µε τον υπολογιστή είναι και η ζωγραφική. Για να γίνει όµως αυτό πρέπει ο υπολογιστής να είναι εφοδιασµένος µε το κατάλληλο πρόγραµµα.

Διαβάστε περισσότερα

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ;

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ; ΦΩΣ ΚΑΙ ΣΚΙΑ Πως δημιουργείτε η σκιά στη φυσική ; Λόγω της ευθύγραμμης διάδοσης του φωτός, όταν μεταξύ μιας φωτεινής πηγής και ενός περάσματος παρεμβάλλεται ένα αδιαφανές σώμα, δημιουργείτε στο πέρασμα

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΒΡΟΓΧΙΚΗΣ ΠΑΡΟΧΕΤΕΥΣΗΣ

ΟΔΗΓΙΕΣ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΒΡΟΓΧΙΚΗΣ ΠΑΡΟΧΕΤΕΥΣΗΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΒΡΟΓΧΙΚΗΣ ΠΑΡΟΧΕΤΕΥΣΗΣ Τα ακόλουθα σχεδιαγράμματα απεικονίζουν τις θέσεις βρογχικής παροχέτευσης, που είναι απαραίτητες για την παροχέτευση κάθε τμήματος των πνευμόνων. Στα σχεδιαγράμματα,

Διαβάστε περισσότερα

Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι

Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι Ο Άνθρωπος του Βιτρούβιου είναι ένα διάσημο σχέδιο με συνοδευτικές σημειώσεις του Λεονάρντο Ντα Βίντσι, που φτιάχτηκε περίπου το 1490 σε ένα από τα ημερολόγιά

Διαβάστε περισσότερα

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία 2. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΑΡΑΞΗΣ 2.1 Μετρητικές ταινίες Οι μετρητικές ταινίες, πτυσσόμενες (αρθρωτές) ή περιελισσόμενες σε θήκη, είναι κατασκευασμένες από χάλυβα ή άλλο ελαφρύ κράμα και έχουν χαραγμένες υποδιαιρέσεις

Διαβάστε περισσότερα

ΥΛΙΚΑ ΠΟΥ ΘΑ ΧΡΕΙΑΣΤΕΙΤΕ:

ΥΛΙΚΑ ΠΟΥ ΘΑ ΧΡΕΙΑΣΤΕΙΤΕ: ΗΛΙΑΚΟΣ ΦΟΥΡΝΟΣ Ένας ηλιακός φούρνος που µπορεί να κατασκευαστεί εύκολα από δύο χαρτοκιβώτια ΥΛΙΚΑ ΠΟΥ ΘΑ ΧΡΕΙΑΣΤΕΙΤΕ: ύο χαρτοκιβώτια. Προτείνουµε να χρησιµοποιήσετε ένα εσωτερικό κουτί που να είναι τουλάχιστον

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση Λύση ΑΣΚΗΣΗ 1 α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση, προκύπτει: και Με αντικατάσταση στη θεµελιώδη εξίσωση

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Πίνακες, περιγράµµατα και σκίαση

Πίνακες, περιγράµµατα και σκίαση Πίνακες, περιγράµµατα και σκίαση Οι πίνακες Οι πίνακες είναι ορθογώνια πλαίσια που χωρίζονται σε γραµµές και στήλες. Η τοµή µιας γραµµής µε µια στήλη προσδιορίζει ένα κελί. Τα στοιχεία, που παρουσιάζουµε,

Διαβάστε περισσότερα

1.2 ΓΩΝΙΑ ΒΑΣΙΚΑ ΕΠΙΠΕ Α ΣΧΗΜΑΤΑ

1.2 ΓΩΝΙΑ ΒΑΣΙΚΑ ΕΠΙΠΕ Α ΣΧΗΜΑΤΑ 1 2 ΩΝΙ ΣΙΚ ΠΙΠ ΣΧΗΜΤ ΘΩΡΙ ωνία : ίναι κάθε µία από τις χρωµατισµένες περιοχές του διπλνού σχήµατος µαζί µε τις ηµιευθείες Οx και Οy Τεθλασµένη γραµµή : ίναι µία πολυγωνική γραµµή που αποτελείται από διαδοχικά

Διαβάστε περισσότερα

Ασκήσεις για τον αυχένα

Ασκήσεις για τον αυχένα Ασκήσεις για τον αυχένα Παπαδόπουλος Ανδρέας Ορθοπαιδικός Χειρουργός Διδάκτωρ Πανεπιστημίου Πατρών Ο καλύτερος τρόπος για την πρόληψη τραυματισμών είναι η ύπαρξη ισχυρών, ευέλικτων μυών και αρθρώσεων.

Διαβάστε περισσότερα

Εισαγωγή ΕΙΣΑΓΩΓΗ ΣΤΑ ΓΣΠ

Εισαγωγή ΕΙΣΑΓΩΓΗ ΣΤΑ ΓΣΠ ΕΙΣΑΓΩΓΗ ΣΤΑ ΓΣΠ Τα τελευταία 25 χρόνια, τα προβλήµατα που σχετίζονται µε την διαχείριση της Γεωγραφικής Πληροφορίας αντιµετωπίζονται σε παγκόσµιο αλλά και εθνικό επίπεδο µε την βοήθεια των Γεωγραφικών

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό

Διαβάστε περισσότερα

Ταλαντώσεις σώματος αλλά και συστήματος.

Ταλαντώσεις σώματος αλλά και συστήματος. σώματος αλλά και συστήματος. Μια καλοκαιρινή περιπλάνηση. Τα δυο σώµατα Α και Β µε ίσες µάζες g, ηρεµούν όπως στο σχήµα, ό- που το ελατήριο έχει σταθερά 00Ν/, ενώ το Α βρίσκεται σε ύψος h0,45 από το έδαφος.

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179 8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. A Γυμνασίου 29 Μαρτίου 2014 Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:... Σχολείο:... Τάξη/Τμήμα:. Εξεταστικό Κέντρο:. Πειραματικό Μέρος Θέμα 1 ο H μέτρηση του μήκους γίνεται, συνήθως, με μετροταινία

Διαβάστε περισσότερα

ασκήσεις για τη μέση

ασκήσεις για τη μέση ασκήσεις για τη μέση 1 η άσκηση ύπτια θέση (ανάσκελα) Λυγίζουμε τα δύο γόνατα και τα τραβάμε με τα χέρια δυνατά προς το στήθος. Μετράμε αργά μέχρι το 5 και επαναφέρουμε τα πόδια στην αρχική θέση. Χαλαρώνουμε

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ ΓΕΝΙΚΗ ΦΥΣΙΚΗ Ι Ακαδηµαϊκό έτος 4-5 ΣΗΜΕΙΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ Νίκος Κυλάφης Πανεπιστήµιο Κρήτης //4 Σελίδα από 55 ΠΛΗΡΟΦΟΡΙΕΣ ΣΧΕΤΙΚΕΣ ΜΕ ΤΟ ΜΑΘΗΜΑ ΚΑΙ ΤΙΣ ΕΞΕΤΑΣΕΙΣ Το µάθηµα της Γενικής Φυσικής Ι θα γίνεται

Διαβάστε περισσότερα

10 ΤΟ ΑΘΛΗΜΑ - Η ΙΣΤΟΡΙΑ, ΤΑ ΣΤΥΛ ΚΟΛΥΜΒΗΣΗΣ ΚΑΙ ΟΙ ΚΑΝΟΝΙΣΜΟΙ

10 ΤΟ ΑΘΛΗΜΑ - Η ΙΣΤΟΡΙΑ, ΤΑ ΣΤΥΛ ΚΟΛΥΜΒΗΣΗΣ ΚΑΙ ΟΙ ΚΑΝΟΝΙΣΜΟΙ 10 ΤΟ ΑΘΛΗΜΑ - Η ΙΣΤΟΡΙΑ, ΤΑ ΣΤΥΛ ΚΟΛΥΜΒΗΣΗΣ ΚΑΙ ΟΙ ΚΑΝΟΝΙΣΜΟΙ ΤΟ ΑΘΛΗΜΑ - Η ΙΣΤΟΡΙΑ, ΤΑ ΣΤΥΛ ΚΟΛΥΜΒΗΣΗΣ ΚΑΙ ΟΙ ΚΑΝΟΝΙΣΜΟΙ 11 ΜΕΡΟΣ 1 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΟΛΥΜΒΗΣΗ 62 ΠΕΤΑΛΟΥΔΑ ΠΕΤΑΛΟΥΔΑ 63 λάκτισμα" τα γόνατα

Διαβάστε περισσότερα

2.3 ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ

2.3 ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ 79.3 ΠΡΟΒΛΗΜΑΤΑ Σύμφωνα με τα προηγούμενα δεν μπορούμε να πολογίσομε µε ακρίβεια την τιμή ενός άρρητο αριθμού. Στα διάφορα προβλήματα πο θα σναντούμε άρρητος αριθμούς θα τος προσεγγίζομε

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

γλώσσα προγραµµατισµού Logo

γλώσσα προγραµµατισµού Logo γλώσσα προγραµµατισµού Logo προγράµµατα στη Logo Μέχρι τώρα είδαµε ότι για τη δηµιουργία ενός σχήµατος πληκτρολογούµε στο πλαίσιο εισαγωγής του Παραθύρου Εντολών µια σειρά από κατάλληλες εντολές. Στη συνέχεια

Διαβάστε περισσότερα

Οδηγίες για την κατασκευή του αρχείου «Ταυτότητα (α+β) 2» 1. Αποκρύπτουµε τους άξονες και το παράθυρο άλγεβρας: Παράθυρο προβολή

Οδηγίες για την κατασκευή του αρχείου «Ταυτότητα (α+β) 2» 1. Αποκρύπτουµε τους άξονες και το παράθυρο άλγεβρας: Παράθυρο προβολή Οδηγίες για την κατασκευή του αρχείου «Ταυτότητα (α+β) 2» 1. Αποκρύπτουµε τους άξονες και το παράθυρο άλγεβρας: Παράθυρο προβολή απο-επιλέγουµε άξονες και άλγεβρα 2. Από το εργαλείο κατασκευής πολυγώνων

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

Διδακτικό υλικό Μάθημα: Τάξη: Ενότητα: Χρονική διάρκεια: Εκπαιδευτικός: Διδακτικοί στόχοι: πόσες φορές Γνωστικό επίπεδο εκπαιδευομένων: γνώριζαν

Διδακτικό υλικό Μάθημα: Τάξη: Ενότητα: Χρονική διάρκεια: Εκπαιδευτικός: Διδακτικοί στόχοι: πόσες φορές Γνωστικό επίπεδο εκπαιδευομένων: γνώριζαν Διδακτικό υλικό Μάθημα: Αριθμητικός Γραμματισμός Τάξη: Α Ενότητα: Έκλειψη Ηλίου Μέτρηση ύψους και αποστάσεων με την μέθοδο του Θαλή. Χρονική διάρκεια: 3 διδακτικές ώρες. Εκπαιδευτικός: Περυσινάκη Ειρήνη

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΥΜΝΑΣΙΟΥ 2. ΜΑΓΝΗΤΙΣΜΟΣ

ΦΥΣΙΚΗ ΓΥΜΝΑΣΙΟΥ 2. ΜΑΓΝΗΤΙΣΜΟΣ ΦΥΣΙΚΗ ΓΥΜΝΣΙΟΥ 1. ΟΠΤΙΚΗ νάκλαση Διάθλαση μονοχρωματικής ακτίνας Κυρτοί και κοίλοι καθρέπτες Συγκλίνοντες αποκλίνοντες φακοί Διάθλαση ολική ανάκλαση σε πρίσμα παιτούμενα υλικά: Φακός ακτίνων λέιζερ, επίπεδος

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999 Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΣΕΠΤΕΜΒΡΙΟΥ 1999 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Στις ερωτήσεις 1-4, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Tοπογραφικά Σύμβολα. Περιγραφή Χάρτη. Συνήθως στους χάρτες υπάρχει υπόμνημα με τα σύμβολα που χρησιμοποιούνται. Τα πιο συνηθισμένα είναι τα εξής:

Tοπογραφικά Σύμβολα. Περιγραφή Χάρτη. Συνήθως στους χάρτες υπάρχει υπόμνημα με τα σύμβολα που χρησιμοποιούνται. Τα πιο συνηθισμένα είναι τα εξής: Tοπογραφικά Σύμβολα Συνήθως στους χάρτες υπάρχει υπόμνημα με τα σύμβολα που χρησιμοποιούνται. Τα πιο συνηθισμένα είναι τα εξής: Κεντρική Αρτηρία Ρέμα Δευτερεύουσα Αρτηρία Πηγάδι Χωματόδρομος Πηγή Μονοπάτι

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα