Математикийн хичээлийн даалгавар. Эрхэм шалгуулагч танд амжилт хүсье.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Математикийн хичээлийн даалгавар. Эрхэм шалгуулагч танд амжилт хүсье."

Transcript

1 Эрхэм шалгуулагч танд амжилт хүсье. Шалгалтын бодлого бодоход ашиглагдах зарим томьёонууд: 1. Конусын хажуу гадаргуу нь SS х.г = ππ RR ll байна. Үүнд ll нь байгуулагч.. log aa kk bb = 1 kk log aa bb 3. aa bb = aa bb cccccccc. Үүнд φφ нь aa ; bb векторуудын хоорондох өнцөг. 4. (aa + bb) nn = CC nn 0 aa nn bb 0 + CC nn 1 aa nn 1 bb 1 + CC nn aa nn bb + + CC nn nn aa 0 bb nn. 5. CC nn kk = nn! kk! (nn kk)! 6. Огтлогдсон пирамидын эзэлхүүн нь VV = 1 3 HH (SS 1 + SS 1 SS + SS ) 7. ccccccαα = cccccc αα ssssss αα = 1 ssssss αα = cccccc αα 1 8. ssssssαα = ssssssss cccccccc

2 Санамж: Нэгдүгээр хэсэг. СОНГОХ ДААЛГАВАР Анхааралтай гүйцэд уншаад, зөвхөн нэг зөв хариултыг сонгож, хариултын хуудасны зохих нүдийг будаарай. -Зураг бодит хэмжээгээр өгөгдөөгүй болохыг анхаарна уу? тооны урвуу тоог олоорой. /1оноо/ A. 6 7 B. 7 6 C D E Дараах үржвэрүүдийн аль нь тооны анхны тоон задаргаа болох вэ? /1оноо/ A B. 5 7 C D. 5 7 E Тоон тэнцэтгэл бишүүдээс аль нь худал вэ? /1оноо/ A. 4 > 1 B. 4 < 1 C. > D. 8 > 8 E. 13 < Квадратын хувьд дараах өгүүлбэрүүдийн аль нь биелэхгүй вэ? /1оноо/ A. Диагональ нь оройн өнцгийн биссиктрис болно. В. Диагоналиуд нь харилцан перпендикуляр С. Эсрэг талууд нь хос хосоороо параллель D. Диагоналиуд нь тэнцүү. E. Дотоод өнцгүүдийн нийлбэр нь Түрийвчинд 0000-тын дэвсгэрт 7ш, тын дэвсгэрт 5ш, 5000-тын дэвсгэрт 8ш байв. Таамгаар 1 дэвсгэрт сугалахад 0000-тын дэвсгэрт байх магадлалыг олоорой. 7 C. /1оноо/ A. 1 3 B D E xx = 1 тэгшитгэлийн шийд аль нь вэ? 5 A. 10 B. 5 C..5 D. 10 E yy = xx 4 3xx + 6 функцийн уламжлалыг олоорой. A.4xx 6xx B.4xx 3 6xx C.4xx 3 6 D.4xx 3 + 6xx E.4xx 3 3xx утгыг ол. A. 7 B. 10 C. 6 D. E cccccc илэрхийллийн утгыг тооцоолоорой. A. 3 B. C. 1 D. 1 4 E xx 10. lim хязгаарыг бодоорой. xx xx 4 A. 0.5 B. - C. 0.5 D. 1 4 E aa ; bb векторын уртууд нь харгалзан 6; 13 бөгөөд хоорондох өнцөг нь aaaaaaaaaaaa 5 13 бол тэдгээрийн скаляр үржвэрийг ол. A. 14 B. 1 3 C. 1 6 D. 1 E A. 17 тоон илэрхийллийг хялбарчил. B C. 1 D E. 177

3 13. xx + 1 = xx 1 тэгшитгэлийн шийд аль нь вэ? A. 0; 3 B. 0 C.3 D. 3; 4 E. 1; 14. Конусын байгуулагч нь 13см ба өндөр нь 1см бол түүний хажуу гадаргуугийн талбайг олоорой. A. 60ππ B. 65ππ C. 156ππ D. 3ππ E. 56ππ 15. log 5 8 log 5 утгыг олоорой. A. 1 3 B. 1 C. D. 3 4 E А хотоос В хот хүртэл 3 өөр замаар, В хотоос С хот хүртэл 5 өөр замаар явдаг бол А хотоос гарч, В хотоор дайран С хотод хүрээд, буцаж В хотоор дайран А хотод ирж болох бүх замын тоог ол. A. 30 B. 5 C. 15 D. E ( 1 5 ) xx +xx+9 > 15 тэнцэтгэл бишийн шийдийг ол. A. ( 3; 4) B. ( 4; 3) C. ( ; 3) (4; ) D. ( ; 4) (3; ) E. [ 3; 4] 18. Арифметик прогрессийн aa 5 = 5 бол SS 9 =? A. 48 B. 5 C. 54 D. 115 E хялбарчилж, утгыг ол. A. 7 B. 1 C. 35 D. 5 E Сургалт гэдэг үгнээс үсэг дарахад хоёулаа гийгүүлэгч үсэг байх магадлалыг олоорой. A. 1 3 B. 5 7 C. 7 9 D E Гурилын үнэ 1% нэмэгдсэний дараа 11% хямдарсан бол үнэ нь анхныхаасаа хэрхэн өөрчлөгдсөн бэ? A. 0.3%-иар буурсан B.1%-иар өссөн C. өөрчлөгдөөгүй D. 0.3%-иар өссөн E. 0.68%-иар өссөн. Дараах тоонуудаас хамгийн бага тоог ол. A. 3 tttt( ππ 4 ) B. 5log 5 C D. ssssss 3ππ 3. log xx + log 4 xx = 5 A. B. ; lg58 C.; lg 3 4 E. 10 бол lg(3xx + 5) =? D. ; lg8 E. lg8 4. yy = функцийн тодорхойлогдох мужийг ол. xx A. ] ; 9] [0; [ B. ] ; 0[ [9; [ C. ]0; 9] D. [ 9; 0[ E. ] ; 9] ]0; [ 5. Доорх тэнцэтгэлүүдийн аль нь худал вэ? A = 3 B. cccccc 0 + cccccc196 0 = 0 C = 10 D. log 50 = 1+llll5 1 llll5 E = 15

4 6. aa nn = 3nn 1 A. (nn 1)! 3 nn 1 дарааллын хувьд aa nn+1 aa nn харьцааг ол. / оноо/ B. nn 1 3 C. nn 3 D. 3nn nn E. 3 nn 7. yy = 0 шулуун ба yy = xx муруйгаар хязгаарлагдсан дүрсийн талбайг олоорой. A. 4 B. 1 C. D. 8 E CC CC CC CC нийлбэрийг олоорой. A. B C. 100 D. 101 E.олох боломжгүй. 9. sin (xx ππ )cos(xx ππ ) < тэнцэтгэл бишийг бод A. ]kkkk 7ππ ; 11ππ + kkkk[ B. 4 4 ]kkkk 7ππ ; 11ππ + kkkk [ C. ]kkkk 11ππ ; 7ππ E. ] kkkk 11ππ 4 ; 7ππ 4 + kkkk [ + kkkk[ D. ]kkkk 11ππ 4 ; 7ππ 4 + kkkk[ 30. ff(xx) = xx xx + xx функцийн буурах завсрын уртыг ол. A. B. 1 C. 3 D. 4 E ff(xx) = 4 8xx функцийн хувьд ff 1 (100) хэдтэй тэнцүү вэ? A. B. 1 1 C. 1 D. E cccccc xx ssssss xx = ssssssss тэгшитгэлийн [ ππ; ππ] завсарт орших шийдүүдийн үржвэрийг олоорой. A. 5ππ3 4 B. 5ππ 1 C. 5ππ3 7 D. 5ππ3 4 E. 5ππ (log 0. xx) 3 log 0. xx + 0 тэнцэтгэл бишийн шийд аль нь вэ? A. [1; ] B. [5; 5] C. [ ; 1] D. [ 1 5 ; 5] E. [ 1 5 ; 1 5 ] 34. АВС хурц өнцөгт гурвалжны BD, AE өндрүүд харгалзан 3.см; 4см урттай бөгөөд BBBB = 1 бол АС =? EEEE 3 A. 5 B. 4 C. 3 D. 4.5 E см ба 18см радиустай тойрог гадаад байдлаар шүргэлцжээ. Тэдгээрийн шүргэлтийн цэгийг дайрахгүй ерөнхий шүргэгч шулууны шүргэлтийн цэгүүд болон уг тойргийн төвүүд дээр оройтой 4-н өнцөгтийн талбайг олоорой. / оноо/ A.15 B. 10 C. 100 D.150 E Огтлогдсон зөв гурвалжин пирамидын дээд суурийн тал 4см, доод суурийн тал 6см урттай ба хажуу ирмэг суурийн хавтгайтай 30 0 өнцөг үүсгэдэг бол уг огтлогдсон пирамидын эзэлхүүнийг олоорой. A B C D E. 1 3

5 Хоёрдугаар хэсэг.1 nn дурын натурал тоо бол 4 nn + 15nn + 17 илэрхийлэл 9-д хуваагдана гэж батал. /6 оноо/ Бодолт: I. nn = 1 үед 4 nn + 15nn + 17 = aaaa тул 9-д хуваагдана. II. nn = kk үед 4 kk + 15kk + 17 илэрхийлэл 9-д хуваагддаг гэж үзье. III. nn = kk + 1 үед 4 kk (kk + 1) + 17 = cc (4 kk + 15kk + 17) dd ( ee kk + ff ) болно. Индукцийн өмнөх алхмыг тооцвол нэмэгдэхүүн тус бүр 9-д хуваагдаж байгаа тул нийлбэр нь 9-д хуваагдана.. ssssss7xx cccccc8xx = ssssss5xx cccccc6xx тэгшитгэлийг бодоорой. /6 оноо / Бодолт: Үржвэр тус бүрийг нийлбэрт шилжүүлвэл: 1 (ssssss bbbb xx ssssssss) = 1 (ssssss dddd xx ssssssss) буюу ssssss bbbb xx ssssss dddd xx = 0 болно. Энэ ялгаварыг aa aa cccccc ffff xx = 0 үржвэрт шилжүүлвэл cos ffff xx ssssss h xx = 0лох тул [ ssssss h xx = 0 шийдтэй. xx = ππ ffff (1 + nn) [ xx = kkππ h (kk, nn ZZ)

6 .3 Хоёр шоог зэрэг орхих туршилтын туссан нүднүүдийн нийлбэр ба давтамжаар дараах хүснэгтийг үүсгэе. Туссан нүдний тоо (xx) Давтамж aa bb 5 cc 3 1 PP(xx) ээр xx үзэгдлийн магадлалыг тэмдэглэвэл: /8 оноо/ I. PP(7) = 1 dd II. III. PP(3 xx 7) = ee ff PP(xx 6) = gg 1h.4 ABC зөв гурвалжин суурьтай SABC пирамидын суурийн талууд нь 8 см, SC хажуу ирмэгийн урт нь 8см бөгөөд суурийн хавтгайд перпендикуляр байв. S орой ба ВС талын дундаж цэгийг дайрсан шулуун, АВ талын дундаж цэг ба С оройг дайрсан шулуунуудын хоорондох өнцөг ба хоорондох зайг олоорой. / 8оноо/ Бодолт: AB, CB талын дундаж цэгүүдийг харгалзан D, E гэе. AB шулууныг агуулсан, CD шулуунд перпендикуляр хавтгайд SABC пирамидыг проекцлон CD хэрчим DD II цэгт, E цэг EE II цэгт, S цэг SS II цэгт тус тус буусан гэж үзвэл SS II DD II AAAA ба SS II DD II = 8 болно. Бидний олох ёстой шулууны хоорондох зай нь SS II DD II EE II гурвалжны SS II EE II гипотенуз дээр буусан DD II HH өндөр юм. EE II DD II = aa ; SS II EE II = bb cc ; DD II HH = dd ee Олох ёстой өнцгөө αα гэж тэмдэглэвэл SSSS = ff 6 тул ssssssss = gg αα = ππ h байна.

Бодолт: ( ) ,2

Бодолт: ( ) ,2 46. AOB = 9, Rрадиустай секторын AO, OB хэрчмүүд болон AB нумыг шүргэсэн тойрог багтсан бол тойргийн радиусыг ол. Бодолт: MO = x, OO = OK OK OO = R x, OO M = 45 = OMO OM = OM = O K = x, x + Rx R = ( )

Διαβάστε περισσότερα

615 АВС гурвалжны багтаасан тойргийн төв нь О. ( А>90 ) AL биссектрисийн үргэлжлэл нь багтаасан тойргийг F цэгт огтолно. OA радиус ВС талыг Е цэгээр

615 АВС гурвалжны багтаасан тойргийн төв нь О. ( А>90 ) AL биссектрисийн үргэлжлэл нь багтаасан тойргийг F цэгт огтолно. OA радиус ВС талыг Е цэгээр 615 АВС гурвалжны багтаасан тойргийн төв нь О. ( А>90 ) AL биссектрисийн үргэлжлэл нь багтаасан тойргийг F цэгт огтолно. OA радиус ВС талыг Е цэгээр огтолно. АН нь уг гурвалжны өндөр ба АН AF3 ÐAEH30 бол

Διαβάστε περισσότερα

БИЕ ДААЛТЫН БОДЛОГО Цалин Татвар 10.

БИЕ ДААЛТЫН БОДЛОГО Цалин Татвар 10. БИЕ ДААЛТЫН БОДЛОГО. ax bx c 0 квадрат тэгшитгэлийн бодит шийдийг олох алгоритм зохиох. Хэрэв төсвийн байгууллагын ажилтан нь доорхи хүснэгтэнд өгсөн цалинтай бол татварыг тооцох программ зохио. Цалин

Διαβάστε περισσότερα

11-р ангийн математикийн хөтөлбөр. 2-р хувилбар (2012/08/05)

11-р ангийн математикийн хөтөлбөр. 2-р хувилбар (2012/08/05) 11-р ангийн математикийн хөтөлбөр -р хувилбар (01/08/05) Танилцуулга 11, 1 дугаар ангийн хөтөлбөр боловсруулах ажил болон сургалтын үеэр энэхүү материалыг ашиглана. 11 дүгээр ангийн Математик Хөтөлбөрийн

Διαβάστε περισσότερα

S.PH102 Физик-2. Семинар 7. Сэдэв : Квант механикийн үндэс, Атомын физик. Тест оны намар

S.PH102 Физик-2. Семинар 7. Сэдэв : Квант механикийн үндэс, Атомын физик. Тест оны намар S.PH102 Физик-2 Семинар 7 Сэдэв : Квант механикийн үндэс, Атомын физик Тест 2015-2016 оны намар Физик -2 7.1 Устөрөгчийн атом фотон шингээсэн бол түүний электроны орбитын радиус............. А. Багасна.

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι

Συστήματα Αυτομάτου Ελέγχου Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #9: Σύστημα ης τάξης: Χρονική Απόκριση και Χαρακτηριστικά Μεγέθη (Φυσικοί Συντελεστές) Δημήτριος

Διαβάστε περισσότερα

Ерөнхий эмиттертэй транзисторт өсгөгч Унших материал

Ерөнхий эмиттертэй транзисторт өсгөгч Унших материал ажил7 Ерөнхий эмиттертэй транзисторт өсгөгч Унших материал Electronic Deices and ircuits, 4 th edition: Section 5-1, Ac amplifier Fundamentals; Section 5-3, Amplifier Analysis Usg Small-Signal Models,

Διαβάστε περισσότερα

МИКРОКОНТРОЛЛЕРИЙН ХЯЛБАР ДАСГАЛУУД

МИКРОКОНТРОЛЛЕРИЙН ХЯЛБАР ДАСГАЛУУД 3.1. ГЭРЭЛТЭГЧ ДИОДЫГ УДИРДАХ МИКРОКОНТРОЛЛЕРИЙН ХЯЛБАР ДАСГАЛУУД Гэрэлтэгч диодуудыг төрөл бүрийн эффекттэйгээр асааж унтраах эдгээр дасгалууд нь портоор мэдээллийг хэрхэн гаргах талаар үзэх хичээл юм.

Διαβάστε περισσότερα

Тухайн Дифференциал Тэгшитгэл ба Түүний Нийтлэг Хэрэглээ

Тухайн Дифференциал Тэгшитгэл ба Түүний Нийтлэг Хэрэглээ Тухайн Дифференциал Тэгшитгэл ба Түүний Нийтлэг Хэрэглээ Сүхболдын Төгөлдөр 2012 оны 1р сарын 23 1 Өмнөх Үг Юуны өмнө энэ семинарт оролцох боломжийг олгосон Төмөр ахдаа баярлалаа. Миний бие астрофизикийн

Διαβάστε περισσότερα

НЭГДҮГЭЭР ХЭСЭГ C-н температур хэдэн кельвины температур болох вэ?. A. 281 B. 265 C. 8 D. 16 A B C. 726 D. 12

НЭГДҮГЭЭР ХЭСЭГ C-н температур хэдэн кельвины температур болох вэ?. A. 281 B. 265 C. 8 D. 16 A B C. 726 D. 12 НЭГДҮГЭЭР ХЭСЭГ 1. 8 0 C-н температур хэдэн кельвины температур болох вэ?. A. 281 B. 265 C. 8 D. 16 2. 1273 0 К температур хэдэн цельсын температур болох вэ? A. 1523 B. 20 C. 0 D. 1000 Бодлого: (3-7) 1кг

Διαβάστε περισσότερα

Өгөгдөл(Data) and Дохио(signal)

Өгөгдөл(Data) and Дохио(signal) Мэдээллийн сүлжээ профессорын баг Өгөгдөл(Data) and Дохио(signal) Семинар 2 Багш (Доктор Ph.D) Л.Одончимэг Оюутан юу эзэмших вэ: Өгөгдөл гэж юу вэ? Өгөгдөл ба Дохионы ялгаа Аналог ба Тоон дохионы ялгаа

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ ΚΑΙ ΣΧΕΔΙΑΣΜΟΙ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ I

ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ ΚΑΙ ΣΧΕΔΙΑΣΜΟΙ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ I ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ ΚΑΙ ΣΧΕΔΙΑΣΜΟΙ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ I Άσκηση 1 Ερώτημα (i) HH 0 : μμ 1 = μμ = μμ 3 = μμ 4 = μμ HH 1 : τουλάχιστον

Διαβάστε περισσότερα

Лекц:5 Эрсдэл, өгөөж ба түүхэн тоон мэдээлэл

Лекц:5 Эрсдэл, өгөөж ба түүхэн тоон мэдээлэл Лекц:5 Эрсдэл, өгөөж ба түүхэн тоон мэдээлэл 2017 оны 3-р сарын 9 Лекц 5: Эрсдэл, өгөөж ба түүхэн тоон мэдээлэл c Г.Гүнбилэг 2017 МУИС-БС 1 Агуулга 1 ХТ-г тодорхойлогчид 2 Өгөөжүүдийг харьцуулах нь 3 ЗГБХҮЦ

Διαβάστε περισσότερα

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες.

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες. 1 Πίνακες Ορίζουσες Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες. Παράδειγμα (χορήγηση Βαλασικλοβιρης (αντιυπερτασικό) σε νήπια) Ηλικία (μήνες) Μέσο Cmax (μg/ml) Μέσο βάρος

Διαβάστε περισσότερα

Дамжууллын гэмтэл ба Сувгийн. багтаамж. Оюутан юу эзэмших вэ:

Дамжууллын гэмтэл ба Сувгийн. багтаамж. Оюутан юу эзэмших вэ: Дамжууллын гэмтэл ба Сувгийн Оюутан юу эзэмших вэ: багтаамж Дамжууллын гэмтэл үүсгүүр гэж юу болохыг тодорхойлох Унтралтыг тайлбарлах, тооцоолол хийх Дохионы гажуудлыг тайлбарлах Өгөгдлийн хурд буюу Найквистийн

Διαβάστε περισσότερα

Προσομoίωση Απόκρισης Συστήματος στο MATLAB

Προσομoίωση Απόκρισης Συστήματος στο MATLAB Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Προσομoίωση Απόκρισης Συστήματος στο MATLAB Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Προσομoίωση Απόκρισης Συστήματος στο MATLAB του καθ. Ιωάννη

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι

Συστήματα Αυτομάτου Ελέγχου Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #4: Μαθηματική εξομοίωση συστημάτων στο επίπεδο της συχνότητας Μετασχηματισμός Laplace και

Διαβάστε περισσότερα

Ε.Α.Υ. Υπολογιστική Όραση. Θεωρητικό και Μαθηματικό Υπόβαθρο

Ε.Α.Υ. Υπολογιστική Όραση. Θεωρητικό και Μαθηματικό Υπόβαθρο Ε.Α.Υ. Υπολογιστική Όραση Θεωρητικό και Μαθηματικό Υπόβαθρο Γεώργιος Παπαϊωάννου 2015 ΠΡΑΞΕΙΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΣΤΟ ΧΩΡΟ ΤΗΣ ΕΙΚΟΝΑΣ Γείτονες ενός Εικονοστοιχείου Το σύνολο ΝΝ 4 (pp) των 4 οριζόντιων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΑ Χ Ρ ΗΜ ΑΤ ΙΣ Τ ΗΡ ΙΑ CISCO EXPO 2009 G. V a s s i l i o u - E. K o n t a k i s g.vassiliou@helex.gr - e.k on t ak is@helex.gr 29 Α π ρ ι λ ί ο υ 20 0 9 Financial Services H E L E X N O C A g e

Διαβάστε περισσότερα

Επίλυση Δυναμικών Εξισώσεων

Επίλυση Δυναμικών Εξισώσεων Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Επίλυση Δυναμικών Εξισώσεων Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Επίλυση Δυναμικών Εξισώσεων του καθ. Ιωάννη Αντωνιάδη και υπόκειται σε

Διαβάστε περισσότερα

Access Control Encryption Enforcing Information Flow with Cryptography

Access Control Encryption Enforcing Information Flow with Cryptography Access Control Encryption Enforcing Information Flow with Cryptography Ivan Damgård, Helene Haagh, and Claudio Orlandi http://eprint.iacr.org/2016/106 Outline Access Control Encryption Motivation Definition

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 6: Έργο και κινητική ενέργεια. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 6: Έργο και κινητική ενέργεια. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 6: Έργο και κινητική ενέργεια Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Κατανόηση και ορισμός της έννοιας του έργου Κατανόηση της κινητικής ενέργειας

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 2: Ηλεκτρικό πεδίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 2: Ηλεκτρικό πεδίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 2: Ηλεκτρικό πεδίο Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια του ηλεκτρικού πεδίου Ηλεκτρικό πεδίο φορτισμένης πηγής Ορισμός έντασης

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 11: Ταλαντώσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 11: Ταλαντώσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 11: Ταλαντώσεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή και ερμηνεία των ταλαντώσεων Διαφορική εξίσωση κι η λύση της στην περίπτωση του απλού

Διαβάστε περισσότερα

Από τις (1) και (2) έχουμε:

Από τις (1) και (2) έχουμε: ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΚΑΝΟΝΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ 3 ΣΤΟ ΜΑΘΗΜΑ «ΔΙΗΛΕΚΤΡΙΚΕΣ, ΟΠΤΙΚΕΣ, ΜΑΓΝΗΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΥΛΙΚΩΝ» ΤΟΥ ΠΑΤΡΙΚ ΑΣΕΝΟΒ (OR STEVE HARRIS FOR MY FRIENDS FROM THE SHMMY FORUM) Θέμα ον : Έχουμε ιοντικό

Διαβάστε περισσότερα

LATEX 2ε-ийн гарын авлага

LATEX 2ε-ийн гарын авлага LATEX 2ε-ийн гарын авлага буюу L A TEX 2ε-г 141 минутад Тобиас Оетикер Хьюберт Партл, Ирэн Хина, Элизабет Шлегл Хувилбар 4.26, 2008 оны 09-р сарын 25 Орчуулсан: Доржготовын Батмөнх ii Зохиогчийн эрх 1995-2005

Διαβάστε περισσότερα

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. 1 ης τάξης Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση Συστημάτων

Διαβάστε περισσότερα

Нягтруулга Multiplexing

Нягтруулга Multiplexing Шинжлэх Ухаан Технологийн Их Сургууль Мэдээлэл Холбооны Технологийн Сургууль Нягтруулга Multiplexing Мэдээллийн Сүлжээний баг Лекц 6 Багш Доктор (Ph.D) Л.Одончимэг Агуулга: Нягтруурлга гэж юу вэ? Нягтруулгын

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ 1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Προβλήματα Αδιαστατοποίησης - Δυναμικής Πληθυσμών Άσκηση 3.3, σελίδα 32 από

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι

Συστήματα Αυτομάτου Ελέγχου Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #7: Άλγεβρα Βαθμίδων (μπλόκ) Ολική Συνάρτηση Μεταφοράς Δημήτριος Δημογιαννόπουλος Τμήματος

Διαβάστε περισσότερα

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption Παράγοντες που Επηρεάζουν Διεργασία Απορρόφησης Συνήθως δίνονται: Ρυθμός

Διαβάστε περισσότερα

Απόκριση σε Αρμονική Διέγερση

Απόκριση σε Αρμονική Διέγερση Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση σε Αρμονική Διέγερση Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση σε Αρμονική Διέγερση του καθ. Ιωάννη Αντωνιάδη και υπόκειται

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 3: Μηχανικές δυνάμεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 3: Μηχανικές δυνάμεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 3: Μηχανικές δυνάμεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Περιγραφή και παρουσίαση μηχανικών δυνάμεων Βαρύτητα Τριβή (στατική και ολίσθησης) Τάση

Διαβάστε περισσότερα

Μελέτη συστήματος συμβολομετρικής ραδιομετρίας με δυνατότητα εστίασης σε άπειρη και πεπερασμένη απόσταση

Μελέτη συστήματος συμβολομετρικής ραδιομετρίας με δυνατότητα εστίασης σε άπειρη και πεπερασμένη απόσταση ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Μελέτη συστήματος συμβολομετρικής ραδιομετρίας με δυνατότητα εστίασης σε άπειρη και

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 12: To φως. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 12: To φως. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 12: To φως Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στο φως και στη δυική φύση του (κυματική, σωματιδιακή) Ορισμός ηλεκτρομαγνητισμού, ιδιότητες

Διαβάστε περισσότερα

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Μοντελοποίηση Μηχανικών Συστημάτων Πολλών

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 1: Ηλεκτρικό φορτίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 1: Ηλεκτρικό φορτίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 1: Ηλεκτρικό φορτίο Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στις έννοιες του φορτίου και της φόρτισης Θετικοί και αρνητικοί φορείς φορτίου.

Διαβάστε περισσότερα

Έλεγχος Αποθεμάτων υπό Αβέβαιη Ζήτηση

Έλεγχος Αποθεμάτων υπό Αβέβαιη Ζήτηση Έλεγχος Αποθεμάτων υπό Αβέβαιη Ζήτηση Γιώργος Λυμπερόπουλος 1 Πρότυπο Εφημεριδοπώλη Υποθέσεις/Συμβολισμός Ορίζοντας μίας περιόδου Αβέβαιη ζήτηση περιόδου: DD (μονάδες). Υπόθεση: DD συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι

Συστήματα Αυτομάτου Ελέγχου Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #10: Σύστηματα και Απόκριση Συχνότητας - Λογαριθμικά Διαγράμματα BODE Δημήτριος Δημογιαννόπουλος

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΛΟΓΟΙ ΠΟΥ ΟΔΗΓΗΣΑΝ ΣΤΗΝ ΕΠΙΛΟΓΗ ΤΟΥ ΘΕΜΑΤΟΣ

ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΛΟΓΟΙ ΠΟΥ ΟΔΗΓΗΣΑΝ ΣΤΗΝ ΕΠΙΛΟΓΗ ΤΟΥ ΘΕΜΑΤΟΣ ΣΔΕ ΑΓΡΙΝΙΟΥ ΣΧΟΛ. ΕΤΟΣ 2003-2004 ΑΓΓΛΙΚΟΣ ΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΙΤΛΟΣ ΕΝΟΤΗΤΑΣ: «Το αγγλικό αλφάβητο» ΛΟΓΟΙ ΠΟΥ ΟΔΗΓΗΣΑΝ ΣΤΗΝ ΕΠΙΛΟΓΗ ΤΟΥ ΘΕΜΑΤΟΣ Σε ένα μαθητικό δυναμικό όπως αυτό του ΣΔΕ Αγρινίου

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 10: Σύνθετη κίνηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 10: Σύνθετη κίνηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 10: Σύνθετη κίνηση Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ανάλυση σύνθετων κινήσεων (υλικών σημείων και σωμάτων) σε μεταφορική και περιστροφική Ορισμός

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής Α εξάμηνο. Αριστείδης Δοκουμετζίδης. Ύλη. Διανύσματα. Πίνακες Ορίζουσες - Συστήματα. Διαφορικές εξισώσεις

ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής Α εξάμηνο. Αριστείδης Δοκουμετζίδης. Ύλη. Διανύσματα. Πίνακες Ορίζουσες - Συστήματα. Διαφορικές εξισώσεις 1 ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής Α εξάμηνο Αριστείδης Δοκουμετζίδης Ύλη Διανύσματα Πίνακες Ορίζουσες - Συστήματα Διαφορικές εξισώσεις ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Μία φυσική ποσότητα μπορεί να αναπαρίσταται

Διαβάστε περισσότερα

МОНГОЛ ОРНЫ ЗАРИМ ЭМИЙН МӨӨГНИЙ ХИМИЙН НАЙРЛАГЫГ СУДАЛСАН ДҮН

МОНГОЛ ОРНЫ ЗАРИМ ЭМИЙН МӨӨГНИЙ ХИМИЙН НАЙРЛАГЫГ СУДАЛСАН ДҮН DOI: http://dx.doi.org/10.5564/pmas.v54i3.646 МОНГОЛ ОРНЫ ЗАРИМ ЭМИЙН МӨӨГНИЙ ХИМИЙН НАЙРЛАГЫГ СУДАЛСАН ДҮН Ш.Наранмандах, Н.Дагийсүрэн МУИС. Шинжлэх ухааны сургуь Хураангуй Сүүлийн жилүүдэд монголчууд

Διαβάστε περισσότερα

Óå Ýíá ó ïëåßï óôçí ÁèÞíá

Óå Ýíá ó ïëåßï óôçí ÁèÞíá 8 Eíüôçôá 1 Óå Ýíá ó ïëåßï óôçí ÁèÞíá speak about everyday activities school life ôá åëëçíéêü êé åìåßò... Παιδιά, αύριο θα είστε έτοιμοι αργότερα, γύρω στις δέκα. Στις έντεκα μας περιμένει η πρώτη τάξη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #7: Σύστημα Ασαφούς Λογικής Μαθηματικές Εκφράσεις

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #7: Σύστημα Ασαφούς Λογικής Μαθηματικές Εκφράσεις ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #7: Σύστημα Ασαφούς Λογικής Μαθηματικές Εκφράσεις Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

Διαβάστε περισσότερα

ÄÎÒÎÎÄÛÍ ÍÝÄ ÍªËªªËªÃ Õ ÈÍ Ç ÉËÑÈÉÍ ØÈÍÆÈËÃÝÝ

ÄÎÒÎÎÄÛÍ ÍÝÄ ÍªËªªËªÃ Õ ÈÍ Ç ÉËÑÈÉÍ ØÈÍÆÈËÃÝÝ ÄÎÒÎÎÄÛÍ ÍÝÄ ÍªËªªËªÃ Õ ÈÍ Ç ÉËÑÈÉÍ ØÈÍÆÈËÃÝÝ Санхүү Эдийн Засгийн Дээд Сургууль Боловсруулсан: Багийн ахлагч Ц.Батсүх (Ph.D, Экономиксийн тэнхимийн багш) Багийн гишүүд: Д.Больтогтох (Ph.D, Санхүү удирдлагын

Διαβάστε περισσότερα

Transmission of Analog Signal

Transmission of Analog Signal Шинжлэх Ухаан Технологийн Их Сургууль Мэдээлэл Холбооны Технологийн Сургууль Мэдээллийн сүлжээний профессорын баг Transmission of Analog Signal Лекц 5 Багш (Ph.D)Л.Одончимэг Аналог дохио дамжуулал Агуулга:

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 8: Μαγνητισμός. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 8: Μαγνητισμός. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 8: Μαγνητισμός Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εξοικείωση με τις έννοιες του μαγνητισμού και του μαγνητικού πεδίου Κινούμενο φορτίο σε μαγνητικό

Διαβάστε περισσότερα

Κεφάλαιο 12. Στοιχεία του Λογισμού των Μεταβολών

Κεφάλαιο 12. Στοιχεία του Λογισμού των Μεταβολών Κεφάλαιο 12. Στοιχεία του Λογισμού των Μεταβολών 1. Εισαγωγή Στα τελευταία χρόνια υπήρξε μια μεγάλη ποικιλία εφαρμογών των μεταβολικών μεθόδων σε πολλά πεδία της επιστήμης και της τεχνολογίας. Για το λόγο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΘΕΜΑ Α Α1. Έστω μια συνάρτηση ff που έχει πεδίο ορισμού το ΔΔ. 1. Πότε η ffλέγεται συνεχής στο xx 0 ΔΔ ; 2. Πότε η ff λέγεται συνεχής; (Μονάδες

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 4: Ηλεκτρική δυναμική ενέργεια. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 4: Ηλεκτρική δυναμική ενέργεια. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 4: Ηλεκτρική δυναμική ενέργεια Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός της ηλεκτρική δυναμικής ενέργειας. Σύγκριση με τη βαρυτική ενέργεια

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 2: Κίνηση σε επίπεδο Υλικό σημείο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 2: Κίνηση σε επίπεδο Υλικό σημείο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 2: Κίνηση σε επίπεδο Υλικό σημείο Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Επανάληψη θεωρίας διανυσμάτων Εξοικείωση με τη χρήση τους στην περιγραφή

Διαβάστε περισσότερα

Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων

Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων του καθ. Ιωάννη

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 5: Ορμή Ώθηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 5: Ορμή Ώθηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 5: Ορμή Ώθηση Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Κατανόηση της έννοιας της ορμής και της μεταβολής της Κατανόηση της έννοιας της ώθησης Σύνδεση

Διαβάστε περισσότερα

ХАВДАР ЭСИЙН ҮЙЛ АЖИЛЛАГААНД JSAP (JNK/STRESS- ACTIVATED PROTEIN KINASE-ASSOCIATED PROTEIN) УУРГИЙН ОРОЛЦОО

ХАВДАР ЭСИЙН ҮЙЛ АЖИЛЛАГААНД JSAP (JNK/STRESS- ACTIVATED PROTEIN KINASE-ASSOCIATED PROTEIN) УУРГИЙН ОРОЛЦОО DOI: http://dx.doi.org/10.5564/pmas.v56i3.694 ХАВДАР ЭСИЙН ҮЙЛ АЖИЛЛАГААНД JSAP (JNK/STRESS- ACTIVATED PROTEIN KINASE-ASSOCIATED PROTEIN) УУРГИЙН ОРОЛЦОО П.Эрдэнэбаатар 1,2, Н.Риота 2, Ё. Кацүжи 2 1 Ерөнхий

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 6: Πυκνωτές. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 6: Πυκνωτές. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 6: Πυκνωτές Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός χωρητικότητας πυκνωτή Ανάλυση γεωμετρίας και χαρακτηριστικών μεγεθών επίπεδου πυκνωτή

Διαβάστε περισσότερα

Монголд уул уурхайн өсөн нэмэгдэж буй үйлдвэрлэл хөдөө аж ахуйн салбарт хэрхэн нөлөөлж байгаа тухай

Монголд уул уурхайн өсөн нэмэгдэж буй үйлдвэрлэл хөдөө аж ахуйн салбарт хэрхэн нөлөөлж байгаа тухай Монголын бэлчээрийн нөхөн сэргэх чадамжийг бэхжүүлэх нь Салбар хөрвөсөн эрдэм шинжилгээний судалгааны хурлын бүтээл, Улаанбаатар хот, Монгол Улс, 2015 оны 6-р сарын 9-10 Монголд уул уурхайн өсөн нэмэгдэж

Διαβάστε περισσότερα

Εργαστήριο Ηλεκτρoακουστικής Άσκηση 4 - Σελίδα 1 ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗ ΑΣΚΗΣΗ 4 ΜΕΤΡΗΣΗ, ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΗΣ ΑΚΟΥΣΤΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΛΕΙΣΤΩΝ ΧΩΡΩΝ

Εργαστήριο Ηλεκτρoακουστικής Άσκηση 4 - Σελίδα 1 ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗ ΑΣΚΗΣΗ 4 ΜΕΤΡΗΣΗ, ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΗΣ ΑΚΟΥΣΤΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΛΕΙΣΤΩΝ ΧΩΡΩΝ Εργαστήριο Ηλεκτρoακουστικής Άσκηση 4 - Σελίδα 1 ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗ ΑΣΚΗΣΗ 4 ΜΕΤΡΗΣΗ, ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΗΣ ΑΚΟΥΣΤΙΚΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΛΕΙΣΤΩΝ ΧΩΡΩΝ Κάθε κλειστός χώρος παρουσιάζει ειδικά ακουστικά

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και ερμηνεία του ηλεκτρικού δυναμικού στις 3 διαστάσεις μέσω:

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 10: Ηλεκτρομαγνητική επαγωγή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 10: Ηλεκτρομαγνητική επαγωγή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 10: Ηλεκτρομαγνητική επαγωγή Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια της μαγνητικής ροής και ορισμός του μαθηματικού τύπου της

Διαβάστε περισσότερα

С.Бямбахорлоо (Доктор Ph.D, ММНБ, Аудитор, ТМЗ) СЭЗДСургуулийн ахлах багш

С.Бямбахорлоо (Доктор Ph.D, ММНБ, Аудитор, ТМЗ) СЭЗДСургуулийн ахлах багш С.Бямбахорлоо (Доктор Ph.D, ММНБ, Аудитор, ТМЗ) СЭЗДСургуулийн ахлах багш babur_26@yahoo.com ҮЙЛДВЭРЛЭЛИЙН ӨРСӨЛДӨХ ЧАДВАРЫГ ӨРТГИЙН УДИРДЛАГААР ДЭМЖИХ НЬ (Ноос боловсруулах үйлдвэрлэлийн жишээн дээр)

Διαβάστε περισσότερα

«W i -F i & Τ ο π ι κ ή α υ τ ο δ ι ο ί κ η σ η Κ ο ι τ ά ζ ο ν τ α ς π ί σ ω α π ό τ η ν υ π ο δ ο µ ή Γρηγόρης Γκ ότ σσ ης ΥΥ ππ εε ύύ θθ υυ νν οο ς ΈΈ ργο υυ .γ γ ιι αα ττ ίί νν αα εε ππ εε νν δδ ύύ

Διαβάστε περισσότερα

Το Κάλεσμα Του Ποταμού

Το Κάλεσμα Του Ποταμού نہر کی ص داي یں Nahar ki Sada`yn Αυτό το φυλλάδιο γράφτηκε στα Ουρντού (Πακιστανικά) από τον Σαίχ-ε-Ταρίκατ Αμίρ-ε-Άχλ-ε-Σούννατ, ιδρυτή της Δάβατ-ε-Ισλάμι, Αλλάμα Μολάνα Αμπου Μπιλάλ Μουχάμμαντ ال عال

Διαβάστε περισσότερα

ΜΑΘΑΙΝΩ ΝΑ ΠΑΡΟΥΣΙΑΖΟΜΑΙ ΚΑΙ ΝΑ ΓΝΩΡΙΖΩ ΑΛΛΑ ΑΤΟΜΑ Άσκηση 1 (1 ος τρόπος) -Ismi o Kumetto! Ayşo ismak l-id?

ΜΑΘΑΙΝΩ ΝΑ ΠΑΡΟΥΣΙΑΖΟΜΑΙ ΚΑΙ ΝΑ ΓΝΩΡΙΖΩ ΑΛΛΑ ΑΤΟΜΑ Άσκηση 1 (1 ος τρόπος) -Ismi o Kumetto! Ayşo ismak l-id? ΤΟ ΑΛΦΑΒΗΤΟ 1. A,a arnep, asfar 2. B,b balla, bit 3. C,c catik, Catra 4. D,d dafet, dzanin 5. Δ,δ δeca, δaxr 6. E,e exen, ekef 7. F,f farxa, fal 8. G,ġ anġe 9. Ċ,ċ ċaput 10.I,i ijr, ikl 11. J,j jtite,

Διαβάστε περισσότερα

Smart Shop uu ss ii nn g g RR FF ii dd Παύλος ΚΚ ατ σσ αρ όό ς Μ Μ MM Ε Ε ΞΞ ΥΥ ΠΠ ΝΝ ΟΟ ΜΜ ΑΑ ΓΓ ΑΑ ΖΖ Ι Ι ΡΡ ΟΟ ΥΥ ΧΧ ΙΙ ΣΣ ΜΜ ΟΟ ΥΥ E E TT HH N N ΧΧ ΡΡ ΗΗ ΣΣ ΗΗ TT OO Y Y RR FF II DD Απευθύνεται σσ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ακαδημαϊκά Έτη 01-016 ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 01 Εξεταστική Περίοδος Φεβρουάριος 01 ΘΕΜΑ 1 Ο (Μονάδες 3) Μηχανή η οποία στρέφεται με 150 Rpm (1) δίνει κίνηση μέσω ιμάντα σε άξονα

Διαβάστε περισσότερα

Γεννήτριες ΣΡ Διέγερση Σειράς

Γεννήτριες ΣΡ Διέγερση Σειράς Γεννήτριες ΣΡ Διέγερση Σειράς Γεννήτριες ΣΡ Το τύλιγμα διέγερσης συνδέεται σε σειρά με το τύλιγμα οπλισμού Το ρεύμα ολισμού είναι πολύ μεγαλύτερο από το ρεύμα διέγερσης των γεννητριών παράλληλης διέγερσης

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 12 : Κύματα. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 12 : Κύματα. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 12 : Κύματα Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και κατανόηση της έννοιας των κυμάτων Μαθηματική περιγραφή και εξισώσεις κύματος Επεξήγηση

Διαβάστε περισσότερα

АКТИВЫГ АНГИЛАХ, АКТИВЫН ЭРСДЭЛИЙН САН БАЙГУУЛЖ, ЗАРЦУУЛАХ ЖУРМЫН ШИНЭЧИЛСЭН НАЙРУУЛГЫН ТӨСӨЛ

АКТИВЫГ АНГИЛАХ, АКТИВЫН ЭРСДЭЛИЙН САН БАЙГУУЛЖ, ЗАРЦУУЛАХ ЖУРМЫН ШИНЭЧИЛСЭН НАЙРУУЛГЫН ТӨСӨЛ ЖУРМЫН ТӨСӨЛ АКТИВЫГ АНГИЛАХ, АКТИВЫН ЭРСДЭЛИЙН САН БАЙГУУЛЖ, ЗАРЦУУЛАХ ЖУРМЫН ШИНЭЧИЛСЭН НАЙРУУЛГЫН ТӨСӨЛ НЭГ. НИЙТЛЭГ ҮНДЭСЛЭЛ 1.1. Энэхүү журмын зорилго нь Банк, эрх бүхий хуулийн этгээдийн мөнгөн хадгаламж,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #6: Συστήματα Ασαφούς Λογικής Ασαφοποιητές - Αποασαφοποιητές Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού

Διαβάστε περισσότερα

БИЛЭЭ СУЛ ҮГИЙН УТГА, ХЭРЭГЛЭЭ

БИЛЭЭ СУЛ ҮГИЙН УТГА, ХЭРЭГЛЭЭ Беньямин Брозиг (Benjamin Brosig). 2012. БИЛЭЭ СУЛ ҮГИЙН УТГА, ХЭРЭГЛЭЭ (The meaning and usage of the particle bilee ). Хэл зохиол судлал V (37): 10-18. The wording of the text should be as published.

Διαβάστε περισσότερα

Άσκηση 4, σελίδα 193. α) Γράφουμε τις εξισώσεις πληθυσμού. Tα κρίσιμα σημεία (xx 0, yy 0 ) του συστήματος προκύπτουν από την εξίσωση

Άσκηση 4, σελίδα 193. α) Γράφουμε τις εξισώσεις πληθυσμού. Tα κρίσιμα σημεία (xx 0, yy 0 ) του συστήματος προκύπτουν από την εξίσωση Προβλήματα Αδιαστατοποίησης Δυναμικής Πληθυσμών Άσκηση 4, σελίδα 193 α) Γράφουμε τις εξισώσεις πληθυσμού και θέτουμε xx = FF(xx, yy) και yy = GG(xx, yy) από το βιβλίο «Mathematica και Εφαρμογές» του Στέφανου

Διαβάστε περισσότερα

ΔΙΑΙΣΘΗΤΙΚΗ ΑΣΑΦΗΣ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΔΙΑΙΣΘΗΤΙΚΗ ΑΣΑΦΗΣ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική εργασία: ΔΙΑΙΣΘΗΤΙΚΗ ΑΣΑΦΗΣ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ψαθάς Νικόλαος :4950 Επιβλέπων καθηγητής : Σεργιάδης

Διαβάστε περισσότερα

орон нутгийн эдийн ЗАСАг, САнхүүгИйн САлБАРын Тойм Боловсруулсан: МБСГ, СХ-ийн эдийн засагч Ë.Дөлгөөн Удирдаж зөвлөсөн: МБСГ, СХ-ийн захирал Н.

орон нутгийн эдийн ЗАСАг, САнхүүгИйн САлБАРын Тойм Боловсруулсан: МБСГ, СХ-ийн эдийн засагч Ë.Дөлгөөн Удирдаж зөвлөсөн: МБСГ, СХ-ийн захирал Н. орон нутгийн эдийн ЗАСАг, САнхүүгИйн САлБАРын Тойм Боловсруулсан: МБСГ, СХ-ийн эдийн засагч Ë.Дөлгөөн Удирдаж зөвлөсөн: МБСГ, СХ-ийн захирал Н.Амар ОРОН НУТГИЙН ЭДИЙН ЗАСАГ, САНХҮҮГИЙН САЛБАРЫН ТОЙМ Л.Дөлгөөн

Διαβάστε περισσότερα

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες

Διαβάστε περισσότερα

Development of a Digital Offset Laser Lock

Development of a Digital Offset Laser Lock College of William and Mary W&M Publish College of William & Mary Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2016 Development of a Digital Offset Laser Lock Ian W. Hage College

Διαβάστε περισσότερα

MOR2 ДАТА МЕНЕЖМЕНТ & АНАЛИЗ ХИЙХ СУРГАЛТ СЕМИНАР. 6 сарын 17-18, 2013, Гео-Экологийн Хүрээлэн, Улаанбаатар хот, Монгол Улс

MOR2 ДАТА МЕНЕЖМЕНТ & АНАЛИЗ ХИЙХ СУРГАЛТ СЕМИНАР. 6 сарын 17-18, 2013, Гео-Экологийн Хүрээлэн, Улаанбаатар хот, Монгол Улс MOR2 ДАТА МЕНЕЖМЕНТ & АНАЛИЗ ХИЙХ СУРГАЛТ СЕМИНАР 6 сарын 17-18, 2013, Гео-Экологийн Хүрээлэн, Улаанбаатар хот, Монгол Улс Хөтөлбөр Нээлтийн ажиллагаа, Удиртгал, Анхны мэдлэгийн шалгуур 1-р хэсэг, 6 сарын

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 9: Στροφορμή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 9: Στροφορμή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 9: Στροφορμή Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια της στροφορμής Διαφοροποίηση υλικού σημείου από στερεό σώμα Εναλλακτικοί

Διαβάστε περισσότερα

Уран олборлолт Танзани улсад ашигтай юу?

Уран олборлолт Танзани улсад ашигтай юу? Уран олборлолт Танзани улсад ашигтай юу? Уран олборлолт, уурхайн хаягдал тэйлинг ба хожим гарах зардлын эдийн засгийн тооцоо Уран олборлолтод нөлөөлөx хүчин зүйлс, тэдгээрийн эдийн засгийн тооцоо, баримт

Διαβάστε περισσότερα

ΜΟΝΤΕΛΑ ΠΙΘΑΝΟΤΗΤΩΝ ΓΙΑ ΠΕΡΙΓΡΑΦΗ ΔΕΔΟΜΕΝΩΝ ΚΙΝΔΥΝΩΝ

ΜΟΝΤΕΛΑ ΠΙΘΑΝΟΤΗΤΩΝ ΓΙΑ ΠΕΡΙΓΡΑΦΗ ΔΕΔΟΜΕΝΩΝ ΚΙΝΔΥΝΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΑΝΑΛΟΓΙΣΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗ ΚΙΝΔΥΝΟΥ ΜΟΝΤΕΛΑ ΠΙΘΑΝΟΤΗΤΩΝ ΓΙΑ ΠΕΡΙΓΡΑΦΗ ΔΕΔΟΜΕΝΩΝ ΚΙΝΔΥΝΩΝ

Διαβάστε περισσότερα

Μοντελοποίηση Μηχανικών - Ηλεκτρικών - Υδραυλικών Θερμικών Συστημάτων

Μοντελοποίηση Μηχανικών - Ηλεκτρικών - Υδραυλικών Θερμικών Συστημάτων Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Μοντελοποίηση Μηχανικών - Ηλεκτρικών - Υδραυλικών Θερμικών Συστημάτων Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Μοντελοποίηση Μηχανικών - Ηλεκτρικών

Διαβάστε περισσότερα

Λύση Παραδείγματος 1. Διάγραμμα ροής διεργασίας. Εκρόφηση χλωριούχου βινυλίου από νερό στους 25 C και 850 mmhg. Είσοδος υγρού.

Λύση Παραδείγματος 1. Διάγραμμα ροής διεργασίας. Εκρόφηση χλωριούχου βινυλίου από νερό στους 25 C και 850 mmhg. Είσοδος υγρού. Παράδειγμα 1 Μια εγκατάσταση καθαρισμού νερού απομακρύνει χλωριούχο βινύλιο (vinyl cloride) από μολυσμένα υπόγεια ύδατα σε θερμοκρασία 25 C και πίεση 850 mmhg χρησιμοποιώντας στήλη εκρόφησης κατ αντιρροή.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΚΕΦΑΛΑΙΟΥ «ΔΙΑΦΟΡΙΚΈΣ ΕΞΙΣΩΣΕΙΣ» ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ» Α εξάμηνο Φαρμακευτικής Πανεπιστήμιο Αθηνών

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΚΕΦΑΛΑΙΟΥ «ΔΙΑΦΟΡΙΚΈΣ ΕΞΙΣΩΣΕΙΣ» ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ» Α εξάμηνο Φαρμακευτικής Πανεπιστήμιο Αθηνών ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΚΕΦΑΛΑΙΟΥ «ΔΙΑΦΟΡΙΚΈΣ ΕΞΙΣΩΣΕΙΣ» ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ» Α εξάμηνο Φαρμακευτικής Πανεπιστήμιο Αθηνών Αριστείδης Δοκουμετζίδης Επίκουρος Καθηγητής 1 1. ΓΕΝΙΚΑ ΓΙΑ ΤΙΣ ΔΙΑΦΟΡΙΚΕΣ

Διαβάστε περισσότερα

CЭТГҮҮЛЧДЭД ЗОРИУЛСАН ГАРЫН АВЛАГА

CЭТГҮҮЛЧДЭД ЗОРИУЛСАН ГАРЫН АВЛАГА МОНГОЛБАНК CЭТГҮҮЛЧДЭД ЗОРИУЛСАН ГАРЫН АВЛАГА (Анхан шатны сургалт) Олон Нийтийн Боловсрол, Мэдээллийн Төв Монгол Улс, Улаанбаатар хот, Бага тойруу-3, 15160, CЭТГҮҮЛЧДЭД ЗОРИУЛСАН ГАРЫН АВЛАГА (Анхан шатны

Διαβάστε περισσότερα

ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ HOLDITCH ΚΑΙ ΟΡΙΣΜΕΝΕΣ ΓΕΝΙΚΕΥΣΕΙΣ ΤΟΥ

ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ HOLDITCH ΚΑΙ ΟΡΙΣΜΕΝΕΣ ΓΕΝΙΚΕΥΣΕΙΣ ΤΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Π.Μ.Σ. ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ HOLDITCH ΚΑΙ ΟΡΙΣΜΕΝΕΣ ΓΕΝΙΚΕΥΣΕΙΣ ΤΟΥ ΠΑΠΑΔΟΠΟΥΛΟΥ ΙΩΑΝΝΑ-ΙΡΙΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΚΕΦΑΛΑΙΟΥ «ΔΙΑΦΟΡΙΚΈΣ ΕΞΙΣΩΣΕΙΣ» ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ» Α εξάμηνο Φαρμακευτικής Πανεπιστήμιο Αθηνών

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΚΕΦΑΛΑΙΟΥ «ΔΙΑΦΟΡΙΚΈΣ ΕΞΙΣΩΣΕΙΣ» ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ» Α εξάμηνο Φαρμακευτικής Πανεπιστήμιο Αθηνών ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΚΕΦΑΛΑΙΟΥ «ΔΙΑΦΟΡΙΚΈΣ ΕΞΙΣΩΣΕΙΣ» ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ» Α εξάμηνο Φαρμακευτικής Πανεπιστήμιο Αθηνών Αριστείδης Δοκουμετζίδης Επίκουρος Καθηγητής 1 1. ΓΕΝΙΚΑ ΓΙΑ ΤΙΣ ΔΙΑΦΟΡΙΚΕΣ

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 7: Κυκλική κίνηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 7: Κυκλική κίνηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 7: Κυκλική κίνηση Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην κυκλική κίνηση Παρουσίαση και επεξήγηση γωνιακών μεγεθών ακτίνια, ταχύτητα,

Διαβάστε περισσότερα

Εργαστήριο Ηλεκτρoακουστικής Άσκηση 2 - Σελίδα 1 ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗ ΑΣΚΗΣΗ 2

Εργαστήριο Ηλεκτρoακουστικής Άσκηση 2 - Σελίδα 1 ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗ ΑΣΚΗΣΗ 2 Εργαστήριο Ηλεκτρoακουστικής Άσκηση 2 - Σελίδα 1 ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗ ΑΣΚΗΣΗ 2 MEΤΡΗΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΘΟΡΥΒΟΥ ΚΑΙ ΗΧΟΜΟΝΩΣΗΣ 1. ΕΙΣΑΓΩΓΗ Σαν θόρυβος ορίζεται συνήθως η κατηγορία των ανεπιθύμητων ήχων, που

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

gnosi.net Σπουδές πληροφορικής ø Ξένες γλώσσες ΑΓΓΛΙΚΑ ΓΑΛΛΙΚΑ ΙΤΑΛΙΚΑ ΙΣΠΑΝΙΚΑ ΓΕΡΜΑΝΙΚΑ

gnosi.net Σπουδές πληροφορικής ø Ξένες γλώσσες ΑΓΓΛΙΚΑ ΓΑΛΛΙΚΑ ΙΤΑΛΙΚΑ ΙΣΠΑΝΙΚΑ ΓΕΡΜΑΝΙΚΑ ø Ξένες γλώσσες ΤΖΕΝΗ ΠΑΥΛΑΚΟΥ-ΠΑΝΑΓΙΩΤΟΠΟΥΛΟΥ 1 ο : Κωνσταντινουπόλεως 59-Βύρωνας Τηλ: 210.7644.853 2 ο : Χειµάρας 1 & Κύπρου-Βύρωνας Τηλ:210.7643.500 3 ο : Μεταµορφώσεως 16-Βύρωνας, Τηλ: 210.7626.623

Διαβάστε περισσότερα

ЗҮРХ СУДАСНЫ ҮНДЭСНИЙ КОНФЕРЕНЦИ Зүрх судасны өвчний хяналт ба менежментийг сайжруулахад

ЗҮРХ СУДАСНЫ ҮНДЭСНИЙ КОНФЕРЕНЦИ Зүрх судасны өвчний хяналт ба менежментийг сайжруулахад ЗҮРХ СУДАСНЫ ҮНДЭСНИЙ КОНФЕРЕНЦИ 2011 Зүрх судасны өвчний хяналт ба менежментийг сайжруулахад 1 2 Кардиомиопати: ангилал, оношлогоо, эмчилгээ Д. Мөнгөнчимэг, Зүрх Судасны Төв 3 Кардиомиопатийн ангилал

Διαβάστε περισσότερα

Μελέτη καναλιού ΜΙΜΟ με την χρήση της θεωρίας γραφημάτων

Μελέτη καναλιού ΜΙΜΟ με την χρήση της θεωρίας γραφημάτων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Διπλωματική Εργασία Μελέτη καναλιού ΜΙΜΟ με την χρήση της θεωρίας γραφημάτων

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜ- ΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Συνοπτικός (Συγκεντρωτικός) Προγραμματισμός Παραγωγής

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜ- ΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Συνοπτικός (Συγκεντρωτικός) Προγραμματισμός Παραγωγής ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜ- ΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Συνοπτικός (Συγκεντρωτικός) Προγραμματισμός Παραγωγής Γιώργος Λυμπερόπουλος Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανολόγων Μηχανικών 17/3/2017 Γ. Λυμπερόπουλος - Διοίκηση

Διαβάστε περισσότερα

Σχεδιασμοό ς θερμικουό ηλιακουό συστηέ ματος με τη μεέθοδο της ωριαιέας δυναμικηά ς αναά λυσης

Σχεδιασμοό ς θερμικουό ηλιακουό συστηέ ματος με τη μεέθοδο της ωριαιέας δυναμικηά ς αναά λυσης Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Σχεδιασμοό ς θερμικουό ηλιακουό συστηέ ματος με τη μεέθοδο της ωριαιέας δυναμικηά ς αναά λυσης Ελισάβετ Χ. Σανδαλίδη

Διαβάστε περισσότερα

Агуулга. Нүүрс ус. Моносахарид Гликозид, гликозидийн холбоо Дисахарид Полисахарид. Ангилал Нэршил

Агуулга. Нүүрс ус. Моносахарид Гликозид, гликозидийн холбоо Дисахарид Полисахарид. Ангилал Нэршил НҮҮРС УС Лекц 3 Агуулга Нүүрс ус Ангилал Нэршил Моносахарид Гликозид, гликозидийн холбоо Дисахарид Полисахарид Нүүрс ус амьд эд эсийн бүрэлдэхүүн хэсэг хоол тэжээлийн нөөц, энергийн үндсэн эх үүсвэр Түлш

Διαβάστε περισσότερα

Хэсэг 21 Монголын нийслэлд хэлмэгдүүлэлтийн өмнө болон шашин сэргэсний дараах бурханы шашны зан үйл, баяр ёслол

Хэсэг 21 Монголын нийслэлд хэлмэгдүүлэлтийн өмнө болон шашин сэргэсний дараах бурханы шашны зан үйл, баяр ёслол Хэсэг 21 Монголын нийслэлд хэлмэгдүүлэлтийн өмнө болон шашин сэргэсний дараах бурханы шашны зан үйл, баяр ёслол Кристина Телеки Монголын Бурханы шашны зан үйлүүд нь Бурханы шашныг түгээн дэлгэрүүлэх, хамаг

Διαβάστε περισσότερα

gnosi.net Σπουδές πληροφορικής ø Ξένες γλώσσες ΑΓΓΛΙΚΑ ΓΑΛΛΙΚΑ ΙΤΑΛΙΚΑ ΙΣΠΑΝΙΚΑ ΓΕΡΜΑΝΙΚΑ

gnosi.net Σπουδές πληροφορικής ø Ξένες γλώσσες ΑΓΓΛΙΚΑ ΓΑΛΛΙΚΑ ΙΤΑΛΙΚΑ ΙΣΠΑΝΙΚΑ ΓΕΡΜΑΝΙΚΑ ø Ξένες γλώσσες ΤΖΕΝΗ ΠΑΥΛΑΚΟΥ-ΠΑΝΑΓΙΩΤΟΠΟΥΛΟΥ 1 ο : Κωνσταντινουπόλεως 59-Βύρωνας Τηλ: 210.7644.853 2 ο : Χειµάρας 1 & Κύπρου-Βύρωνας Τηλ:210.7643.500 3 ο : Μεταµορφώσεως 16-Βύρωνας, Τηλ: 210.7626.623

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα