Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη"

Transcript

1 Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη Στις 14 Οκτωβρίου 2010 έφυγε από τη ζωή ο Μπενουά Μάντελμπροτ (Benoît Mandelbrot), ο άνθρωπος που έδωσε το όνομά του σ ένα από τα πιο περίπλοκα μαθηματικά αντικείμενα που επινοήθηκαν ποτέ: το σύνολο Μάντελμπροτ. Αυτό που εντυπωσιάζει στο σύνολο Μάντελμπροτ, πέρα από την πολυπλοκότητά του που αποκαλύπτεται σταδιακά καθώς κάνουμε διαδοχικές μεγεθύνσεις στα διάφορά τμήματά του είναι ο εξαιρετικά απλός μαθηματικός τύπος που υπεισέρχεται στην κατασκευή του. Ο κανόνας δημιουργίας του δεν περιλαμβάνει άλλα μαθηματικά πέρα από τον πολλαπλασιασμό και την πρόσθεση: είναι δηλαδή μια συνάρτηση της μορφής f(z)=z 2 +c. Ωστόσο, η συνεισφορά του Μάντελμπροτ στην επιστήμη δεν περιορίζεται στη μελέτη και γραφική απεικόνιση του ομώνυμου συνόλου μέσω ηλεκτρονικού υπολογιστή. Μετά τις βασικές σπουδές του στην Ecole Polytechnique του Παρισιού, έστρεψε το ερευνητικό του ενδιαφέρον στα φαινόμενα που δε μπορούν να μελετηθούν με τη βοήθεια των παραδοσιακών μαθηματικών: η διακύμανση των τιμών στις χρηματιστηριακές αγορές, η μορφογένεση των φυτών, η διαμόρφωση των ακτογραμμών, η κλιματική συμπεριφορά, η κατανομή των γαλαξιών στο σύμπαν είναι μερικά από αυτά. Κατάλαβε ότι τα κλασικά γεωμετρικά στερεά κύλινδροι, πρίσματα, πυραμίδες, κώνοι δεν επαρκούν για να περιγράψουν τις φυσικές δομές οι οποίες είναι πολύ πιο περίπλοκες. Θεώρησε ακόμα ότι ο παραδοσιακός διαχωρισμός σε μονοδιάστατα (γραμμές), δισδιάστατα (επίπεδα) και τρισδιάστατα (στερεά) σχήματα είναι πολύ φτωχός, αφού εντάσσει στην ίδια κατηγορία έναν αθώο κύκλο και μια «χιονονιφάδα του von Koch», μια γραμμή δηλαδή που ενώ καλύπτει μια πεπερασμένη επιφάνεια, έχει άπειρη περίμετρο. Έτσι ο Μάντελμπροτ δημιούργησε μια νέα γεωμετρία, την οποία ονόμασε γεωμετρία «φράκταλ». Ο όρος περιέχει τη λατινική ρίζα «fract», κλάσμα, ενδεικτική της κλασματικής διάστασης που αποδίδει η γεωμετρία αυτή στα διάφορα σχήματα. Σύμφωνα με τη νέα γεωμετρία, η καμπύλη του von Koch θα έχει διάσταση περίπου 1,261, μεγαλύτερη από τη διάσταση 1 της απλής γραμμής, αλλά μικρότερη από τη διάσταση 2 του επιπέδου. Βασικό χαρακτηριστικό της γεωμετρίας των φράκταλ είναι η αυτοομοιότητα υπό κλίμακα, η ιδιότητα δηλαδή ενός σχήματος να περιέχει μέρη που είναι πανομοιότυπα με το σύνολο. Το αγαπημένο παράδειγμα αυτοομοιότητας του Μάντελμπροτ ήταν το μπρόκολο, κάθε κομματάκι του οποίου, αν μεγεθυνθεί, έχει την ίδια μορφή με ολόκληρο το κουνουπίδι. Παραδείγματα αυτοομοιότητας μπορούμε να εντοπίσουμε σε αρκετά φυτά (η φτέρη είναι ένα άλλο κλασικό

2 παράδειγμα), στη μορφή των βουνών, στην κατανομή των κρατήρων της Σελήνης, αλλά και στις καμπύλες διακύμανσης των συναλλαγματικών ισοτιμιών ή των τιμών των σιτηρών. Βασικό εργαλείο για τη δημιουργία των φράκταλ είναι η ανάδραση (feedback). Ας φανταστούμε μια μηχανή με μια είσοδο και μια έξοδο. Αρχικά εισάγουμε στη μηχανή ένα αντικείμενο (συνήθως το αποκαλούμε σπόρο). Η μηχανή το επεξεργάζεται και μας αποδίδει στην έξοδο ένα νέο, ομοειδές αντικείμενο. Το προϊόν της επεξεργασίας είναι ο νέος μας σπόρος, τον οποίο επανεισάγουμε στη μηχανή. Αυτή η διαδικασία συνεχούς επανατροφοδότησης της μηχανής με τα προϊόντα της λέγεται ανάδραση. Το πιο απλό παράδειγμα ανάδρασης είναι μια βινεοκάμερα, συνδεδεμένη με μια τηλεόραση την οποία βιντεοσκοπεί. Εδώ ο σπόρος είναι η αρχική εικόνα της οθόνης της τηλεόρασης. Μέσα από τη βιντεοκάμερα η εικόνα περνά και επανατροφοδοτείται στην τηλεόραση που εμφανίζει στην οθόνη της τον εαυτό της. Η διαδικασία αυτή συνεχίζεται με ταχύτατο ρυθμό όση ώρα είναι ανοικτό το κύκλωμα. Αλλάζοντας τη γωνία βιντεοσκόπησης μπορούμε να δημιουργήσουμε στην οθόνη της τηλεόρασης μια σειρά από ετερόκλητες εικόνες. Οι περισσότερες από αυτές είναι χαοτικές, υπάρχουν όμως ορισμένοι συνδυασμοί γωνίας λήψης και απόστασης σκόπευσης που δίνουν απροσδόκητα «δομημένες» εικόνες. Είναι «η τάξη που αναδύεται μέσα απ το χάος». Τόσο το σύνολο Μάντελμπροτ, όσο και η χιονονιφάδα του von Koch που αναφέραμε πιο πάνω, είναι προϊόντα ανάδρασης. Με την ίδια διαδικασία μπορεί να δημιουργηθεί μια τεράστια ποικιλία εικόνων και τρισδιάστατων σχημάτων. Μάλιστα, περί τα τέλη της δεκαετίας του 1980 αποδείχθηκε το λεγόμενο «θεώρημα του κολάζ» που με πολύ απλά λόγια λέει ότι: «κάθε εικόνα μπορεί να προσεγγιστεί σε οποιονδήποτε επιθυμητό βαθμό από ένα πεπερασμένο σύστημα στοιχειωδών εικόνων, που είναι προϊόντα ανάδρασης». Έτσι η ιδιαίτερα ακριβή και χρονοβόρα διαδικασία αποθήκευσης και μετάδοσης εικόνων μπορεί να αντικατασταθεί από μια πολύ πιο γρήγορη και φτηνή κωδικοποίηση που βασίζεται στα φράκταλ. Σήμερα η ανθούσα βιομηχανία συμπίεσης των εικόνων βασίζεται ακριβώς σε αυτή τη θεωρία. Στη δεκαετία του 1960 ο μαθηματικός και μετεωρολόγος Έντουαρντ Λόρεντς (Edward Lorenz) προσπαθούσε να αναπτύξει ένα σύστημα πρόβλεψης του καιρού μέσω ηλεκτρονικού υπολογιστή. Κατά τη διάρκεια των δοκιμών του διαπίστωσε ότι μεταβολή της τάξεως του ενός δεκάκις χιλιοστού στα αρχικά του δεδομένα οδηγούσε, σε βάθος χρόνου, σε μια εντελώς διαφορετική κλιματολογική πρόβλεψη. Συγκεκριμένα στρογγυλοποιώντας έναν αριθμό από 0, σε 0,506 έφτασε να προβλέπει για ύστερα από τρεις μήνες χιονοθύελλα αντί για λιακάδα. Στο σχετικό άρθρο που δημοσίευσε αναρωτήθηκε «άραγε το φτερούγισμα μιας πεταλούδας στη Βραζιλία μπορεί να προκαλέσει ένα τυφώνα στο Τέξας;». Ύστερα από τη

3 δημοσίευσή του, αυτό το χαρακτηριστικό των χαοτικών φαινομένων, που το επίσημο όνομά του είναι «υπερευαίσθητη εξάρτηση από τις αρχικές συνθήκες», έγινε ευρύτατα γνωστό ως το φαινόμενο της πεταλούδας. Η θεωρία της πολυπλοκότητας αναπτύσσει μεθόδους για να αποκωδικοποιήσει τη δομή των χαοτικών φαινομένων που παρουσιάζουν απρόβλεπτη συμπεριφορά, ιδιαίτερα επιρρεπή σε ανατροπές εξαιτίας και της παραμικρής μεταβολής. Μέσα από τη χαοτική συμπεριφορά των τιμών του χρηματιστηρίου, των κατολισθήσεων, των κλιματικών φαινομένων, ανακαλύπτει καταστάσεις ισορροπίας προς τις οποίες ρέπουν και τα πιο πολύπλοκα φαινόμενα. Αυτές οι καταστάσεις, που έχει επικρατήσει να αποκαλούνται «παράξενοι ελκυστείς», έχουν γεωμετρική δομή φράκταλ και παρουσιάζουν ιδιομορφίες που η κλασική γεωμετρία δε θα ήταν σε θέση να περιγράψει. Σήμερα, η νέα επιστήμη της πολυπλοκότητας τείνει να ενσωματώσει και να υποκαταστήσει τους παραδοσιακούς κλάδους της φυσικής, της χημείας, της βιολογίας, της μετεωρολογίας, της αστρονομίας, της γεωλογίας, ακόμα και των οικονομικών, παρέχοντάς τους ένα κοινό μαθηματικό υπόβαθρο: τη γεωμετρία των φράκταλ. Ο δέκατος ένατος αιώνας κατακερμάτισε την παραδοσιακή «φυσική φιλοσοφία» σε δεκάδες επιμέρους επιστήμες, με εκατοντάδες εξειδικευμένους κλάδους. Άραγε ο εικοστός πρώτος αιώνας θα μας οδηγήσει, μέσα από το χάος, σε μια νέα φυσική φιλοσοφία; Ο καιρός θα δείξει... Βιβλιογραφία 1. James Gleik, Χάος, μια νέα επιστήμη, Εκδόσεις Κάτοπτρο. Το κλασικό εισαγωγικό βιβλίο στη νέα επιστήμη της πολυπλοκότητας. Πλούσιο σε ιστορικά και βιογραφικά στοιχεία, καθώς και σε συναρπαστικές περιγραφές του τρόπου με τον οποίο οι πρωτοπόροι της επιστήμης του Χάους έφτασαν, από διαφορετική πύλη εισόδου ο καθένας, να δημιουργήσουν μια εντελώς νέα θεώρηση του κόσμου. 2. Τάσου Μπούντη, Ο θαυμαστός κόσμος των fractal, Εκδόσεις Leader Books. Το βιβλίο απευθύνεται σε όσους θέλουν να προχωρήσουν ένα βήμα πιο πέρα από τις απλές «δημοσιογραφικές» περιγραφές της θεωρίας της πολυπλοκότητας. Το βιβλίο δεν απαιτεί παρά γνώσεις επιπέδου λυκείου. Κατορθώνει ωστόσο να δώσει μια ολοκληρωμένη εικόνα της νέας επιστήμης και της μαθηματικής υποδομής της της γεωμετρίας των φράκταλ. 3. Αργύρη Παυλιώτη, Παράξενοι ελκυστές, Εκδόσεις Πατάκη. Αστυνομικό μυθιστόρημα που χρησιμοποιεί τα φράκταλ, τόσο στη δομή, όσο και στο περιεχόμενό του. 4. Ian Stewart, Παίζει ο θεός ζάρια; Εκδόσεις Τραυλός και

4 5. Ian Stewart, Είναι ο θεός γεωμέτρης; Εκδόσεις Τραυλός. Δυο κλασικά βιβλία που εξετάζουν αρκετές όψεις της πολυπλοκότητας μέσα στη φύση. Σχήματα και λεζάντες Μπενουά Μάντελμπροτ ( ) Γεννημένος στην Πολωνία, μεγάλωσε και σπούδασε στη Γαλλία. Πέρασε το μεγαλύτερο μέρος της ζωής του στις ΗΠΑ, στα ερευνητικά εργαστήρια της ΙΒΜ. Είναι ο δημιουργός της θεωρίας των φράκταλ. (αρχείο Benoit Mandelbrot) To σύνολο Μάντελμπροτ, ένα περίπλοκο σχήμα που δημιουργείται με τη βοήθεια ηλεκτρονικού υπολογιστή, βασισμένο στην ανάδραση με τύπο f(z)=z 2 +c (αρχείο mandel 00) Διαδοχικές μεγεθύνσεις στο σύνολο Μάντελμπροτ. Παρατηρήστε στο κέντρο της έκτης μεγέθυνσης ένα σχήμα όμοιο με το συνολικό αρχικό σχήμα. Είναι ένα κλασικό παράδειγμα «αυτοομοιότητας». (αρχεία Mandel_zoom_01, 02, 03, 04, 05, 06).

5 Η φράκταλ δομή που επιτρέπει την ανάπτυξη γραμμών με ιδιαίτερα μεγάλο μήκος μέσα σε σχετικά περιορισμένο χώρο, είναι παρούσα ακόμα και στο ανθρώπινο σώμα. Στη φωτογραφία το δίκτυο κυκλοφορίας του αίματος μέσα σ ένα ανθρώπινο νεφρό. (αρχείο νεφρό) Τα πέντε πρώτα στάδια δημιουργίας της χιονονιφάδας του von Koch, μιας καμπύλης με άπειρη περίμετρο που περικλείει μια περιοχή με πεπερασμένο εμβαδόν. Ο κανόνας της ανάδρασης που παράγει αυτή την καμπύλη είναι: χωρίζω την κάθε πλευρά του σχήματος σε τρία ίσα μέρη και αντικαθιστώ το μεσαίο με ένα ισόπλευρο τρίγωνο που έχει πλευρά ίση με το ένα τρίτο της πλευράς του επεξεργάζομαι. Τέλος αφαιρώ τη βάση του ισοπλεύρου αυτού τριγώνου». Η κλασματική διάσταση της καμπύλης είναι περίπου 1,261 (log3/log4). (Αρχείο von koch) Romanesco broccoli Το πράσινο μπρόκολο, που αποτελούσε το αγαπημένο παράδειγμα αυτοομοιότητας του Μάντελμπροτ. (αρχείο cauli flower) Είσοδος Συσκευή ανάδρασης Έξοδος Ανάδραση: Τα αντικείμενα εισάγονται, υφίστανται επεξεργασία εξάγονται και στη συνέχεια επανεισάγονται.

6 Μια συσκευή ανάδρασης: η βιντεοκάμερα βιντεοσκοπεί υπό γωνία την εικόνα που προβάλλει στην οθόνη. Κατά κανόνα το αποτέλεσμα είναι «χαοτικό», υπάρχουν όμως ορισμένες τιμές της γωνίας α που οδηγούν σε σχήματα που διέπονται από παραδειγματική τάξη. (αρχείο ανάδραση και ανάδραση2) Το κοριτσάκι των Άνδεων (αρχείο κοριτσάκι) Αρκτικός Λύκος (αρχείο λύκος) Εικόνες που έχουν δημιουργηθεί με αναδράσεις βασισμένες στο θεώρημα του κολάζ. Φωτογραφία των Ιμαλαΐων από δορυφόρο. Η αυτοομοιότητα και η φράκταλ δομή είναι φανερή (αρχείο Ιμαλάϊα)

7 Υπάρχει δομή στο χάος της κατανομής των γαλαξιών στο σύμπαν; Σύμφωνα με τη θεωρία της πολυπλοκότητας υπάρχει και μπορεί να μελετηθεί μέσω της γεωμετρίας των φράκταλ. (αρχείο galaxy). Ο παράξενος ελκυστής τους Λόρεντς, μια τροχιά με πολύπλοκη φράκταλ δομή προς την οποία συγκλίνουν διάφορα χαοτικά φιανόμενα. (αρχείο Lorenz).

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία Β. Δρακόπουλος Σχολικός Σύμβουλος Δευτεροβάθμιας Εκπαίδευσης Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Ε.Κ.Π.Α. Σχολή Θετικών

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Μια εισαγωγή στην Fractal Γεωμετρία (Μορφοκλασματική Γεωμετρία)

Μια εισαγωγή στην Fractal Γεωμετρία (Μορφοκλασματική Γεωμετρία) Μια εισαγωγή στην Fractal Γεωμετρία (Μορφοκλασματική Γεωμετρία) Το σύνολο του Mandelbrot. Το πολυπλοκότερο και εντυπωσιακότερο σύνολο των μαθηματικών Διημερίδα Μαθηματικών Ηράκλειο, 7-8 Μαρτίου 2014 Επιμέλεια

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

Πολυπλοκότητα. Και µη γραµµικότητα στη φύση

Πολυπλοκότητα. Και µη γραµµικότητα στη φύση Πολυπλοκότητα Και µη γραµµικότητα στη φύση (και πώς να τις αντιµετωπίσουµε) του Τάσου Μπούντη Ολοι γνωρίζουµε ότι τα πουλιά δεν πετούν προς µία κατεύθυνση, τα αυτοκίνητα και οι άνθρωποι δεν κινούνται σχεδόν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Περί της Ταξινόμησης των Ειδών

Περί της Ταξινόμησης των Ειδών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Tel.: +30 2310998051, Ιστοσελίδα: http://users.auth.gr/theodoru Περί της Ταξινόμησης

Διαβάστε περισσότερα

Αξιοποίηση του Sketchpad για τη δημιουργία και εξερεύνηση του κόσμου των φράκταλς

Αξιοποίηση του Sketchpad για τη δημιουργία και εξερεύνηση του κόσμου των φράκταλς Αξιοποίηση του Sketchpad για τη δημιουργία και εξερεύνηση του κόσμου των φράκταλς Μπάμπης Τουμάσης Τάσος Αρβανίτης Νόρμαν 33-35 Παμίσου 26 26223, Πάτρα 26442, Πάτρα τηλ: 2610-455003 τηλ: 2610-428565 Στην

Διαβάστε περισσότερα

Σχεδόν ο καθένας µας έχει θαυµάσει κάϖοιες εικόνες fractals αϖό αυτές ϖου κυκλοφορούν κατά χιλιάδες σε ηµερολόγια, ϖεριοδικά, internet κλϖ.

Σχεδόν ο καθένας µας έχει θαυµάσει κάϖοιες εικόνες fractals αϖό αυτές ϖου κυκλοφορούν κατά χιλιάδες σε ηµερολόγια, ϖεριοδικά, internet κλϖ. Η ΜΑΓΕΙΑ ΤΩΝ FRACTALS- ΕΥΣΤΑΘΙΟΥ ΑΓΓΕΛΙΚΗ ΣΦΑΕΛΟΣ ΙΩΑΝΝΗΣ Σχεδόν ο καθένας µας έχει θαυµάσει κάϖοιες εικόνες fractals αϖό αυτές ϖου κυκλοφορούν κατά χιλιάδες σε ηµερολόγια, ϖεριοδικά, internet κλϖ. Πολλοί

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 1: ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2015 ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου) Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ. Αναστασία Ταουκτσόγλου. Μαθηματικός, Δρ Διαφορικής Γεωμετρίας

ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ. Αναστασία Ταουκτσόγλου. Μαθηματικός, Δρ Διαφορικής Γεωμετρίας ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Αναστασία Ταουκτσόγλου Μαθηματικός, Δρ Διαφορικής Γεωμετρίας Νέες Τεχνολογίες στην Εκπαίδευση Με τον όρο αυτό αναφερόμαστε στην εφαρμογή των Τεχνολογιών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Αναπαράσταση Αντικείμενων 3D

Γραφικά Υπολογιστών: Αναπαράσταση Αντικείμενων 3D 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Αναπαράσταση Αντικείμενων 3D (Octrees & Fractals) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Contents Τεχνικές

Διαβάστε περισσότερα

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί Πολλά προβλήματα λύνονται μέσω δισδιάστατων απεικονίσεων ενός μοντέλου. Μεταξύ αυτών και τα προβλήματα κίνησης, όπως η κίνηση ενός συρόμενου μηχανισμού.

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ STUDY OF NON LINEAR ELECTRONIC CIRCUITS ΣΠΟΥΔΑΣΤΗΣ

Διαβάστε περισσότερα

log( x 7) log( x 2) log( x 1)

log( x 7) log( x 2) log( x 1) ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 01-13 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 013 Ημερομηνία: 0/5/013 Ημέρα:Δευτέρα Μάθημα (Μαθηματικά Κατεύθυνσης) Τάξη Β Ώρα:10.30-13.00 Χρόνος:,5 ώρες Οδηγίες:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

Δισδιάστατη Αγωγή Θερμότητας: Γραφικές Μέθοδοι Ανάλυσης

Δισδιάστατη Αγωγή Θερμότητας: Γραφικές Μέθοδοι Ανάλυσης Δισδιάστατη Αγωγή Θερμότητας: Γραφικές Μέθοδοι Ανάλυσης ΜΜΚ 312 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής Διάλεξη 6 ΜΜΚ 312 Μεταφορά Θερμότητας Κεφάλαιο 4 1 Εισαγωγή Μέχρι

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

Χάος και Φράκταλ. ιδάσκων: Α.Μπούντης, Καθηγητής Ασκήσεις ΟΜΑ Α Α 1) Να δειχθεί ότι η οικογένεια των κλειστών καµπυλών x x e = c τείνει 2 1)

Χάος και Φράκταλ. ιδάσκων: Α.Μπούντης, Καθηγητής Ασκήσεις ΟΜΑ Α Α 1) Να δειχθεί ότι η οικογένεια των κλειστών καµπυλών x x e = c τείνει 2 1) Χάος και Φράκταλ ιδάσκων: ΑΜπούντης, Καθηγητής Ασκήσεις ΟΜΑ Α Α + ) ) Να δειχθεί ότι η οικογένεια των κλειστών καµπυλών e = c τείνει σε εκείνη των ελλείψεων ξ ξ + = K, όταν, ) b, a) Τα Κ,c είναι b a αυθαίρετες

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Κβαντικά Χαοτικά Συστήµατα

Κβαντικά Χαοτικά Συστήµατα ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ Τ.Τ. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Τ.Ε ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Κβαντικά Χαοτικά Συστήµατα Αλέξανδρος Δ. Μαρτινέγκος Κωνσταντίνος

Διαβάστε περισσότερα

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3() ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

Τέχνη και Τεχνολογία

Τέχνη και Τεχνολογία Εκπαιδευτήριο TO ΠΑΓΚΡΗΤΙΟΝ Σχολικό Έτος 2007-2008 Συνθετικές εργασίες στο μάθημα Πληροφορική Τεχνολογία της Β Γυμνασίου: Όψεις της Τεχνολογίας Θέμα: Τέχνη και Τεχνολογία Τμήμα: ΗΥ: Ομάδα: Β1 pc29 Αντωνάκης

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ ΕΚΦΕ Αν. Αττικής Υπεύθυνος: Κ. Παπαμιχάλης ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ Κεντρική επιδίωξη των εργαστηριακών ασκήσεων φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν

Διαβάστε περισσότερα

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΚΟΠΤΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΠΟΙΚΙΛΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD

ΚΑΤΑΣΚΕΥΗ ΚΟΠΤΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΠΟΙΚΙΛΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD 1 ΚΑΤΑΣΚΕΥΗ ΚΟΠΤΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΠΟΙΚΙΛΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD Χρήστος Γεώργιος Κ. Γεωργακόπουλος Χανιά 2014 2 Δομή της παρουσίασης Εισαγωγή Μορφές κονδυλίων Παραγωγή κονδυλίων Γεωμετρία των κονδυλίων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας Κύκλου μέτρησις Ολοκληρωμένο διδακτικό σενάριο Δημιουργία: Τεύκρος Μιχαηλίδης Μαθηματικό Εργαστήρι Β Αθήνας Η ιστορία του π 2 Κυ κλου με τρησις Η μέθοδος του Αρχιμήδη για την προσέγγιση του π και ο ρόλος

Διαβάστε περισσότερα

Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ

Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ Επιμέλεια: Μιχαηλίσιν Άννα- Μαρία, Τζιώτης Δημήτρης, Τσάτσα Κωνσταντίνα Η συμμετρία στο φυσικό κόσμο Η συμμετρία που κατεξοχήν

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΕΙΣΑΓΩΓΗ Σε κάθε τετραγωνικό πίνακα ) τάξης n θα αντιστοιχίσουμε έναν πραγματικό ( ij αριθμό, τον οποίο θα ονομάσουμε ορίζουσα του πίνακα. Η ορίζουσα θα συμβολίζεται det ή Α ή n n

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΦΙΣΤΙΚΗ ΜΕ Η/Υ 1. Του Αποστόλου Παπαποστόλου Επίκουρου Καθηγητή του ΤΕΙ Αθήνας

ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΦΙΣΤΙΚΗ ΜΕ Η/Υ 1. Του Αποστόλου Παπαποστόλου Επίκουρου Καθηγητή του ΤΕΙ Αθήνας ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΦΙΣΤΙΚΗ ΜΕ Η/Υ 1 Του Αποστόλου Παπαποστόλου Επίκουρου Καθηγητή του ΤΕΙ Αθήνας ΕΙΣΑΓΩΓΗ Οι γραφικές παραστάσεις µε υπολογιστές έχουν προχωρήσει πολύ από τότε που οι ε- πιστήµονες που δούλευαν

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Η γεωμετρία της ζωής. Ερευνητική εργασία Α Λυκείου 2ου ΓΕΛ ΚΑΒΑΛΑΣ

Η γεωμετρία της ζωής. Ερευνητική εργασία Α Λυκείου 2ου ΓΕΛ ΚΑΒΑΛΑΣ Η γεωμετρία της ζωής Ερευνητική εργασία Α Λυκείου 2ου ΓΕΛ ΚΑΒΑΛΑΣ Τι μελετά η γεωμετρία ; Γεωμετρία είναι ο κλάδος των μαθηματικών που ασχολείται με χωρικές σχέσεις, δηλαδή με τη σύνθεση του χώρου που

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ

ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ 1. Η συνδρομή για την συμμετοχή στον όμιλο κολύμβησης είναι 15 τον μήνα και 5 για κάθε φορά που χρησιμοποιούμε την πισίνα. Αν τον προηγούμενο μήνα πληρώσαμε 75, πόσες

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 7

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design)

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) Ενότητα # 2: Στερεοί Μοντελοποιητές (Solid Modelers) Δρ Κ. Στεργίου

Διαβάστε περισσότερα

Σύνοψη Θεωρίας ΟΡΙΣΜΟΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΛΓΟΡΙΘΜΩΝ

Σύνοψη Θεωρίας ΟΡΙΣΜΟΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΛΓΟΡΙΘΜΩΝ 1 ο ΓΥΜΝΑΣΙΟ ΘΕΡΜΗΣ Τάξη: Γ Μάθημα: Πληροφορική Εξεταστέα ύλη: Παρ11.1 & 11.2 Σύνοψη Θεωρίας ΟΡΙΣΜΟΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΛΓΟΡΙΘΜΩΝ Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών που περιγράφει τη διαδικασία

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΔΗΜΙΟΥΡΓΙΑ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΗΜΕΡΟΜΗΝΙΑ

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Δεκαδικά κλάσματα Δεκαδικοί αριθμοί Μάθημα 7 ο Σε κάθε κλάσμα έχουμε : όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση

ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΜΑΘΗΜΑΤΙΚΑ Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Μέτης Στέφανος Μπρουχούτας Κων/νος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Καθηγητής

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 1 A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 2 ΕΝΟΤΗΤΑ 1 ΚΑΝΩ ΟΜΑΔΕΣ, ΜΟΤΙΒΑ, ΑΝΤΙΣΤΟΙΧΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Ομαδοποίηση αντικειμένων με διαφορετικούς τρόπους. -Εντοπισμός ομοιοτήτων και

Διαβάστε περισσότερα

Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 1 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 2 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Αριθμοί μέχρι το 20. -Αξία θέσης ψηφίου - Έννοια δεκάδας και μονάδας. -Πρόσθεση

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Oι οπτικές επιδράσεις, που μπορεί να προκαλέσει μια εικόνα στους χρήστες, αποτελούν ένα από τα σπουδαιότερα αποτελέσματα των λειτουργιών γραφικών με Η/Υ. Τον όρο της οπτικοποίησης

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων)

επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων) επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων) Μαθηματικά αντικείμενα Έννοιες Ιδιότητες (θεωρήματα, πορίσματα) Σχέσεις Ενέργειες Διαδικασίες Αναπαραστάσεις

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

C Y M B ȦIJȠıIJȠȚȤİȚȠșİıȓĮ Ȇ =+7+ ȈȚĮ 2( (țijȫʌȧıș ǺȚȞȜȚȠįİıȓĮ %ȚȕȜȚȠʌȦȜİȓȠ (.ǻ2ȉ(,ȉ =+7+ ĭȧijƞıijƞțȥițƞșiıȓį Ȇ =+7+ ȈȚĮ 2( (țijȫʌȧıș ǺȚȞȜȚȠįİıȓĮ

C Y M B ȦIJȠıIJȠȚȤİȚȠșİıȓĮ Ȇ =+7+ ȈȚĮ 2( (țijȫʌȧıș ǺȚȞȜȚȠįİıȓĮ %ȚȕȜȚȠʌȦȜİȓȠ (.ǻ2ȉ(,ȉ =+7+ ĭȧijƞıijƞțȥițƞșiıȓį Ȇ =+7+ ȈȚĮ 2( (țijȫʌȧıș ǺȚȞȜȚȠįİıȓĮ ΘΕΣΣΑΛΟΝΙΚΗ www.ziti.gr www.ziti.gr Πρόλογος Το βιβλίο αυτό αποτελεί μια υπεύθυνη και εμπεριστατωμένη προσέγγιση της ύλης των δύο τελευταίων τάξεων Εʹ και Στʹ του Δημοτικού σχολείου, στα βασικά μαθήματα

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός.

Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός. ΜΕΡΟΣ Α. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 69. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός. Για παράδειγμα ο αριθμός που στην προηγούμενη

Διαβάστε περισσότερα

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 26.02.14 Χ. Χαραλάμπους 14 ο πρόβλημα (βρίσκεται στο Μουσείο Καλών Τεχνών της Μόσχας από το 1893 μ.χ.) «μετάφραση των συμβόλων: Εάν σου πουν: μία κομμένη πυραμίδα με ύψος 6, με βάση

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 3: Πραγματικοί αριθμοί Πυθαγόρειο Θεώρημα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 2: Πραγματικοί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΤΟΥ ΧΑΟΥΣ: ΣΥΝΤΟΜΗ ΔΙΑΔΡΟΜΗ ΚΑΙ ΠΝΕΥΜΑΤΙΚΑ ΔΙΔΑΓΜΑΤΑ

Η ΘΕΩΡΙΑ ΤΟΥ ΧΑΟΥΣ: ΣΥΝΤΟΜΗ ΔΙΑΔΡΟΜΗ ΚΑΙ ΠΝΕΥΜΑΤΙΚΑ ΔΙΔΑΓΜΑΤΑ Η ΘΕΩΡΙΑ ΤΟΥ ΧΑΟΥΣ: ΣΥΝΤΟΜΗ ΔΙΑΔΡΟΜΗ ΚΑΙ ΠΝΕΥΜΑΤΙΚΑ ΔΙΔΑΓΜΑΤΑ Του Έραστου Φίλου 1 Εισαγωγή Πετάμε με το αεροπλάνο, η πτήση κυλάει ομαλά, οι αεροσυνοδοί σερβίρουν ποτά στους επιβάτες, όταν ξαφνικά το αεροπλάνο

Διαβάστε περισσότερα

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας ΜΕΡΟΣ ΠΡΩΤΟ Ένα από τα δύο κομβικά ερευνητικά προβλήματα που οι συστηματικές

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα