5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41."

Transcript

1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α 4. Έστω Ω { ω, ω, ω, ω 4 } ο δειγµατικός χώρος εός πειράµατος τύχης και τα εδεχόµεα Α {ω, ω }, Β {ω, ω 4 } + Α είαι P(A B) και Ρ( Β Α ), όπου θετικός ακέραιος τότε + 4 Να αποδείξετε ότι Ρ(Α Β) Ρ(Α) και Ρ(Β Α) Ρ(Β) Nα αποδείξετε ότι 4 i Να υπολογίσετε τις πιθαότητες τω εδεχοµέω Α και Β i) Να υπολογίσετε τη πιθαότητα του εδεχόµεου Α Β Προτειόµεη λύση Έχουµε ότι P(A B) Ρ(Α) Ρ(Α Β) () Όµως Α Β Ø Ρ(Α Β) 0 () P(A B) Ρ(Α) Και οµοίως Ρ(Β Α) Ρ(Β) Ρ(Α Β) Ρ(Β) 0 Ρ(Β). Ρ(Α) + Ρ(Β) Ρ(ω ) + Ρ(ω ) + Ρ(ω ) + Ρ(ω 4 ) Ρ(Ω) + P(A B) + Ρ(Β Α) i 4+ Ρ(Α) P(A B) Ρ(Β) Ρ(Β Α) 4 8 i ) Ρ( Α Β ) Ρ(Α ) + Ρ(Β ) Ρ(Α Β ) Ρ(Α ) + Ρ(Β ) [Ρ(Α ) Ρ(Α Β)] Ρ(Α ) + Ρ(Β ) Ρ(Α ) + Ρ(Α Β) Ρ(Β ) + Ρ(Β) Ρ(Α Β) + 0 ( i ) ( + ) + ( )( + 4) ( + 4) (η απορρίπτεται αφού > 0)

2 4. Οι µηιαίες αποδοχές 00 υπαλλήλω µιας εταιρίας δίοται στο πίακα Μη.αποδοχές σε εκατοτάδες Συχότητα i Σχτ. συχότητα f i % Αθρ. Σχετ. συχ. F i % κ Σύολο 00 Α η µέση τιµή τω αποδοχώ είαι 900 Να βρείτε το κ Να βρείτε τη διασπορά της καταοµής i Να βρείτε πόσοι υπάλληλοι έχου µισθό πάω από 800 i) Α από τους παραπάω υπαλλήλους οι 0 είαι γυαίκες µε µέσο µισθό 800, α βρείτε τη µέση τιµή του µισθού τω αδρώ ) Α από τους παραπάω υπαλλήλους επιλέξουµε έα στη τύχη, α βρείτε τη πιθαότητα α έχει αποδοχές 00 ή 000 Προτειόµεη λύση f 40 0, 0% 00 F F + f % Όµως F 4 00 F + f f 4 00 f 4 50% Εποµέως κ κ () Ακόµα κ+ 8 (0 κ ) () κ 00 S 0 ( 9) + 40 (8 9) + 40 (9 9) + 00 (0 9) 00 i i) Α α, α,, α 40 είαι οι µισθοί τω αδρώ και γ, γ,, γ 0 οι µισθοί τω γυαικώ, α +α α 40 +γ +γ γ0 τότε κ 0

3 α +α α 40 +γ +γ γ () και γ +γ γ0 γ 0 γ +γ γ0 8 0 γ + γ + + γ () α +α α α + α + + α 40 0, οπότε α +α α α ,4 Άρα ο µέσος µισθός τω αδρώ είαι 94 ευρώ ) Η ζητούµεη πιθαότητα είαι , 0% 00 40

4 4 4. A. Έστω εδεχόµεα του ίδιου δειγµατικού χώρου Ω µε Ρ( Α ) και Ρ(Β). είξτε ότι Ρ( Α Β) Να βρείτε τη µέγιστη τιµή της πιθαότητας Ρ(Α Β ) i Α είαι Ρ [( Α Β )], α βρείτε τη πιθαότητα του εδεχόµεου Γ Έα ακριβώς από τα Α, Β πραγµατοποιείται Β. Α οι τιµές Ρ(Α), Ρ(Β), Ρ(Γ), Ρ(Α Β), Ρ( Α Β), Ρ(Ω), Ρ(Ø) τω εδεχοµέω του παραπάω δειγµατικού χώρου Ω είαι οι τιµές µιας µεταβλητής X, α βρείτε Τη µέση τιµή αυτώ Τη διάµεσο και το εύρος τω τιµώ της Χ Προτειόµεη λύση Α. Για τη αίσωση Ρ( Α Β) Ρ( Α Β) Ρ(Α) ισχύει αφού ( Α Β) Α Για τη αίσωση ( ) Ρ Α Β Ρ(Α) + Ρ(Β) Ρ( Α Β) + Ρ( Α Β) Ρ(Α Β ) Ρ(Α) Ρ(Α Β) Ρ(Α Β) Ρ( Α Β) + Ρ( Α Β) η οποία είαι προφαής Είαι φαερό ότι Ρ(Α Β ) ma ότα Ρ(Α Β) min, δηλαδή Ρ(Α Β ) ma ότα Ρ(Α Β) Τότε Ρ (Α Β ) ma i Ρ(Γ) Ρ[(Α Β) (Β Α)] Ρ(Α) + Ρ(Β) Ρ(Α Β) () Όµως Ρ [ ( Α Β ) ] Ρ(Α) Ρ(Α Β)

5 5 Ρ(Α Β) Ρ(Α Β) () Ρ(Γ) + Β. Είδαµε ότι Ρ(Α), Ρ(Β), Ρ(Γ), Ρ(Α Β) Ακόµα είαι Ρ(Α Β) Ρ(Α) + Ρ(Β) Ρ(Α Β) + 5 και Ρ(Ω), Ρ(Ø) Οι παραπάω τιµές σε αύξουσα σειρά είαι : 0, Άρα δ 4 η παρατήρηση και εύρος R 0,,,, 5,

6 44. Έστω η συάρτηση f(t) t + µ, όπου µ R. Μια επιχείρηση έχει έσοδα Ε(t), σε εκατοµµύρια ευρώ που δίοται από το τύπο Ε(t) (t )f(t), t 0 όπου t συµβολίζει το χρόο σε έτη. Το κόστος λειτουργίας Κ(t) σε εκατοµµύρια ευρώ δίεται από το τύπο Κ(t) f(t + 4), t 0. Να βρείτε τη συάρτηση του κέρδους Ρ(t), ότα ξέρουµε ότι η επιχείρηση, κατά το πρώτο έτος της λειτουργίας της, είχε ζηµιά εκατοµµύρια ευρώ. Ποια χροική στιγµή η επιχείρηση θα αρχίσει α παρουσιάζει κέρδη; i Να βρείτε το ρυθµό µεταβολής της συάρτησης κέρδους στο τέλος του δεύτερου χρόου λειτουργίας. Προτειόµεη λύση Είαι γωστό ότι κέρδος έσοδα έξοδα Ρ(t) E (t) K(t) Ρ() + (µ 4) 8 µ µ Η () γίεται Ρ(t) t t (t )f(t) f(t + 4) (t )(t + µ) (t + 4) µ t + (µ 4)t 8 µ () Για α έχει κέρδη η επιχείρηση θα πρέπει Ρ(t) > 0 t t > 0 t t > 0 t > Εποµέως, η επιχείρηση θα αρχίσει α έχει κέρδη µετά το ο έτος λειτουργίας της i Ρ (t) 4t Ρ () 4 εκατοµµύρια ευρώ

7 7 45. Έστω Α και Β εδεχόµεα εός δειγµατικού χώρου Ω και ρ έας πραγµατικός αριθµός µε 0 < ρ <. ίεται ότι οι πιθαότητες Ρ(Α), P(A B) και P(A B) είαι αά δύο διαφορετικές µεταξύ τους και αποτελού στοιχεία του συόλου { ρ, ρ, ρ +, ρ, ρ } A. Να αποδείξετε ότι Ρ(Α) ρ, P(A B) ρ και P(A B) ρ Ρ(Β) ρ ρ + ρ i Ρ(Α Β) < Ρ(Β Α) B. Α οι τιµές Ρ(Α), Ρ(Β), Ρ(Ω), Ρ( ), P(A B), P(A B) είαι τιµές µιας µεταβλητής Χ Να βρείτε συαρτήσει του ρ τη µέση τιµή αυτώ Να εξετάσετε τη (ρ) ως προς η µοοτοία i Α δ η διάµεσος και R το εύρος, α αποδείξετε ότι δ + R > P(A B) Προτειόµεη λύση Α. Επειδή (Α Β) Α (Α Β), θα είαι P(A B) Ρ(Α) Ρ (Α Β) Αφού γωρίζουµε ότι οι πιθαότητες αυτές είαι διαφορετικές µεταξύ τους θα είαι P(A B) < Ρ(Α) < Ρ (Α Β) () 0 < ρ < ρ < 0, άρα ο αριθµός ρ δε εκφράζει πιθαότητα 0 < ρ < ρ + >, άρα ο αριθµός ρ + δε εκφράζει πιθαότητα 0 < ρ < ρ. ρ <. ρ ρ < ρ () () ρρ < ρ ρ ρ < Από () και () έχουµε ρ < ρ < ρ Οπότε, λόγω της () θα είαι P(A B) ρ, Ρ(Α) ρ, Ρ (Α Β) ρ. ρ () Ρ (Α Β) Ρ(A) + Ρ(B) P(A B) ρ ρ + Ρ(Β) ρ Ρ(Β) ρ ρ + ρ i Ρ(Α Β) < Ρ(Β Α) Ρ(A) P(A B) < Ρ(Β) P(A B) Ρ(Α) < Ρ(Β) ρ < ρ ρ + ρ ρ ρ + ρ > 0 ρ(ρ ρ + ) > 0 ρ(ρ ) > 0 η οποία ισχύει αφού 0 < ρ < Β. Ρ( Α ) +Ρ( Β ) +Ρ( Ω ) +Ρ( ) +Ρ( Α Β ) +Ρ( Α Β) ρ +ρ ρ +ρ+ + 0+ρ+ρ ρ + ρ+

8 8 ρ + ( ( ρ ) ) > 0, άρα η ( ρ ) είαι γησίως αύξουσα i Οι παραπάω τιµές σε αύξουσα σειρά είαι 0, ρ, ρ, ρ ρ + ρ, ρ, Η διάµεσος δ είαι δ η 4 η παρατ + παρατ ρ +ρ ρ +ρ ρ +ρ Και το εύρος R είαι R 0 δ + R > P(A B) ρ +ρ + > ρ ρ + > 0, η οποία ισχύει, αφού 0 < ρ <

9 9 4. Έστω οι συαρτήσεις f() 4( )( 5+), R όπου g() + (κ 5κ) +, R α 0 h() + λ λ + α 0 κ και λ πραγµατικοί αριθµοί. Ο δειγµατικός χώρος Ω εός πειράµατος τύχης είαι Ω { ω, ω, ω, ω 4, ω 5, ω } Έστω ω, ω, ω, ω 4 4, ω 5 4, ω 4 όπου,, είαι οι ρίζες της εξίσωσης f() 0. Για τις πιθαότητες τω στοιχειωδώ εδεχοµέω ισχύει : Ρ(ω ) Ρ(ω 5 ) Ρ(ω 4 ) Ρ(ω ) Ρ(ω ) Ρ(ω ). Να υπολογίσετε τις πιθαότητες τω στοιχειωδώ εδεχοµέω. Θεωρούµε τα εδεχόµεα Β { λ Ω / η συάρτηση h είαι συεχής στο ο 0} Γ{ κ Ω / η συάρτηση g παρουσιάζει ακρότατο στο ο } Να δείξετε ότι Ρ(Γ) Ρ(Β). i Να βρείτε τις πιθαότητες τω εδεχοµέω Β Γ, Β Γ. Προτειόµεη λύση f() 0 4( )( 5+) 0 0 ή 5+ 0 ή ή Οπότε, α ω, ω, ω τότε ω 4 4, ω 5 8, ω Εποµέως Ω {,,, 4, 8, } Ρ(Ω) Ρ() + Ρ() + Ρ() + Ρ(4) + Ρ(8) + Ρ() () Από τη υπόθεση έστω Ρ(ω ) Ρ(ω 5 ) Ρ(ω 4 ) Ρ(ω ) Ρ(ω ) Ρ(ω ) µ µ Τότε Ρ(ω ) Ρ(ω ) Ρ(ω ) και Ρ(ω ) Ρ(ω 5 ) Ρ(ω 4 ) µ µ µ µ Η () γίεται µ + µ + µ µ 4 Εποµέως Ρ() Ρ() Ρ() 4 και Ρ(4) Ρ(8) Ρ() 4 Για α είαι η h συεχής στο o 0 πρέπει lim h() h(0) () Αλλά lim h() lim

10 0 ( 5 + ) lim 0 ( + ) 5 + lim Η () γίεται 0 λ λ+ λ ή λ Άρα Β {, } Είαι g () + κ 5κ Αφού η g παρουσιάζει ακρότατο στο ο, θα είαι g () 0 κ 5κ + 0 κ ή κ Άρα Γ {, } Ρ(Β) Ρ() + Ρ() + Ρ(Γ) Ρ() + Ρ() + Άρα Ρ(Β) Ρ(Γ) i Β Γ {} και Β Γ {,, }, άρα Ρ(Β Γ ) Ρ() και Ρ(Β Γ) Ρ() + Ρ() + Ρ()

11 47. Έστω οι συαρτήσεις f() +, g() ηµ + ηµ + h() Να βρείτε τη εξίσωση της εφαπτοµέης στη C g στο σηµείο Α(0, g(0)) Να βρείτε τη εφαπτοµέη στη C f η οποία είαι παράλληλη στη εφαπτοµέη στη C g στο Α(0, g(0)). i Να βρείτε σηµείο της C h το οποίο είαι πλησιέστερα στο Α i) Να λύσετε τη εξίσωση 4λ f () + λf () f() 0 ) Α 0 σηµεία της εφαπτοµέης του ( έχου µέση τιµή τεταγµέω, α βρείτε τη µέση τιµή τω τετµηµέω τω σηµείω αυτώ Προτειόµεη λύση g(0) ηµ0 + ηµ g () συ ηµ + ηµσυ + g (0) συ0 ηµ0 + ηµ0συ H εφαπτοµέη της C g στο Α( 0, g(0)) έχει εξίσωση y g(0) g (0) ( 0) y 0 ( + ) y ( + ) Α Β( o, f( o )) είαι το σηµείο επαφής τότε πρέπει f ( o ) + () Αλλά f () +, άρα f ( o ) + ο Η () γίεται + ο + ο o 0 Η ζητούµεη εξίσωση είαι y f(0) f (0) ( 0) y ( + ) y ( + ) + i Το Α έχει συτεταγµέες Α(0, 0) Α Μ(, h()) είαι το ζητούµεο σηµείο τότε ΜΑ ( 0) + (h() 0) Έτσι ορίζεται η συάρτηση φ() της οποίας ααζητάµε το min

12 φ () φ () 0 Πρόσηµο της φ και µοοτοία της φ + φ 0 + φ Η συάρτηση φ παρουσιάζει ελάχιστο για το φ( ) 0 Το ζητούµεο σηµείο Μ είαι το Μ(, h( )) Μ(, ) i) f() +, f () + και f () µε f(), f () και f () Οπότε 4λ f () + λf () f() 0 ) 4λ + λ 0 λ + λ 0 λ ή λ Γωρίζουµε ότι y ( + ) + Α Κ( i, y i ) είαι τυχαίο σηµείο της εφαπτοµέης τότε y i ( + ) i + Οπότε, α και y είαι οι µέσες τιµές τω τετµηµέω και τεταγµέω y τω 0 σηµείω, τότε y ( + ) + ( + ) + 5 +

13 48. Σ έα χωριό υπάρχου άθρωποι µε ηλικίες,,..,.έτη. Το δείγµα τω ηλικιώ έχει συτελεστή µεταβολής 0% και γίεται για πρώτη φορά οµοιογεές µετά από 5 έτη. Α. Να βρείτε Τη µέση τιµή και τη τυπική απόκλιση του δείγµατος Τη µέση τιµή τω,,,. i Α ο µικρότερος σε ηλικία είαι 0 ετώ α βρείτε προσεγγιστικά τη µεγαλύτερη ηλικία, δεχόµεοι ότι η καταοµή είαι περίπου καοική. Β. Στο παραπάω χωριό υπάρχου µόο δύο καφεεία Α και Β. Το 0% τω κατοίκω πηγαίει στο Α, το 0% δε πηγαίει στο Β, εώ το 50% πηγαίει σε έα τουλάχιστο καφεείο. Να βρείτε Τι ποσοστό τω κατοίκω πηγαίει και στα δύο καφεεία ; Από αυτούς που πηγαίου µόο στο έα καφεείο, ποιοι είαι οι περισσότεροι, αυτοί που πηγαίου µόο στο Α ή αυτοί που πηγαίου µόο στο Β ; Γ. Το κάθε έα από τα άτοµα αγοράζει έα λαχείο. Οι λαχοί είαι αριθµηµέοι από το έως το. Α η πιθαότητα α κληρωθεί περιττός είαι κατά 0,8 % µεγαλύτερη από το α κληρωθεί άρτιος, α βρείτε πόσα άτοµα έχει το χωριό. Προτειόµεη λύση A Α είαι η σηµεριή µέση τιµή και S η τυπική απόκλιση τότε S S () CV 0, Α i µια σηµεριή ηλικία, µετά από 5 χρόια αυτή θα είαι y i i + 5 Τότε y +5 και S y S Επειδή το δείγµα γίεται οµοιογεές µετά από 5 χρόια θα έχουµε CV y 0, S y y 0, 0, () + 5 Λύοτας το σύστηµα τω () και () βρίσκουµε 5 και S 5 S S i i i i i i i i

14 4 Εποµέως i S + i i i i i i i i i i Αφού η καταοµή είαι καοική, έχουµε εύρος R S 0 οπότε η µεγαλύτερη ηλικία θα είαι περίπου 40 έτη Β. Έστω τα εδεχόµεα Α το άτοµο πηγαίει στο καφεείο Α Β το άτοµο πηγαίει στο καφεείο Β Τότε Α Β είαι το εδεχόµεο το άτοµο πηγαίει σε έα τουλάχιστο καφεείο Α Β είαι το εδεχόµεο το άτοµο πηγαίει και στα δύο καφεεία Η υπόθεση γίεται Ρ(Α) 0%, Ρ(Β ) 0%, Ρ(Α Β) 50% Ρ(Α Β) Ρ(Α) + Ρ(Β) Ρ(Α Β) Ρ(Α) + Ρ(Β ) Ρ(Α Β) 0% A B είαι το εδεχόµεο το άτοµο πηγαίει µόο στο Α Β Α είαι το εδεχόµεο το άτοµο πηγαίει µόο στο Β Τότε Ρ(A B) Ρ(Α) Ρ(Α Β) 0% 0% 0% Ρ(Β Α) Ρ(Β) Ρ(Α Β) 40% 0% 0% Από τα παραπάω φαίεται ότι ποιο πολλοί πηγαίου στο Β καφεείο Γ. Αφού η πιθαότητα α κληρωθεί περιττός αριθµός είαι µεγαλύτερη από τη πιθαότητα α κληρωθεί άρτιος και τα στοιχειώδη εδεχόµεα είαι προφαώς ισοπίθαα, αυτό σηµαίει ότι οι περιττοί είαι περισσότεροι από τους άρτιους Άρα το πλήθος είαι περιττός εποµέως το είαι άρτιος Από το έως και το άρτιο αριθµό υπάρχου άρτιοι και περιττοί τελικά στο σύολο τω λαχώ Οι άρτιοι λαχοί είαι και οι περιττοί + + Η πιθαότητα α κληρωθεί περιττός (π) λαχός είαι Ρ(π) + Η πιθαότητα α κληρωθεί άρτιος (α) λαχός είαι Ρ(α) Επειδή Ρ(π) Ρ(α) + 0, ,008 5

15 5 49. Έστω Ω {0,,, } ο δειγµατικός χώρος εός πειράµατος τύχης. Για τις πιθαότητες τω απλώ εδεχοµέω λ του Ω ισχύει λ+ Ρ( λ ), λ,, λ Να βρείτε τη πιθαότητα Ρ(0) Έστω f () και Α, Β δύο εδεχόµεα του Ω τέτοια ώστε f ( ) Α { λ Ω / lim λ λ } λ 4λ+ Β { λ Ω / η κλίση της C f στο είαι ίση µε } Να βρείτε τις πιθαότητες Ρ(Α), Ρ(Β) και Ρ ( Α Β) i Nα εξετάσετε τη f ως προς τη µοοτοία και τα ακρότατα i) Α µία µεταβλητή έχει σα τιµές τις f(), f(), f(4), f(5) και f(), α βρείτε το εύρος και τη διάµεσο αυτώ τω τιµώ Προτειόµεη λύση Ρ(Ω) Ρ(0) + Ρ() + Ρ() + Ρ() Ρ(0) Ρ(0) Ρ(0) 7 ( ) f ( ) lim lim ( ) lim 0 0 ( ) lim ( + )( ) ( ) lim 0 ( + ) Άρα f ( ) lim Οπότε Α { 0, }. λ λ 0 λ( λ) λ 0 ή λ f () f ()

16 f () Άρα Β {} λ 4λ+ f () λ 4λ+ λ 4λ + λ 4λ λ Ρ(Α) Ρ(0) + Ρ() Ρ(Β) Ρ() 4 Α Β { 0,, }, άρα Ρ(Α Β) Ρ(0) + Ρ() + Ρ() i f () f () ή Πρόσηµο της f και µοοτοία της f 0 + f f τ. ελάχιστο για 0, το f(0) 0 4 τ. µέγιστο για, το f() i) Επειδή στο διάστηµα [, + ) η συάρτηση είαι γησίως φθίουσα, οι τιµές f(), f(), f(4), f(5) και f() σε αύξουσα σειρά είαι f(), f(5), f(4), f(), f() 4 4 Οπότε το εύρος R είαι : R f() f() 4 Και η διάµεσος δ είαι η µεσαία παρατήρηση δηλαδή δ f(4) 4

17 7 50. Τα αποτελέσµατα της µελέτης εός δείγµατος φαίοται στο πίακα Να βρείτε τη διάµεσο της καταοµής Α οι τιµές ακολουθού τη καοική καταοµή µε συτελεστή µεταβολής 5%, α βρείτε τη τυπική απόκλιση i Οι τιµές ααγράφοται πάω σε 50 µπάλες. Επιλέγουµε µία µπάλα στη τύχη. Να βρείτε τη πιθαότητα του εδεχόµεου Α ο αριθµός της µπάλας δε είαι 7 i) Α f () κ + (κ+ ) α βρείτε τη πιθαότητα τω εδεχόµεω α) Β { κ Ω / f ( ) 5 } και β) πραγµατοποιείται έα τουλάχιστο από τα Α και Β i) Για κ 7, α βρείτε τη εξίσωση της εφαπτοµέης της C f η οποία είαι παράλληλη στη ευθεία y + Προτειόµεη λύση 4 Συµπληρώουµε το πίακα µε στήλες i, f i, i i i N i Σύολο i N i i f i i i ,08 8 0, , ,50 5 Σύολο 50,00 0 η η 5 παρατηρ+ παρατηρ 7 5 δ 0 ii,4 50 S CV 5% 0,5 S 0,5 S,,4 i Ν(Ω) 50, Ν(Α ) 9, οπότε Ρ(Α ) N(A ) N( Ω ) 9 50 Ρ(Α) Ρ(Α ) 4 50 i) f () 4κ + ( κ + ) f ( ) 4κ( ) + ( κ + ) κ + f ( ) 5 κ + 5 κ 7 α) Β Α Ρ(Β) Ρ(Α ) 9 50 β) Ρ(Α Β) Ρ(Α Α ) Ρ(Ω)

18 8 ) y + y + µε λ Α ( ο, f( o )) είαι το σηµείο επαφής τότε πρέπει f ( ο ) Εποµέως το σηµείο επαφής είαι το (0, f(0)) 8 o o 0 0, Και η εξίσωση της εφαπτοµέης σ αυτό y f(0) f (0)( 0) y

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α.. Να αποδείξετε ότι η παράγωγος της συάρτησης f ( ), για κάθε R. Α.. Α.. (

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Του Κώστα Βακαλόπουλου ΑΣΚΗΣΗ (ΣΤΑΤΙΣΤΙΚΗ) Το εύρος (R) τω παρατηρούμεω υψώ τω 00 πελατώ εός γυμαστηρίου είαι cm. A) Να ομαδοποιήσετε τα δεδομέα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια: ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΙΟΥΝΙΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση - 4 o Γεικό Λύκειο Χαίω Γ τάξη Μαθηματικά Γεικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mpapagr 4 ο Γεικό Λύκειο Χαίω ΚΑΤΑΝΟΜΕΣ ΣΥΧΝΟΤΗΤΩΝ 95 ΝΑ ΣΥΜΠΛΗΡΩΘΟΥΝ ΟΙ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Ε_.ΜλΑ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηία: Κυριακή 7 Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α. α) Λάθος (βλέπε σελίδα 4 του σχολικού βιβλίου, Το σωστό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο ΜΙΓΑΔΙΚΟΙ - ΜΕΘΟΔΟΛΟΓΙΑ κ Για α βρούµε τη δύαµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωα µε τη ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ και υ = 0,,, οπότε i κ 4ρ+

Διαβάστε περισσότερα

Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού

Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού Κι όµως, τα Ρολόγια «κτυπού» και Εξισώσεις: Η Άλγεβρα τω εικτώ του Ρολογιού Εισαγωγικά ηµήτρης Ι. Μπουάκης Σχ. Σύµβουλος Μαθηµατικώ Σε ορισµέα βιβλία Αριθµητικής, αλλά κυρίως Άλγεβρας Β Γυµασίου και Α

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β]

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β] ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας Στα Μαθηματιά Γειής Παιδείας Tι οομάζουμε συάρτηση Tι οομάζουμε παραγματιή συάρτηση πραγματιής μεταβλητής Μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α πεδίο ορισμού ατιστοιχίζεται σε έα αριβώς στοιχείο

Διαβάστε περισσότερα

11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο

11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο 1 11.1 11. ρισµός ιδιότητες εγγραφή κα. πολυγώω σε κύκλο ΘΩΡΙ 1. Έα πολύγωο λέγεται καοικό, ότα έχει όλες τις πλευρές του ίσες και όλες τις γωίες του ίσες.. ύο καοικά πολύγωα µε το ίδιο αριθµό πλευρώ είαι

Διαβάστε περισσότερα

ΟΡΙΑ. 0 : Παραγοντοποιώ αριθµητή και παρονοµαστή και διώχνω τους παράγοντες x, x 0 που προκύπτουν.

ΟΡΙΑ. 0 : Παραγοντοποιώ αριθµητή και παρονοµαστή και διώχνω τους παράγοντες x, x 0 που προκύπτουν. ΟΡΙΑ Πηλίκα πολυωυµικώ µε µορφή 0 0 : Παραγοτοποιώ αριθµητή και παροοµαστή και διώχω τους παράγοτες, 0 που προκύπτου Περιπτώσεις µε ρίζες µορφής 0 0 Περιπτώσεις στις οποίες χρειάζεται α πολλαπλασιάσω µε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ Στο άρθρο αυτό θα παρουσιάσουμε μια μικρή συλλογή ασκήσεω οι οποίες καλύπτου τις έοιες που μάθαμε στο κεφάλαιο της Στατιστικής. Σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

στους μιγαδικούς αριθμούς

στους μιγαδικούς αριθμούς Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΜΑΤΑ ΠΡΟΤΑΣΕΙΣ µε ΑΠΟ ΕΙΞΕΙΣ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ µε ΑΠΑΝΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΙ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Αιστάι 3 Αµφιάλη 4389-43

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Έστω η συνάρτηση f() = 80 αν < < 0 αν 0 αν i ) Να υπολογιστεί η τιµή της παράστασης Α = f( ) + f(0) 5f() f + f( ) Αν Μ(, ) και Ν(, 0) να βρείτε την εξίσωση της ευθείας ΜΝ i

Διαβάστε περισσότερα

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ,

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ, Προβλήματα Πιθαοτήτω Προβλήματα Πιθαοτήτω Από εξετάσεις που έγια σε 5000 ζώα μιας κτηοτροφικής μοάδας, διαπιστώθηκε ότι 000 είχα προσβληθεί από μια ασθέεια Α, 800 είχα προσβληθεί από μια ασθέεια Β εώ 00

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή

ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή Μέρος πέµπτο ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ Εισαγωγή Στα προηγούµεα κεφάλαια είδαµε τις διάφορες µεθόδους συλλογής και επεξεργασίας του βιοµετρικού υλικού. Κάθε βιοµετρική επεξεργασία όµως έχει

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

4. Δεσμευμένη Πιθανότητα - Ανεξαρτησία Ενδεχομένων

4. Δεσμευμένη Πιθανότητα - Ανεξαρτησία Ενδεχομένων Δεσμευμέη Πιθαότητα Αεξαρτησία Εδεχομέω 4 Δεσμευμέη Πιθαότητα - Αεξαρτησία Εδεχομέω 4 Γιατί δεσμευμέη πιθαότητα Το όημα της δεσμευμέης πιθαότητας Η πιθαότητα, ως έα μέτρο του βαθμού βεβαιότητας που έχουμε

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 47) Εισαγωγικό σημείωμα. Λυμένες Ασκήσεις. 2συν x 2συν x 1 συνx συνx 1 x 2κπ, κ οι ζητούμενοι α-

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 47) Εισαγωγικό σημείωμα. Λυμένες Ασκήσεις. 2συν x 2συν x 1 συνx συνx 1 x 2κπ, κ οι ζητούμενοι α- Μαθηματικά για τη Β τάξη του Λυκείου ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ τω Κώστα Βακαλόπουλου Bασίλη Καρκάη Εισαγωγικό σημείωμα Παραθέτουμε στα δύο άρθρα που ακολουθού μια σειρά από λυμέες ασκήσεις στα κεφάλαια

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,... Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 96) Άσκηση ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Έστω οι παρατηρήσεις δυο δειγμάτων αντίστοιχα των μεταβλητών Χ και Ψ Δίνεται ότι η μέση τιμή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)

Διαβάστε περισσότερα

«Χρηματοδοτική Ανάλυση και Διοικητική», Τόμος A

«Χρηματοδοτική Ανάλυση και Διοικητική», Τόμος A ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδώ : Διοίκηση Επιχειρήσεω και Οργαισμώ Θεματική Εότητα : Δ.Ε.Ο. 3 Χρηματοοικοομική Διοίκηση Ακαδημαϊκό Έτος : 202-203 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ «Χρηματοδοτική Αάλυση

Διαβάστε περισσότερα

Επίπεδο εκπαίδευσης πατέρα 2

Επίπεδο εκπαίδευσης πατέρα 2 Περιγραφική Στατιστική Όπως, ήδη έχουμε ααφέρει, στόχος της Περιγραφικής Στατιστικής είαι, «η αάπτυξη μεθόδω για τη συοπτική και τη αποτελεσματική παρουσίαση τω δεδομέω» Για το σκοπό αυτό, έχου ααπτυχθεί,

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα Ιγάτιος Ιωαίδης Στατιστική Όριο - Συέχεια συάρτησης Παράγωγοι Ολοκληρώματα Περιέχει: Συοπτική Θεωρία Μεθοδολογία Λύσης τω Ασκήσεω Λυμέα Παραδείγματα Ασκήσεις με τις απατήσεις τους ΘΕΣΣΑΛΟΝΙΚΗ Το βιβλίο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f()) =c f (), ΙR. B.α. Πότε δύο ενδεχόμενα

Διαβάστε περισσότερα

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ . Ασκήσεις σχ. βιβλίου σελίδας 54 56 Α ΟΜΑ ΑΣ. Από µία τράπουλα µε 5 φύλλα παίρνουµε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχοµένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν είναι 5 i) εχόµαστε

Διαβάστε περισσότερα

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ ο Α.Τι λέγεται δειγµατικός χώρος ενός πειράµατος τύχης; Μονάδες. Πώς ορίζεται η διάµεσος ενός δείγµατος ν παρατηρήσεων; (ν θετικός ακέραιος) Μονάδες 4 B. Αν η

Διαβάστε περισσότερα

β± β 4αγ 2 x1,2 x 0.

β± β 4αγ 2 x1,2 x 0. Ορισµοί, ισότητα, µέτρο, άθροισµα µιγαδικώ αριθµώ Μιγαδικό επίπεδο Γεωµετρική παράσταση του αθροίσµατος µιγαδικώ αριθµώ ax 3 + β x + γ x+ δ = 0 Η προσπάθεια επιλύσεως εξισώσεω 3 ου βαθµού ( ) και δευτεροβαθµίω

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) o ΘΕΜΑ A. Aν n

Διαβάστε περισσότερα

www.fr-anodos.gr (, )

www.fr-anodos.gr (, ) ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Το lim f ( ) έχει όηµα σε γειτοικά σηµεία µε το δηλαδή ότα ( a, ) (, β ) a. Δε µε εδιαφέρει α το ίδιο το αήκει η όχι στο πεδίο ορισµού της f αλλά µε εδιαφέρει α υπάρχου στο πεδίο ορισµού

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί φαίνονται οι παρατηρήσεις που πήραμε για το ύψος και το βάρος 16 εργατών μιας βιομηχανίας.

Στον πίνακα που ακολουθεί φαίνονται οι παρατηρήσεις που πήραμε για το ύψος και το βάρος 16 εργατών μιας βιομηχανίας. Συσέτιση δύο μεταβλητώ Συσέτιση δύο μεταβλητώ Θεωρούμε δύο τυαίες μεταβλητές X, Y και ζεύγη παρατηρήσεω,,,,...,, από τυαίο δείγμα μεγέθους. Ααφερόμαστε, δηλαδή, σε μη πειραματικά δεδομέα ο ερευητής δε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ισχύει: Ρ(Α )=-Ρ(Α) Μονάδες 7 Α. Να ορίσετε το μέτρο διασποράς εύρος ή

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός

Διαβάστε περισσότερα

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = =

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = = Παράδειγα Το γωστό παράδειγα ε τα βάρη 0 ατόω ταξιοηέα σε 5 οάδες. Η έση τιή για το δείγα έχει βρεθεί 77. Τάξη Απόλυτες συχότητες Κετρική τιή τάξης Απόκλιση από το έσο 65-69 67,5 9,5 70-7 6 7,5,5 75-79

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56)

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56) ΓΕΝΙΚEΣ AΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Κώστας Βακαλόπουλος, Κώστας Παπαϊωάννου, Θανάσης Χριστόπουλος Άσκηση ( λ) λ λ 5 Δίνεται η συνάρτηση F(x) x λx. α) Να βρεθεί η F (x). Ν(Β) Άρα: Β = {5}, οπότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΘΕΜΑ Α Α1. Έστω μια συνάρτηση ff που έχει πεδίο ορισμού το ΔΔ. 1. Πότε η ffλέγεται συνεχής στο xx 0 ΔΔ ; 2. Πότε η ff λέγεται συνεχής; (Μονάδες

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1 ο Αχαρνών 97 Αγ Νικόλαος 086596 ο Αγγ Σικελιανού Περισσός 078688 Ε ΛΙΑΤΣΟΣ Μαθηµατικός 7 t t 5 Ο πληθυσµός µιας κοινωνίας βακτηριδίων δίνεται από τον τύπο P(t) = e e σε δεκάδες µικρόβια και t 0 Α Να αποδειχθεί

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μαθηματιά Γειής Παιδείας Γ Λυείου Δημήτρης Αργυράης Γεράσιμος Κουτσαδρέας Μαθηματιά Γειής Παιδείας Στατιστιή Γ. Λυείου ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία:

Διαβάστε περισσότερα

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β.

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β. Βασικές έοιες και τύποι πιθαοτήτω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός πειράματος τύχης (πεπερασμέος, απείρως αριθμήσιμος, συεχής) Εδεχόμεα Α, Β, (απλά, σύθετα) Βέβαιο εδεχόμεο Αδύατο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση f () είναι παραγωγίσιμη στο R με f () Α Αν είναι οι τιμές μιας μεταβλητής Χ ενός δείγματος παρατηρήσεων μεγέθους ν ( ) να ορίσετε την

Διαβάστε περισσότερα

2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ 1 2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΘΕΩΡΙΑ 1. Κλάσµα : Είαι το µαθηµατιό σύµβολο το οποίο δηλώει σε πόσα ίσα µέρη χωρίσαµε το όλο αι πόσα µέρη πήραµε Κλάσµα : πόσα µέρη πήραµε σε πόσα ίσα µέρη χωρίσαµε : αριθµητής

Διαβάστε περισσότερα

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k. Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση () είναι παραγωγίσιμη στο R με () Α Έστω k οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους

Διαβάστε περισσότερα

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x) 7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()

Διαβάστε περισσότερα

α β α < β ν θετικός ακέραιος.

α β α < β ν θετικός ακέραιος. Τυτότητες ( ± ) ± ( ± ) ± ± ( ± ) m (γ) γ γγ - (-)() - (-)( ) - (-)( - - - - ) Α. Βσικές γώσεις ()( - ) ()( - - - - - - ) ΜΟΝΟ ΓΙΑ ΠΕΡΙΤΤΟ. γ --γ-γ [(-) (-γ) (γ-) ] γ -γ (γ)[(-) (-γ) (γ-) ] Αισώσεις. Οι

Διαβάστε περισσότερα

(f(x)+g(x)) =f (x)+g (x), x R

(f(x)+g(x)) =f (x)+g (x), x R ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιµες στο IR, να αποδείξετε ότι (()+g()) ()+g (), R Μονάδες 7 Α.

Διαβάστε περισσότερα

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ 1 1. ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΘΕΩΡΙΑ 1. Θεώρηµα γνησίως αύξουσας Αν µία συνάρτηση είναι παραγωγίσιµη σ ένα διάστηµα και για κάθε εσωτερικό σηµείο του ισχύει f () > 0 τότε η f είναι γνησίως αύξουσα στο.

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΘΗΜΤΙΚ ΓΕΝΙΚΗΣ ΠΙΔΕΙΣ ΠΙΘΝΟΤΗΤΕΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου Π Ι Θ Ν Ο Τ Η Τ Ε Σ ΟΡΙΣΜΟΙ Πείραμα τύχης λέγεται το πείραμα το οποίο όσες φορές και αν επαναληφθεί (φαινομενικά τουλάχιστον

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Τι οομάζεται συάρτηση Συάρτηση uncton είαι μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα αριβώς στοιχείο άποιου

Διαβάστε περισσότερα

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αποδείξεις Θεωρίς Γ Λυκείου Κτεύθυσης Θέμ 1 ο [σελ 167 σχ. Βιβλίου] P 1 Έστω το πολυώυμο Έχουμε 1 1 1 lim P lim... AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2 Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ ΕΙΔΗ ΕΞΙΣΩΣΗΣ ( ΔΙΕΡΕΥΝΗΣΗ ΕΞΙΣΩΣΗΣ): i. αχ=β µε α 0 έχει µία λύση ii. 0χ=β µε β 0 αδύατη εξίσωση ( καµία λύση ) iii. 0χ=0 αόριστη εξίσωση ( άπειρες λύσεις ) ΕΙΔΗ ΣΥΣΤΗΜΑΤΟΣ (ΔΙΕΡΕΥΝΗΣΗ

Διαβάστε περισσότερα

, θα παίρνουμε πάντα την ίδια τιμή για το Υ. Για παράδειγμα, Υ 12

, θα παίρνουμε πάντα την ίδια τιμή για το Υ. Για παράδειγμα, Υ 12 Αάλυση Παλιδρόμησης Αάλυση Παλιδρόμησης Με τη αάλυση παλιδρόμησης (regresson analss) εξετάζουμε τη σχέση μεταξύ δύο ή περισσοτέρω μεταβλητώ με σκοπό τη πρόβλεψη τω τιμώ της μιας, μέσω τω τιμώ της άλλης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

Αξιολόγηση. Θεωρία. Έστω η ορισµένη στο διάστηµα D συνάρτηση f. Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D

Αξιολόγηση. Θεωρία. Έστω η ορισµένη στο διάστηµα D συνάρτηση f. Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D ΦΥΛΛΑ ΑΞΙΟΛΟΓΗΣΗΣ Βασίλης Γατσινάρης ωρεάν υποστηρικτικό υλικό 1 Περί συναρτήσεων Έστω η ορισµένη στο διάστηµα D συνάρτηση f Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D Α Να αναφέρετε

Διαβάστε περισσότερα

Δυνάμεις πραγματικών αριθμών

Δυνάμεις πραγματικών αριθμών Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.

Διαβάστε περισσότερα

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε ΠΙΘΑΝΟΤΗΤΕΣ Π ε ι ρ α μ α τ υ χ η ς - Δ ε ι γ μ α τ ι κ ο ς χ ω ρ ο ς. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε το αποτελεσμα,.

Διαβάστε περισσότερα

Ανάλυση Παλινδρόμησης. Εργαστήριο. Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 252

Ανάλυση Παλινδρόμησης. Εργαστήριο. Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 252 Αάλυση Παλιδρόμησης Αάλυση Παλιδρόμησης Με τη αάλυση παλιδρόμησης (regresson analss) εξετάζουμε τη σχέση μεταξύ δύο ή περισσοτέρω μεταβλητώ με σκοπό τη πρόβλεψη τω τιμώ της μιας, μέσω τω τιμώ της άλλης

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ

ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ ρ Αθ. Ρούτουλας Καθηγητής ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ 3 η ΤΣΙΜΕΝΤΑ - ΣΚΥΡΟ ΕΜΑ ΑΣΚΗΣΗ 10

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος ΠΙΘΑΝΟΤΗΤΕΣ.Ένα κουτί περιέχει τέσσερις λαχνούς αριθμημένους από το εώς το 4. Εκλέγουμε έναν λαχνό στην τύχη,σημειώνουμε το αποτέλεσμα και δεν ξανατοποθετούμε τον λαχνό στο κουτί. Επαναλαμβάνουμε το πείραμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συνδυασμός ν στοιχείων ανά κ είναι μια μη διατεταγμένη συλλογή κ στοιχείων από τα ν.

ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συνδυασμός ν στοιχείων ανά κ είναι μια μη διατεταγμένη συλλογή κ στοιχείων από τα ν. 13/10/2010 ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συδυασμός στοιχείω αά κ είαι μια μη διατεταγμέη συλλογή κ στοιχείω από τα. Παράδειγμα 1 Οι συδυασμοί τω τριώ γραμμάτω Α,Β,Γ αά έα είαι οι εξής τρεις: Α, Β, Γ. Οι συδυασμοί

Διαβάστε περισσότερα

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 1.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ 1. Αρχή της Μαθηµατιής Επαγωγής Έστω ισχυρισµός Ρ(), όπου θετιός αέραιος. Α (i) Ρ αληθής αι (ii) Ρ() Ρ( + 1) για άθε, τότε Ρ() αληθής για άθε.. Αισότητα Bernoulli (1 +α

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f είναι f, για κάθε. Μονάδες 7 Α. Έστω μια συνάρτηση f με πεδίο ορισμού Α.

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

Copyright: Ξένος Θ., Eκδόσεις Zήτη, Μάρτιος 2008, Θεσσαλονίκη

Copyright: Ξένος Θ., Eκδόσεις Zήτη, Μάρτιος 2008, Θεσσαλονίκη Kάθε γήσιο ατίτυο φέρει τη υογραφή του συγγραφέα Με το συγγραφέα εικοιωείτε: Tηλ. 310.348.086, e-mail: thanasisenos@ahoo.gr ISBN 978-960-456-09-9 Copright: Ξέος Θ., Eκδόσεις Zήτη, Μάρτιος 008, Θεσσαλοίκη

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ ΦΟΥΝΤΟΥΚΙ ΗΣ Γ. ΕΥΑΓΓΕΛΟΣ Ρ. ΧΗΜΙΚΟΣ ΜΗΧΑΝΙΚΟΣ

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ Συχνότητα Σχετική συχνότητα Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται va φορές,τότε va ο αριθμός va λέγεται συχνότητα του ενδεχομένου

Διαβάστε περισσότερα

2 ΣΤΑΤΙΣΤΙΚΗ Εισαγωγή

2 ΣΤΑΤΙΣΤΙΚΗ Εισαγωγή ΣΤΑΤΙΣΤΙΚΗ Εισαγωγή Ο όρος Στατιστική εδεχομέως α προέρχεται από τη λατιική λέξη status (πολιτεία, κράτος) η οποία, χρησιμοποιήθηκε αρχικά για το χαρακτηρισμό αριθμητικώ δεδομέω που ααφέροται κυρίως στο

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη B

Γυμνάσιο Μαθηματικά Τάξη B 113 Θέματα εξετάσεω περιόδου Μαΐου-Ιουίου στα Μαθηματικά Τάξη B! taexeiola.blogspot.com 6 ο ΥΜΝΑΣΙΟ ΡΟΔΟΥ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ, ΤΑΞΗ Β' ΥΜΝΑΣΙΟΥ, ΡΟΔΟΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΕΛΕΓΧΟΥ & ΠΡΟΛΗΨΗΣ ΝΟΣΗΜΑΤΩΝ (ΚΕ.ΕΛ.Π.ΝΟ.) ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ & ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ. (Τμήμα Επιδημιολογικής Επιτήρησης και Παρέμβασης)

ΚΕΝΤΡΟ ΕΛΕΓΧΟΥ & ΠΡΟΛΗΨΗΣ ΝΟΣΗΜΑΤΩΝ (ΚΕ.ΕΛ.Π.ΝΟ.) ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ & ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ. (Τμήμα Επιδημιολογικής Επιτήρησης και Παρέμβασης) ΚΕΝΤΡΟ ΕΛΕΓΧΟΥ & ΠΡΟΛΗΨΗΣ ΝΟΣΗΜΑΤΩΝ (ΚΕ.ΕΛ.Π.ΝΟ.) ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ & ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ (Τμήμα Επιδημιολογικής Επιτήρησης και Παρέμβασης) ΕΠΙΔΗΜΙΟΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ ΦΥΜΑΤΙΩΣΗΣ ΣΤΗΝ ΕΛΛΑΔΑ, 2004-2010 Η

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα