ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ. 1. Αν δύο τρίγωνα έχουν δύο γωνίες ίσες μία προς μία, τότε είναι: A. 1 B. 1 Γ. 0

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ. 1. Αν δύο τρίγωνα έχουν δύο γωνίες ίσες μία προς μία, τότε είναι: A. 1 B. 1 Γ. 0"

Transcript

1 ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ 1. Αν δύο τρίγωνα έχουν δύο γωνίες ίσες μία προς μία, τότε είναι: A. Ίσα B. Όμοια Γ. Ισεμβαδικά 2. Ποιος αριθμός διπλασιαζόμενος δεν μεταβάλλεται: A. 1 B. 1 Γ Σε ένα τρίγωνο τα μέτρα των γωνιών είναι ανάλογα των αριθμών 1,2,3. Τότε οι γωνίες είναι: Α. 40 ο, 60 ο, 80 ο Β. 20 ο, 60 ο, 100 ο Γ. 30 ο, 60 ο, 90 ο Δ. 50 ο,60 ο, 70 ο 4. Αν για γωνία ω ισχύει 90 ο < ω < 180 ο τότε: Α. ημω συνω > 0 Β. ημω συνω = 0 Γ. ημω συνω < 0 Δ. ημω συνω = 1 5. Αν συνω = 5 τότε η γωνία ω είναι: 2 Α. Οξεία Β. Αμβλεία Γ. Ορθή 6. Ένας πατέρας και ο γιος του έχουν άθροισμα ηλικιών 40 έτη. Μετά από 10 έτη η ηλικία του πατέρα θα είναι διπλάσια της ηλικίας του γιου. Πόσων ετών είναι αυτή τη στιγμή κάθε ένας; Α. 30, 10 Β. 35, 5 Γ. 32, 8 Δ. 36, 4

2 7. Αν 7 Χ+2 = 49 τότε: Α. Χ = 5 Β. Χ = -2 Γ. Χ = 47 Δ. Χ= 0 8. Αν οι αριθμοί α,β,γ,δ είναι διαδοχικοί όροι αριθμητικής προόδου με διαφορά ω τότε: Α. δ = β + 3ω Β. γ α = 2ω Γ. α + β = γ + δ Δ. β = α + γ 9. Η συνάρτηση ψ = χ 2 χ 6 τέμνει τον άξονα των Ψ στο σημείο: Α. (2, 2) Β. ( 2, 0) Γ. (0, 6) Δ. (3, 0) 10. Το γινόμενο δύο ετερόσημων αριθμών είναι αριθμός: Α. Αρνητικός Β. Μη αρνητικός Γ. Θετικός Δ. Μηδέν 11. Για ποια τιμή του λ είναι εξίσωση δευτέρου βαθμού η εξίσωση (λ 2 9) Χ 3 + (λ 2 λ 6) Χ 2 + (2λ 1) Χ + 5 = 0 Α. λ = 3 Β. λ = 3 Γ. λ = 2 Δ. Για κάθε πραγματική τιμή του λ 12. Έμπορος αγόρασε ένα φόρεμα 240 και θέλει να το πουλήσει με κέρδος 35%. Ποια τιμή πρέπει να αναγράψει στο φόρεμα; Α. 275 Β. 300 Γ. 396 Δ Στη σειρά των αριθμών 9, 10, 12, 15, 19, 24 επόμενος είναι ο αριθμός: Α. 29 Β. 26 Γ. 33 Δ. 30

3 14. Αν Ε 1, Ε 2 είναι τα εμβαδά δύο όμοιων τριγώνων και 5 2 είναι ο λόγος ομοιότητας του πρώτου ως προς το δεύτερο, τότε ισχύει: Α. Β. Γ. Δ. 1 2 = = = = Το μέρος της κλιτής λέξης που είναι στην αρχή της και δεν αλλάζει μορφή λέγεται: A. Κατάληξη B. Πρόσφυμα Γ. Θέμα Δ. Απόληξη 16. «Συνέχισε απρόσκοπτα την εργασία του», δηλαδή: Α. Αδιαμαρτύρητα Β. Πεισματικά Γ. Ανεμπόδιστα Δ. Απρόσεκτα 17. Σε ποιο βαθμό βρίσκεται το επίθετο «ελάχιστος» Α. Συγκριτικό Β. Θετικό Γ. Υπερθετικό Δ. Σχετικό Υπερθετικό 18. Η γενική πληθυντικού του ουσιαστικού αστυφύλακας είναι: Α. Αστυφύλακων Β. Αστυφυλακών Γ. Αστύφυλακων Δ. Αστυφυλάκων 19. Ποιο από τα παρακάτω ζεύγη λέξεων αποτελεί συνδυασμό ταυτόσημων: Α. Νόμος Νομός Β. Φύλο Φύλλο Γ. Χώρος Χορός Δ. Πετεινός - Κόκορας

4 20. Ποια από τις παρακάτω λέξεις είναι σωστά ορθογραφημένη: Α. Εξεικοίωση Β. Εξοικείωση Γ. Εξικοίωση Δ. ξικείωση 21. Ποια από τις παρακάτω λέξεις είναι σωστά ορθογραφημένη: Α. Αναζωπύρωση Β. Αναζοπύροση Γ. Αναζοπήρωση Δ. Αναζοπυροση 22. Η λέξη «ένδεια» σημαίνει: Α. Φτώχεια Β. Ανάγκη Γ. Εμπειρία Δ. Ενδελέχεια 23. Συνώνυμη λέξη του «εξαίρετος» είναι: Α. Επιθυμητός Β. Εκλεκτός Γ. Εύκολος Δ. Aπορριπτέος 24. Η αντίθετη λέξη της λέξης «ελλάτωμα» είναι: Α. Ψεγάδι Β. Συνήθεια Γ. Τελειότητα Δ. Πλεονέκτημα 25. Η λέξη «είτε» είναι: Α. Άρθρο Β. Πρόθεση Γ. Επιφώνημα Δ. Σύνδεσμος 26. Συμπληρώστε το κενό με την κατάλληλη λέξη: «Ο Πρωθυπουργός επισκέφτηκε τους κατοίκους των περιοχών» Α. Πληγέντων Β. Πλειγησών Γ. Πληγεισών Δ. Πλειγμένων

5 27. Το πρόσωπο, το ζώο ή το πράγμα για το οποίο γίνεται λόγος μέσα σε μία πρόταση λέγεται: Α. Κατηγορούμενο Β. Αντικείμενο Γ. Υποκείμενο Δ. Επεξήγηση 28. Οι διατάξεις του ελληνικού Συντάγματος, αναθεωρούνται, εκτός από εκείνες που καθορίζουν τη βάση και τη μορφή: Α. Της Βουλής Β. Του πολιτεύματος Γ. Του εκλογικού σώματος Δ. Της νομοθετικής διαδικασίας 29. Η έδρα του Δικαστηρίου των Ευρωπαϊκών Κοινοτήτων βρίσκεται: Α. Στο Λουξεμβούργο Β. Στις Βρυξέλλες Γ. Στο Στρασβούργο Δ. Στο Παρίσι 30. Ποιος από τους παρακάτω δεν έχει διατελέσει Πρόεδρος της Δημοκρατίας: Α. Ο Ανδρέας Παπανδρέου Β. Ο Κωνσταντίνος Καραμανλής Γ. Ο Χρήστος Σαρτζετάκης Δ. Ο Κωστής Στεφανόπουλος 31. Η ανώτερη μορφή κοινωνικού σχηματισμού είναι: Α. Το έθνος Β. Η ομοεθνία Γ. Η πατριά Δ. Η φυλή και το θρήσκευμα 32. Αρχηγός των Ενόπλων Δυνάμεων κατά το Σύνταγμα, ορίζεται ο: Α. Αρχηγός ΓΕΕΘΑ Β. Υπουργός Εθνικής Άμυνας Γ. Πρόεδρος της Δημοκρατίας Δ. Πρωθυπουργός 33. Το Υπουργικό Συμβούλιο αποτελείται από: Α. Την Κυβέρνηση και τη Βουλή Β. Τους Υπουργούς και τους Υφυπουργούς Γ. Τον Πρωθυπουργό και τους Υπουργούς Δ. Τον Πρόεδρο της Δημοκρατίας και τον Πρωθυπουργό

6 34. Οι δικαστικές αποφάσεις εκτελούνται «Στο όνομα του Ελληνικού λαού». Αυτό αποτελεί εκδήλωση: Α. Της αρχής της διάκρισης των λειτουργιών Β. Της δικαστικής ανεξαρτησίας Γ. Της αποδοχής, ότι το θεμέλιο του πολιτεύματος είναι η λαϊκή κυριαρχία Δ. Του κράτους δικαίου 35. Η Ελλάδα είναι μέλος: Α. Της Ευρωπαϊκής Ένωσης Β. Του ΝΑΤΟ Γ. Του ΟΗΕ Δ. Όλων των παραπάνω διεθνών οργανισμών 36. Ποια από τα παρακάτω κράτη δεν ανήκει στη Σύνοδο των οκτώ ισχυρών κρατών της Γης (G8); Α. Γαλλία Β. Γερμανία Γ. Κίνα Δ. Ιαπωνία 37. Το δικτατορικό καθεστώς επιβλήθηκε στην Ελλάδα : Α. Την 25 Απριλίου 1973 Β. Την 21 Απριλίου 1971 Γ. Την 21 Απριλίου 1967 Δ. Την 25 Απριλίου Η περιοχή της γης που βυθίζεται σε απόλυτο σκοτάδι τέσσερις περίπου μήνες το χρόνο είναι: A. Η Νέα Ζηλανδία B. Η Ανταρκτική Γ. Η Νορβηγία Δ. Το Βέλγιο 39. Η μεγαλύτερη ήπειρος της γης είναι: Α. Η Αφρική Β. Η Ασία Γ. Η Ευρώπη Δ. Η Αμερική 40. Έκλειψη Σελήνης έχουμε όταν: Α. Η Γη παρεμβάλλεται μεταξύ Ηλίου και Σελήνης Β. Η Σελήνη παρεμβάλλεται μεταξύ Ηλίου και Γης Γ. Ο Ήλιος παρεμβάλλεται μεταξύ Γης και Σελήνης

7 41. Αλτρουιστής σημαίνει ότι κάποιος: Α. Είναι εγωιστής Β. Αγαπάει τον πλησίον του Γ. Είναι ωραιοπαθής Δ. Είναι σχιζοφρενής 42. Ο Τάφος του Φίλιππου Β ανακαλύφθηκε από τον Ανδρόνικο στη(ν): Α. Θεσσαλονίκη Β. Πέλλα Γ. Κατερίνη Δ. Βεργίνα 43. Ο ψηλότερος καταρράκτης στον κόσμο είναι: Α. Ο καταρράκτης Έιντζελ στη Βενεζουέλα Β. Οι καταρράκτες Βικτώρια ανάμεσα σε Ζάμπια και Ζιμπάμπουε Γ. Οι καταρράκτες Γιασεμίτ στην Κεντρική Καλιφόρνια Δ. Οι καταρράκτες του Νιαγάρα στα σύνορα Αμερικής Καναδά 44. Ποιος υπήρξε δάσκαλος του Μεγάλου Αλεξάνδρου που τον μύησε στην ελληνική παιδεία; Α. Ο Δημοσθένης Β. Ο Αριστοτέλης Γ. Ο Σοφοκλής Δ. Ο Ευκλείδης 45. Ποιο από τα παρακάτω δεν ανήκει στα επτά αρχαία θαύματα του κόσμου; Α. Ο Φάρος της Αλεξάνδρειας Β. Ο Κολοσσός της Ρόδου Γ. Η Ακρόπολη της Αθήνας Δ. Το Άγαλμα του Δία στην Ολυμπία 46. Ποιοι Έλληνες ποιητές έχουν τιμηθεί με το Βραβείο Νόμπελ Λογοτεχνίας; Α. Οδυσσέας Ελύτης Κωνσταντίνος Καβάφης Β. Κωστής Παλαμάς Γεώργιος Σεφέρης Γ. Οδυσσέας Ελύτης Γεώργιος Σεφέρης Δ. Κωνσταντίνος Καβάφης Κωστής Παλαμάς 47. Η Μαρία Κιουρί ήταν η πρώτη γυναίκα που δίδαξε στο πανεπιστήμιο: Α. Των Παρισίων Β. Της Σορβόννης Γ. Της Βαρσοβίας Δ. Του Λονδίνου

8 48. Η Εξεταστική των Πραγμάτων Επιτροπή βάσει άρθρου του Συντάγματος αποτελείται: Α. Από μέλη της Βουλής Β. Από ανώτατους Δικαστικούς Γ. Σε ποσοστό από μέλη της Βουλής και Δικαστικούς Δ. Από μέλη της Τοπικής Αυτοδιοίκησης 49. Πόσες είναι οι Μούσες που αναφέρονται στην Θεογενία του Ησίοδου: Α. 5 Β. 8 Γ. 9 Δ Η ελάχιστη απόσταση από τον Ήλιο στην οποία περιοδικώς βρίσκονται οι πλανήτες κατά την τροχιακή τους περιφορά γύρω από τον Ήλιο λέγεται: Α. Περιήλιο Β. Αφήλιο Γ. Κοντήλιο

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ Προσομοιωμένο διαγώνισμα απολυτήριων εξετάσεων στα Μαθηματικά της Γ Γυμνασίου ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 01-01 ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να συμπληρώσετε

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ 17. ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ 17. ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΕΓΟΜΕΝΑ 17 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί 26 Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών 27 Η αναπαράσταση

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Γεωργία Καζάκου, ΠΕ09. Οικονομολόγος. Πολιτική Παιδεία. Β Τάξη Γενικού Λυκείου

Γεωργία Καζάκου, ΠΕ09. Οικονομολόγος. Πολιτική Παιδεία. Β Τάξη Γενικού Λυκείου Πολιτική Παιδεία Β Τάξη Γενικού Λυκείου 1 ΚΕΦΑΛΑΙΟ 4 ο Η ΛΕΙΤΟΥΡΓΙΑ ΤΗΣ ΠΟΛΙΤΕΙΑΣ 4.2 Η ΕΚΤΕΛΕΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ 2 Άρθρο 26 του Συντάγματος Η εκτελεστική λειτουργία ασκείται από τον ΠτΔ και την Κυβέρνηση.

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Εξισώσεις-Ανισώσεις.

Κεφάλαιο 1 ο. Εξισώσεις-Ανισώσεις. Μαθηματικά B Γυμνασίου Κεφάλαιο 1 ο. Εξισώσεις-Ανισώσεις. Μέρος Α.- Θεωρία. 1. Τι λέμε αλγεβρική και τι αριθμητική παράσταση; 2. Τι λέμε αναγωγή ομοίων όρων; 3. Τι λέμε εξίσωση α βαθμού; 4. Τι λέμε πρώτο

Διαβάστε περισσότερα

Άρθρο 1. Μορφή του πολιτεύματος * Άρθρο 2. Πρωταρχικές υποχρεώσεις της Πολιτείας ΜΕΡΟΣ ΔΕΥΤΕΡΟ ΑΤΟΜΙΚΑ ΚΑΙ ΚΟΙΝΩΝΙΚΑ ΔΙΚΑΙΩΜΑΤΑ

Άρθρο 1. Μορφή του πολιτεύματος * Άρθρο 2. Πρωταρχικές υποχρεώσεις της Πολιτείας ΜΕΡΟΣ ΔΕΥΤΕΡΟ ΑΤΟΜΙΚΑ ΚΑΙ ΚΟΙΝΩΝΙΚΑ ΔΙΚΑΙΩΜΑΤΑ ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΤΜΗΜΑ Α Μορφή του πολιτεύματος Άρθρο 1. Μορφή του πολιτεύματος * Άρθρο 2. Πρωταρχικές υποχρεώσεις της Πολιτείας ΤΜΗΜΑ Β Σχέσεις Εκκλησίας και Πολιτείας Άρθρο 3.

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

Διάστημα. Βάλε στη σωστή απάντηση (μία κάθε φορά). Για να κάνει η Γη μια πλήρη περιστροφή γύρω από τον Ήλιο, χρειάζεται:

Διάστημα. Βάλε στη σωστή απάντηση (μία κάθε φορά). Για να κάνει η Γη μια πλήρη περιστροφή γύρω από τον Ήλιο, χρειάζεται: 3ST TET ASKISEON_XPress_Hamster_temp.qxp 27/04/2011 7:45 μ.μ. Page 1 Διάστημα Βάλε στη σωστή απάντηση (μία κάθε φορά). Για να κάνει η Γη μια πλήρη περιστροφή γύρω από τον εαυτό της, χρειάζεται: μια μέρα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

Πολιτική και Δίκαιο Γραπτή Δοκιμασία Α Τετραμήνου

Πολιτική και Δίκαιο Γραπτή Δοκιμασία Α Τετραμήνου Πολιτική και Δίκαιο Γραπτή Δοκιμασία Α Τετραμήνου ΘΕΜΑΤΑ ΣΩΣΤΟΥ ΛΑΘΟΥΣ 1. Απόλυτη διάκριση λειτουργιών υπάρχει όταν τα όργανα της μιας κρατικής λειτουργίας δεν επιτρέπεται να παρεμβαίνουν και να ασκούν,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1. Να λυθούν οι παρακάτω εξισώσεις: 5 x - 3 + 10 2-5x + 10x= - 15 + 10x i. ( ) ( ) ( ) ii. 9( 8-x) -10( 9-x) -4( x - 1)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ ΥΜΝΑΣΙΟ - 010 90 Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι

Διαβάστε περισσότερα

Γεωργία Καζάκου, ΠΕ09. Οικονομολόγος. Πολιτική Παιδεία. Β Τάξη Γενικού Λυκείου

Γεωργία Καζάκου, ΠΕ09. Οικονομολόγος. Πολιτική Παιδεία. Β Τάξη Γενικού Λυκείου Πολιτική Παιδεία Β Τάξη Γενικού Λυκείου 1 ΚΕΦΑΛΑΙΟ 3 ο Η ΟΡΓΑΝΩΣΗ ΤΗΣ ΠΟΛΙΤΕΙΑΣ 3.3 ΤΟ ΠΟΛΙΤΕΥΜΑ ΤΗΣ ΕΛΛΑΔΑΣ 2 Άρθρο 1 του Συντάγματος Tο πολίτευμα της Eλλάδας είναι Προεδρευόμενη Kοινοβουλευτική Δημοκρατία.

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ. Ημερομηνία: Δευτέρα, 6 Ιουνίου 2016

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ. Ημερομηνία: Δευτέρα, 6 Ιουνίου 2016 ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2015-2016 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Ημερομηνία: Δευτέρα, 6 Ιουνίου 2016 Χρόνος: 2 ώρες Βαθμός:.. Υπογραφή καθηγητή/

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 Πρότυπο Πειραματικό Γυμνάσιο Αγίων Αναργύρων Τάξη Β 2 ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ A ΕΝΟΤΗΤΑ : Πράξεις Ρητών αριθμών 1. Να χαρακτηρίσετε τις παρακάτω

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ ΒΑΛΑΤΣΟΣ ΦΥΣΙΚΟΣ Msc

ΓΙΩΡΓΟΣ ΒΑΛΑΤΣΟΣ ΦΥΣΙΚΟΣ Msc ΤΑΛΑΝΤΩΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 1 Να συμπληρώσετε τα κενά στις επόμενες προτάσεις: α. Το χρονικό διάστημα μέσα στο οποίο πραγματοποιείται μία πλήρης ταλάντωση ονομάζεται.. και το πηλίκο του αριθμού των ταλαντώσεων

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία

Ευκλείδεια Γεωμετρία Ευκλείδεια Γεωμετρία Γεωμετρία Γεω + μετρία Γη + μετρώ Οι πρώτες γραπτές μαρτυρίες γεωμετρικών γνώσεων ανάγονται στην τρίτη με δεύτερη χιλιετία π.χ. και προέρχονται από τους λαούς της αρχαίας Αιγύπτου

Διαβάστε περισσότερα

1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΞΙΣΩΣΕΩΝ

1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΞΙΣΩΣΕΩΝ 1 1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΞΙΣΩΣΕΩΝ ΣΧΟΛΙΟ Για τη λύση του προβλήµατος : ιαβάζουµε µε µεγάλη προσοχή το πρόβληµα Ξεχωρίζουµε τα δεδοµένα από τα ζητούµενα Συµβολίζουµε τον άγνωστο µε µία µεταβλητή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΑ Β ΤΑΞΗΣ

ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΑ Β ΤΑΞΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1. ΘΡΗΣΚΕΥΤΙΚΑ Tα κεφάλαια 3, 4, 6, 7, 9, 10, 11, 14, 21, 24, 25, 30, 31, 32, 34, 35, 36. 2. ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΓΡΑΜΜΑΤΕΙΑ 1. ΕΙΣΑΓΩΓΗ α. ΣΕΛ 10 ( Είδη Δράματος ) - Σελ 14 β Παράγραφος

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

ΓΕΛ ΑΡΧΑΓΓΕΛΟΥ ΥΛΗ ΜΑΘΗΜΑΤΩΝ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2013

ΓΕΛ ΑΡΧΑΓΓΕΛΟΥ ΥΛΗ ΜΑΘΗΜΑΤΩΝ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2013 ΓΕΛ ΑΡΧΑΓΓΕΛΟΥ ΥΛΗ ΜΑΘΗΜΑΤΩΝ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2013 Α ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Κεφ. 2 ο : Τα βασικά γεωμετρικά σχήματα 2.16. Είδη και απλές σχέσεις γωνιών. (Χωρίς

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ A ΓΥΜΝΑΣΙΟΥ Κωνσταντίνος Ηλιόπουλος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ 3. 2 ο Θέµα

ΙΑΓΩΝΙΣΜΑ 3. 2 ο Θέµα 1 ΙΩΝΙΣΜ ΘΕΩΡΙ 1 ο Θέµα. Τι ονοµάζουµε τετραγωνική ρίζα ενός θετικού αριθµού και πως την συµβολίζουµε ; Να συµπληρώσετε τις παρακάτω προτάσεις i) ν α 0 τότε ( α ) =. ii) ια οποιονδήποτε αριθµό α ισχύει

Διαβάστε περισσότερα

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των

Διαβάστε περισσότερα

Το πολίτευμα που προβλέπει το ελληνικό Σύνταγμα του 1975/1986/2001/ Οι θεμελιώδεις αρχές του πολιτεύματος

Το πολίτευμα που προβλέπει το ελληνικό Σύνταγμα του 1975/1986/2001/ Οι θεμελιώδεις αρχές του πολιτεύματος Εισαγωγή στο Διεθνές και Ευρωπαϊκό Δίκαιο Α εξάμηνο 2015/2016 Ν. Κανελλοπούλου Αναπλ. Καθηγ. Συνταγματικού Δικαίου Το πολίτευμα που προβλέπει το ελληνικό Σύνταγμα του 1975/1986/2001/2008 Διάγραμμα του

Διαβάστε περισσότερα

Μια νέα (;) ιδιότητα της παραβολής

Μια νέα (;) ιδιότητα της παραβολής Σελίδα 1 από 6 Μια νέα (;) ιδιότητα της παραβολής Γιάννης Καμπούρογλου Μαθηματικός (4 ο ΛΥΚΕΙΟ ΧΑΛΚΙΔΑΣ) Γιάννης Αλεξίου Μαθηματικός (4 ο ΛΥΚΕΙΟ ΧΑΛΚΙΔΑΣ) Περίληψη Παρουσιάζουμε με απόδειξη μια νέα (;)

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΣΙΡΕΙΟ ΓΥΜΝΑΣΙΟ ΛΕΜΕΣΟΥ Σχολική χρονιά : 2012-2013 Βαθμός:... Υπογραφή:... ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία : 12-06-2013 Σελίδες : 11 Τάξη : A Διάρκεια : 2 ώρες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

Υπολογιστικά Συστήματα της Αρχαιότητας. Μηχανισμός των Αντικυθήρων Άβακας Κλαύδιος Πτολεμαίος Ήρωνας Αλεξανδρινός Το Κόσκινο του Ερατοσθένη

Υπολογιστικά Συστήματα της Αρχαιότητας. Μηχανισμός των Αντικυθήρων Άβακας Κλαύδιος Πτολεμαίος Ήρωνας Αλεξανδρινός Το Κόσκινο του Ερατοσθένη Υπολογιστικά Συστήματα της Αρχαιότητας Μηχανισμός των Αντικυθήρων Άβακας Κλαύδιος Πτολεμαίος Ήρωνας Αλεξανδρινός Το Κόσκινο του Ερατοσθένη Μηχανισμός των Αντικυθήρων Κατασκευή μηχανισμού : 2 ος 1 ος αιώνας

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

Τράπεζα Θεμάτων-4ο Β Λυκείου- ΑΛΓΕΒΡΑ

Τράπεζα Θεμάτων-4ο Β Λυκείου- ΑΛΓΕΒΡΑ Τράπεζα Θεμάτων-ο Β Λυκείου- ΑΛΓΕΒΡΑ ΘΕΜΑ (178) Δίνεται η συνάρτηση f (x) f x 8 x 8 x α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. (Μονάδες 5) β) Να εξετάσετε αν η συνάρτηση f είναι άρτια ή περιττή.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

Ανακρίνοντας τρία διαγράμματα

Ανακρίνοντας τρία διαγράμματα Ανακρίνοντας τρία διαγράμματα 1) Ένα σώµα κινείται πάνω στον άξονα x και στο διάγραµµα φαίνεται η θέση του σε συνάρτηση µε το χρόνο. Με βάση πληροφορίες που µπορείτε να αντλήσετε µελετώντας το παραπάνω

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ. Μαθηματικών Β Γυμνασίου. Μαριλένα Νικολαΐδου-Μουσουλίδου

ΕΠΑΝΑΛΗΨΗ. Μαθηματικών Β Γυμνασίου. Μαριλένα Νικολαΐδου-Μουσουλίδου ΕΠΑΝΑΛΗΨΗ Μαθηματικών Β Γυμνασίου ΑΡΙΘΜΟΙ Το σύνολο των Φυσικών Αριθμών είναι 1,2,3,4, Το σύνολο των Φυσικών Αριθμών συμπεριλαμβανομένου και του μηδενός είναι: 0, 1, 2, 3, 4, Άρτιος αριθμός είναι κάθε

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

Σελίδα 1 από 5. Τ

Σελίδα 1 από 5. Τ Σελίδα 1 από 5 ΔΕΟ 10 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΥΝΤΑΓΜΑΤΙΚΟΥ ΕΙΣΑΓΩΓΗΣ ΣΤΟ ΔΙΚΑΙΟ ΕΥΡΩΠΑΙΚΟ- ΔΙΟΙΚΗΤΙΚΟ ΤΟΜΟΙ Α & Α1 & Β ΣΥΝΤΑΓΜΑΤΙΚΟ 1. Τι είναι κράτος; Κράτος: είναι η διαρκής σε νομικό πρόσωπο οργάνωση λαού

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ 1. Να αναπτύξετε τις ταυτότητες: α. (α+8) β. (-) γ. (γ+k) δ. (+γ) ε. (3k-5λ) ζ. (5/κ - 4/λ) η. (/3-χ/4) θ. (χ - 3/χ) ι. (χ/3+3ψ/4) κ. (3χ+χ/) λ. (χ+8)(χ-8)

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΟ 3ο ΚΑΙ ΤΟ 4ο ΚΕΦΑΛΑΙΟ ΤΗΣ ΑΛΓΕΒΡΑΣ

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΟ 3ο ΚΑΙ ΤΟ 4ο ΚΕΦΑΛΑΙΟ ΤΗΣ ΑΛΓΕΒΡΑΣ ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΟ 3ο ΚΑΙ ΤΟ 4ο ΚΕΦΑΛΑΙΟ ΤΗΣ ΑΛΓΕΒΡΑΣ Τα θέµατα που συνθέτουν τα σχέδια κριτηρίων που ακολουθούν αντλήθηκαν από τις ερωτήσεις του σχεδιασµού αξιολόγησης

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΟΙ ΕΠΙΔΟΣΕΙΣ ΤΗΣ ΔΕΚΑΕΤΙΑΣ 2000 ΕΩΣ ΣΗΜΕΡΑ

ΟΙ ΕΠΙΔΟΣΕΙΣ ΤΗΣ ΔΕΚΑΕΤΙΑΣ 2000 ΕΩΣ ΣΗΜΕΡΑ ΟΙ ΕΠΙΔΟΣΕΙΣ ΤΗΣ ΔΕΚΑΕΤΙΑΣ 2000 ΕΩΣ ΣΗΜΕΡΑ Από όσο γνωρίζετε, ή έχετε ακούσει, από το 974 μέχρι σήμερα, σε ποια περίοδο, θα λέγατε ότι... η Δημοκρατία στην Ελλάδα, λειτούργησε καλύτερα; 6 το σύστημα Υγεία

Διαβάστε περισσότερα

Συμμετοχικές Διαδικασίες και Τοπική διακυβέρνηση

Συμμετοχικές Διαδικασίες και Τοπική διακυβέρνηση Συμμετοχικές Διαδικασίες και Τοπική διακυβέρνηση Θεσμοί, Όργανα και Δομή της Δημόσιας Διοίκησης Χαρίτα Βλάχου Γεωπόνος Αγροτικής Οικονομίας Στέλεχος Αποκεντρωμένης Διοίκησης Μ-Θ Σήμερα Ποιό είναι το πολίτευμα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Πειραματικό υμνάσιο Αγίων Αναργύρων Τάξη Μάιος 8 ΘΕΜΑΤΑ ΡΑΠΤΩΝ ΠΡΟΑΩΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 8 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ : ΘΕΩΡΙΑ Έστω η εξίσωση δευτέρου βαθμού : a με a β γ (). α) Ποια παράσταση λέγεται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). Δίνεται το σύστημα: x 2y= 9 ax+ βy= γ με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). (Μονάδες 13) β) Να επιλέξετε

Διαβάστε περισσότερα

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ;

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ; ΦΩΣ ΚΑΙ ΣΚΙΑ Πως δημιουργείτε η σκιά στη φυσική ; Λόγω της ευθύγραμμης διάδοσης του φωτός, όταν μεταξύ μιας φωτεινής πηγής και ενός περάσματος παρεμβάλλεται ένα αδιαφανές σώμα, δημιουργείτε στο πέρασμα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013 1. Τί ονομάζουμε απόλυτη τιμή ενός αριθμού α ; Ονομάζουμε απόλυτη τιμή ενός αριθμού α την απόστασή του από το 0 (μηδέν). ή Απόλυτη τιμή λέμε τον αριθμό χωρίς πρόσημο. 2.Πότε δύο αριθμοί λέγονται αντίθετοι;

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

1. Ποια είναι τα κύρια στοιχεία ενός τριγώνου; 2. Ποια είναι τα δευτερεύοντα στοιχεία ενός τριγώνου;

1. Ποια είναι τα κύρια στοιχεία ενός τριγώνου; 2. Ποια είναι τα δευτερεύοντα στοιχεία ενός τριγώνου; ΜΕΡΟΣ Β : ΓΕΩΜΕΤΡΙΑ -ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ 1.1 Ισότητα τριγώνων 1. Ποια είναι τα κύρια στοιχεία ενός τριγώνου; Κυρια στοιχεια του τριγωνου ειναι: οι πλευρες του ΑΒ,ΒΓ,ΓΑ οι γωνιες του Α,Β,Γ.

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΣΥΣΤΗΜΑΤΑ 1. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Άλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0

Άλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0 ΤΑΞΗ Γ ΓΥΜΝΑΣΙΟΥ MAΘΗΜΑΤΙΚΑ 016 ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Άλγεβρα 1) Δίνεται το πολυώνυμο ( ) = ( + 1)( 1) ( + 1)( 5 + 7) P x x x x x i) Να αποδείξετε ότι ( ) P x = 7x x 8 Να υπολογίσετε την αριθμητική τιμή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ Η κίνηση των πλανητών είναι το αποτέλεσμα της σύνθεσης 2 κινήσεων: μίας περιστροφής γύρω από τον Ήλιο, η περίοδος της οποίας μας δίνει το έτος κάθε πλανήτη, και πραγματοποιείται

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 009 ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Α ΘΕΩΡΙΑ ΘΕΜΑ 1 Ο : α) Ποια μονώνυμα λέγονται αντίθετα; Γράψτε ένα παράδειγμα δύο αντίθετων μονωνύμων. β) Ποια αλγεβρική

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα

ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα Τράπεζα θεμάτων ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα ΘΕΜΑ 2 (16950) α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο Εξισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 3 445 ασκήσεις και τεχνικές σε 6 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 0 / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού 108 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθµό, να υπολογιστεί

Διαβάστε περισσότερα

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 007 Σχ. Έτος 006-007 ΤΑΞΗ Γ ΘΕΩΡΙΑ 1. α.) Να συμπληρώσετε τις ταυτότητες : 3 ( α + β ) = ( β ) = α 3 3 3 β.) Να αποδείξετε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (2) -2- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127 Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 -

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 - ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ H Γη είναι ένας πλανήτης από τους οκτώ συνολικά του ηλιακού μας συστήματος, το οποίο αποτελεί ένα από τα εκατοντάδες δισεκατομμύρια αστρικά συστήματα του Γαλαξία μας, ο οποίος με την

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ - Πράξεις ρητών

ΑΣΚΗΣΕΙΣ - Πράξεις ρητών 1 ΑΣΚΗΣΕΙΣ - Πράξεις ρητών 1. Να υπολογιστούν τα παρακάτω αθροίσματα: i. 5 7 ii. 8 6 iii. 6 4 iv. 9 5 v. 15 15 vi. 17 0 vii. 0 15 viii. 13 14 ix. 12 16 2. Να υπολογιστούν τα παρακάτω αθροίσματα: i. 6,35

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα