Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Some generalization of Cauchy s and Wilson s functional equations on abelian groups"

Transcript

1 Aequat. Math. 89 (2015), c The Author(s) Ths artcle s publshed wth open access at Sprngerlnk.com /15/ publshed onlne December 6, 2013 DOI /s Aequatones Mathematcae Some generalzaton of Cauchy s and Wlson s functonal equatons on abelan groups Rados law Lukask Abstract. We fnd the solutons f, g,h: G X, α: G K of the functonal equaton f(x + λy) = K g(x)+ α(x)h(y), x,y G, where (G, +) s an abelan group, K s a fnte, abelan subgroup of the automorphsm group of G, X s a lnear space over the feld K {R, C}. Mathematcs Subject Classfcaton (2010). 39B52. Keywords. Wlson s functonal equaton, Cauchy s functonal equaton. 1. Introducton The followng generalzaton f(x + y)+f(x + σy) =2f(x)+2f(y), x,y G, of the quadratc functonal equaton, where σ s an automorphsm of an abelan group G such that σ σ = d G and f : G C, was nvestgated by Stetkær [9]. In hs other work [10] he solved the functonal equaton N 1 1 f(z + ω n ζ)=f(z)+g(z)h(ζ), z,ζ C, N n=0 where N {2, 3,...},ω s a prmtve N th root of unty, f,g,h: C C are contnuous. Lukask [5, 6] derved explct formulas for the solutons of the functonal equaton f(x + λy) = K α(y)g(x)+ K h(y), x,y G,

2 592 R. Lukask AEM where (G, +) s an abelan group, K s a fnte abelan subgroup of the automorphsm group of G, X s a lnear space over the feld K {R, C},f,g,h: G X, α: G K. The functonal equaton f(x + λy) = K g(x)h(y), x,y G, where (G, +) s an abelan group, K s a fnte subgroup of the automorphsm group on G, f, g, h: G C, was studed by Förg-Rob and Schwager [3], Gajda [4], Stetkær [7, 8], Badora [2]. Aczél et al. [1] studed the complex-valued solutons of the equaton f(x + y)+f(x y) 2f(x) =g(x)h(y), x,y G, where (G, +) s a group and f,g,h: G C. The purpose of ths paper s to fnd the solutons of the functonal equaton f(x + λy) = K g(x)+α(x)h(y), x,y G, where f,g,h: G X, α: G K, (G, +) s an abelan group, K s a fnte, abelan subgroup of the automorphsm group of G, X s a lnear space over the feld K {R, C}. We fnd these solutons under the assumpton f λ const, α λ const, α(0) 0 and they are some combnatons of multplcatve and mult-addtve functons. Our results generalze all the results mentoned above (except the papers by Lukask). 2. Man result Throughout the present paper, we assume that X s a lnear space over the feld K {R, C},(G, +) s an abelan group, K s a fnte, abelan subgroup of the automorphsm group of G. In ths work we use some theorems. The frst gves us the form of the solutons of a generalzaton of Jensen s functonal equaton. Theorem 1. [5, Theorem5]Let (S, +) be an abelan semgroup, K be a fnte subgroup of the automorphsm group of S, (H, +) be an abelan group unquely dvsble by K!. Then the functon f : S H satsfes the equaton f(x + λy) = K f(x), x,y S (1)

3 Vol. 89 (2015) Generalzaton of Cauchy s and Wlson s functonal equatons 593 f and only f there exst k-addtve, symmetrc mappngs A k : S k H, k {1,..., K 1} and A 0 H such that f(x) =A 0 + A 1 (x)+ + A K 1 (x,...,x), x S, A k (x,...,x,λy,...,λy)=0, x,y S, 1 k K 1. The second theorem shows all solutons of a generalzaton of Wlson s functonal equaton. Theorem 2. [6, Theorem 4,5] Let f : G X,f 0,ϕ: G K. They satsfy the equaton f(x + λy) = K ϕ(y)f(x), x,y G, (2) f and only f there exsts a homomorphsm m: G C, such that ϕ(x) = 1 m(λx), x G, K and () f X s complex, then there exst A λ 0 X, k-addtve, symmetrc mappngs A λ k : Gk X,k {1,..., K 0 1},λ K 1 such that f(x) = K m(λx) A λ 0 + A λ (x,...,x), x G, 1 A λ k(x,...,x,μy,...,μy)=0, x,y G, 1, 1 k K 0 1, 0 () f X s real, then there exst A λ 0 X,B0 λ X, k-addtve, symmetrc mappngs A λ k,bλ k : Gk X,k {1,..., K 0 1},λ K 1 such that f(x) = K Re (m(λx)) A λ 0 + A λ (x,...,x) 1 Im (m(λx)) B 0 λ + K B λ (x,...,x), x G, A λ k(x,...,x,μy,...,μy)=0, x,y G, λ K 1, 1 k K 0 1, 0 Bk λ (x,...,x,μy,...,μy)=0, x,y G, 1, 1 k K 0 1, 0 where K 0 := {λ K : m λ = m},k 1 s the set of representatves of cosets of the quotent group K/K 0.

4 594 R. Lukask AEM Frst we start wth a corollary of Theorem 2. Corollary 1. A nonzero functon α: G K satsfes the equaton α(λy), x,y G, (3) α(x + λy) =α(x) f and only f there exsts a homomorphsm m: G C and () f K = C, then there exst a λ 0 C, k-addtve, symmetrc mappngs a λ k : Gk C,k {1,..., K 0 1},λ K 1 such that α(x) = K m(λx) a λ 0 + a λ (x,...,x), x G, 1 1, 1 k< K 0, 0 1 () f K = R, then there exst a λ 0,b λ 0 R, k-addtve, symmetrc mappngs a λ k,bλ k : Gk R,k {1,..., K 0 1},λ K 1 such that α(x) = K Re (m(λx)) a λ 0 + a λ (x,...,x) 1 Im (m(λx)) b λ 0 + K b λ (x,...,x), x G, 1, 1 k< K 0, 0 b λ k(x,...,x,μy,...,μy)=0, x,y G, λ K 1, 1 k< K 0, 0 1 where K 0 := {λ K : m λ = m},k 1 s the set of representatves of cosets of the quotent group K/K 0. Moreover, f α has the above form, then m(λx), x G. α(λx) = Proof. Assume that α satsfes (3). Let ϕ: G K be gven by the formula ϕ = 1 α λ. K

5 Vol. 89 (2015) Generalzaton of Cauchy s and Wlson s functonal equatons 595 Then α and ϕ satsfy the equaton 1 α(x + λy) =ϕ(y)α(x), x,y G. K In vew of Theorem 2 we have the form of α such as n the statement of ths corollary and the equalty ϕ(x) = 1 m(λx), x G. K We observe that () f K = C, then K ϕ(x) = α(μx) = K m(λμx) a λ 0 + a λ (μx,...,μx) 1 = K m(λμx) K 0 a λ 0 + a λ (σμx,...,σμx) 1 1 σ K 0 = m(λμx) K 0 a λ 0 = m(μx) a λ 0, x,y G, () f K = R, then K ϕ(x) = α(μx) = K 0 1 Re (m(λμx)) a λ 0 + a λ (μx,...,μx) 1 K 0 1 Im (m(λμx)) b λ 0 + b λ (μx,...,μx) 1 = K 0 1 Re (m(λμx)) K 0 a λ 0 + a λ (σμx,...,σμx) 1 1 σ K 0 K 0 1 Im (m(λμx)) K 0 b λ 0 + b λ (σμx,...,σμx) 1 1 σ K 0 = Re (m(λμx)) K 0 a λ 0 Im (m(λμx)) K 0 b λ = Re (m(μx)) a λ 0 Im (m(μx)) b λ = m(μx) a λ 0, x,y G. 1

6 596 R. Lukask AEM Hence 1 a λ 0 = 1 and on the other hand a functon α, whch has the form such as n the statement of ths corollary, satsfes Eq. (3). Theorem 3. Let functons f : G X,α: G K be such that f λ 0, α 0, α λ K. They satsfy the equaton f(x + λy) = K f(x)+α(x) f(λy), x,y G, (4) f and only f there exst a homomorphsm m: G C,A 0 X, k-addtve, symmetrc mappngs A k : G k X,k {1,...,L 1} such that K 1 f(x) =A 0 + A (x,...,x) α(x)a 0, x G, (5) A k (x,...,x,μy,...,μy)=0, x,y G, 1 k< K, (6) and () f K = C, then there exst a λ 0 C, k-addtve, symmetrc mappngs a λ k : Gk C,k {1,..., K 0 1},λ K 1 such that α(x) = K m(λx) a λ 0 + a λ (x,...,x), x G, (7) 1 1, 1 k< K 0, 0 1 () f K = R, then there exst a λ 0,b λ 0 R, k-addtve, symmetrc mappngs a λ k,bλ k : Gk R,k {1,..., K 0 1},λ K 1 such that α(x) = K Re (m(λx)) a λ 0 + a λ (x,...,x)] (10) 1 Im (m(λx)) b λ 0 + K (8) (9) b λ (x,...,x), x G, (11) 1, 1 k< K 0, 0 (12)

7 Vol. 89 (2015) Generalzaton of Cauchy s and Wlson s functonal equatons 597 b λ k(x,...,x,μy,...,μy)=0, x,y G, λ K 1, 1 k< K 0, 0 (13) (14) 1 where K 0 := {λ K : m λ = m},k 1 s the set of representatves of cosets of the quotent group K/K 0. Moreover ( f(λx) = K ) α(λx) A 0, x G. (15) Proof. Let f and α satsfy (4). We observe that f(x + λy + μz) = K f(x + λy) + α(x + λy) f(μz) = K 2 f(x)+ K α(x) f(λy) + α(x + λy) f(μz), x,y,z G, and f(x + λ(y + μz)) f(x + λy + μz) = = K 2 f(x)+α(x) f(λy + μz) = K 2 f(x)+ K α(x) f(λy)+α(x) α(λy) f(μz), x,y,z G. Hence we have ( ) α(λy) f(μz) =0, x,y,z G, α(x + λy) α(x) and we obtan that α satsfes Eq. (3). In vew of Corollary 1 we get the form of α. Now we notce that K f(λx)+ α(λx) f(μy) = f(λx + μy) = f(μy + λx) = K f(μy)+ α(μy) f(λx), x,y G.

8 598 R. Lukask AEM Hence ( K ) α(λx) f(μy) = K α(μy) f(λx), x,y G. whch gves us Eq. (15) for some A 0 X. Now, we can wrte Eq. (4) nthe form ( f(x + λy) = K f(x)+α(x) K ) α(λy) A 0, x,y G. Let q : G X be gven by the formula q(x) =f(x)+α(x)a 0, x G. Then from equaltes (3), (4), (15) wehave α(x + λy)a 0 q(x + λy) = f(x + λy)+ = K f(x)+α(x) f(λy)+α(x) α(λy)a 0 = K f(x)+ K α(x)a 0 = K q(x), x,y G. In vew of Theorem 1 there exst c X, k-addtve, symmetrc mappngs A k : G k X,k {1,..., K 1} such that K 1 q(x) =c + A (x,...,x), x G, A k (x,...,x,μy,...,μy)=0, x,y G, 1 k< K. Snce c = q(0) = f(0) + α(0)a 0 = A 0, we have K 1 f(x) =A 0 + A (x,...,x) α(x)a 0, x G. Now we assume that f satsfes condtons (5) (6) andα satsfes condtons (7) (9) n the complex case or (10) (14) n the real case. In vew of Theorem 1 a functon f + αa 0 satsfes Eq. (1) and n vew of Corollary 1 α satsfes Eq. (3). We have α(x + λy)a 0 f(x + λy) = (f(x + λy)+α(x + λy)a 0 ) = K f(x)+ K α(x)a 0 α(x) α(λy)a 0, x,y G.

9 Vol. 89 (2015) Generalzaton of Cauchy s and Wlson s functonal equatons 599 Hence we obtan f(λy) = K f(0) + K α(0)a 0 α(0) = K A 0 α(λy)a 0, x,y G α(λy)a 0 and f(x + λy) = K f(x)+ K α(x)a 0 α(x) α(λy)a 0 = K f(x)+α(x) f(λy), x,y G, whch ends the proof. Remark 1. Let f : G X, α: G K,α =0or f λ = 0. Then they satsfy Eq. (15) f and only f f satsfes Eq. (1). Hence, n vew of Theorem 1, we know the form of f. Remark 2. Let f : G X, α: G K, α λ = K. If they satsfy Eq. (15) then α satsfes Eq. (1) and we know ts form. At the present moment we don t know the form of f. Now we can prove the man theorem of ths paper whch s a pexderzed verson of Theorem 3. Theorem 4. Let functons f,g,h: G X,α: G K be such that f λ const, α λ const, α(0) 0. They satsfy the equaton f(x + λy) = K g(x)+α(x)h(y), x,y G, (16) f and only f there exst a homomorphsm m: G C,A,B,A 0 X, k- addtve, symmetrc mappngs A k : G k X,k {1,..., K 1} such that K 1 f(x) =A + A 0 + A (x,...,x) α(x) α(0) A 0, x G, (17) and K 1 g(x) =A + A 0 + A (x,...,x) α(x) α(0) [A + A 0 B], x G, (18) [( h(x) = 1 K ) ] α(λx) A 0 + K (A B), x G, (19) α(0) α(0) A k (x,...,x,μy,...,μy)=0, x,y G, 1 k< K, (20)

10 600 R. Lukask AEM () f K = C, then there exst a λ 0 C, k-addtve, symmetrc mappngs a λ k : G k C, k {1,..., K 0 1},λ K 1 such that α(x) =α(0) K m(λx) a λ 0 + a λ (x,...,x), x G, (21) 1 1, 1 k< K 0, 0 1 (22) (23) () f K = R, then there exst a λ 0,b λ 0 R, k-addtve, symmetrc mappngs a λ k,bλ k : Gk R,k {1,..., K 0 1},λ K 1 such that α(x) =α(0) 1 Im (m(λx)) b λ 0 + Re (m(λx)) a λ 0 + K K a λ (x,...,x) (24) b λ (x,...,x), x G, (25) 1, 1 k< K 0, 0 (26) b λ k(x,...,x,μy,...,μy)=0, x,y G, λ K 1, 1 k< K 0, 0 1 (27) (28) where K 0 := {λ K : m λ = m},k 1 s the set of representatves of cosets of the quotent group K/K 0. Proof. Puttng x = 0n(16) wehave f(λy) = K g(0) + α(0)h(y), y G. Puttng y =0n(16) weget K f(x) = K g(x)+α(x)h(0), x G.

11 Vol. 89 (2015) Generalzaton of Cauchy s and Wlson s functonal equatons 601 Hence we get g(x) =f(x) α(x) α(x) h(0) = f(x) [f(0) g(0)], x G, (29) K α(0) [ ] h(y) = 1 f(λy) K g(0), y G. (30) α(0) Let f 0 = f f(0),α 0 = α α(0). From the above equaltes we obtan f 0 (x + λy) = f(x + λy) K f(0) = K g(x)+α(x)h(y) K f(0) [ ] = K f 0 (x) α 0 (x) K [f(0) g(0)] + α 0 (x) f(λy) K g(0) = K f 0 (x)+α 0 (x) f 0 (λy), x,y G. In vew of Theorem 3 there exst a homomorphsm m: G C,A 0 X, k- addtve, symmetrc mappngs A k : G k X,k {1,..., K 1} such that and K 1 f 0 (x) =A 0 + A (x,...,x) α 0 (x)a 0, x G, A k (x,...,x,μy,...,μy)=0, x,y G, 1 k< K, () f K = C, then there exst a λ 0 C, k-addtve, symmetrc mappngs a λ k : G k C, k {1,..., K 0 1},λ K 1 such that α 0 (x) = K m(λx) a λ 0 + a λ (x,...,x), x G, 1 1, 1 k< K 0, 0 1

12 602 R. Lukask AEM () f K = R, then there exst a λ 0,b λ 0 R, k-addtve, symmetrc mappngs a λ k,bλ k : Gk R,k {1,..., K 0 1},λ K 1 such that α 0 (x) = K Re (m(λx)) a λ 0 + a λ (x,...,x) 1 Im (m(λx)) b λ 0 + K b λ (x,...,x), x G, 1, 1 k< K 0, 0 b λ k(x,...,x,μy,...,μy)=0, x,y G, λ K 1, 1 k< K 0, 0 a λ 0 =1. 1 Moreover ( f 0 (λx) = K ) α 0 (λx) A 0, x G. Hence, puttng A := f(0),b := g(0) and usng equaltes (29), (30), we obtan the form of f,g,h and α. Now we assume that f,g,h satsfy condtons (17) (20) and α satsfes condtons (21) (23) n the complex case and (24) (28) n the real case. In vew of Theorem 1 a functon f + α 0 A 0 satsfes Eq. (1) and n vew of Corollary 1 α 0 satsfes Eq. (3). We have α 0 (x + λy)a 0 f(x + λy) = (f(x + λy)+α 0 (x + λy)a 0 ) = K f(x)+ K α 0 (x)a 0 α 0 (x) α 0 (λy)a 0 = K f(x) [ K α 0 (x)[a B]+α 0 (x) K (A B)+ K A 0 ] α 0 (λy)a 0 = K g(x)+α(x)h(y), x,y G, whch ends the proof. Remark 3. Let f,g,h: G X, α: G K satsfy Eq. (16). () If α(0) = 0, then f λ =const. () If f λ = const, then α λ = const or h = const (n ths case Eq. (16) becomes Eq. (1) and we know ts form). We don t know the form of the solutons n the case when α λ =const.

13 Vol. 89 (2015) Generalzaton of Cauchy s and Wlson s functonal equatons 603 Open Access. Ths artcle s dstrbuted under the terms of the Creatve Commons Attrbuton Lcense whch permts any use, dstrbuton, and reproducton n any medum, provded the orgnal author(s) and the source are credted. References [1] Acél, J., Chung, J.K., Ng, C.T.: Symmetrc Second Dfferences n Product form on Groups. Topcs n Mathematcal Analyss, 1 22, Seres n Pure Mathematcs, vol. 11. World Scentfc Publshng, Teaneck (1989) [2] Badora, R.: On a generalzed Wlson functonal equaton. Georgan Math. J. 12(4), (2005) [3] Förg-Rob, W., Schwager, J.: A generalzaton of the cosne equaton to n summands. Grazer Math. Ber. 316, (1992) [4] Gajda, Z.: A remark on the talk of W. Förg-Rob. Grazer Math. Ber. 316, (1992) [5] Lukask, R.: Some generalzaton of Cauchy s and the quadratc functonal equatons. Aequ. Math. 83, (2012) [6] Lukask, R.: Some generalzaton of the quadratc and Wlson s functonal equaton. Aequ. Math. do: /s y [7] Stetkær, H.: On a sgned cosne equaton of N summands. Aequ. Math. 51(3), (1996) [8] Stetkær, H.: Wlson s functonal equaton on C. Aequ. Math. 53(1-2), (1997) [9] Stetkær, H.: Functonal equaton on abelan groups wth nvoluton. Aequ. Math. 54(1 2), (1997) [10] Stetkær, H.: Functonal equatons nvolvng means of functons on the complex plane. Aequ. Math. 56, (1998) Rados law Lukask Insttute of Mathematcs Unversty of Slesa ul. Bankowa Katowce Poland e-mal: rlukask@math.us.edu.pl Receved: July 30, 2013 Revsed: November 4, 2013

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution Journal of Statstcal Theory and Applcatons, Vol. 4, No. 3 September 5, 4-56 Concomtants of Dual Generalzed Order Statstcs from Bvarate Burr III Dstrbuton Haseeb Athar, Nayabuddn and Zuber Akhter Department

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm Sulementary materals for Statstcal Estmaton and Testng va the Sorted l Norm Małgorzata Bogdan * Ewout van den Berg Weje Su Emmanuel J. Candès October 03 Abstract In ths note we gve a roof showng that even

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010 MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLE THREE-FOLDS arv:1.57v1 [math.dg] 27 Mar 21 YI LI Abstract. In ths paper we construct Mabuch L M ω functonal and Aubn- Yau functonals Iω AY,J AY ω on any compact

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 311: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 016 Σειρά Ασκήσεων 5: Απαρίθμηση, Αρχή της Θυρίδας, Συνδυασμοί και Μεταθέσεις, Γραφήματα και

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Fuzzifying Tritopological Spaces

Fuzzifying Tritopological Spaces International Mathematical Forum, Vol., 08, no. 9, 7-6 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/imf.08.88 On α-continuity and α-openness in Fuzzifying Tritopological Spaces Barah M. Sulaiman

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα