Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων"

Transcript

1 Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων Μαρία Δ. Πελώνη Μαρία Α. Τσεμεντζή Α.Τ.Ε.Ι. Καβάλας Διαχείριση Πληροφοριών Επιβλέπων: Δρ. Γκούμας Στέφανος Επίκουρος Καθηγητής Καβάλα 2011

2 Περιεχόμενα Περιεχόμενα...2 Περιεχόμενα Εικόνων...5 Περίληψη Εισαγωγή σε Image Processing & Computer Vision Επεξεργασία Εικόνας Υπολογιστική Όραση (Computer Vision) Κίνητρα Εφαρμογή της επεξεργασίας εικόνας σε βιοϊατρικές εικόνες Βελτίωση εικόνας (Filtering & Enchancment) Μετασχηματισμός Fourier μίας Εικόνας Βαθυπερατά Φίλτρα Φίλτρα Μέσης Τιμής Θόλωση (Blurring) Ελάττωση Θορύβου Φίλτρα Gaussian μορφής...20 Σχεδιασμός...20 Ιδιότητες Φίλτρα διάμεσης τιμής Υψιπερατά Φίλτρα Unsharp Masking Επεξεργασία έγχρωμης εικόνας...25 Σελίδα 2 από 104

3 1.13. Ομοιομορφική επεξεργασία (Homomorpic Processing) Ανίχνευση Ακμών Εισαγωγή στην Ανίχνευση Ακμών Τύποι και χαρακτηριστικά ακμών Τελεστές Ανίχνευσης & 1η Παράγωγος...32 Τελεστές Roberts...32 Τελεστές Prewitt...35 Τελεστές Sobel...37 Τελεστές Kirch, Robinson Τελεστές προσέγγισης & 1η παράγωγος Τελεστές Ανίχνευσης & 2η Παράγωγος...40 Λαπλασιανός τελεστής (Laplacian operator) Σχόλια για τον Λαπλασιανό Τελεστή Συμπεριφορά τελεστών σε θορυβώδεις εικόνες Συμεριφορά Τελεστή Roberts σε θόρυβο...43 Συμπεριφορές Άλλων Τελεστών σε θορυβώδεις εικόνες Τελεστές και Θόρυβος Ανίχνευση Ακμών του Canny (Canny Edge Detector)...48 Αλγόριθμος ανίχνευσης ακμών του Canny Συμπεριφορά του ανιχνευτή ακμών του Canny Συμπεριφορά παρουσία θορύβου Σχόλια για τον αλγόριθμο του Canny Ακμές Marr & Hildreth Αλγόριθμος Ανίχνευσης Ακμών Πλεονεκτήματα του Συντελεστή LoG Αποτελέσματα του LoG Τελεστή Σελίδα 3 από 104

4 Bi-Level Laplacian of Gaussian filter...60 Το BLoG σε μία διάσταση...61 Το φίλτρο BLoG σε δύο διαστάσεις...64 Μονοδιάστατο φίλτρο σε δύο διαστάσεις Κατωφλίωση & Ιατρική Απεικόνιση Συστημάτων Τι είναι η κατωφλίωση Ιατρική Απεικόνιση Συστημάτων Είδη Ιατρικών Εικόνων Ψηφιακή Επεξεργασία Εικόνας...71 Βασικές Διαδικασίες Ψηφιακής Επεξεργασίας Εικόνων Κατωφλίωση Ανίχνευση Ακμών σε Ιατρικές Εικόνες Διαχωρισμός περιοχών Εξαγωγή Χαρακτηριστικών Μορφολογικά Χαρακτηριστικά Χαρακτηριστικά Γνωρίσματα Υφής Τοπολογικά Χαρακτηριστικά Επίλογος και Μελλοντικές Επεκτάσεις Βιβλιογραφία...89 ΠΑΡΑΡΤΗΜΑ Α: Βασικοί Αλγόριθμοι Ανίχνευσης Ακμών...92 ΠΑΡΑΡΤΗΜΑ Β: Βασική Εφαρμογή Σελίδα 4 από 104

5 Περιεχόμενα Εικόνων Εικόνα 1: Παράθυρα Συνέλιξης Εικόνας...15 Εικόνα 2: Τιμές συνέλιξης εικόνας στην θέση n1,n Εικόνα 3: Η αρχική εικόνα και η φιλτραρισμένη έξοδος...18 Εικόνα 4: Εξασθένιση του θορύβου με 3x3 Μάσκα μέσης τιμής...19 Εικόνα 5: Εύρεσης διάμεσης τιμής σε πίνακα 3x Εικόνα 6: Έξοδος median φίλτρου με κρουστικό θόρυβο...23 Εικόνα 7: Πίνακες με χαρακτηριστικές τιμές υψιπερατών μασκών...24 Εικόνα 8: Κατεύθυνση και Μέτρο Ακμής...30 Εικόνα 9: Είδη Ακμών σε grayscale εικόνες...31 Εικόνα 10: Εφαρμογή του Τελεστή Roberts...34 Εικόνα 11: Εφαρμογή του Τελεστή Prewitt...35 Εικόνα 12: Εφαρμογή τροποποιημένου Τελεστή Prewitt...36 Εικόνα 13: Εφαρμογή Τελεστή Sobel...37 Εικόνα 14: Εφαρμογή τροποποιημένου Τελεστή Sobel...38 Εικόνα 15: Εφαρμογή Τελεστή Kirch...39 Εικόνα 16: Εφαρμογή Τελεστή Robinson...39 Εικόνα 17: Εφαρμογή Τελεστή Laplace...42 Εικόνα 18: Συμπεριφορά Τελεστή Robinson παρουσία θορύβου...44 Εικόνα 19: Συμπεριφορά τελεστή Prewitt παρουσία Θορύβου...45 Εικόνα 20: Συμπεριφορά τελεστή Sobel παρουσία Θορύβου...45 Εικόνα 21: Συμπεριφορά τελεστή Kirch παρουσία Θορύβου...45 Εικόνα 22: Συμπεριφορά τελεστή Robinson παρουσία Θορύβου...46 Σελίδα 5 από 104

6 Εικόνα 23: Συμπεριφορά τελεστή Laplace παρουσία Θορύβου...47 Εικόνα 24: Δισδιάστατο γκαουσιανό φίλτρο (Canny)...49 Εικόνα 25: Εφαρμογή Αλγόριθμού Ανίχνευσης Ακμών του Canny...52 Εικόνα 26: Συμπεριφορά του Αλγόριθμού του Canny παρουσία θορύβου...53 Εικόνα 27: Δισδιάστατο φίλτρο Laplacian of Gaussian...55 Εικόνα 28: Παρουσίαση του ανεστραμμένου φίλτριου LoG...56 Εικόνα 29: Συμπεριφορά του φίλτρου LoG μεταβάλλοντας την τυπική απόκλιση59 Εικόνα 30: Συμπεριφορά του φίλτρου LoG μεταβάλλοντας το κατώφλι για αποδοχή pixel ως μέρος ακμής...60 Εικόνα 31: Μητρώο Συνέλιξης 7x7 για τυπική απόκλιση σ = Εικόνα 32: Προσέγγιση του μονοδιάστατου λαπλασιανού φίλτρου Εικόνα 33: Ιατρικές εικόνες 2D...70 Εικόνα 34: Ιατρικές εικόνες 3D...70 Εικόνα 35: Ιατρικές εικόνες 4D...71 Εικόνα 36: Πολυδιάστατα ιατρικά δεδομένα...71 Εικόνα 37: Μονόχρωμη ψηφιακή εικόνα βάθους 8-bit...73 Εικόνα 38: Κατωφλίωση Εικόνας με Ιστόγραμμα...76 Εικόνα 39: Απλή Κατωφλίωση Ιατρικής Εικόνας...76 Εικόνα 40: Διπλή Κατωφλίωση Ιατρικής Εικόνας...77 Εικόνα 41: Εύρεση Ακμών σε Ιατρική Εικόνα...78 Εικόνα 42: Διαχωρισμός Περιοχών...79 Εικόνα 43: Μορφολογικά χαρακτηριστικά εικόνας...83 Σελίδα 6 από 104

7 Περίληψη Η παρούσα εργασία περιγράφει την ανάλυση και επεξεργασία μίας βιοϊατρικής ψηφιακής (ή ψηφιοποιημένης) εικόνας. Περιγράφονται αναλυτικά όλες οι τεχνικές που χρησιμοποιούνται σήμερα για την βελτίωση της εικόνας αυτής καθώς και το μαθηματικό τους υπόβαθρο. Περιγράφονται κατόπιν της αρχικής βελτίωσης και συμμόρφωσης της εικόνας αυτής με πρότυπα επεξεργασίας, οι τεχνικές που χρησιμοποιούνται για την αναγνώριση και ταυτοποίηση διάφορων σχημάτων σε αυτές τις εικόνες, τεχνικών αναγνώρισης διαφόρων μερών του ανθρώπινου σώματος, καθώς και προηγμένες τεχνικές «καθαρισμού» και αυτόματης ταυτοποίησης σχημάτων σε αυτές. Περιγράφονται επίσης λεπτομερώς οι τρόποι εξαγωγής από τις εικόνες αυτών ακριβώς των χαρακτηριστικών που θα μπορούσαν να ενδιαφέρουν την ιατρική επιστήμη. Επίσης παρατίθεται ένα λογισμικό χρήσης και επεξεργασίας τέτοιων εικόνων, το οποίο μπορεί χρησιμοποιώντας τις αναφερόμενες τεχνικές να εξάγει χρήσιμη πληροφορία από μία τέτοια βιοϊατρική εικόνα. Σελίδα 7 από 104

8 ι.ι. Εισαγωγή σε Image Processing & Com puter Vision Η ανίχνευση ακμών είναι μια ορολογία που αφορά την επεξεργασία εικόνας και την «οπτική» των υπολογιστών (Computer Vision), ιδιαίτερα όσον αφορά τους τομείς της εξαγωγής χαρακτηριστικών και την δυνατότητα ανίχνευσης, και αναφέρεται σε αλγόριθμους που αποσκοπούν στον εντοπισμό σημείων σε μια ψηφιακή εικόνα στην οποία η φωτεινότητα αλλάζει δραστικά ή πιο σωστά έχει ασυνέχειες [1], [2]. ι.ι. Επεξεργασία Εικόνας Επεξεργασία εικόνας είναι κάθε είδους επεξεργασία σήματος για την οποία είσοδος είναι μια εικόνα ( Πχ. φωτογραφίες ή frames από ένα βίντεο). Έξοδος αυτής της διεργασίας μπορεί να είναι είτε μια εικόνα είτε ένα σύνολο χαρακτηριστικών ή παραμέτρων που σχετίζονται με την εικόνα. Μερικές εφαρμογές της επεξεργασία εικόνας είναι : Ανίχνευση προσώπων: Η ανίχνευση προσώπων είναι μια τεχνολογία των ηλεκτρονικών υπολογιστών που καθορίζει τις θέσεις και τα μεγέθη των ανθρώπινων προσώπων σε ψηφιακές εικόνες. Ανιχνεύει ανθρώπινα πρόσωπα και τα επιμέρους χαρακτηριστικά τους, ενώ αγνοεί οτιδήποτε άλλο, όπως κτίρια, δέντρα και σώματα [3]. Σύστημα προειδοποίησης αλλαγής λωρίδας: Στην ορολογία των οδικών μεταφορών ένα σύστημα προειδοποίησης αλλαγής λωρίδας είναι ένας μηχανισμός σχεδιασμένος να προειδοποιεί τον οδηγό όταν το όχημα αρχίζει να κινείται εκτός της λωρίδας κυκλοφορίας (εκτός και αν υπάρχει κάποιο σήμα) σε ένα αυτοκινητόδρομο [4], [5]. Σελίδα 8 από 104

9 Non-photo realistic rendering (NPR): είναι ένας τομέας της δημιουργίας γραφικών μέσω υπολογιστή που επικεντρώνεται στο να επιτρέπει και να δημιουργεί μια μεγάλη γκάμα εκφραστικών στυλ πάνω στην ψηφιακή τέχνη. Η τεχνική αυτή εφαρμόζεται εκτεταμένα στις σημερινές ταινίες και βιντεοπαιχνίδια με την μορφή σκίασης καρτούν, στην ενδεικτική αρχιτεκτονική και στο πειραματικό animation. Ειδικότερα σε εφαρμογές 3D το αποτέλεσμα της τεχνικής αυτής είναι ένα 3D μοντέλο επεξεργασμένο και τροποποιημένο από το αρχικό πορτραίτο (φωτογραφία) με γεωμετρικές διαστάσεις και χαρακτηριστικά ακριβώς ίδια [6]. Επεξεργασία ιατρικών εικόνων: Σαν ιατρικές εικόνες ή χάρτες εννοούμε όλες εκείνες τις τεχνικές και διεργασίες που υπάρχουν στον κλάδο της ιατρικής για την δημιουργία εικόνων του ανθρώπινου σώματος (ή μέρη του) για κλινικούς σκοπούς (διάγνωση ή εξέταση μιας ασθένειας). Παραδείγματα τέτοιων εικόνων υπάρχουν πολλά (μαγνητικός τομογράφος, ηλεκτροεγκεφαλογράφημα κ.α.) και η σωστή επεξεργασία τους καθίσταται αναγκαία στην σημερινή ψηφιακή εποχή της Ιατρικής Υπολογιστική Όραση (Computer Vision) Ειδικότερα, με τον όρο Computer Vision μιλάμε για την επιστήμη και την τεχνολογία μηχανών που βλέπουν. Ως επιστημονικός κλάδος, ορίζεται η θεωρία κατασκευής τεχνητών συστημάτων που λαμβάνουν πληροφορίες από τις εικόνες. Τα δεδομένα μιας εικόνας μπορούν να έχουν πολλές μορφές όπως είναι μια ακολουθία ενός βίντεο, η λήψη από πολλαπλές κάμερες ή πολυδιάστατα ιατρικά δεδομένα από έναν ιατρικό ανιχνευτή- σαρωτή. Ως τεχνολογικός κλάδος, η «οπτική των υπολογιστών» αναζητά τρόπους να εφαρμοστούν οι θεωρίες και τα μοντέλα της στην κατασκευή συστημάτων με τέτοιου είδους ικανότητα. Τέτοια παραδείγματα είναι και τα εξής [7] : Ο έλεγχος διαδικασιών (Πχ. ένα βιομηχανικό ρομπότ ή ένα αυτόνομο όχημα) Ανίχνευση γεγονότων (Πχ. για την οπτική παρακολούθηση ή την καταμέτρηση ατόμων) Σελίδα 9 από 104

10 Οργανωτικές πληροφορίες (Πχ. για την δημιουργία ευρετηρίου βάσεων δεδομένων εικόνων και αλληλουχιών εικόνων) Μοντελοποίηση δεδομένων ή περιβαλλόντων (Πχ. βιομηχανική επιθεώρηση, ανάλυση ιατρικών εικόνων ή τοπογραφική μοντελοποίηση) Αλληλεπίδραση (Πχ. ως τα δεδομένα εισόδου μιας συσκευής για την αλληλεπίδραση ανθρώπου-μηχανής) Αλλά πεδία είναι η ανασυγκρότηση σκηνών (scene reconstruction), ανίχνευση γεγονότων, εντοπισμού (tracking), αναγνώριση αντικειμένων, εκμάθηση, δημιουργία ευρετηρίων (indexing), εκτίμηση κίνησης και αποκατάσταση εικόνας Κίνητρα Ο σκοπός της ανίχνευση απότομων αλλαγών στην φωτεινότητα μιας εικόνας είναι για να συλλάβουμε τα σημαντικά γεγονότα και αλλαγές που υφίστανται στον κόσμο γύρω μας. Μπορεί να αποδειχθεί ότι σύμφωνα με γενικές υποθέσεις για το μοντέλο σχηματοποίησης μιας εικόνας, ασυνέχειες στην φωτεινότητα μιας εικόνας ενδέχεται να αντιστοιχούν σε [1],[8]: Ασυνέχειες στο βάθος Ασυνέχειες στον προσανατολισμό της επιφάνειας Μεταβολές στις ιδιότητες των υλικών και Διακυμάνσεις στο σκηνικό φωτισμό Στην ιδανική περίπτωση, το αποτέλεσμα της εφαρμογής ενός ανιχνευτή Άκμων σε μια εικόνα μπορεί να οδηγήσει σε ένα σύνολο συνδεόμενων καμπυλών που δείχνουν τα όρια των αντικειμένων, τα όρια των επιφανειακών σημάνσεων καθώς και καμπύλες που αντιστοιχούν στις ασυνέχειες προσανατολισμού επιφάνειας. Έτσι λοιπόν η εφαρμογή ενός ανιχνευτή ακμών σε μια εικόνα μπορεί να μειώσει σημαντικά το ποσό των δεδομένων που υποβάλλονται σε επεξεργασία και μπορεί Σελίδα 10 από 104

11 συνεπώς να φιλτράρει τις πληροφορίες που θεωρούνται μικρής σημασίας, διατηρώντας παράλληλα τις σημαντικές διαρθρωτικές ιδιότητες μιας εικόνας. Εάν το βήμα ανίχνευσης είναι επιτυχές, το μετέπειτα έργο της ερμηνείας των πληροφοριών της αρχικής εικόνας μπορεί να απλουστευθεί σημαντικά. Δυστυχώς όμως δεν είναι πάντα δυνατό να ληφθούν τέτοιου είδους ακμές από πραγματικές εικόνες ακόμα και μέτριας πολυπλοκότητας. Οι ακμές που προέρχονται από μη τετριμμένες εικόνες έχουν συχνά ένα μεγάλο εμπόδιο, τον κατακερματισμό. Οι καμπύλες των ακμών δηλαδή δεν είναι συνδεδεμένες, τμήματα ακμών τα οποία λείπουν καθώς και ψεύτικες ακμές οι οποίες δεν αντιστοιχούν σε ενδιαφέροντα φαινόμενα της εικόνας. Κατά αυτόν τον τρόπο το μετέπειτα έργο της ερμηνείας της εικόνας δυσχεραίνεται [9], [10] Εφαρμογή της επεξεργασίας εικόνας σε βιοϊατρικές εικόνες Η ταχύτατη εξέλιξη και εξάπλωση των τεχνολογιών που χρησιμοποιούνται στην ανάλυση και επεξεργασία των διάφορων ιατρικών εικόνων, οι οποίες θα περιγραφούν αναλυτικά σε επόμενα κεφάλαια, έχουν επιφέρει πραγματική επανάσταση στην Ιατρική επιστήμη. Αυτές οι εικόνες επιτρέπουν σε επιστήμονες και γιατρούς να αποκομίσουν κρίσιμες για την υγεία και την ζωή του ασθενούς, αφού παρέχουν έναν εύκολο και άμεσο τρόπο πρόσβασης στα ενδότερα του ανθρώπινου σώματος και την λεπτομερή επιθεώρηση των ανατομικών λειτουργιών και συμπεριφορών του. Ο ρόλος αυτών των εικόνων, έχει επεκταθεί πολύ περισσότερο από απλή θέαση και οπτικοποίηση των ανατομικών δομών. Έχει γίνει ένα απαραίτητο εργαλείο εγχειρητικού σχεδιασμού, προσομοίωσης και αναπαράστασης των διαδρομών ενδοσωματικών επεμβάσεων, σχεδιασμού χημειοθεραπειών και ραδιοθεραπειών καθώς και εντοπισμού και παρακολούθησης της εξέλιξης ασθενειών. Για παράδειγμα η εξακρίβωση του λεπτομερούς σχήματος και μορφολογίας διάφορων οργάνων του σώματος από έναν χειρουργό, του παρέχει το πλεονέκτημα να σχεδιάσει εκ των προτέρων την καλύτερη μέθοδο Σελίδα 11 από 104

12 προσέγγισης σε κάποιο συγκεκριμένο όργανο. Στην ραδιοθεραπεία, τέτοιες εικόνες βοηθούν να απεικονίσουν την παρεχόμενη δόση ακτινοβολίας σε έναν όγκο με τις μικρότερες δυνατές παράπλευρες ζημιές σε γειτονικούς υγιείς ιστούς. Επειδή ακριβώς η ανάλυση τέτοιων εικόνων επιφέρει έναν συνεχώς αυξανόμενης βαρύτητας ρόλο στην διάγνωση και θεραπεία ασθενειών, η επιστημονική κοινότητα που ασχολείται με αυτό το αντικείμενο προσπαθεί -με την βοήθεια της επιστήμης των υπολογιστών- συνεχώς να βρει καλύτερους τρόπους εξαγωγής ωφέλιμης κλινικά πληροφορίας μέσω των διάφορων τεχνικών απεικόνισης που θα αναλυθούν στα επόμενα κεφάλαια. Αν και οι σύγχρονες συσκευές απεικόνισης παρέχουν εξαιρετικής πιστότητας εικόνες της εσωτερικής ανατομίας του ανθρωπίνου σώματος, παρόλα αυτά η χρήση των υπολογιστών στην ανάλυση της περιεχόμενης στις εικόνες αυτές πληροφορίας ώστε να καταστεί δυνατή η ποσοτικοποίηση αποτελεσματικότητα της περιεχόμενης πληροφορίας με ακρίβεια είναι περιορισμένη. Ακριβή, μετρήσιμα, και ποσοτικοποιημένα δεδομένα πρέπει να μπορούν να εξαχθούν από τέτοιες εικόνες, ώστε να μπορούν να υποστηρίξουν όλο το φάσμα της Ιατρικής επιστήμης, από τον βιοϊατρικό έλεγχο και τις κλινικές λειτουργίες, μέχρι την διάγνωση, την ραδιοθεραπεία και την εγχείρηση. Η αναγνώριση συγκεκριμένων τμημάτων και οργάνων σε τέτοιες εικόνες και η αναπαράσταση τους με βασικές γεωμετρικές δομές (αναπόφευκτο αποτέλεσμα της ψηφιοποιήσης) είναι δύσκολες λόγω του μεγάλου αρχικού όγκου πληροφορίας και της πολυπλοκότητας και διαφοροποιήσης (σε σχήμα και σε είδος) των διάφορων οργάνων του ανθρωπίνου σώματος. Ακόμη οι ελλείψεις στα αρχικά δεδομένα λόγω της αναπόφευκτης δειγματοληψίας αλλά και των χωρικών στρεβλώσεων και του ψηφιακού θορύβου μπορούν να κάνουν τα όρια του σχήματος ενός οργάνου δυσδιάκριτα και ασυνεχή. Η πρόκληση είναι στην εξαγωγή και σωστή αναπαράσταση των δεδομένων που λείπουν, ώστε τελικά να παραχθεί στην εικόνα ένα ολοκληρωμένο και χωρίς ασυνέχειες όργανο ή τμήμα του ανθρώπινου σώματος. Οι παραδοσιακές τεχνικές επεξεργασίας εικόνας σε χαμηλό επίπεδο (επίπεδο bit) λαμβάνουν υπόψη μόνο την γειτονική πληροφορία κα παράγουν δυσδιάκριτα όρια μεταξύ αντικειμένων. Σαν αποτέλεσμα, οι εικόνες που Σελίδα 12 από 104

13 παράγονται με αυτές τις τεχνικές απαιτούν επεξεργασία από ειδικούς σε αυτές. Επιπρόσθετα η επιμέρους ανάλυση οργάνων και σημείων, παρεμποδίζεται από την αναπαράσταση αυτών των οργάνων σε χαμηλή ανάλυση (ορατό pixel) [11]. Σελίδα 13 από 104

14 Σελίδα 14 από 104

15 1.2. Βελτίωση εικόνας (Filtering & Enchancment) Η βελτίωση εικόνας είναι συνήθως μία διαδικασία φιλτραρίσματος δηλ. συνέλιξης με συγκεκριμένη δισδιάστατη μάσκα και στοχεύει στην ανάδειξη χαρακτηριστικών ή ελάττωση θορύβου και άλλων ανεπιθύμητων χαρακτηριστικών. Στη διαδικασία βελτίωσης εικόνας το αποτέλεσμα είναι επίσης εικόνα και όχι κάποιο χαρακτηριστικό. Στο φιλτράρισμα εικόνας σπανιότατα χρησιμοποιούμε IIR (infinite Impulse Response) φίλτρα ενώ αντίθετα FIR (Finite Impulse Response) φίλτρα είναι η συνήθως χρησιμοποιούμενη διαδικασία. Επομένως το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών για το οποίο χρησιμοποιούνται οι όροι : παράθυρο, μάσκα (window, mask, template, kernel). Συνήθως τα παράθυρα είναι τετραγωνικά και οι συντελεστές συμμετρικοί [12]. Δύο τέτοια παράθυρα είναι τα Α, Β που φαίνονται παρακάτω: Εικόνα 1: Παράθυρα Συνέλιξης Εικόνας Αν θεωρήσουμε μία εικόνα x(ni,n2) διαστάσεως ΝxΝ pixels και ένα παράθυρο h(ni,n2) τότε η συνέλιξη ) y(n1,n2) = x (n1,n2) * h (n1,n2) ορίζεται ως εξής: (3.1) Σελίδα 15 από 104

16 Η πράξη αυτή επειδή το h(ni,n2) είναι πεπερασμένου μήκους (3x3, 5x5 κλπ) ουσιαστικά εκφράζει το άθροισμα των γινομένων που προέρχεται από την τιμή των pixels της εικόνας με τους αντίστοιχους συντελεστές του παραθύρου. Το παράθυρο διατρέχει την εικόνα και κάθε φορά υπολογίζεται η παραπάνω τιμή για διαφορετικό σημείο της εικόνας. Δηλαδή: Η συνέλιξη είναι απλά ένα σταθμικό άθροισμα (weighted sum) των στοιχείων της εικόνας (pixel) σε μία περιοχή γύρω από το στοιχείο αναφοράς. Στη Εικόνα lerror! Reference source not found. φαίνεται ένα παράδειγμα συνέλιξης όπου h(n1,n2) είναι οι τιμές p1,p2 κλπ. και τα αντίστοιχα σημεία της εικόνας h(n1,n2) είναι A,B,C κλπ. Στην Εικόνα 2 φαίνεται το αποτέλεσμα της συνέλιξης για την τιμή της εικόνας στη θέση n1,n2 που έχει τιμή Ε. y(n1,n2)=aρ1+βρ2+cρ3,+dρ4,+ερ5+fρ6+gρ7+hρ8+ιρ9: Αξίζει να αναφέρουμε ότι πολλές μάσκες είναι διαχωρίσιμες. Δηλαδή η συνέλιξη με μία δυσδιάστατη μάσκα μπορεί να εκτελεστεί με δύο μάσκες 1ας διάστασης. Τέτοια μάσκα είναι η η οποία διαχωρίζεται στις εξής: Σελίδα 16 από 104

17 1 0-1 & [ 1 2 1] Τέλος πρέπει να αναφέρουμε ότι τα παραπάνω αναφέρονται σε εικόνες σε απόχρωση του γκρι (gray scale) [13], [14], [12] Μετασχηματισμός Fourier μίας Εικόνας Ο μετασχηματισμός Fourier F(u,v) μίας εικόνας f(k,l) ορίζεται ως εξής: (3.2) Οι τιμές υ,ν κοντά. στο 0,0 αντιστοιχούν σε χαμηλές συχνότητες. Η F(u,v) είναι συνεχής συνάρτηση. Μπορούμε να χρησιμοποιήσουμε τον Διακριτό Μετασχηματισμό Fourier, DFT (Discrete Fourier Transformation) ή καλύτερα τον ταχύ μετασχηματισμό Fourier, FFT (Fast Fourier Trasform) για να εκτελέσουμε την πράξη της συνέλιξης στο πεδίο των συχνοτήτων [15], [16], [17] Βαθυπερατά Φίλτρα Τα βαθυπερατά φίλτρα, φιλτράρουν τις υψηλές συχνότητες που βασικά είναι ανεπιθύμητα σήματα - θόρυβος. Εκτός όμως από τον θόρυβο "λειαίνουν" απότομες μεταβολές στην ένταση. Η διαδικασία αυτή συνεπάγεται την θόλωση της εικόνα (blurring) [18], [14]. Τρεις βασικές κατηγορίες βαθυπερατών φίλτρων διακρίνουμε: Φίλτρα μέσης τιμής (mean filter) Φίλτρα μορφής Gaussian (Gaussian filter) Σελίδα 17 από 104

18 Φίλτρα διάμεσης τιμής (median filter) Σημείωση: Τα φίλτρα διάμεσης τιμής δεν είναι γραμμικά Φίλτρα Μέσης Τιμής Η πιο απλή μορφή αυτών είναι τα ονομαζόμενα φίλτρα μέσης τιμής (mean filters, average filters). Μία μάσκα φίλτρου μέσης τιμής 9 σημείων είναι η εξής : h4/> (3.2) Θόλωση (Blurring) Στην Εικόνα 3 φαίνεται το αποτέλεσμα της συνέλιξης με το παράθυρο (2.3). Σαν βασικό οπτικό αποτέλεσμα όλων των βαθυπερατών φίλτρων είναι η θόλωση της αρχικής εικόνας λόγω λείανσης των μεταβολών εντάσεως. Στην εικόνα είναι εμφανής η θόλωση καθώς και η επίδραση του μήκους της μάσκας. Αρχική εικόνα Εφαρμογή φίλτρου Εφαρμογή φίλτρου 3x3 7x7 Εικόνα 3: Η αρχική εικόνα και η φιλτραρισμένη έξοδος Σελίδα 18 από 104

19 Ελάττωση Θορύβου Το φίλτρο μέσης τιμής εξασθενεί τον θόρυβο δηλαδή ελαττώνει την σταθερή απόκλιση του αρχικού θορύβου. Η ελάττωση αυτή είναι αντίστροφη του μήκους του παραθύρου (μάσκας). Αρχική εικόνα Εικόνα με θόρυβο Μασκα 3x3 μέσης τιμής Εικόνα 4: Εξασθένιση του θορύβου με 3x3 Μάσκα μέσης τιμής. Άλλα βαθυπερατά φίλτρα παρόμοια με αυτά της μέσης τιμής μπορούν να σχεδιασθούν λαμβάνοντας υπόψη ότι το κεντρικό σημείο πρέπει να έχει το μεγαλύτερο βάρος, ώστε να είναι συμμετρικά και θετικά και να έχουν άθροισμα συντελεστών =1. Ένα τέτοιο παράθυρο είναι και το επόμενο Σελίδα 19 από 104

20 1.8. Φίλτρα Gaussian μορφής Σχεδιασμός Τα Gaussian φίλτρα είναι γραμμικά φίλτρα με συντελεστές που επιλέγονται από το σχήμα της Gaussian συνάρτησης μηδενικής μέσης τιμής και σ τυπικής απόκλισης που (σε μία διάσταση) έχει την μορφή : 1 e e 3 (3.3) Για την επεξεργασία εικόνας και για εύρεση των συντελεστών του παραθύρου χρησιμοποιούμε την αντίστοιχη (διακριτή) σχέση: g u y e * (3 4) όπου i,j είναι οι συντεταγμένες των σημείων του παραθύρου. Εάν θεωρήσουμε σ = 2 και i,j μεταξύ -1 και 1 λαμβάνουμε την εξής Gaussian μάσκα: 1 <3355(39033 < 3 9 H 0 C Ένας απλός προσεγγιστικός τρόπος για να σχεδιάσουμε μία Gaussian μάσκα με ακέραιούς συντελεστές είναι η χρήση του τρίγωνου του Πασκάλ, ή ισοδύναμα οι συντελεστές του ιδιωνύμου: πχ για n=4 έχουμε το εξής μονοδιάστατο, Gaussian παράθυρο: [ ] Σελίδα 20 από 104

21 Αυτός ο πίνακας μπορεί να χρησιμοποιηθεί για Gaussian φιλτράρισμα αν σκεφθούμε ότι οι δυσδιάστατες Gaussian μάσκες είναι διαχωρίσιμες. Δηλαδή η συνέλιξη με ορθογώνια Gaussian μάσκα αντιστοιχεί με συνέλιξη με μονοδιάστατη οριζόντια και στη συνέχεια με την αντίστοιχη κατακόρυφη [17], [14]. Ιδιότητες Η Gaussian μάσκα είναι ιδιαίτερα χρήσιμη στην επεξεργασία σημάτων και εικόνας διότι έχει πολύ ελκυστικές ιδιότητες. Οι βασικότερες από αυτές είναι οι εξής: Είναι ανεξάρτητη της διεύθυνσης (3.5) Οπου ρ = i + j. Έχει ένα λοβό. Δηλαδή οι συντελεστές ελαττώνονται μονότονα με την απόσταση και είναι πάντα θετικοί. Αυτό έχει μεγάλη σημασία στη διαδικασία φιλτραρίσματος, διότι η έμφαση δίνεται στο κεντρικό pixel και επηρεάζει πολύ λίγο τις (γειτονικές) ακμές. Ο μετασχηματισμός Fourier της Gaussian συνάρτησης είναι επίσης Gaussίan και απεικονίζεται ως εξής: Η παραπάνω σχέση εκφράζει και την σχέση μεταξύ των δύο πεδίων, δηλαδή του χώρου και της συχνότητας. Η Gaussian συνάρτηση είναι διαχωρίσιμη. Δηλαδή η συνέλιξη μίας εικόνας με τετραγωνική Gaussian μάσκα ισοδυναμεί με δύο διαδοχικές συνελίξεις 1ας διάστασης (οριζόντια και κάθετη). Σελίδα 21 από 104

22 Διαδοχική εφαρμογή της Gaussian μάσκας ισοδυναμεί με Gaussian μάσκα μεγαλύτερης διακύμανσης (τεχνικές scale-space). Σε μία διάσταση έχουμε: [17], [19], [20], [14] Φίλτρα διάμεσης τιμής Τα φίλτρα αυτά είναι μη γραμμικά. Μερικά από τα βασικά χαρακτηριστικά τους είναι η διατήρηση των ακμών (στη πράξη γίνεται μικρή λείανση) και η πλήρης εξάλειψη του κρουστικού θορύβου (Impulsive, salt and pepper noise). Επομένως έχουν συμπεριφορά βαθυπερατού φίλτρου όσον αφορά την εξάλειψη του θορύβου και ταυτόχρονα συμπεριφορά υψιπερατού φίλτρου αφού διατηρούν τα χαρακτηριστικά των μεταβολών εντάσεως όπως είναι οι ακμές-περιγράμματα (edges). Συνήθως εφαρμόζονται σε μια εικόνα επαναληπτικά. Διαδοχική εφαρμογή καταλήγει σε μία εικόνα που δεν επιδέχεται επιπλέον μεταβολές. Αυτή είναι σήμα - ρίζα για το συγκεκριμένο φίλτρο διάμεσο τιμής. Η υλοποίηση τους γίνεται με καθορισμό ενός παραθύρου - μάσκας. Έχει μόνο μήκος και όχι συντελεστές. Το παράθυρο αυτό διατρέχει όλη την εικόνα όπως και στα γραμμικά φίλτρα (μέσης τιμής κλπ) και τα pixels που περικλείονται από το παράθυρο σε κάθε θέση της εικόνας διατάσσονται κατά σειρά μεγέθους και επιλέγεται ως έξοδος η μεσαία (median) τιμή. Στην Εικόνα 5 φαίνεται ο τρόπος εξαγωγής της μεσαίας τιμής για ένα παράθυρο 3Χ3. Σελίδα 22 από 104

23 = διάμεση τιμή Εικόνα 5: Εύρεσης διάμεσης τιμής σε πίνακα 3x3 Στην Εικόνα 5 η έξοδος του φίλτρου διάμεσης τιμής είναι=20. Και προκύπτει ως η 5η τιμή στη αύξουσα διάταξη των τιμών των pixel του παραθύρου. Εάν εφαρμόζαμε φίλτρο μέσης τιμής (3.3) η έξοδος θα ήταν 1/9( )= Στην Εικόνα 6 δίνεται ένα παράδειγμα εφαρμογής του φίλτρου. Αξίζει να παρατηρηθεί ότι ο κρουστικός θόρυβος είναι 10% και εξαλείφεται εντελώς. Αρχική εικόνα Εικόνα με κρουστικό θόρυβο 10% Έξοδος median filter Εικόνα 6: Έξοδος median φίλτρου με κρουστικό θόρυβο. Σελίδα 23 από 104

24 ι.ιο. Υψιπερατά Φίλτρα Τα υψιπερατά φίλτρα εξασθενούν τις χαμηλές και τονίζουν τις υπάρχουσες υψηλές συχνότητες σε μία εικόνα. Δηλαδή έχουν αντίθετο αποτέλεσμα από τα βαθυπερατά φίλτρα (μέσης τιμής, Gaussian κλπ). Επομένως τονίζουν τις μεταβολές της εικόνας (contrast), δίνουν έμφαση στις λεπτομέρειες και ταυτόχρονα ενισχύουν τον θόρυβο. Τα αντίστοιχα παράθυρα έχουν μία θετική τιμή στο κέντρο και στην πλειοψηφία αρνητικούς τους υπόλοιπους συντελεστές. Μερικές χαρακτηριστικές μάσκες για παράθυρα 3x3 είναι οι εξής: Ο Ο 1 Ο Ο -1 (φ im ) " 1 1 1" (δ) Εικόνα 7: Πίνακες με χαρακτηριστικές τιμές υψιπερατών μασκών Η τελευταία (δ) από τις μάσκες στην Εικόνα 7 είναι η πλέον συνηθισμένη και έχει το επί πλέον χαρακτηριστικό ότι δεν ενισχύει (ούτε εξασθενεί) σταθερές περιοχές αφού το άθροισμα των συντελεστών είναι = 0. Αξίζει να επισημάνουμε ότι σε μερικές περιπτώσεις εφαρμογής υψιπερατού φίλτρου μπορεί να προκύψουν και αρνητικές τιμές, οπότε χρειάζεται σχετική διόρθωση. Σελίδα 24 από 104

25 ι.ιι. Unsharp Masking Στη διαδικασία αυτή γίνεται ψηφιακή εξομοίωση επεξεργασίας που κάποτε γινόταν από τους φωτογράφους στα φιλμ. Αναλυτικότερα, από ένα κλάσμα α της αρχικής εικόνας ^ι,ι< 2 ) αφαιρείται το αποτέλεσμα εξόδου βαθυπερατού φίλτρου ή_(<ι,<2). Και η έξοδος g(kl,<2 ) είναι: (3.7) Αν θεωρήσουμε ότι η αρχική εικόνα f (^,<2) αναλύεται σε ένα τμήμα Υψιπερατό Μ <υ<2) και ένα άλλο βαθυπερατό ή_,^ι,^) τότε η εικόνα g(kl,<2) : εάν α=1 είναι ένα υψιπερατό φίλτρο, ενώ εάν είναι_ α>ι τότε ένα βαθυπερατό τμήμα της εικόνας προστίθεται στο αποτέλεσμα και αναδεικνύει χαμηλές συχνότητες μαζί με τις υψηλές που προέρχονται από το υψιπερατό φίλτρο Μ<ι,<2) Οι δύο διαδικασίες που περιλαμβάνονται στην (3.7) υλοποιούνται από την ακόλουθη μάσκα [14], [12], [21]: w _ _ όπου w = 9α Επεξεργασία έγχρωμης εικόνας Η επεξεργασία έγχρωμης εικόνας γίνεται είτε με βαθμωτές είτε με διανυσματικές διαδικασίες. Σελίδα 25 από 104

26 Στις βαθμωτές διαδικασίες επεξεργασίας εφαρμόζονται οι μέθοδοι που περιγράφηκαν προηγούμενα για γκρίζες (gray scale) εικόνες με δύο τρόπους: [α] ξεχωριστά σε κάθε κανάλι της εικόνας, [β] στη συνιστώσα φωτεινότητας (Υ) αφού διαχωριστεί η εικόνα σε συνιστώσες φωτεινότητας (Υ) - χρωματικότητας (I,Q). Ο πλέον γνωστός μετασχηματισμός είναι ο RGB--> YIQ. Μπορεί επίσης να χρησιμοποιηθεί και ο μετασχηματισμός RGB--> HIS. Το μειονέκτημα της διαδικασίας [α] είναι η παραγωγή τυχαίων χρωμάτων που δεν υπάρχουν στην αρχική εικόνα που είναι όμως αρκετά κοντά (στον RGΒ χώρο) σε χρώματα που υπάρχουν στην εικόνα. Τα μειονεκτήματα αυτά δεν εμφανίζονται στη [β] διαδικασία. Στις διανυσματικές διαδικασίες οι τρεις τιμές R,G,B θεωρούνται συνιστώσες ενός διανύσματος και οι μέθοδοι που χρησιμοποιούνται είναι βέβαια μέθοδοι διανυσματικής ανάλυσης. Μία κλασική τέτοια μέθοδος είναι η διαδικασία του διανυσματικού διάμεσου Ομοιομορφική επεξεργασία (Homomorpic Processing) Η διαδικασία αυτή χρησιμοποιείται στην περίπτωση που μία εικόνα με μεγάλη δυναμική περιοχή αποτυπώνεται σε ένα μέσο (film, χαρτί) με μικρή δυναμική περιοχή. Αποτέλεσμα είναι η ελάττωση της αντίθεσης, ιδιαίτερα στις σκοτεινές ή στις πολύ φωτεινές περιοχές. Η διαδικασία που περιγράφεται. στη συνέχεια ουσιαστικά ελαττώνει την αρχική δυναμική περιοχή και αυξάνει την τοπική αντίθεση πριν αρχίσει η επεξεργασία ή η αποτύπωση. Σύμφωνα με ένα απλοποιημένο μοντέλο μία εικόνα f(n^n2) σχηματίζεται σε δύο στάδια: παραγωγή υπό την φωτεινή πηγή και ανάκλαση από το αντικείμενο. Σελίδα 26 από 104

27 Επομένως μπορεί να θεωρήσουμε ότι η εικόνα ^Πι,η2) έχει δύο συνιστώσες που αντιστοιχούν στην φωτεινή πηγή ί(ηι,η2) και στην ανάκλαση -Γ(ηι,η2) : ί(ηι,η2) = ί(ηι,η2) Κ η ^ ) Από τις δύο αυτές συνιστώσες θεωρούμε ότι η μεγάλη δυναμική περιοχή οφείλεται βασικά στο ί(ηι,η2) και έχει μικρές εναλλαγές - αντίθεση. Αντίθετα ο όρος Γ(ηι,η2) δημιουργεί τις λεπτομέρειες της εικόνας. Επομένως επιδιώκουμε μείωση του ί(ηι,η2) και αύξηση του Κηυη2). Σαν πρώτο βήμα γίνεται διαχωρισμός των δύο συνιστωσών με λογαρίθμηση. Στη συνέχεια φιλτράρεται η έξοδος με βαθυπερατό και υψιπερατό φίλτρο. Επειδή η συνιστώσα ί(ηι,η2) έχει φασματικό περιεχόμενο στις χαμηλές συχνότητες θεωρούμε ότι θα αποτελεί το κύριο τμήμα της εξόδου του βαθυπερατού φίλτρου. Αντίστοιχα η Γ(ηι,η2) θα είναι η έξοδος του υψιπερατού φίλτρου. Μετά τον διαχωρισμό αυτό μπορούμε να ενισχύσουμε την μία συνιστώσα πολλαπλασιάζοντας με συντελεστή β>1ι [20], [14]. Σελίδα 27 από 104

28 1.3. Ανίχνευση Ακμών Εισαγωγή στην Ανίχνευση Ακμών Ως ακμή ορίζεται το όριο μεταξύ περιοχών με σχετικά διακριτές τιμές χρωματικών πυκνοτήτων. Υποθέτουμε ότι οι περιοχές είναι αρκετά ομοιογενείς ώστε η μεταβολή των χρωματικών πυκνοτήτων να είναι αρκετή για τον προσδιορισμό της μετάβασης μεταξύ περιοχών. Με τον όρο ακμές για μια ασπρόμαυρη εικόνα, αναφερόμαστε σε αλλαγές της φωτεινότητας μεταξύ γειτονικών περιοχών της. Αλλαγές της φωτεινότητας συνήθως αντιστοιχούν σε διαφοροποίηση ιδιοτήτων της απεικόνισης τρισδιάστατων αντικειμένων όπως αλλαγές της υφής, του βάθους, όρια αντικειμένων, διαφορετικό φωτισμό και αντανάκλαση. Έτσι με την ανίχνευση ακμών μπορούμε να αντλήσουμε πληροφορίες για φυσικές ιδιότητες για τα εικονιζόμενα πραγματικά αντικείμενα. Η βασική ιδέα πίσω από όλες τις μεθόδους ανίχνευσης ακμών είναι ο υπολογισμός ενός τελεστή τοπική παραγώγου. Η πρώτη παράγωγος σε οποιοδήποτε σημείο της εικόνας υπολογίζεται με τη βοήθεια του μέτρου του διανύσματος της κλίσης και η δεύτερη παράγωγος υπολογίζεται με χρήση του τελεστή Laplace. 'Ενα στοιχείο εικόνας ανήκει στο περίγραμμα μιας δομής αν η δισδιάστατη πρώτη ή δεύτερη παράγωγός του είναι μεγαλύτερη από κάποιο προκαθορισμένο κατώφλι. Μια ευρύτατα χρησιμοποιούμενη μέθοδος ανίχνευσης ακμών βασίζεται στη χρήση της κλίσης της εικόνας που υπολογίζεται με τη βοήθεια των μερικών παραγώγων Πρώτης τάξης πε κάθε θέση εικονοστοιχείου εικόνας. Όπως αναφέρθηκε προηγουμένως, οι παράγωγοι αυτές μπορούν να υλοποιηθούν ψηφιακά με διάφορους τρόπους. Ωστόσο, οι τελεστές Snbel παρέχουν το πλεονέκτημα της ταυτόχρονης διαφόρισης και εξομάλυνσης. Επειδή οι παράγωγοι ενισχύουν το θόρυβο, η εξομάλυνση που επιτυγχάνεται με χρήση των τελεστών Sobel είναι ιδιαίτερα σημαντική. Οι μέθοδοι αυτές βασίζονται στην παρατήρηση ότι Σελίδα 28 από 104

29 στην περιοχή των ορίων των αντικειμένων, το πλάτος της κλίσης των χρωματικών πυκνοτήτων έχει πολύ χαμηλότερη τιμή από ότι μακριά από τα όρια. Κατά συνέπεια. το σύνολο των εικονοστοιχείων ενός οργάνου στα οποία το πλάτος της κλίσης έχει σημαντική τιμή, αναπαριστούν το σύνολο των εικονοστοιχείων του ζητούμενου περιγράμματος του οργάνου. Δυστυχώς όμως, στην πράξη, το σύνολο των εικονοστοιχείων που προσδιορίζεται με αυτό τον τρόπο περιλαμβάνει και άλλα στοιχεία του δεν ανήκουν στη δομή ενώ μπορεί να αποτύχει ακόνη και στην ανίχνευση εικονοστοιγείων που ανήκουν στη δομή. Για την αντιμετώπιση αυτού του προβλήματος, έχει αναπτυχθεί μια σειρά τεχνικών βελτιστοποιήσης για την ελαχιστοποίηση των εικονοστοιχείων του πειργράμματος που λείπουν και των εικονοστοιχείων που δεν ανήκουν στο περίγραμμα. Μία τέτοια προσέγγιση έγγειται στην απόδοση μίας τιμής κόστους σε κάθε υποψήφιο εικονοστοιχείο του περιγράμματος και την ανίχνευση του συνόλου εκείνου των εικονοστοιχείων που ελαχιστοποιούν αυτό το κόστος για να αποτελέσουν έτσι το τελικό περίγραμμα. Η ανίχνευση ακμών μιας εικόνας παρουσιάζει αρκετές δυσκολίες. Οι ακμές μπορεί να χαρακτηρίζονται από προοδευτικές ή ακόμα και πολύ μικρές αλλαγές στην φωτεινότητα της εικόνας. Η παρουσία θορύβου σε μια εικόνα μπορεί να οδηγήσει στην ανίχνευση εσφαλμένων ακμών αλλοιώνοντας τα όρια των αντικειμένων. Ο διαφορετικός φωτισμός και η σκίαση μπορεί να ανιχνευτούν σαν ψευδοακμές ενώ δεν αντιστοιχούν σε φυσική ακμή. Ακόμα και αντικείμενα διαφορετικής κλίμακας πιθανό να βρίσκονται στην ίδια εικόνα. Σε συστήματα βιολογικής όρασης υπάρχουν νευροβιολογικές και ψυχοφυσικές ενδείξεις ότι στα πρώτα στάδια επεξεργασίας της οπτικής πληροφορίας γίνεται κάποιο είδος ανίχνευσης ακμών. Αυτή η επεξεργασία μοιάζει με ζωνοπερατά επιλεκτικά φίλτρα ή ισοδύναμα με συνέλιξη της οπτικής πληροφορίας με νευρικές αποκρίσεις. Αυτά τα φίλτρα έχουν μοντελοποιηθεί με κάποιες διαφορές από Gabor ή Gaussian φίλτρα [22], [23]. Η ανίχνευση ακμών αποτελεί την βάση για μετέπειτα επεξεργασία μια εικόνας ή ακολουθίας εικόνων με αλγορίθμους υπολογιστικής όρασης, όπως ανάλυση υφής, Σελίδα 29 από 104

30 τμηματοποίησης, ανίχνευσης κίνησης, στερέοψης και αναγνώρισης προτύπων. Γι' αυτό πρέπει να δίνει αξιόπιστα αποτελέσματα και να υλοποιείται αποδοτικά [24]. r p f f t Τύποι και χαρακτηριστικά ακμών Υπολογιστικά οι ακμές (αλλαγές στην συνάρτηση της έντασης) για συνεχείς συναρτήσεις μπορούν να υπολογιστούν με τον υπολογισμό της πρώτης παραγώγου και εντοπισμό των τοπικών μέγιστων. Μια δεύτερη μέθοδος με πλεονεκτήματα σε αξιοπιστία στηρίζεται στις διελεύσεις της δεύτερης παραγώγου από το μηδέν (zero crossing). Φυσικά επειδή έχουμε συναρτήσεις δύο μεταβλητών (x,y συντεταγμένη) θα υπολογίζουμε τις μερικές παραγώγους. Μια μεταβολή της συνάρτησης της εικόνας μπορεί να περιγραφεί με την βάθμωση (gradient) προς την κατεύθυνση της μέγιστης μεταβολής. Μια ακμή είναι ιδιότητα του κάθε εικονοστοιχείου ξεχωριστά και υπολογίζεται από την συμπεριφορά της συνάρτησης της εικόνας σε μια περιοχή γειτονικών εικονοστοιχείων. Πρόκειται για διανυσματική μεταβλητή με μέτρο και κατεύθυνση (βλέπε Εικόνα 8) [24], [25], [26] : Εικόνα 8: Κατεύθυνση και Μέτρο Ακμής Το μέτρο της ακμής μας δείχνει πόσο μεγάλη είναι μεταβολή της συνάρτησης φωτεινότητας (ισχυρή, αδύναμη ακμή) και η κατεύθυνση μας δίνει τον προσανατολισμό της ακμής στην εικόνα, και υπολογίζονται ως εξής. Για το μέτρο της ακμής, Σελίδα 30 από 104

31 Και για την κατεύθυνση της ακμής Τέλος υπάρχουν διάφορα είδη ακμών. Μερικά από αυτά εικονίζονται στην Εικόνα 9: Εικόνα 9: Είδη Ακμών σε grayscale εικόνες Η ακμή τύπου στέγης ανταποκρίνεται σε λωρίδες ίδιας έντασης στην εικόνα, και η ακμή τύπου γραμμής αναφέρεται σε μικρότερο εύρος. Η βηματική ακμή είναι η διαχωριστική επιφάνεια δύο αντικειμένων ή ενός αντικειμένου και του περιβάλλοντα χώρου. Η θορυβώδης ακμή είναι μια βηματική ακμή αλλά με τα εικονοστοιχεία να λαμβάνουν ανομοιόμορφες τιμές φωτεινότητας κατά τη μετάβαση μεταξύ των δύο επιπέδων. Σελίδα 31 από 104

32 Όταν δεν μας ενδιαφέρει η κατεύθυνση παρά μόνο το μέτρο των ακμών τότε με ανίχνευση των διελεύσεων της δεύτερης παραγώγου από το μηδέν επιτυγχάνουμε καλύτερα αποτελέσματα σε αξιοπιστία και υπολογιστικό κόστος. Ο υπολογισμός της δεύτερης παραγώγου επιτυγχάνεται χρησιμοποιώντας μικρά μητρώα συνέλιξης που λειτουργούν σαν ψηφιακοί πυρήνες λαπλασιανών φίλτρων. Υπολογίζουμε δηλαδή, ί.ίφίηιτι'α?! = ν 2 Ι(χ, >Τ) Οι διάφοροι ανιχνευτές ακμών συνήθως σχεδιάζονται και είναι αποτελεσματικοί για ένα είδος ακμών. Στην συνέχεια της ανάλυσής μας θα ασχοληθούμε με τις βηματικές ακμές που είναι οι πιο συνηθισμένες και προσφέρουν τις περισσότερες πληροφορίες για μια εικόνα [24], [25], [27] Τελεστές Ανίχνευσης & 1 η Παράγωγος Ιστορικά η πρώτη απόπειρα ανίχνευσης ακμών, που διήρκεσε περίπου 30 χρόνια (δεκαετία 50 έως δεκαετία 70), έγινε υπολογίζοντας διακριτές προσεγγίσεις των μερικών παραγώγων κατά κατεύθυνση για την υπό επεξεργασία εικόνα. Αυτό γίνεται με την συνέλιξη της εικόνας και ενός μικρού μητρώου που στόχο έχει να ενισχύσει την ένταση των ακμών. Το πιο παλιό από αυτά τα μητρώα προτάθηκε από τον Roberts και αναλύεται παρακάτω [24]: Τελεστές Roberts Τα μητρώα που προτείνει ο Roberts για τον υπολογισμό της πρώτης παραγώγου της συνάρτησης φωτεινότητας της εικόνας είναι τα εξής: Γ ια μια εικόνα που έχει: Σελίδα 32 από 104

33 «11 «12 «13 «21 «22 «23 «31 «32 «33 Τα μητρώο Κ1μσυνελισσόμενο με την εικόνα δίνει στην έξοδο ' ( - Ι ) α ι ι (0)ίΚ 12 «13 κλι «22 «11 «22 «13 ( 0 ) α 21 ( 1 ) α 22 «23 «32 «21 «33 «22 - «31 «32 «33-,,..! Αντίστοιχα για το μητρώο παίρνουμε: [ < Η ι ( ~ ί ) ητ2 «13 κ ίϊη, «21 «12 «22 «13 Ί ί 1 )«21 (0)«22 «23 «31 «22 «32 _ «23 - «31 «32 «33-.. Τώρα με χρήση κάποιας νόρμας μπορούμε να υπολογίσουμε το μέτρο των ακμών και με χρήση κατωφλίωσης να αποφανθούμε για τις ακμές της εικόνας. Οι πιο συνηθισμένες νόρμες που χρησιμοποιούνται είναι οι εξής: \ f J ~ \ f y \ (2) (ΐ/; ι /, ) (3) Με χρήσης της νόρμας 2 για παράδειγμα προκύπτει ο πίνακας του μέτρου των ακμών. Τα στοιχεία του υπολογίζονται ως εξής: Εά3 βί,; = Ιΐίΐ,β - /( / +!,; + 1) + \ΐ{ί,} + ΐ) + /( ί+!,;') Μετά τον υπολογισμό του μέτρου της ακμής με την κατάλληλη νόρμα, με την τεχνική της κατωφλίωσης ανιχνεύουμε τα τοπικά μέγιστα της φωτεινότητας της εικόνας και αποφασίζουμε τι θα δεχθούμε ως ακμές. Η κατωφλίωση θα οδηγήσει τα εικονοστοιχεία με τιμή έντασης μικρότερη από το κατώφλι στην δυαδική τιμή «0» Σελίδα 33 από 104

34 και αυτά με μεγαλύτερες τιμές στην δυαδική τιμή «1» (εικονοστοιχείο ακμής). Το αποτέλεσμα του αλγόριθμου φαίνεται στην Εικόνα 10Error! Reference source not found. που ακολουθεί για μια πολύ απλή εικόνα εισόδου, μια σκακιέρα: Εικόνα 10: Εφαρμογή του Τελεστή Roberts Η εικόνα (Ι) είναι η αρχική μας εικόνα προς επεξεργασία. Στις (ΙΙ) και (ΙΙΙ) βλέπουμε το αποτέλεσμα της συνέλιξης με τους δύο τελεστές Roberts. Στην ουσία αυτό που κάνουν οι δύο τελεστές είναι να ενισχύουν τις ακμές της εικόνας κατά τις κατευθύνσεις 45ο και 135ο. Στην εικόνα (!V) βλέπουμε το τελικό αποτέλεσμα του αλγόριθμου χρησιμοποιώντας μια από τις νόρμες που προαναφέρθηκαν για τον υπολογισμό του μέτρου της ακμής και τέλος εφαρμόζοντας το κατώφλι που επιλέγουμε για της επιλογή των περιοχών που συνιστούν ακμή [25], [26], [27], [28]. Σελίδα 34 από 104

35 Τελεστές Prewitt Οι τελεστές Prewitt προσεγγίζουν την μερική παράγωγο πρώτης τάξης κατά κατεύθυνση για την εικόνα. Υπάρχουν 8 διαφορετικές κατευθύνσεις για τις οποίες μπορούμε να υπολογίσουμε την μερική παράγωγο, δύο όμως αρκούν για να εντοπίσουμε τις ακμές στην περίπτωση που μας ενδιαφέρει μόνο το μέτρο της ακμής. Η διαδικασία εντοπισμού των ακμών παραμένει ίδια με αυτή για τον τελεστή Roberts και τα αποτελέσματα ακολουθούν στην!. ILU. Εικόνα 11: Εφαρμογή του Τελεστή Prewitt Τα ενδιάμεσα αποτελέσματα συνέλιξης της εικόνας με τους δύο τελεστές δίνουν διαφορετικά αποτελέσματα σε σχέση με αυτά που πήραμε από τους τελεστές Roberts όμως το τελικό αποτέλεσμα των ακμών είναι το ίδιο. Αυτό συμβαίνει γιατί τα μητρώα Roberts που χρησιμοποιήσαμε προηγούμενα ενισχύουν τις ακμές της εικόνας κατά διαφορετική κατεύθυνση απ' ότι γίνεται με τους τελεστές Prewitt που εδώ ενισχύουν τις ακμές στις κατευθύνσεις 0ο και 90ο. Σελίδα 35 από 104

36 Κάτι αντίστοιχο θα συνέβαινε αν χρησιμοποιούσαμε δυο άλλα μητρώα prewitt που προκύπτουν με απλή περιστροφή αυτών που δώσαμε παραπάνω. Προϋπόθεση είναι όμως τα δυο μητρώα να είναι κάθετα μεταξύ τους. Για παράδειγμα, τα δύο αυτά μητρώα ο Οδηγούν στις τροποποιημένες εικόνες όπως απεικονίζονται στην Εικόνα 12: Εικόνα 12: Εφαρμογή τροποποιημένου Τελεστή Prewitt Το τελικό αποτέλεσμα για τις ακμές είναι ακριβώς το ίδιο με τις δύο προηγούμενες μήτρες που χρησιμοποιήθηκαν, κάτι αναμενόμενο αφού το μέτρο των ακμών της εικόνας παραμένει ίδιο [26], [28]. Σελίδα 36 από 104

37 Τελεστές Sobel Και οι τελεστές Sobel, όπως και οι επόμενοι που θα αναφέρουμε, προσεγγίζουν την πρώτη μερική παράγωγο κατά κατεύθυνση. Και αυτά τα μητρώα συνέλιξης (convolution kernels) είναι τρία επί τρία, και η διαδικασία για την ανίχνευση των ακμών ίδια με αυτή που χρησιμοποιήθηκε παραπάνω. Και σε αυτή την περίπτωση υπάρχουν οκτώ διαφορετικές κατευθύνσεις που μπορούμε να ανιχνεύσουμε ακμές [25], [29]:. Δύο από αυτά τα μητρώα συνέλιξης είναι : Εικόνα 13: Εφαρμογή Τελεστή Sobel Και περιστρέφοντας τα στοιχεία των παραπάνω μητρώων παίρνουμε τα δυο εναλλακτικά Το αποτέλεσμα για το μέτρο των περιμέναμε. ακμών όμως και πάλι είναι το ίδιο όπως Σελίδα 37 από 104

38 Εικόνα 14: Εφαρμογή τροποποιημένου Τελεστή Sobel Τελεστές Kirch, Robinson Και οι τελεστές Kirch και Robinson προσεγγίζουν την πρώτη παράγωγο. Τα μητρώα τους επίσης υπολογίζουν κατευθυντικές παραγώγους και έχουν τις ίδιες ιδιότητες με αυτές που έχουμε προαναφέρει. Οι πυρήνες τους είναι οι ακόλουθοι Σελίδα 38 από 104

39 (I) source image (II) robinson operator Εικόνα 15: Εφαρμογή Τελεστή ΚίΓοή Και αντίστοιχα για τον robinson convolution kernel: Εικόνα 16: Εφαρμογή Τελεστή Robinson Σελίδα 39 από 104

40 1.17. Τελεστές προσέγγισης & 1η παράγωγος Εκτός του τελεστή robinson όλοι οι άλλοι έχουν διαστάσεις 3 επί 3. Παρά το μικρό τους μέγεθος εισάγουν αρκετά μεγάλη πολυπλοκότητα. Για τον υπολογισμό ενός pixel εξόδου χρειάζονται 6 πολλαπλασιασμοί και 5 προσθέσεις για κάθε μια από τις κατευθύνσεις που υπολογίζουμε την πρώτη παράγωγο. Μια επιπλέον πρόσθεση χρειάζεται για να πάρουμε το τελικό μέτρο της ακμής. Συνολικά 12 πολλαπλασιασμοί και 11 προσθέσεις, για ένα και μόνο εικονοστοιχείο. Φυσικά παραγοντοποιώντας μπορούμε να μειώσουμε τους πολλαπλασιασμούς σε 2 καθώς όλα τα μητρώα έχουν μόλις 2 μη μηδενικές τιμές για τα στοιχεία τους. Μια επίσης σημαντική παρατήρηση είναι ότι το άθροισμα των στοιχείων του κάθε μητρώου είναι πάντα μηδέν. Έτσι πάντα όταν βρίσκεται σε εσωτερική περιοχή ενός αντικειμένου (φωτεινότητα σταθερή) η έξοδος είναι πάντα μηδέν. Όταν βρεθούμε όμως σε ακμή η έξοδος παίρνει μεγάλες τιμές. Αυτή είναι η ενίσχυση της ακμής και με αυτό τον τρόπο λειτουργούν τα μητρώα συνέλιξης που προσεγγίζουν την πρώτη παράγωγο [26], [27] Τελεστές Ανίχνευσης & 2η Παράγωγος Όπως αναφέρθηκε και στην εισαγωγή του ίδιου κεφαλαίου, ένας εναλλακτικός τρόπος εύρεσης ακμών είναι με τον εντοπισμό των διελεύσεων της δεύτερης παραγώγου από το μηδέν (zero crossing). Οι εικόνες είναι συναρτήσεις δυο μεταβλητών κι έτσι η λαπλασιανή υπολογίζει το μέτρο (magnitude) της δεύτερης παραγώγου, και χωρίς να δίνει πληροφορία για την κατεύθυνση της ακμής. Αυτό όμως δεν μας δημιουργεί πρόβλημα αναφορικά με την εύρεση των ακμών, καθώς αυτό που μας ενδιαφέρει στις περισσότερες εφαρμογές είναι το μέτρο των ακμών και μόνο. Σελίδα 40 από 104

41 Λαπλασιανός τελεστής (Laplacian operator) Για μια συνεχή συνάρτηση η λαπλασιανή δίνεται από τον τύπο: Laplacian = V21(x,y ) Για μια διακριτή συνάρτηση όπως είναι μια εικόνα, μπορεί να προσεγγιστεί από μικρά μητρώα συνέλιξης. Τα πιο δημοφιλή είναι: Ι ι 1* Ό 1 θ' Η διαφορά των δύο μητρώων είναι η συσχετιστικότητα με τα γειτονικά εικονοστοιχεία. Το πρώτα λέμε ότι έχει συσχετιστικότητα 8, δηλαδή η έξοδος μετά την πράξη της συνέλιξης εξαρτάται από τα 8 γειτονικά εικονοστοιχεία του εξεταζόμενου. Ενώ για τον το δεύτερο μητρώο η συσχετιστικότητα είναι 4 καθώς εκτός του κεντρικού εικονοστοιχείου μόνο 4 ακόμη έχουν μη μηδενικές τιμές. Στην Εικόνα 17 που ακολουθεί βλέπουμε το αποτέλεσμα της συνέλιξης μεταξύ εικόνας και των μητρώων. Σελίδα 41 από 104

42 Εικόνα 17: Εφαρμογή Τελεστή Laplace Και με τους δύο πυρήνες οι ακμές ανιχνεύονται πανομοιότυπα [17] [30]. Σχόλια για τον Λαπλασιανό Τελεστή Με την χρήση αυτού του τελεστή μειώνουμε την πολυπλοκότητα υπολογισμού των ακμών σε σχέση με του τελεστές που προσεγγίζουν την πρώτη παράγωγο που προαναφέραμε. Με χρήση του τελεστή 8 συσχετιστικότητας, για κάθε εικονοστοιχείο ακμών χρειαζόμαστε 9 πολλαπλασιασμούς και 8 προσθέσεις, ενώ για το μητρώο με συσχετιστικότητα 4 ο αριθμός πέφτει σε 5 πολλαπλασιασμούς και 4 προσθέσεις. Φυσικά με παραγοντοποίηση και στις δύο περιπτώσεις η απαίτηση για πολλαπλασιαστές πέφτει στους 2. Σε μερικές περιπτώσεις όμως ο λαπλασιανός τελεστής υπολείπεται αξιοπιστίας των τελεστών πρώτης παραγώγου. Εδώ έχουμε ένα trade-off μεταξύ πολυπλοκότητας και αξιοπιστίας που πρέπει να το αξιολογήσουμε [17], [1]. Σελίδα 42 από 104

43 Συμπεριφορά τελεσ τώ ν σε θορυβώδεις εικόνες. Στα πραγματικά συστήματα είναι πολύ πιθανό να συναντήσουμε θόρυβο στις υπό επεξεργασία εικόνες. Παρακάτω εισάγουμε τεχνητά λευκό θόρυβο καθώς και salt & pepper στην αρχική εικόνα, για να δούμε την συμπεριφορά των τελεστών παρουσία θορύβου. Συμεριφορά Τελεστή Roberts σε θόρυβο Στην εικόνα που ακολουθεί βλέπουμε ότι ο τελεστής Roberts ανιχνεύει πάρα πολλά ψευδή εικονοστοιχεία που θεωρεί ότι συνιστούν ακμές λόγω του θορύβου salt & pepper, και με την παρουσία λευκού θορύβου αποτυγχάνει τελείως να ανιχνεύσει ακμές: Εικόνα 18: Συμπεριφορά Τελεστή Robinson παρουσία θορύβου Σελίδα 43 από 104

44 Συμπεριφορές Άλλων Τελεστών σε θορυβώδεις εικόνες Παρόμοια συμπεριφορά παρουσιάζουν αναφέραμε στην προηγούμενη ενότητα. και οι υπόλοιποι τελεστές που Εικόνα 19: Συμπεριφορά τελεστή Prewitt παρουσία Θορύβου Σελίδα 44 από 104

45 Εικόνα 20: Συμπεριφορά τελεστή Sobel παρουσία Θορύβου (I) salt 5. pepper (II) white nolise (IV) white noise edges Εικόνα 21: Συμπεριφορά τελεστή Kirch παρουσία Θορύβου Σελίδα 45 από 104

46 Εικόνα 22: Συμπεριφορά τελεστή Robinson παρουσία Θορύβου Εικόνα 23: Συμπεριφορά τελεστή Laplace παρουσία Θορύβου Τελεστές και Θόρυβος Όλοι οι τελεστές δεν έχουν την επιθυμητή συμπεριφορά παρουσία θορύβου και ειδικά για τον λευκό θόρυβο. Οι τελεστές Robinson, Kirch και Laplacian δεν πλησιάζουν καν τις πραγματικές ακμές, ακόμα και για μια τόσο απλή εικόνα. Ο λόγος που συμβαίνει αυτό είναι ότι οι μητρώα συνέλιξης που χρησιμοποιήσαμε, στην ουσία αποτελούν ψηφιακά υψιπερατά φίλτρα. Έτσι, ενισχύουν τον υψίσυχνο θόρυβο οδηγώντας την έξοδο μακριά από τα επιθυμητά αποτελέσματα. Μια λύση είναι να χρησιμοποιήσουμε μη γραμμικά φίλτρα πριν την Σελίδα 46 από 104

47 συνέλιξη της εικόνας με τα μητρώα ανίχνευσης ακμών. Για παράδειγμα ο salt & pepper θόρυβος μπορεί να εξαλειφθεί με ένα φίλτρο μέσης τιμής, όμως δεν θα έχει την ίδια επίδραση και για τον λευκό θόρυβο. Καταλαβαίνουμε πως δεν είναι μια λύση που θα δίνει πάντα αξιόπιστα αποτελέσματα. Μια πολύ αποτελεσματική λύση πρότεινε ο Canny, χρησιμοποιώντας φιλτράρισμα με ένα γκαουσιανό φίλτρο, και κατόπιν χρησιμοποιεί κανονικά τα μητρώα συνέλιξης που προαναφέραμε. Θα περιγράψουμε τον αλγόριθμό του στην ακόλουθη ενότητα Ανίχνευση Ακμών του Canny (Canny Edge Detector) Ο αλγόριθμος που πρότεινε ο Canny για ανίχνευση ακμών σε εικόνες θεωρείται ο βέλτιστος που μπορούμε να ακολουθήσουμε για ανίχνευση ακμών παρουσία λευκού θορύβου. Για την υλοποίησή του απαιτούνται συγκεκριμένα βήματα όπως αναφέρει στο [31]. Πρόθεση του Canny ήταν να βελτιώσει τους ήδη υπάρχοντες αλγόριθμους όταν ερευνούσε την περιοχή της ανίχνευσης ακμών. Για να το πετύχει αυτό όρισε κάποια κριτήρια για να αξιολογήσει την αποτελεσματικότητα των αλγόριθμων αυτών. Πρώτο και πιο προφανές κριτήριο ήταν η ελαχιστοποίηση του σφάλματος. Είναι πολύ σημαντικό να ανιχνεύονται όλες οι πραγματικές ακμές (πραγματική είναι μια ακμή που υφίσταται και στον τρισδιάστατο πραγματικό κόσμο), και ταυτόχρονα να μην ανιχνεύονται ακμές που δεν υπάρχουν, ή να έχουμε «διπλές» αποκρίσεις σε μια ακμή. Δεύτερο κριτήριο ήταν οι ακμές να είναι σωστά τοποθετημένες τοπικά. Η απόσταση μεταξύ της πραγματικής ακμής και της ακμής που εντοπίζει ο αλγόριθμος πρέπει να ελαχιστοποιηθεί. Επίσης η ακμή πρέπει να ορίζεται σαφώς και όχι να παίρνει εκτεταμένες διαστάσεις. Σελίδα 47 από 104

48 Βασιζόμενος σε αυτά τα κριτήρια ο Canny κατέληξε σε έναν αλγόριθμο όπου αρχικά στην εικόνα εφαρμόζεται ένα γκαουσιανό ψηφιακό φίλτρο (gaussian). Αυτό στοχεύει στην ελαχιστοποίηση της επίδρασης του θορύβου, και η διαδικασία ονομάζεται ομαλοποίηση της εικόνας (smoothing). Η ψηφιακή μορφή του φίλτρου είναι ένα τετραγωνικό μητρώο συνέλιξης. Όσο μεγαλώνει η διάσταση του φίλτρου και η τυπική απόκλιση (σ) της γκαουσιανής δυσδιάστατης κατανομής, τόσο περισσότερο εξομαλύνεται η εικόνα και μειώνεται η επίδραση του λευκού θορύβου. Οι τιμές του γκαουσιανού φίλτρου δίνονται από την σχέση [14], [32]: G ( x, y ) -(*z+yz) e -ί*z+ys) Σ ν * Σ γ ^ 2»* και έχει την μορφή του σχήματος στην Εικόνα 24: Εικόνα 24: Δισδιαστατο γκαουσιανό φίλτρο (Canny) Στην συνέχεια εφαρμόζεται τελεστής διαφόρισης στην εξομαλυμένη εικόνα. Μια βηματική ακμή χαρακτηρίζεται από την τοποθεσία της, την διεύθυνσή της και το Σελίδα 48 από 104

49 μέτρο της. Ανιχνεύεται με την κατευθυντική παράγωγο της εικόνας (directional operator). Αν υποθέσουμε ότι G είναι ένα δυσδιάστατο φίλτρο γκαουσιανής κατανομής και θέλουμε να υπολογίσουμε την συνέλιξη της εικόνας με την πρώτη παράγωγο κατά κατεύθυνση η. G j = ^ = S v G V) Η διεύθυνση η πρέπει να είναι κάθετη στην κατεύθυνση της ακμής, παρόλο που αυτή η διεύθυνση δεν είναι δυνατόν να είναι γνωστή από την αρχή, μπορούμε να την προσεγγίσουμε για την εικόνα f ως εξής: Οι ακμές τότε βρίσκονται από τα τοπικά μέγιστα της συνέλιξης μεταξύ της εικόνας f και του κατευθυνόμενου διαφορικού τελεστή Gn. Και συνδυάζοντας αυτή την σχέση με την (111) παίρνουμε Από αυτή την εξίσωση προκύπτουν τα τοπικά μέγιστα σε κάθετη διεύθυνση από αυτή των ακμών. Ο τελεστής αυτός αναφέρεται στην βιβλιογραφία σαν non-maxima suppression. Με βάση μια ελάχιστη τιμή του μέτρου των ακμών ( Gn * f ) (V) αποφασίζουμε την ύπαρξη ή όχι της ακμής. Για να αποφύγουμε την ανίχνευση ανύπαρκτων ακμών χρησιμοποιούμε κατωφλίωση με υστέρηση. Αν εντοπίσουμε κάποια περιοχή με ένταση ακμών πάνω από ένα ισχυρό κατώφλι τις λαμβάνουμε σαν ακμές. Σελίδα 49 από 104

50 Χαμηλότερες εντάσεις από αυτό το κατώφλι αγνοούνται εκτός και αν είναι γειτονικά συνδεδεμένες με περιοχές μεγάλης έντασης και ξεπερνούν ένα ελάχιστο κατώφλι. Τότε αυτές μάλλον είναι ακμές εξασθενημένες από τον θόρυβο και μετρούνται κανονικά. Αλγόριθμος ανίχνευσης ακμών του Canny Βήματα: Συνέλιξη της εικόνας με γκαουσιανή κατανομή τυπικής απόκλισης Προσέγγιση τοπικών κατευθυνόμενων ακμών με την εξίσωση (ΙΝ) Εύρεση των περιοχών που συνιστούν ακμές με την χρήση της (IV) Υπολογισμός της έντασης των ακμών με την εξίσωση (V) Κατωφλίωση των ακμών με υστέρηση [31], [32] Συμπεριφορά το υ ανιχνευτή ακμών του Canny Στον ανιχνευτή ακμών που πρότεινε ο Canny μας δίνεται η δυνατότητα, ανάλογα με την τιμή της τυπικής απόκλισης που διαλέγουμε για το γκαουσιανό φίλτρο, να ανιχνεύσουμε λεπτομερείς ή γενικότερες ακμές. Στην εικόνα που ακολουθεί μπορούμε να παρατηρήσουμε την επίδραση της αύξησης της τυπικής απόκλισης στην ανίχνευση ακμών μιας εικόνας για τιμές από 0.5 έως 3. Σελίδα 50 από 104

51 Εικόνα 25: Εφαρμογή Αλγόριθμού Ανίχνευσης Ακμών του Canny Η διαφορά στο αποτέλεσμα του αλγόριθμου για διάφορες τιμές τυπικής απόκλισης οφείλεται στο ότι μεγαλώνοντας η τιμή της τυπικής απόκλισης του φίλτρου τόσο περισσότερο ομαλοποιεί την εικόνα και ακμές με πλάτος μικρότερο (τύπου γραμμής και στέγης) από αυτό του πυρήνα της συνέλιξης ουσιαστικά εξαλείφονται από το φίλτρο. Συμπεριφορά παρουσία θορύβου Όπως αναφέρθηκε και σε προηγούμενη παράγραφο σημαντικότερο πλεονέκτημα του ανιχνευτή ακμών που προτάθηκε από τον Canny είναι η συμπεριφορά του παρουσίας λευκού θορύβου. Στην εικόνα που ακολουθεί εφαρμόζουμε το αλγόριθμο του Canny σε δυο εικόνες που έχουμε εισάγει salt & pepper και λευκό θόρυβο. Σελίδα 51 από 104

6-Aνίχνευση. Ακμών - Περιγράμματος

6-Aνίχνευση. Ακμών - Περιγράμματος 6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Υλοποίηση Αλγόριθμου Ανίχνευσης Ακμών σε προγραμματιζόμενη ψηφίδα Xilinx ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Υλοποίηση Αλγόριθμου Ανίχνευσης Ακμών σε προγραμματιζόμενη ψηφίδα Xilinx ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ Υλοποίηση Αλγόριθμου Ανίχνευσης Ακμών σε προγραμματιζόμενη ψηφίδα Xilinx ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία

Διαβάστε περισσότερα

Βελτίωση - Φιλτράρισμα εικόνας

Βελτίωση - Φιλτράρισμα εικόνας Βελτίωση - Φιλτράρισμα εικόνας /7 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται

Διαβάστε περισσότερα

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ

Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ ΚΑΒΑΛΑ 2009 Περίληψη Η παρακάτω πτυχιακή εργασία περιλαμβάνει

Διαβάστε περισσότερα

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών.

ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. 1 ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011 2 Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. Ενδεδειγμένες και αξιόπιστες μέθοδοι αποτύπωσης Εμπειρικές Τοπογραφικές

Διαβάστε περισσότερα

Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab

Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab ΑΣΚΗΣΗ 8 Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab 1. Περιγραφή του προτύπου DICOM Η ψηφιακή επεξεργασία ιατρικής εικόνας ξεκίνησε παράλληλα με την ανάπτυξη ενός προτύπου για τη μεταφορά

Διαβάστε περισσότερα

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2 Ψηφιακά Φίλτρα Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 Αναλογικά και ψηφιακά φίλτρα Στην επεξεργασία σήματος, η λειτουργία ενός φίλτρου είναι να απομακρύνει τα ανεπιθύμητα μέρη ενός σήματος, όπως ένα

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΣΕΡΡΩΝ Τμήμα ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας Διδάσκων: Αναγνωστόπουλος Χρήστος Κώδικες μετρήσεων αντικειμένων σε εικόνα Χρωματικά μοντέλα: Munsell, HSB/HSV, CIE-LAB Κώδικες μετρήσεων αντικειμένων σε εικόνες Η βασική

Διαβάστε περισσότερα

DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης

DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης DIP_06 Συμπίεση εικόνας - JPEG ΤΕΙ Κρήτης Συμπίεση εικόνας Το μέγεθος μιας εικόνας είναι πολύ μεγάλο π.χ. Εικόνα μεγέθους Α4 δημιουργημένη από ένα σαρωτή με 300 pixels ανά ίντσα και με χρήση του RGB μοντέλου

Διαβάστε περισσότερα

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 10 Κεφ. 7.0-7.2 Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες Σχεδιασμός Φίλτρου Καθορίζονται

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1 Εικόνα Εισαγωγή Ψηφιακή αναπαράσταση Κωδικοποίηση των χρωμάτων Συσκευές εισόδου και εξόδου Βάθος χρώματος και ανάλυση Συμβολική αναπαράσταση Μετάδοση εικόνας Σύνθεση εικόνας Ανάλυση εικόνας Τεχνολογία

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Ευαιθησιομετρία Sensitometry ΑΚΤΙΝΟΛΟΓΙΑ Ι-6

Ευαιθησιομετρία Sensitometry ΑΚΤΙΝΟΛΟΓΙΑ Ι-6 Ευαιθησιομετρία Sensitometry ΑΚΤΙΝΟΛΟΓΙΑ Ι-6 Ακτινοβολία Χ και φιλμ Οι ακτίνες- X προκαλούν στο ακτινολογικό φιλμ κατανομή διαφορετικών ΟΠ επειδή Η ομοιόμορφη δέσμη που πέφτει πάνω στο ΑΘ εξασθενεί σε

Διαβάστε περισσότερα

Βίντεο. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 06-1

Βίντεο. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 06-1 Βίντεο Εισαγωγή Χαρακτηριστικά του βίντεο Απόσταση θέασης Μετάδοση τηλεοπτικού σήματος Συμβατικά τηλεοπτικά συστήματα Ψηφιακό βίντεο Εναλλακτικά μορφότυπα Τηλεόραση υψηλής ευκρίνειας Κινούμενες εικόνες

Διαβάστε περισσότερα

Γραφικά με Η/Υ / Εισαγωγή

Γραφικά με Η/Υ / Εισαγωγή Γραφικά με Η/Υ Εισαγωγή Πληροφορίες μαθήματος (1/4) Υπεύθυνος μαθήματος: Μανιτσάρης Αθανάσιος, Καθηγητής ιδάσκοντες: Μανιτσάρης Αθανάσιος: email: manits@uom.gr Μαυρίδης Ιωάννης: email: mavridis@uom.gr

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ. 11/4/2005 Βασιλεία Καραθαναση Λέκτορας Ε.Μ.Π

Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ. 11/4/2005 Βασιλεία Καραθαναση Λέκτορας Ε.Μ.Π Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Επεξεργασία και φιλτράρισμα Λέκτορας Ε.Μ.Π 1 Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Η εικόνα αποτελεί μία πηγή πληροφορίας. Τη συναντάμε ως : εικόνα ακίνητη (φωτογραφία) κινούμενη(τηλεόραση) Επίσης : ασπρόμαυρη

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 4 : Δειγματοληψία και κβάντιση (Sampling and Quantization) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

Μοντέλο φωτισμού Phong

Μοντέλο φωτισμού Phong ΚΕΦΑΛΑΙΟ 9. Στο προηγούμενο κεφάλαιο παρουσιάσθηκαν οι αλγόριθμοι απαλοιφής των πίσω επιφανειών και ακμών. Απαλοίφοντας λοιπόν τις πίσω επιφάνειες και ακμές ενός τρισδιάστατου αντικειμένου, μπορούμε να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Αναλυτική Μέθοδος- Αναλυτικό Πρόβλημα. Ανάλυση, Προσδιορισμός και Μέτρηση. Πρωτόκολλο. Ευαισθησία Μεθόδου. Εκλεκτικότητα. Όριο ανίχνευσης (limit of detection, LOD).

Διαβάστε περισσότερα

ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ. Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών

ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ. Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ Διαγνωστικές και θεραπευτικές εφαρμογές ακτινοβολιών : Κεφάλαιο 11 ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής 15/3/9 Από το προηγούμενο μάθημα... Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 3 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής» Φλώρος

Διαβάστε περισσότερα

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ)

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ) ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ ΔΙΔΑΣΚΩΝ : ΝΤΙΝΤΑΚΗΣ ΙΩΑΝΝΗΣ (MSC) Καθηγητής Εφαρμογών ΚΑΡΔΙΤΣΑ 2013 ΤΙ ΕΙΝΑΙ ΦΩΤΟΑΠΟΔΟΣΗ: ΕΝΝΟΟΥΜΕ ΤΗ ΔΙΑΔΙΚΑΣΙΑ ΚΑΘΟΡΙΣΜΟΥ ΟΛΩΝ ΕΚΕΙΝΩΝ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΩΝ ΩΣΤΕ ΝΑ ΕΧΟΥΜΕ

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Γραφικά & Οπτικοποίηση. Κεφάλαιο 1. Εισαγωγή. Γραφικά & Οπτικοπίηση: Αρχές & Αλγόριθμοι Κεφάλαιο 1

Γραφικά & Οπτικοποίηση. Κεφάλαιο 1. Εισαγωγή. Γραφικά & Οπτικοπίηση: Αρχές & Αλγόριθμοι Κεφάλαιο 1 Γραφικά & Οπτικοποίηση Κεφάλαιο 1 Εισαγωγή Ιστορικά Ιστορική ανασκόπηση : 2 Ιστορικά (2) Ρυθμοί ανάπτυξης CPU και GPU 3 Εφαρμογές Ειδικά εφέ για ταινίες & διαφημίσεις Επιστημονική εξερεύνηση μέσω οπτικοποίησης

Διαβάστε περισσότερα

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Επεξεργασία Εικόνας Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Μπαρμπούτης Παναγιώτης Α) ΦΙΛΤΡΑ ΟΞΥΝΣΗΣ Αρχικά θα μελετήσουμε την εικόνα από το MRI αρχείο της

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο ΠΑΛΙΟ http://eclass.survey.teiath.gr NEO

Διαβάστε περισσότερα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος Α Υφή σε Πολύγωνα Γ. Γ. Παπαϊωάννου, - 2008 Τι Είναι η Υφή; Η υφή είναι η χωρική διαμόρφωση των ποιοτικών χαρακτηριστικών της επιφάνειας ενός αντικειμένου,

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός

ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 2 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 3 ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ 4 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 5 ΓΕΩΡΓΙΟΣ ΘΕΟΔΩΡΟΥ Καθηγητής Α.Π.Θ. ΧΡΙΣΤΙΝΑ ΘΕΟΔΩΡΟΥ Μαθηματικός ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ

Διαβάστε περισσότερα

Άσκηση Η15. Μέτρηση της έντασης του μαγνητικού πεδίου της γής. Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο)

Άσκηση Η15. Μέτρηση της έντασης του μαγνητικού πεδίου της γής. Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο) Άσκηση Η15 Μέτρηση της έντασης του μαγνητικού πεδίου της γής Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο) Το γήινο μαγνητικό πεδίο αποτελείται, ως προς την προέλευσή του, από δύο συνιστώσες, το μόνιμο μαγνητικό

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Φεβρουαρίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ 1.1 Να δοθεί ο ορισμός του προβλήματος καθώς και τρία παραδείγματα

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Φύλλο εργασίας. Ερωτήσεις ανασκόπησης του μαθήματος

Φύλλο εργασίας. Ερωτήσεις ανασκόπησης του μαθήματος Φύλλο εργασίας Παραθέτουμε μια ομάδα ερωτήσεων ανασκόπησης του μαθήματος και μια ομάδα ερωτήσεων κρίσης για εμβάθυνση στο αντικείμενο του μαθήματος. Θεωρούμε ότι μέσα στην τάξη είναι δυνατή η κατανόηση

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Εικόνες και γραφικά. Τεχνολογία Πολυµέσων 05-1

Εικόνες και γραφικά. Τεχνολογία Πολυµέσων 05-1 Εικόνες και γραφικά Περιγραφή στατικών εικόνων Αναπαράσταση γραφικών Υλικό γραφικών Dithering και anti-aliasing Σύνθεση εικόνας Ανάλυση εικόνας Μετάδοση εικόνας Τεχνολογία Πολυµέσων 05-1 Περιγραφή στατικών

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ Ι. ΓΙΑΝΝΑΤΣΗΣ

ΑΝΤΙΚΕΙΜΕΝΟ Ι. ΓΙΑΝΝΑΤΣΗΣ ΣΧΕΔΙΑΣΜΟΣ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΜΕΤΡΗΣΗ ΕΡΓΑΣΙΑΣ Ι. ΓΙΑΝΝΑΤΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ Η Μέτρηση Εργασίας (Work Measurement ή Time Study) έχει ως αντικείμενο τον προσδιορισμό του χρόνου που απαιτείται από ένα ειδικευμένο

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Ψηφιακή Επεξεργασία Εικόνας Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

2 η Εργαστηριακή Άσκηση

2 η Εργαστηριακή Άσκηση Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ 2 η Εργαστηριακή Άσκηση Σύγκριση Ομόδυνων Ζωνοπερατών Συστημάτων 8-PSK και 8-FSK Στην άσκηση αυτή καλείστε

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΕΠΕΞΕΡΓΑΣΙΑΣ ΙΑΤΡΙΚΩΝ ΕΙΚΟΝΩΝ

ΣΤΟΙΧΕΙΑ ΕΠΕΞΕΡΓΑΣΙΑΣ ΙΑΤΡΙΚΩΝ ΕΙΚΟΝΩΝ ΣΤΟΙΧΕΙΑ ΕΠΕΞΕΡΓΑΣΙΑΣ ΙΑΤΡΙΚΩΝ ΕΙΚΟΝΩΝ Kωνσταντίνα Νικήτα 1 ΕΙΣΑΓΩΓΗ Η ακριβής και έγκαιρη διάγνωση, η εκτίµηση της πορείας µιας νόσου, αλλά και ο σχεδιασµός θεραπευτικών παρεµβάσεων βασίζονται σήµερα

Διαβάστε περισσότερα

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters)

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΦΩΤΟΓΡΑΜΜΕΤΡΙΑΣ. Βασίλης Γιαννακόπουλος, Δρ. Δασολόγος

ΕΦΑΡΜΟΓΕΣ ΦΩΤΟΓΡΑΜΜΕΤΡΙΑΣ. Βασίλης Γιαννακόπουλος, Δρ. Δασολόγος ΕΦΑΡΜΟΓΕΣ ΦΩΤΟΓΡΑΜΜΕΤΡΙΑΣ Βασίλης Γιαννακόπουλος, Δρ. Δασολόγος Φωτογραμμετρία Εισαγωγή Ορισμοί Πλεονεκτήματα Μειονεκτήματα Εφαρμογές Εισαγωγή Προσδιορισμός θέσεων Με τοπογραφικά όργανα Σχήμα Μέγεθος Συντεταγμένες

Διαβάστε περισσότερα

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ηλεκτρονικών Κυκλωμάτων F Ενότητα: Φίλτρα και Επαναληπτικές Ασκήσεις Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής, Σχολή

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. Ηρακλείου Ψηφιακή Επεξεργασία Εικόνας ιδάσκων: Βασίλειος Γαργανουράκης. Ανθρώπινη Όραση - Χρωµατικά Μοντέλα

Α.Τ.Ε.Ι. Ηρακλείου Ψηφιακή Επεξεργασία Εικόνας ιδάσκων: Βασίλειος Γαργανουράκης. Ανθρώπινη Όραση - Χρωµατικά Μοντέλα Ανθρώπινη Όραση - Χρωµατικά Μοντέλα 1 Τι απαιτείται για την όραση Φωτισµός: κάποια πηγή φωτός Αντικείµενα: που θα ανακλούν (ή διαθλούν) το φως Μάτι: σύλληψη του φωτός σαν εικόνα Τρόποι µετάδοσης φωτός

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y)

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y) 11.7. Aκρότατα και σαγματικά σημεία 903 39. Εκτίμηση μέγιστου σφάλματος Έστω ότι u e sin και ότι τα,, και μπορούν να μετρηθούν με μέγιστα δυνατά σφάλματα 0,, 0,6, και / 180, αντίστοιχα. Εκτιμήστε το μέγιστο

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Εισαγωγή στη σχεδίαση κινούμενων γραφικών

Εισαγωγή στη σχεδίαση κινούμενων γραφικών ΕΣΔ200 Δημιουργία Περιεχομένου ΙI Εισαγωγή στη σχεδίαση κινούμενων γραφικών Νικόλας Τσαπατσούλης Επίκουρος Καθηγητής Τμήμα Επικοινωνίας & Σπουδών Διαδικτύου Εισαγωγή Εφαρμογές Κύρια Χαρακτηριστικά Flash

Διαβάστε περισσότερα

ΤΡΙΣΔΙΑΣΤΑΤΗ ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ ΣΠΟΝΔΥΛΙΚΉΣ ΣΤΗΛΗΣ ΕΝΑ ΒΗΜΑ ΨΗΛΟΤΕΡΑ ΣΤΗΝ ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ

ΤΡΙΣΔΙΑΣΤΑΤΗ ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ ΣΠΟΝΔΥΛΙΚΉΣ ΣΤΗΛΗΣ ΕΝΑ ΒΗΜΑ ΨΗΛΟΤΕΡΑ ΣΤΗΝ ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΡΙΣΔΙΑΣΤΑΤΗ ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ ΣΠΟΝΔΥΛΙΚΉΣ ΣΤΗΛΗΣ ΕΝΑ ΒΗΜΑ ΨΗΛΟΤΕΡΑ ΣΤΗΝ ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ Δρ. Π. Κωνσταντινίδης Η Μαγνητική Τοµογραφία της σπονδυλικής στήλης αποτελεί εδώ και χρόνια την κορυφαία µέθοδο

Διαβάστε περισσότερα

Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ

Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Οι Ενόργανες Μέθοδοι Ανάλυσης είναι σχετικές μέθοδοι και σχεδόν στο σύνολο τους παρέχουν την αριθμητική τιμή μιας φυσικής ή φυσικοχημικής ιδιότητας, η

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

Βίντεο και κινούµενα σχέδια

Βίντεο και κινούµενα σχέδια Βίντεο και κινούµενα σχέδια Περιγραφή του βίντεο Ανάλυση του βίντεο Κωδικοποίηση των χρωµάτων Μετάδοση τηλεοπτικού σήµατος Συµβατικά τηλεοπτικά συστήµατα Τεχνολογία Πολυµέσων 06-1 Περιγραφή του βίντεο

Διαβάστε περισσότερα

ΙΑΤΡΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ) ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΚ.ΕΤΟΥΣ 2015-2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ

ΙΑΤΡΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ) ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΚ.ΕΤΟΥΣ 2015-2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ ΙΑΤΡΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ) ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΚ.ΕΤΟΥΣ 2015-2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ ΘΕΜΑ 1ο Τυπική καμπύλη δόσης επιβίωσης για καρκινικά και υγιή κύτταρα μετά από ακτινοβόληση:

Διαβάστε περισσότερα

Έγχρωµο και Ασπρόµαυρο Φως

Έγχρωµο και Ασπρόµαυρο Φως Έγχρωµο και Ασπρόµαυρο Φως Χρώµα: κλάδος φυσικής, φυσιολογίας, ψυχολογίας, τέχνης. Αφορά άµεσα τον προγραµµατιστή των γραφικών. Αν αφαιρέσουµε χρωµατικά χαρακτηριστικά, λαµβάνουµε ασπρόµαυρο φως. Μόνο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.

Διαβάστε περισσότερα

9. Τοπογραφική σχεδίαση

9. Τοπογραφική σχεδίαση 9. Τοπογραφική σχεδίαση 9.1 Εισαγωγή Το κεφάλαιο αυτό εξετάζει τις παραμέτρους, μεθόδους και τεχνικές της τοπογραφικής σχεδίασης. Η προσέγγιση του κεφαλαίου γίνεται τόσο για την περίπτωση της συμβατικής

Διαβάστε περισσότερα

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 68 παράδειγμα (εισαγωγικό) y(n) = 9 x(n k ) k= 2/ 68 Βασικές κατηγορίες

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

Ηχρήση του χρώµατος στους χάρτες

Ηχρήση του χρώµατος στους χάρτες Ηχρήση του χρώµατος στους χάρτες Συµβατική χρήση χρωµάτων σε θεµατικούς χάρτες και «ασυµβατότητες» Γεωλογικοί χάρτες: Χάρτες γήινου ανάγλυφου: Χάρτες χρήσεων γης: Χάρτες πυκνότητας πληθυσµού: Χάρτες βροχόπτωσης:

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας ιδάσκων: Αναγνωστόπουλος Χρήστος Αρχές συµπίεσης δεδοµένων Ήδη συµπίεσης Συµπίεση εικόνων Αλγόριθµος JPEG Γιατί χρειαζόµαστε συµπίεση; Τα σηµερινά αποθηκευτικά µέσα αδυνατούν

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων

Διαβάστε περισσότερα

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα

Διαβάστε περισσότερα

TFT TV. Τι είναι οι TFT και πως λειτουργούν;

TFT TV. Τι είναι οι TFT και πως λειτουργούν; TFT TV Τι είναι οι TFT και πως λειτουργούν; Η ετυμολογία του όρου TFT (Thin Film Transistor ή τρανζίστορ λεπτού φιλμ) μας παραπέμπει στο δομικό στοιχείο ελέγχου της οθόνης, που είναι το τρανζίστορ. Οι

Διαβάστε περισσότερα

Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα

Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα Ένας πυκνωτής με μία αντίσταση σε σειρά αποτελούν ένα RC κύκλωμα. Τα RC κυκλώματα χαρακτηρίζονται για την απόκρισή τους ως προς τη συχνότητα και ως

Διαβάστε περισσότερα