Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων"

Transcript

1 Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων Μαρία Δ. Πελώνη Μαρία Α. Τσεμεντζή Α.Τ.Ε.Ι. Καβάλας Διαχείριση Πληροφοριών Επιβλέπων: Δρ. Γκούμας Στέφανος Επίκουρος Καθηγητής Καβάλα 2011

2 Περιεχόμενα Περιεχόμενα...2 Περιεχόμενα Εικόνων...5 Περίληψη Εισαγωγή σε Image Processing & Computer Vision Επεξεργασία Εικόνας Υπολογιστική Όραση (Computer Vision) Κίνητρα Εφαρμογή της επεξεργασίας εικόνας σε βιοϊατρικές εικόνες Βελτίωση εικόνας (Filtering & Enchancment) Μετασχηματισμός Fourier μίας Εικόνας Βαθυπερατά Φίλτρα Φίλτρα Μέσης Τιμής Θόλωση (Blurring) Ελάττωση Θορύβου Φίλτρα Gaussian μορφής...20 Σχεδιασμός...20 Ιδιότητες Φίλτρα διάμεσης τιμής Υψιπερατά Φίλτρα Unsharp Masking Επεξεργασία έγχρωμης εικόνας...25 Σελίδα 2 από 104

3 1.13. Ομοιομορφική επεξεργασία (Homomorpic Processing) Ανίχνευση Ακμών Εισαγωγή στην Ανίχνευση Ακμών Τύποι και χαρακτηριστικά ακμών Τελεστές Ανίχνευσης & 1η Παράγωγος...32 Τελεστές Roberts...32 Τελεστές Prewitt...35 Τελεστές Sobel...37 Τελεστές Kirch, Robinson Τελεστές προσέγγισης & 1η παράγωγος Τελεστές Ανίχνευσης & 2η Παράγωγος...40 Λαπλασιανός τελεστής (Laplacian operator) Σχόλια για τον Λαπλασιανό Τελεστή Συμπεριφορά τελεστών σε θορυβώδεις εικόνες Συμεριφορά Τελεστή Roberts σε θόρυβο...43 Συμπεριφορές Άλλων Τελεστών σε θορυβώδεις εικόνες Τελεστές και Θόρυβος Ανίχνευση Ακμών του Canny (Canny Edge Detector)...48 Αλγόριθμος ανίχνευσης ακμών του Canny Συμπεριφορά του ανιχνευτή ακμών του Canny Συμπεριφορά παρουσία θορύβου Σχόλια για τον αλγόριθμο του Canny Ακμές Marr & Hildreth Αλγόριθμος Ανίχνευσης Ακμών Πλεονεκτήματα του Συντελεστή LoG Αποτελέσματα του LoG Τελεστή Σελίδα 3 από 104

4 Bi-Level Laplacian of Gaussian filter...60 Το BLoG σε μία διάσταση...61 Το φίλτρο BLoG σε δύο διαστάσεις...64 Μονοδιάστατο φίλτρο σε δύο διαστάσεις Κατωφλίωση & Ιατρική Απεικόνιση Συστημάτων Τι είναι η κατωφλίωση Ιατρική Απεικόνιση Συστημάτων Είδη Ιατρικών Εικόνων Ψηφιακή Επεξεργασία Εικόνας...71 Βασικές Διαδικασίες Ψηφιακής Επεξεργασίας Εικόνων Κατωφλίωση Ανίχνευση Ακμών σε Ιατρικές Εικόνες Διαχωρισμός περιοχών Εξαγωγή Χαρακτηριστικών Μορφολογικά Χαρακτηριστικά Χαρακτηριστικά Γνωρίσματα Υφής Τοπολογικά Χαρακτηριστικά Επίλογος και Μελλοντικές Επεκτάσεις Βιβλιογραφία...89 ΠΑΡΑΡΤΗΜΑ Α: Βασικοί Αλγόριθμοι Ανίχνευσης Ακμών...92 ΠΑΡΑΡΤΗΜΑ Β: Βασική Εφαρμογή Σελίδα 4 από 104

5 Περιεχόμενα Εικόνων Εικόνα 1: Παράθυρα Συνέλιξης Εικόνας...15 Εικόνα 2: Τιμές συνέλιξης εικόνας στην θέση n1,n Εικόνα 3: Η αρχική εικόνα και η φιλτραρισμένη έξοδος...18 Εικόνα 4: Εξασθένιση του θορύβου με 3x3 Μάσκα μέσης τιμής...19 Εικόνα 5: Εύρεσης διάμεσης τιμής σε πίνακα 3x Εικόνα 6: Έξοδος median φίλτρου με κρουστικό θόρυβο...23 Εικόνα 7: Πίνακες με χαρακτηριστικές τιμές υψιπερατών μασκών...24 Εικόνα 8: Κατεύθυνση και Μέτρο Ακμής...30 Εικόνα 9: Είδη Ακμών σε grayscale εικόνες...31 Εικόνα 10: Εφαρμογή του Τελεστή Roberts...34 Εικόνα 11: Εφαρμογή του Τελεστή Prewitt...35 Εικόνα 12: Εφαρμογή τροποποιημένου Τελεστή Prewitt...36 Εικόνα 13: Εφαρμογή Τελεστή Sobel...37 Εικόνα 14: Εφαρμογή τροποποιημένου Τελεστή Sobel...38 Εικόνα 15: Εφαρμογή Τελεστή Kirch...39 Εικόνα 16: Εφαρμογή Τελεστή Robinson...39 Εικόνα 17: Εφαρμογή Τελεστή Laplace...42 Εικόνα 18: Συμπεριφορά Τελεστή Robinson παρουσία θορύβου...44 Εικόνα 19: Συμπεριφορά τελεστή Prewitt παρουσία Θορύβου...45 Εικόνα 20: Συμπεριφορά τελεστή Sobel παρουσία Θορύβου...45 Εικόνα 21: Συμπεριφορά τελεστή Kirch παρουσία Θορύβου...45 Εικόνα 22: Συμπεριφορά τελεστή Robinson παρουσία Θορύβου...46 Σελίδα 5 από 104

6 Εικόνα 23: Συμπεριφορά τελεστή Laplace παρουσία Θορύβου...47 Εικόνα 24: Δισδιάστατο γκαουσιανό φίλτρο (Canny)...49 Εικόνα 25: Εφαρμογή Αλγόριθμού Ανίχνευσης Ακμών του Canny...52 Εικόνα 26: Συμπεριφορά του Αλγόριθμού του Canny παρουσία θορύβου...53 Εικόνα 27: Δισδιάστατο φίλτρο Laplacian of Gaussian...55 Εικόνα 28: Παρουσίαση του ανεστραμμένου φίλτριου LoG...56 Εικόνα 29: Συμπεριφορά του φίλτρου LoG μεταβάλλοντας την τυπική απόκλιση59 Εικόνα 30: Συμπεριφορά του φίλτρου LoG μεταβάλλοντας το κατώφλι για αποδοχή pixel ως μέρος ακμής...60 Εικόνα 31: Μητρώο Συνέλιξης 7x7 για τυπική απόκλιση σ = Εικόνα 32: Προσέγγιση του μονοδιάστατου λαπλασιανού φίλτρου Εικόνα 33: Ιατρικές εικόνες 2D...70 Εικόνα 34: Ιατρικές εικόνες 3D...70 Εικόνα 35: Ιατρικές εικόνες 4D...71 Εικόνα 36: Πολυδιάστατα ιατρικά δεδομένα...71 Εικόνα 37: Μονόχρωμη ψηφιακή εικόνα βάθους 8-bit...73 Εικόνα 38: Κατωφλίωση Εικόνας με Ιστόγραμμα...76 Εικόνα 39: Απλή Κατωφλίωση Ιατρικής Εικόνας...76 Εικόνα 40: Διπλή Κατωφλίωση Ιατρικής Εικόνας...77 Εικόνα 41: Εύρεση Ακμών σε Ιατρική Εικόνα...78 Εικόνα 42: Διαχωρισμός Περιοχών...79 Εικόνα 43: Μορφολογικά χαρακτηριστικά εικόνας...83 Σελίδα 6 από 104

7 Περίληψη Η παρούσα εργασία περιγράφει την ανάλυση και επεξεργασία μίας βιοϊατρικής ψηφιακής (ή ψηφιοποιημένης) εικόνας. Περιγράφονται αναλυτικά όλες οι τεχνικές που χρησιμοποιούνται σήμερα για την βελτίωση της εικόνας αυτής καθώς και το μαθηματικό τους υπόβαθρο. Περιγράφονται κατόπιν της αρχικής βελτίωσης και συμμόρφωσης της εικόνας αυτής με πρότυπα επεξεργασίας, οι τεχνικές που χρησιμοποιούνται για την αναγνώριση και ταυτοποίηση διάφορων σχημάτων σε αυτές τις εικόνες, τεχνικών αναγνώρισης διαφόρων μερών του ανθρώπινου σώματος, καθώς και προηγμένες τεχνικές «καθαρισμού» και αυτόματης ταυτοποίησης σχημάτων σε αυτές. Περιγράφονται επίσης λεπτομερώς οι τρόποι εξαγωγής από τις εικόνες αυτών ακριβώς των χαρακτηριστικών που θα μπορούσαν να ενδιαφέρουν την ιατρική επιστήμη. Επίσης παρατίθεται ένα λογισμικό χρήσης και επεξεργασίας τέτοιων εικόνων, το οποίο μπορεί χρησιμοποιώντας τις αναφερόμενες τεχνικές να εξάγει χρήσιμη πληροφορία από μία τέτοια βιοϊατρική εικόνα. Σελίδα 7 από 104

8 ι.ι. Εισαγωγή σε Image Processing & Com puter Vision Η ανίχνευση ακμών είναι μια ορολογία που αφορά την επεξεργασία εικόνας και την «οπτική» των υπολογιστών (Computer Vision), ιδιαίτερα όσον αφορά τους τομείς της εξαγωγής χαρακτηριστικών και την δυνατότητα ανίχνευσης, και αναφέρεται σε αλγόριθμους που αποσκοπούν στον εντοπισμό σημείων σε μια ψηφιακή εικόνα στην οποία η φωτεινότητα αλλάζει δραστικά ή πιο σωστά έχει ασυνέχειες [1], [2]. ι.ι. Επεξεργασία Εικόνας Επεξεργασία εικόνας είναι κάθε είδους επεξεργασία σήματος για την οποία είσοδος είναι μια εικόνα ( Πχ. φωτογραφίες ή frames από ένα βίντεο). Έξοδος αυτής της διεργασίας μπορεί να είναι είτε μια εικόνα είτε ένα σύνολο χαρακτηριστικών ή παραμέτρων που σχετίζονται με την εικόνα. Μερικές εφαρμογές της επεξεργασία εικόνας είναι : Ανίχνευση προσώπων: Η ανίχνευση προσώπων είναι μια τεχνολογία των ηλεκτρονικών υπολογιστών που καθορίζει τις θέσεις και τα μεγέθη των ανθρώπινων προσώπων σε ψηφιακές εικόνες. Ανιχνεύει ανθρώπινα πρόσωπα και τα επιμέρους χαρακτηριστικά τους, ενώ αγνοεί οτιδήποτε άλλο, όπως κτίρια, δέντρα και σώματα [3]. Σύστημα προειδοποίησης αλλαγής λωρίδας: Στην ορολογία των οδικών μεταφορών ένα σύστημα προειδοποίησης αλλαγής λωρίδας είναι ένας μηχανισμός σχεδιασμένος να προειδοποιεί τον οδηγό όταν το όχημα αρχίζει να κινείται εκτός της λωρίδας κυκλοφορίας (εκτός και αν υπάρχει κάποιο σήμα) σε ένα αυτοκινητόδρομο [4], [5]. Σελίδα 8 από 104

9 Non-photo realistic rendering (NPR): είναι ένας τομέας της δημιουργίας γραφικών μέσω υπολογιστή που επικεντρώνεται στο να επιτρέπει και να δημιουργεί μια μεγάλη γκάμα εκφραστικών στυλ πάνω στην ψηφιακή τέχνη. Η τεχνική αυτή εφαρμόζεται εκτεταμένα στις σημερινές ταινίες και βιντεοπαιχνίδια με την μορφή σκίασης καρτούν, στην ενδεικτική αρχιτεκτονική και στο πειραματικό animation. Ειδικότερα σε εφαρμογές 3D το αποτέλεσμα της τεχνικής αυτής είναι ένα 3D μοντέλο επεξεργασμένο και τροποποιημένο από το αρχικό πορτραίτο (φωτογραφία) με γεωμετρικές διαστάσεις και χαρακτηριστικά ακριβώς ίδια [6]. Επεξεργασία ιατρικών εικόνων: Σαν ιατρικές εικόνες ή χάρτες εννοούμε όλες εκείνες τις τεχνικές και διεργασίες που υπάρχουν στον κλάδο της ιατρικής για την δημιουργία εικόνων του ανθρώπινου σώματος (ή μέρη του) για κλινικούς σκοπούς (διάγνωση ή εξέταση μιας ασθένειας). Παραδείγματα τέτοιων εικόνων υπάρχουν πολλά (μαγνητικός τομογράφος, ηλεκτροεγκεφαλογράφημα κ.α.) και η σωστή επεξεργασία τους καθίσταται αναγκαία στην σημερινή ψηφιακή εποχή της Ιατρικής Υπολογιστική Όραση (Computer Vision) Ειδικότερα, με τον όρο Computer Vision μιλάμε για την επιστήμη και την τεχνολογία μηχανών που βλέπουν. Ως επιστημονικός κλάδος, ορίζεται η θεωρία κατασκευής τεχνητών συστημάτων που λαμβάνουν πληροφορίες από τις εικόνες. Τα δεδομένα μιας εικόνας μπορούν να έχουν πολλές μορφές όπως είναι μια ακολουθία ενός βίντεο, η λήψη από πολλαπλές κάμερες ή πολυδιάστατα ιατρικά δεδομένα από έναν ιατρικό ανιχνευτή- σαρωτή. Ως τεχνολογικός κλάδος, η «οπτική των υπολογιστών» αναζητά τρόπους να εφαρμοστούν οι θεωρίες και τα μοντέλα της στην κατασκευή συστημάτων με τέτοιου είδους ικανότητα. Τέτοια παραδείγματα είναι και τα εξής [7] : Ο έλεγχος διαδικασιών (Πχ. ένα βιομηχανικό ρομπότ ή ένα αυτόνομο όχημα) Ανίχνευση γεγονότων (Πχ. για την οπτική παρακολούθηση ή την καταμέτρηση ατόμων) Σελίδα 9 από 104

10 Οργανωτικές πληροφορίες (Πχ. για την δημιουργία ευρετηρίου βάσεων δεδομένων εικόνων και αλληλουχιών εικόνων) Μοντελοποίηση δεδομένων ή περιβαλλόντων (Πχ. βιομηχανική επιθεώρηση, ανάλυση ιατρικών εικόνων ή τοπογραφική μοντελοποίηση) Αλληλεπίδραση (Πχ. ως τα δεδομένα εισόδου μιας συσκευής για την αλληλεπίδραση ανθρώπου-μηχανής) Αλλά πεδία είναι η ανασυγκρότηση σκηνών (scene reconstruction), ανίχνευση γεγονότων, εντοπισμού (tracking), αναγνώριση αντικειμένων, εκμάθηση, δημιουργία ευρετηρίων (indexing), εκτίμηση κίνησης και αποκατάσταση εικόνας Κίνητρα Ο σκοπός της ανίχνευση απότομων αλλαγών στην φωτεινότητα μιας εικόνας είναι για να συλλάβουμε τα σημαντικά γεγονότα και αλλαγές που υφίστανται στον κόσμο γύρω μας. Μπορεί να αποδειχθεί ότι σύμφωνα με γενικές υποθέσεις για το μοντέλο σχηματοποίησης μιας εικόνας, ασυνέχειες στην φωτεινότητα μιας εικόνας ενδέχεται να αντιστοιχούν σε [1],[8]: Ασυνέχειες στο βάθος Ασυνέχειες στον προσανατολισμό της επιφάνειας Μεταβολές στις ιδιότητες των υλικών και Διακυμάνσεις στο σκηνικό φωτισμό Στην ιδανική περίπτωση, το αποτέλεσμα της εφαρμογής ενός ανιχνευτή Άκμων σε μια εικόνα μπορεί να οδηγήσει σε ένα σύνολο συνδεόμενων καμπυλών που δείχνουν τα όρια των αντικειμένων, τα όρια των επιφανειακών σημάνσεων καθώς και καμπύλες που αντιστοιχούν στις ασυνέχειες προσανατολισμού επιφάνειας. Έτσι λοιπόν η εφαρμογή ενός ανιχνευτή ακμών σε μια εικόνα μπορεί να μειώσει σημαντικά το ποσό των δεδομένων που υποβάλλονται σε επεξεργασία και μπορεί Σελίδα 10 από 104

11 συνεπώς να φιλτράρει τις πληροφορίες που θεωρούνται μικρής σημασίας, διατηρώντας παράλληλα τις σημαντικές διαρθρωτικές ιδιότητες μιας εικόνας. Εάν το βήμα ανίχνευσης είναι επιτυχές, το μετέπειτα έργο της ερμηνείας των πληροφοριών της αρχικής εικόνας μπορεί να απλουστευθεί σημαντικά. Δυστυχώς όμως δεν είναι πάντα δυνατό να ληφθούν τέτοιου είδους ακμές από πραγματικές εικόνες ακόμα και μέτριας πολυπλοκότητας. Οι ακμές που προέρχονται από μη τετριμμένες εικόνες έχουν συχνά ένα μεγάλο εμπόδιο, τον κατακερματισμό. Οι καμπύλες των ακμών δηλαδή δεν είναι συνδεδεμένες, τμήματα ακμών τα οποία λείπουν καθώς και ψεύτικες ακμές οι οποίες δεν αντιστοιχούν σε ενδιαφέροντα φαινόμενα της εικόνας. Κατά αυτόν τον τρόπο το μετέπειτα έργο της ερμηνείας της εικόνας δυσχεραίνεται [9], [10] Εφαρμογή της επεξεργασίας εικόνας σε βιοϊατρικές εικόνες Η ταχύτατη εξέλιξη και εξάπλωση των τεχνολογιών που χρησιμοποιούνται στην ανάλυση και επεξεργασία των διάφορων ιατρικών εικόνων, οι οποίες θα περιγραφούν αναλυτικά σε επόμενα κεφάλαια, έχουν επιφέρει πραγματική επανάσταση στην Ιατρική επιστήμη. Αυτές οι εικόνες επιτρέπουν σε επιστήμονες και γιατρούς να αποκομίσουν κρίσιμες για την υγεία και την ζωή του ασθενούς, αφού παρέχουν έναν εύκολο και άμεσο τρόπο πρόσβασης στα ενδότερα του ανθρώπινου σώματος και την λεπτομερή επιθεώρηση των ανατομικών λειτουργιών και συμπεριφορών του. Ο ρόλος αυτών των εικόνων, έχει επεκταθεί πολύ περισσότερο από απλή θέαση και οπτικοποίηση των ανατομικών δομών. Έχει γίνει ένα απαραίτητο εργαλείο εγχειρητικού σχεδιασμού, προσομοίωσης και αναπαράστασης των διαδρομών ενδοσωματικών επεμβάσεων, σχεδιασμού χημειοθεραπειών και ραδιοθεραπειών καθώς και εντοπισμού και παρακολούθησης της εξέλιξης ασθενειών. Για παράδειγμα η εξακρίβωση του λεπτομερούς σχήματος και μορφολογίας διάφορων οργάνων του σώματος από έναν χειρουργό, του παρέχει το πλεονέκτημα να σχεδιάσει εκ των προτέρων την καλύτερη μέθοδο Σελίδα 11 από 104

12 προσέγγισης σε κάποιο συγκεκριμένο όργανο. Στην ραδιοθεραπεία, τέτοιες εικόνες βοηθούν να απεικονίσουν την παρεχόμενη δόση ακτινοβολίας σε έναν όγκο με τις μικρότερες δυνατές παράπλευρες ζημιές σε γειτονικούς υγιείς ιστούς. Επειδή ακριβώς η ανάλυση τέτοιων εικόνων επιφέρει έναν συνεχώς αυξανόμενης βαρύτητας ρόλο στην διάγνωση και θεραπεία ασθενειών, η επιστημονική κοινότητα που ασχολείται με αυτό το αντικείμενο προσπαθεί -με την βοήθεια της επιστήμης των υπολογιστών- συνεχώς να βρει καλύτερους τρόπους εξαγωγής ωφέλιμης κλινικά πληροφορίας μέσω των διάφορων τεχνικών απεικόνισης που θα αναλυθούν στα επόμενα κεφάλαια. Αν και οι σύγχρονες συσκευές απεικόνισης παρέχουν εξαιρετικής πιστότητας εικόνες της εσωτερικής ανατομίας του ανθρωπίνου σώματος, παρόλα αυτά η χρήση των υπολογιστών στην ανάλυση της περιεχόμενης στις εικόνες αυτές πληροφορίας ώστε να καταστεί δυνατή η ποσοτικοποίηση αποτελεσματικότητα της περιεχόμενης πληροφορίας με ακρίβεια είναι περιορισμένη. Ακριβή, μετρήσιμα, και ποσοτικοποιημένα δεδομένα πρέπει να μπορούν να εξαχθούν από τέτοιες εικόνες, ώστε να μπορούν να υποστηρίξουν όλο το φάσμα της Ιατρικής επιστήμης, από τον βιοϊατρικό έλεγχο και τις κλινικές λειτουργίες, μέχρι την διάγνωση, την ραδιοθεραπεία και την εγχείρηση. Η αναγνώριση συγκεκριμένων τμημάτων και οργάνων σε τέτοιες εικόνες και η αναπαράσταση τους με βασικές γεωμετρικές δομές (αναπόφευκτο αποτέλεσμα της ψηφιοποιήσης) είναι δύσκολες λόγω του μεγάλου αρχικού όγκου πληροφορίας και της πολυπλοκότητας και διαφοροποιήσης (σε σχήμα και σε είδος) των διάφορων οργάνων του ανθρωπίνου σώματος. Ακόμη οι ελλείψεις στα αρχικά δεδομένα λόγω της αναπόφευκτης δειγματοληψίας αλλά και των χωρικών στρεβλώσεων και του ψηφιακού θορύβου μπορούν να κάνουν τα όρια του σχήματος ενός οργάνου δυσδιάκριτα και ασυνεχή. Η πρόκληση είναι στην εξαγωγή και σωστή αναπαράσταση των δεδομένων που λείπουν, ώστε τελικά να παραχθεί στην εικόνα ένα ολοκληρωμένο και χωρίς ασυνέχειες όργανο ή τμήμα του ανθρώπινου σώματος. Οι παραδοσιακές τεχνικές επεξεργασίας εικόνας σε χαμηλό επίπεδο (επίπεδο bit) λαμβάνουν υπόψη μόνο την γειτονική πληροφορία κα παράγουν δυσδιάκριτα όρια μεταξύ αντικειμένων. Σαν αποτέλεσμα, οι εικόνες που Σελίδα 12 από 104

13 παράγονται με αυτές τις τεχνικές απαιτούν επεξεργασία από ειδικούς σε αυτές. Επιπρόσθετα η επιμέρους ανάλυση οργάνων και σημείων, παρεμποδίζεται από την αναπαράσταση αυτών των οργάνων σε χαμηλή ανάλυση (ορατό pixel) [11]. Σελίδα 13 από 104

14 Σελίδα 14 από 104

15 1.2. Βελτίωση εικόνας (Filtering & Enchancment) Η βελτίωση εικόνας είναι συνήθως μία διαδικασία φιλτραρίσματος δηλ. συνέλιξης με συγκεκριμένη δισδιάστατη μάσκα και στοχεύει στην ανάδειξη χαρακτηριστικών ή ελάττωση θορύβου και άλλων ανεπιθύμητων χαρακτηριστικών. Στη διαδικασία βελτίωσης εικόνας το αποτέλεσμα είναι επίσης εικόνα και όχι κάποιο χαρακτηριστικό. Στο φιλτράρισμα εικόνας σπανιότατα χρησιμοποιούμε IIR (infinite Impulse Response) φίλτρα ενώ αντίθετα FIR (Finite Impulse Response) φίλτρα είναι η συνήθως χρησιμοποιούμενη διαδικασία. Επομένως το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών για το οποίο χρησιμοποιούνται οι όροι : παράθυρο, μάσκα (window, mask, template, kernel). Συνήθως τα παράθυρα είναι τετραγωνικά και οι συντελεστές συμμετρικοί [12]. Δύο τέτοια παράθυρα είναι τα Α, Β που φαίνονται παρακάτω: Εικόνα 1: Παράθυρα Συνέλιξης Εικόνας Αν θεωρήσουμε μία εικόνα x(ni,n2) διαστάσεως ΝxΝ pixels και ένα παράθυρο h(ni,n2) τότε η συνέλιξη ) y(n1,n2) = x (n1,n2) * h (n1,n2) ορίζεται ως εξής: (3.1) Σελίδα 15 από 104

16 Η πράξη αυτή επειδή το h(ni,n2) είναι πεπερασμένου μήκους (3x3, 5x5 κλπ) ουσιαστικά εκφράζει το άθροισμα των γινομένων που προέρχεται από την τιμή των pixels της εικόνας με τους αντίστοιχους συντελεστές του παραθύρου. Το παράθυρο διατρέχει την εικόνα και κάθε φορά υπολογίζεται η παραπάνω τιμή για διαφορετικό σημείο της εικόνας. Δηλαδή: Η συνέλιξη είναι απλά ένα σταθμικό άθροισμα (weighted sum) των στοιχείων της εικόνας (pixel) σε μία περιοχή γύρω από το στοιχείο αναφοράς. Στη Εικόνα lerror! Reference source not found. φαίνεται ένα παράδειγμα συνέλιξης όπου h(n1,n2) είναι οι τιμές p1,p2 κλπ. και τα αντίστοιχα σημεία της εικόνας h(n1,n2) είναι A,B,C κλπ. Στην Εικόνα 2 φαίνεται το αποτέλεσμα της συνέλιξης για την τιμή της εικόνας στη θέση n1,n2 που έχει τιμή Ε. y(n1,n2)=aρ1+βρ2+cρ3,+dρ4,+ερ5+fρ6+gρ7+hρ8+ιρ9: Αξίζει να αναφέρουμε ότι πολλές μάσκες είναι διαχωρίσιμες. Δηλαδή η συνέλιξη με μία δυσδιάστατη μάσκα μπορεί να εκτελεστεί με δύο μάσκες 1ας διάστασης. Τέτοια μάσκα είναι η η οποία διαχωρίζεται στις εξής: Σελίδα 16 από 104

17 1 0-1 & [ 1 2 1] Τέλος πρέπει να αναφέρουμε ότι τα παραπάνω αναφέρονται σε εικόνες σε απόχρωση του γκρι (gray scale) [13], [14], [12] Μετασχηματισμός Fourier μίας Εικόνας Ο μετασχηματισμός Fourier F(u,v) μίας εικόνας f(k,l) ορίζεται ως εξής: (3.2) Οι τιμές υ,ν κοντά. στο 0,0 αντιστοιχούν σε χαμηλές συχνότητες. Η F(u,v) είναι συνεχής συνάρτηση. Μπορούμε να χρησιμοποιήσουμε τον Διακριτό Μετασχηματισμό Fourier, DFT (Discrete Fourier Transformation) ή καλύτερα τον ταχύ μετασχηματισμό Fourier, FFT (Fast Fourier Trasform) για να εκτελέσουμε την πράξη της συνέλιξης στο πεδίο των συχνοτήτων [15], [16], [17] Βαθυπερατά Φίλτρα Τα βαθυπερατά φίλτρα, φιλτράρουν τις υψηλές συχνότητες που βασικά είναι ανεπιθύμητα σήματα - θόρυβος. Εκτός όμως από τον θόρυβο "λειαίνουν" απότομες μεταβολές στην ένταση. Η διαδικασία αυτή συνεπάγεται την θόλωση της εικόνα (blurring) [18], [14]. Τρεις βασικές κατηγορίες βαθυπερατών φίλτρων διακρίνουμε: Φίλτρα μέσης τιμής (mean filter) Φίλτρα μορφής Gaussian (Gaussian filter) Σελίδα 17 από 104

18 Φίλτρα διάμεσης τιμής (median filter) Σημείωση: Τα φίλτρα διάμεσης τιμής δεν είναι γραμμικά Φίλτρα Μέσης Τιμής Η πιο απλή μορφή αυτών είναι τα ονομαζόμενα φίλτρα μέσης τιμής (mean filters, average filters). Μία μάσκα φίλτρου μέσης τιμής 9 σημείων είναι η εξής : h4/> (3.2) Θόλωση (Blurring) Στην Εικόνα 3 φαίνεται το αποτέλεσμα της συνέλιξης με το παράθυρο (2.3). Σαν βασικό οπτικό αποτέλεσμα όλων των βαθυπερατών φίλτρων είναι η θόλωση της αρχικής εικόνας λόγω λείανσης των μεταβολών εντάσεως. Στην εικόνα είναι εμφανής η θόλωση καθώς και η επίδραση του μήκους της μάσκας. Αρχική εικόνα Εφαρμογή φίλτρου Εφαρμογή φίλτρου 3x3 7x7 Εικόνα 3: Η αρχική εικόνα και η φιλτραρισμένη έξοδος Σελίδα 18 από 104

19 Ελάττωση Θορύβου Το φίλτρο μέσης τιμής εξασθενεί τον θόρυβο δηλαδή ελαττώνει την σταθερή απόκλιση του αρχικού θορύβου. Η ελάττωση αυτή είναι αντίστροφη του μήκους του παραθύρου (μάσκας). Αρχική εικόνα Εικόνα με θόρυβο Μασκα 3x3 μέσης τιμής Εικόνα 4: Εξασθένιση του θορύβου με 3x3 Μάσκα μέσης τιμής. Άλλα βαθυπερατά φίλτρα παρόμοια με αυτά της μέσης τιμής μπορούν να σχεδιασθούν λαμβάνοντας υπόψη ότι το κεντρικό σημείο πρέπει να έχει το μεγαλύτερο βάρος, ώστε να είναι συμμετρικά και θετικά και να έχουν άθροισμα συντελεστών =1. Ένα τέτοιο παράθυρο είναι και το επόμενο Σελίδα 19 από 104

20 1.8. Φίλτρα Gaussian μορφής Σχεδιασμός Τα Gaussian φίλτρα είναι γραμμικά φίλτρα με συντελεστές που επιλέγονται από το σχήμα της Gaussian συνάρτησης μηδενικής μέσης τιμής και σ τυπικής απόκλισης που (σε μία διάσταση) έχει την μορφή : 1 e e 3 (3.3) Για την επεξεργασία εικόνας και για εύρεση των συντελεστών του παραθύρου χρησιμοποιούμε την αντίστοιχη (διακριτή) σχέση: g u y e * (3 4) όπου i,j είναι οι συντεταγμένες των σημείων του παραθύρου. Εάν θεωρήσουμε σ = 2 και i,j μεταξύ -1 και 1 λαμβάνουμε την εξής Gaussian μάσκα: 1 <3355(39033 < 3 9 H 0 C Ένας απλός προσεγγιστικός τρόπος για να σχεδιάσουμε μία Gaussian μάσκα με ακέραιούς συντελεστές είναι η χρήση του τρίγωνου του Πασκάλ, ή ισοδύναμα οι συντελεστές του ιδιωνύμου: πχ για n=4 έχουμε το εξής μονοδιάστατο, Gaussian παράθυρο: [ ] Σελίδα 20 από 104

21 Αυτός ο πίνακας μπορεί να χρησιμοποιηθεί για Gaussian φιλτράρισμα αν σκεφθούμε ότι οι δυσδιάστατες Gaussian μάσκες είναι διαχωρίσιμες. Δηλαδή η συνέλιξη με ορθογώνια Gaussian μάσκα αντιστοιχεί με συνέλιξη με μονοδιάστατη οριζόντια και στη συνέχεια με την αντίστοιχη κατακόρυφη [17], [14]. Ιδιότητες Η Gaussian μάσκα είναι ιδιαίτερα χρήσιμη στην επεξεργασία σημάτων και εικόνας διότι έχει πολύ ελκυστικές ιδιότητες. Οι βασικότερες από αυτές είναι οι εξής: Είναι ανεξάρτητη της διεύθυνσης (3.5) Οπου ρ = i + j. Έχει ένα λοβό. Δηλαδή οι συντελεστές ελαττώνονται μονότονα με την απόσταση και είναι πάντα θετικοί. Αυτό έχει μεγάλη σημασία στη διαδικασία φιλτραρίσματος, διότι η έμφαση δίνεται στο κεντρικό pixel και επηρεάζει πολύ λίγο τις (γειτονικές) ακμές. Ο μετασχηματισμός Fourier της Gaussian συνάρτησης είναι επίσης Gaussίan και απεικονίζεται ως εξής: Η παραπάνω σχέση εκφράζει και την σχέση μεταξύ των δύο πεδίων, δηλαδή του χώρου και της συχνότητας. Η Gaussian συνάρτηση είναι διαχωρίσιμη. Δηλαδή η συνέλιξη μίας εικόνας με τετραγωνική Gaussian μάσκα ισοδυναμεί με δύο διαδοχικές συνελίξεις 1ας διάστασης (οριζόντια και κάθετη). Σελίδα 21 από 104

22 Διαδοχική εφαρμογή της Gaussian μάσκας ισοδυναμεί με Gaussian μάσκα μεγαλύτερης διακύμανσης (τεχνικές scale-space). Σε μία διάσταση έχουμε: [17], [19], [20], [14] Φίλτρα διάμεσης τιμής Τα φίλτρα αυτά είναι μη γραμμικά. Μερικά από τα βασικά χαρακτηριστικά τους είναι η διατήρηση των ακμών (στη πράξη γίνεται μικρή λείανση) και η πλήρης εξάλειψη του κρουστικού θορύβου (Impulsive, salt and pepper noise). Επομένως έχουν συμπεριφορά βαθυπερατού φίλτρου όσον αφορά την εξάλειψη του θορύβου και ταυτόχρονα συμπεριφορά υψιπερατού φίλτρου αφού διατηρούν τα χαρακτηριστικά των μεταβολών εντάσεως όπως είναι οι ακμές-περιγράμματα (edges). Συνήθως εφαρμόζονται σε μια εικόνα επαναληπτικά. Διαδοχική εφαρμογή καταλήγει σε μία εικόνα που δεν επιδέχεται επιπλέον μεταβολές. Αυτή είναι σήμα - ρίζα για το συγκεκριμένο φίλτρο διάμεσο τιμής. Η υλοποίηση τους γίνεται με καθορισμό ενός παραθύρου - μάσκας. Έχει μόνο μήκος και όχι συντελεστές. Το παράθυρο αυτό διατρέχει όλη την εικόνα όπως και στα γραμμικά φίλτρα (μέσης τιμής κλπ) και τα pixels που περικλείονται από το παράθυρο σε κάθε θέση της εικόνας διατάσσονται κατά σειρά μεγέθους και επιλέγεται ως έξοδος η μεσαία (median) τιμή. Στην Εικόνα 5 φαίνεται ο τρόπος εξαγωγής της μεσαίας τιμής για ένα παράθυρο 3Χ3. Σελίδα 22 από 104

23 = διάμεση τιμή Εικόνα 5: Εύρεσης διάμεσης τιμής σε πίνακα 3x3 Στην Εικόνα 5 η έξοδος του φίλτρου διάμεσης τιμής είναι=20. Και προκύπτει ως η 5η τιμή στη αύξουσα διάταξη των τιμών των pixel του παραθύρου. Εάν εφαρμόζαμε φίλτρο μέσης τιμής (3.3) η έξοδος θα ήταν 1/9( )= Στην Εικόνα 6 δίνεται ένα παράδειγμα εφαρμογής του φίλτρου. Αξίζει να παρατηρηθεί ότι ο κρουστικός θόρυβος είναι 10% και εξαλείφεται εντελώς. Αρχική εικόνα Εικόνα με κρουστικό θόρυβο 10% Έξοδος median filter Εικόνα 6: Έξοδος median φίλτρου με κρουστικό θόρυβο. Σελίδα 23 από 104

24 ι.ιο. Υψιπερατά Φίλτρα Τα υψιπερατά φίλτρα εξασθενούν τις χαμηλές και τονίζουν τις υπάρχουσες υψηλές συχνότητες σε μία εικόνα. Δηλαδή έχουν αντίθετο αποτέλεσμα από τα βαθυπερατά φίλτρα (μέσης τιμής, Gaussian κλπ). Επομένως τονίζουν τις μεταβολές της εικόνας (contrast), δίνουν έμφαση στις λεπτομέρειες και ταυτόχρονα ενισχύουν τον θόρυβο. Τα αντίστοιχα παράθυρα έχουν μία θετική τιμή στο κέντρο και στην πλειοψηφία αρνητικούς τους υπόλοιπους συντελεστές. Μερικές χαρακτηριστικές μάσκες για παράθυρα 3x3 είναι οι εξής: Ο Ο 1 Ο Ο -1 (φ im ) " 1 1 1" (δ) Εικόνα 7: Πίνακες με χαρακτηριστικές τιμές υψιπερατών μασκών Η τελευταία (δ) από τις μάσκες στην Εικόνα 7 είναι η πλέον συνηθισμένη και έχει το επί πλέον χαρακτηριστικό ότι δεν ενισχύει (ούτε εξασθενεί) σταθερές περιοχές αφού το άθροισμα των συντελεστών είναι = 0. Αξίζει να επισημάνουμε ότι σε μερικές περιπτώσεις εφαρμογής υψιπερατού φίλτρου μπορεί να προκύψουν και αρνητικές τιμές, οπότε χρειάζεται σχετική διόρθωση. Σελίδα 24 από 104

25 ι.ιι. Unsharp Masking Στη διαδικασία αυτή γίνεται ψηφιακή εξομοίωση επεξεργασίας που κάποτε γινόταν από τους φωτογράφους στα φιλμ. Αναλυτικότερα, από ένα κλάσμα α της αρχικής εικόνας ^ι,ι< 2 ) αφαιρείται το αποτέλεσμα εξόδου βαθυπερατού φίλτρου ή_(<ι,<2). Και η έξοδος g(kl,<2 ) είναι: (3.7) Αν θεωρήσουμε ότι η αρχική εικόνα f (^,<2) αναλύεται σε ένα τμήμα Υψιπερατό Μ <υ<2) και ένα άλλο βαθυπερατό ή_,^ι,^) τότε η εικόνα g(kl,<2) : εάν α=1 είναι ένα υψιπερατό φίλτρο, ενώ εάν είναι_ α>ι τότε ένα βαθυπερατό τμήμα της εικόνας προστίθεται στο αποτέλεσμα και αναδεικνύει χαμηλές συχνότητες μαζί με τις υψηλές που προέρχονται από το υψιπερατό φίλτρο Μ<ι,<2) Οι δύο διαδικασίες που περιλαμβάνονται στην (3.7) υλοποιούνται από την ακόλουθη μάσκα [14], [12], [21]: w _ _ όπου w = 9α Επεξεργασία έγχρωμης εικόνας Η επεξεργασία έγχρωμης εικόνας γίνεται είτε με βαθμωτές είτε με διανυσματικές διαδικασίες. Σελίδα 25 από 104

26 Στις βαθμωτές διαδικασίες επεξεργασίας εφαρμόζονται οι μέθοδοι που περιγράφηκαν προηγούμενα για γκρίζες (gray scale) εικόνες με δύο τρόπους: [α] ξεχωριστά σε κάθε κανάλι της εικόνας, [β] στη συνιστώσα φωτεινότητας (Υ) αφού διαχωριστεί η εικόνα σε συνιστώσες φωτεινότητας (Υ) - χρωματικότητας (I,Q). Ο πλέον γνωστός μετασχηματισμός είναι ο RGB--> YIQ. Μπορεί επίσης να χρησιμοποιηθεί και ο μετασχηματισμός RGB--> HIS. Το μειονέκτημα της διαδικασίας [α] είναι η παραγωγή τυχαίων χρωμάτων που δεν υπάρχουν στην αρχική εικόνα που είναι όμως αρκετά κοντά (στον RGΒ χώρο) σε χρώματα που υπάρχουν στην εικόνα. Τα μειονεκτήματα αυτά δεν εμφανίζονται στη [β] διαδικασία. Στις διανυσματικές διαδικασίες οι τρεις τιμές R,G,B θεωρούνται συνιστώσες ενός διανύσματος και οι μέθοδοι που χρησιμοποιούνται είναι βέβαια μέθοδοι διανυσματικής ανάλυσης. Μία κλασική τέτοια μέθοδος είναι η διαδικασία του διανυσματικού διάμεσου Ομοιομορφική επεξεργασία (Homomorpic Processing) Η διαδικασία αυτή χρησιμοποιείται στην περίπτωση που μία εικόνα με μεγάλη δυναμική περιοχή αποτυπώνεται σε ένα μέσο (film, χαρτί) με μικρή δυναμική περιοχή. Αποτέλεσμα είναι η ελάττωση της αντίθεσης, ιδιαίτερα στις σκοτεινές ή στις πολύ φωτεινές περιοχές. Η διαδικασία που περιγράφεται. στη συνέχεια ουσιαστικά ελαττώνει την αρχική δυναμική περιοχή και αυξάνει την τοπική αντίθεση πριν αρχίσει η επεξεργασία ή η αποτύπωση. Σύμφωνα με ένα απλοποιημένο μοντέλο μία εικόνα f(n^n2) σχηματίζεται σε δύο στάδια: παραγωγή υπό την φωτεινή πηγή και ανάκλαση από το αντικείμενο. Σελίδα 26 από 104

27 Επομένως μπορεί να θεωρήσουμε ότι η εικόνα ^Πι,η2) έχει δύο συνιστώσες που αντιστοιχούν στην φωτεινή πηγή ί(ηι,η2) και στην ανάκλαση -Γ(ηι,η2) : ί(ηι,η2) = ί(ηι,η2) Κ η ^ ) Από τις δύο αυτές συνιστώσες θεωρούμε ότι η μεγάλη δυναμική περιοχή οφείλεται βασικά στο ί(ηι,η2) και έχει μικρές εναλλαγές - αντίθεση. Αντίθετα ο όρος Γ(ηι,η2) δημιουργεί τις λεπτομέρειες της εικόνας. Επομένως επιδιώκουμε μείωση του ί(ηι,η2) και αύξηση του Κηυη2). Σαν πρώτο βήμα γίνεται διαχωρισμός των δύο συνιστωσών με λογαρίθμηση. Στη συνέχεια φιλτράρεται η έξοδος με βαθυπερατό και υψιπερατό φίλτρο. Επειδή η συνιστώσα ί(ηι,η2) έχει φασματικό περιεχόμενο στις χαμηλές συχνότητες θεωρούμε ότι θα αποτελεί το κύριο τμήμα της εξόδου του βαθυπερατού φίλτρου. Αντίστοιχα η Γ(ηι,η2) θα είναι η έξοδος του υψιπερατού φίλτρου. Μετά τον διαχωρισμό αυτό μπορούμε να ενισχύσουμε την μία συνιστώσα πολλαπλασιάζοντας με συντελεστή β>1ι [20], [14]. Σελίδα 27 από 104

28 1.3. Ανίχνευση Ακμών Εισαγωγή στην Ανίχνευση Ακμών Ως ακμή ορίζεται το όριο μεταξύ περιοχών με σχετικά διακριτές τιμές χρωματικών πυκνοτήτων. Υποθέτουμε ότι οι περιοχές είναι αρκετά ομοιογενείς ώστε η μεταβολή των χρωματικών πυκνοτήτων να είναι αρκετή για τον προσδιορισμό της μετάβασης μεταξύ περιοχών. Με τον όρο ακμές για μια ασπρόμαυρη εικόνα, αναφερόμαστε σε αλλαγές της φωτεινότητας μεταξύ γειτονικών περιοχών της. Αλλαγές της φωτεινότητας συνήθως αντιστοιχούν σε διαφοροποίηση ιδιοτήτων της απεικόνισης τρισδιάστατων αντικειμένων όπως αλλαγές της υφής, του βάθους, όρια αντικειμένων, διαφορετικό φωτισμό και αντανάκλαση. Έτσι με την ανίχνευση ακμών μπορούμε να αντλήσουμε πληροφορίες για φυσικές ιδιότητες για τα εικονιζόμενα πραγματικά αντικείμενα. Η βασική ιδέα πίσω από όλες τις μεθόδους ανίχνευσης ακμών είναι ο υπολογισμός ενός τελεστή τοπική παραγώγου. Η πρώτη παράγωγος σε οποιοδήποτε σημείο της εικόνας υπολογίζεται με τη βοήθεια του μέτρου του διανύσματος της κλίσης και η δεύτερη παράγωγος υπολογίζεται με χρήση του τελεστή Laplace. 'Ενα στοιχείο εικόνας ανήκει στο περίγραμμα μιας δομής αν η δισδιάστατη πρώτη ή δεύτερη παράγωγός του είναι μεγαλύτερη από κάποιο προκαθορισμένο κατώφλι. Μια ευρύτατα χρησιμοποιούμενη μέθοδος ανίχνευσης ακμών βασίζεται στη χρήση της κλίσης της εικόνας που υπολογίζεται με τη βοήθεια των μερικών παραγώγων Πρώτης τάξης πε κάθε θέση εικονοστοιχείου εικόνας. Όπως αναφέρθηκε προηγουμένως, οι παράγωγοι αυτές μπορούν να υλοποιηθούν ψηφιακά με διάφορους τρόπους. Ωστόσο, οι τελεστές Snbel παρέχουν το πλεονέκτημα της ταυτόχρονης διαφόρισης και εξομάλυνσης. Επειδή οι παράγωγοι ενισχύουν το θόρυβο, η εξομάλυνση που επιτυγχάνεται με χρήση των τελεστών Sobel είναι ιδιαίτερα σημαντική. Οι μέθοδοι αυτές βασίζονται στην παρατήρηση ότι Σελίδα 28 από 104

29 στην περιοχή των ορίων των αντικειμένων, το πλάτος της κλίσης των χρωματικών πυκνοτήτων έχει πολύ χαμηλότερη τιμή από ότι μακριά από τα όρια. Κατά συνέπεια. το σύνολο των εικονοστοιχείων ενός οργάνου στα οποία το πλάτος της κλίσης έχει σημαντική τιμή, αναπαριστούν το σύνολο των εικονοστοιχείων του ζητούμενου περιγράμματος του οργάνου. Δυστυχώς όμως, στην πράξη, το σύνολο των εικονοστοιχείων που προσδιορίζεται με αυτό τον τρόπο περιλαμβάνει και άλλα στοιχεία του δεν ανήκουν στη δομή ενώ μπορεί να αποτύχει ακόνη και στην ανίχνευση εικονοστοιγείων που ανήκουν στη δομή. Για την αντιμετώπιση αυτού του προβλήματος, έχει αναπτυχθεί μια σειρά τεχνικών βελτιστοποιήσης για την ελαχιστοποίηση των εικονοστοιχείων του πειργράμματος που λείπουν και των εικονοστοιχείων που δεν ανήκουν στο περίγραμμα. Μία τέτοια προσέγγιση έγγειται στην απόδοση μίας τιμής κόστους σε κάθε υποψήφιο εικονοστοιχείο του περιγράμματος και την ανίχνευση του συνόλου εκείνου των εικονοστοιχείων που ελαχιστοποιούν αυτό το κόστος για να αποτελέσουν έτσι το τελικό περίγραμμα. Η ανίχνευση ακμών μιας εικόνας παρουσιάζει αρκετές δυσκολίες. Οι ακμές μπορεί να χαρακτηρίζονται από προοδευτικές ή ακόμα και πολύ μικρές αλλαγές στην φωτεινότητα της εικόνας. Η παρουσία θορύβου σε μια εικόνα μπορεί να οδηγήσει στην ανίχνευση εσφαλμένων ακμών αλλοιώνοντας τα όρια των αντικειμένων. Ο διαφορετικός φωτισμός και η σκίαση μπορεί να ανιχνευτούν σαν ψευδοακμές ενώ δεν αντιστοιχούν σε φυσική ακμή. Ακόμα και αντικείμενα διαφορετικής κλίμακας πιθανό να βρίσκονται στην ίδια εικόνα. Σε συστήματα βιολογικής όρασης υπάρχουν νευροβιολογικές και ψυχοφυσικές ενδείξεις ότι στα πρώτα στάδια επεξεργασίας της οπτικής πληροφορίας γίνεται κάποιο είδος ανίχνευσης ακμών. Αυτή η επεξεργασία μοιάζει με ζωνοπερατά επιλεκτικά φίλτρα ή ισοδύναμα με συνέλιξη της οπτικής πληροφορίας με νευρικές αποκρίσεις. Αυτά τα φίλτρα έχουν μοντελοποιηθεί με κάποιες διαφορές από Gabor ή Gaussian φίλτρα [22], [23]. Η ανίχνευση ακμών αποτελεί την βάση για μετέπειτα επεξεργασία μια εικόνας ή ακολουθίας εικόνων με αλγορίθμους υπολογιστικής όρασης, όπως ανάλυση υφής, Σελίδα 29 από 104

30 τμηματοποίησης, ανίχνευσης κίνησης, στερέοψης και αναγνώρισης προτύπων. Γι' αυτό πρέπει να δίνει αξιόπιστα αποτελέσματα και να υλοποιείται αποδοτικά [24]. r p f f t Τύποι και χαρακτηριστικά ακμών Υπολογιστικά οι ακμές (αλλαγές στην συνάρτηση της έντασης) για συνεχείς συναρτήσεις μπορούν να υπολογιστούν με τον υπολογισμό της πρώτης παραγώγου και εντοπισμό των τοπικών μέγιστων. Μια δεύτερη μέθοδος με πλεονεκτήματα σε αξιοπιστία στηρίζεται στις διελεύσεις της δεύτερης παραγώγου από το μηδέν (zero crossing). Φυσικά επειδή έχουμε συναρτήσεις δύο μεταβλητών (x,y συντεταγμένη) θα υπολογίζουμε τις μερικές παραγώγους. Μια μεταβολή της συνάρτησης της εικόνας μπορεί να περιγραφεί με την βάθμωση (gradient) προς την κατεύθυνση της μέγιστης μεταβολής. Μια ακμή είναι ιδιότητα του κάθε εικονοστοιχείου ξεχωριστά και υπολογίζεται από την συμπεριφορά της συνάρτησης της εικόνας σε μια περιοχή γειτονικών εικονοστοιχείων. Πρόκειται για διανυσματική μεταβλητή με μέτρο και κατεύθυνση (βλέπε Εικόνα 8) [24], [25], [26] : Εικόνα 8: Κατεύθυνση και Μέτρο Ακμής Το μέτρο της ακμής μας δείχνει πόσο μεγάλη είναι μεταβολή της συνάρτησης φωτεινότητας (ισχυρή, αδύναμη ακμή) και η κατεύθυνση μας δίνει τον προσανατολισμό της ακμής στην εικόνα, και υπολογίζονται ως εξής. Για το μέτρο της ακμής, Σελίδα 30 από 104

31 Και για την κατεύθυνση της ακμής Τέλος υπάρχουν διάφορα είδη ακμών. Μερικά από αυτά εικονίζονται στην Εικόνα 9: Εικόνα 9: Είδη Ακμών σε grayscale εικόνες Η ακμή τύπου στέγης ανταποκρίνεται σε λωρίδες ίδιας έντασης στην εικόνα, και η ακμή τύπου γραμμής αναφέρεται σε μικρότερο εύρος. Η βηματική ακμή είναι η διαχωριστική επιφάνεια δύο αντικειμένων ή ενός αντικειμένου και του περιβάλλοντα χώρου. Η θορυβώδης ακμή είναι μια βηματική ακμή αλλά με τα εικονοστοιχεία να λαμβάνουν ανομοιόμορφες τιμές φωτεινότητας κατά τη μετάβαση μεταξύ των δύο επιπέδων. Σελίδα 31 από 104

32 Όταν δεν μας ενδιαφέρει η κατεύθυνση παρά μόνο το μέτρο των ακμών τότε με ανίχνευση των διελεύσεων της δεύτερης παραγώγου από το μηδέν επιτυγχάνουμε καλύτερα αποτελέσματα σε αξιοπιστία και υπολογιστικό κόστος. Ο υπολογισμός της δεύτερης παραγώγου επιτυγχάνεται χρησιμοποιώντας μικρά μητρώα συνέλιξης που λειτουργούν σαν ψηφιακοί πυρήνες λαπλασιανών φίλτρων. Υπολογίζουμε δηλαδή, ί.ίφίηιτι'α?! = ν 2 Ι(χ, >Τ) Οι διάφοροι ανιχνευτές ακμών συνήθως σχεδιάζονται και είναι αποτελεσματικοί για ένα είδος ακμών. Στην συνέχεια της ανάλυσής μας θα ασχοληθούμε με τις βηματικές ακμές που είναι οι πιο συνηθισμένες και προσφέρουν τις περισσότερες πληροφορίες για μια εικόνα [24], [25], [27] Τελεστές Ανίχνευσης & 1 η Παράγωγος Ιστορικά η πρώτη απόπειρα ανίχνευσης ακμών, που διήρκεσε περίπου 30 χρόνια (δεκαετία 50 έως δεκαετία 70), έγινε υπολογίζοντας διακριτές προσεγγίσεις των μερικών παραγώγων κατά κατεύθυνση για την υπό επεξεργασία εικόνα. Αυτό γίνεται με την συνέλιξη της εικόνας και ενός μικρού μητρώου που στόχο έχει να ενισχύσει την ένταση των ακμών. Το πιο παλιό από αυτά τα μητρώα προτάθηκε από τον Roberts και αναλύεται παρακάτω [24]: Τελεστές Roberts Τα μητρώα που προτείνει ο Roberts για τον υπολογισμό της πρώτης παραγώγου της συνάρτησης φωτεινότητας της εικόνας είναι τα εξής: Γ ια μια εικόνα που έχει: Σελίδα 32 από 104

33 «11 «12 «13 «21 «22 «23 «31 «32 «33 Τα μητρώο Κ1μσυνελισσόμενο με την εικόνα δίνει στην έξοδο ' ( - Ι ) α ι ι (0)ίΚ 12 «13 κλι «22 «11 «22 «13 ( 0 ) α 21 ( 1 ) α 22 «23 «32 «21 «33 «22 - «31 «32 «33-,,..! Αντίστοιχα για το μητρώο παίρνουμε: [ < Η ι ( ~ ί ) ητ2 «13 κ ίϊη, «21 «12 «22 «13 Ί ί 1 )«21 (0)«22 «23 «31 «22 «32 _ «23 - «31 «32 «33-.. Τώρα με χρήση κάποιας νόρμας μπορούμε να υπολογίσουμε το μέτρο των ακμών και με χρήση κατωφλίωσης να αποφανθούμε για τις ακμές της εικόνας. Οι πιο συνηθισμένες νόρμες που χρησιμοποιούνται είναι οι εξής: \ f J ~ \ f y \ (2) (ΐ/; ι /, ) (3) Με χρήσης της νόρμας 2 για παράδειγμα προκύπτει ο πίνακας του μέτρου των ακμών. Τα στοιχεία του υπολογίζονται ως εξής: Εά3 βί,; = Ιΐίΐ,β - /( / +!,; + 1) + \ΐ{ί,} + ΐ) + /( ί+!,;') Μετά τον υπολογισμό του μέτρου της ακμής με την κατάλληλη νόρμα, με την τεχνική της κατωφλίωσης ανιχνεύουμε τα τοπικά μέγιστα της φωτεινότητας της εικόνας και αποφασίζουμε τι θα δεχθούμε ως ακμές. Η κατωφλίωση θα οδηγήσει τα εικονοστοιχεία με τιμή έντασης μικρότερη από το κατώφλι στην δυαδική τιμή «0» Σελίδα 33 από 104

34 και αυτά με μεγαλύτερες τιμές στην δυαδική τιμή «1» (εικονοστοιχείο ακμής). Το αποτέλεσμα του αλγόριθμου φαίνεται στην Εικόνα 10Error! Reference source not found. που ακολουθεί για μια πολύ απλή εικόνα εισόδου, μια σκακιέρα: Εικόνα 10: Εφαρμογή του Τελεστή Roberts Η εικόνα (Ι) είναι η αρχική μας εικόνα προς επεξεργασία. Στις (ΙΙ) και (ΙΙΙ) βλέπουμε το αποτέλεσμα της συνέλιξης με τους δύο τελεστές Roberts. Στην ουσία αυτό που κάνουν οι δύο τελεστές είναι να ενισχύουν τις ακμές της εικόνας κατά τις κατευθύνσεις 45ο και 135ο. Στην εικόνα (!V) βλέπουμε το τελικό αποτέλεσμα του αλγόριθμου χρησιμοποιώντας μια από τις νόρμες που προαναφέρθηκαν για τον υπολογισμό του μέτρου της ακμής και τέλος εφαρμόζοντας το κατώφλι που επιλέγουμε για της επιλογή των περιοχών που συνιστούν ακμή [25], [26], [27], [28]. Σελίδα 34 από 104

35 Τελεστές Prewitt Οι τελεστές Prewitt προσεγγίζουν την μερική παράγωγο πρώτης τάξης κατά κατεύθυνση για την εικόνα. Υπάρχουν 8 διαφορετικές κατευθύνσεις για τις οποίες μπορούμε να υπολογίσουμε την μερική παράγωγο, δύο όμως αρκούν για να εντοπίσουμε τις ακμές στην περίπτωση που μας ενδιαφέρει μόνο το μέτρο της ακμής. Η διαδικασία εντοπισμού των ακμών παραμένει ίδια με αυτή για τον τελεστή Roberts και τα αποτελέσματα ακολουθούν στην!. ILU. Εικόνα 11: Εφαρμογή του Τελεστή Prewitt Τα ενδιάμεσα αποτελέσματα συνέλιξης της εικόνας με τους δύο τελεστές δίνουν διαφορετικά αποτελέσματα σε σχέση με αυτά που πήραμε από τους τελεστές Roberts όμως το τελικό αποτέλεσμα των ακμών είναι το ίδιο. Αυτό συμβαίνει γιατί τα μητρώα Roberts που χρησιμοποιήσαμε προηγούμενα ενισχύουν τις ακμές της εικόνας κατά διαφορετική κατεύθυνση απ' ότι γίνεται με τους τελεστές Prewitt που εδώ ενισχύουν τις ακμές στις κατευθύνσεις 0ο και 90ο. Σελίδα 35 από 104

36 Κάτι αντίστοιχο θα συνέβαινε αν χρησιμοποιούσαμε δυο άλλα μητρώα prewitt που προκύπτουν με απλή περιστροφή αυτών που δώσαμε παραπάνω. Προϋπόθεση είναι όμως τα δυο μητρώα να είναι κάθετα μεταξύ τους. Για παράδειγμα, τα δύο αυτά μητρώα ο Οδηγούν στις τροποποιημένες εικόνες όπως απεικονίζονται στην Εικόνα 12: Εικόνα 12: Εφαρμογή τροποποιημένου Τελεστή Prewitt Το τελικό αποτέλεσμα για τις ακμές είναι ακριβώς το ίδιο με τις δύο προηγούμενες μήτρες που χρησιμοποιήθηκαν, κάτι αναμενόμενο αφού το μέτρο των ακμών της εικόνας παραμένει ίδιο [26], [28]. Σελίδα 36 από 104

37 Τελεστές Sobel Και οι τελεστές Sobel, όπως και οι επόμενοι που θα αναφέρουμε, προσεγγίζουν την πρώτη μερική παράγωγο κατά κατεύθυνση. Και αυτά τα μητρώα συνέλιξης (convolution kernels) είναι τρία επί τρία, και η διαδικασία για την ανίχνευση των ακμών ίδια με αυτή που χρησιμοποιήθηκε παραπάνω. Και σε αυτή την περίπτωση υπάρχουν οκτώ διαφορετικές κατευθύνσεις που μπορούμε να ανιχνεύσουμε ακμές [25], [29]:. Δύο από αυτά τα μητρώα συνέλιξης είναι : Εικόνα 13: Εφαρμογή Τελεστή Sobel Και περιστρέφοντας τα στοιχεία των παραπάνω μητρώων παίρνουμε τα δυο εναλλακτικά Το αποτέλεσμα για το μέτρο των περιμέναμε. ακμών όμως και πάλι είναι το ίδιο όπως Σελίδα 37 από 104

38 Εικόνα 14: Εφαρμογή τροποποιημένου Τελεστή Sobel Τελεστές Kirch, Robinson Και οι τελεστές Kirch και Robinson προσεγγίζουν την πρώτη παράγωγο. Τα μητρώα τους επίσης υπολογίζουν κατευθυντικές παραγώγους και έχουν τις ίδιες ιδιότητες με αυτές που έχουμε προαναφέρει. Οι πυρήνες τους είναι οι ακόλουθοι Σελίδα 38 από 104

39 (I) source image (II) robinson operator Εικόνα 15: Εφαρμογή Τελεστή ΚίΓοή Και αντίστοιχα για τον robinson convolution kernel: Εικόνα 16: Εφαρμογή Τελεστή Robinson Σελίδα 39 από 104

40 1.17. Τελεστές προσέγγισης & 1η παράγωγος Εκτός του τελεστή robinson όλοι οι άλλοι έχουν διαστάσεις 3 επί 3. Παρά το μικρό τους μέγεθος εισάγουν αρκετά μεγάλη πολυπλοκότητα. Για τον υπολογισμό ενός pixel εξόδου χρειάζονται 6 πολλαπλασιασμοί και 5 προσθέσεις για κάθε μια από τις κατευθύνσεις που υπολογίζουμε την πρώτη παράγωγο. Μια επιπλέον πρόσθεση χρειάζεται για να πάρουμε το τελικό μέτρο της ακμής. Συνολικά 12 πολλαπλασιασμοί και 11 προσθέσεις, για ένα και μόνο εικονοστοιχείο. Φυσικά παραγοντοποιώντας μπορούμε να μειώσουμε τους πολλαπλασιασμούς σε 2 καθώς όλα τα μητρώα έχουν μόλις 2 μη μηδενικές τιμές για τα στοιχεία τους. Μια επίσης σημαντική παρατήρηση είναι ότι το άθροισμα των στοιχείων του κάθε μητρώου είναι πάντα μηδέν. Έτσι πάντα όταν βρίσκεται σε εσωτερική περιοχή ενός αντικειμένου (φωτεινότητα σταθερή) η έξοδος είναι πάντα μηδέν. Όταν βρεθούμε όμως σε ακμή η έξοδος παίρνει μεγάλες τιμές. Αυτή είναι η ενίσχυση της ακμής και με αυτό τον τρόπο λειτουργούν τα μητρώα συνέλιξης που προσεγγίζουν την πρώτη παράγωγο [26], [27] Τελεστές Ανίχνευσης & 2η Παράγωγος Όπως αναφέρθηκε και στην εισαγωγή του ίδιου κεφαλαίου, ένας εναλλακτικός τρόπος εύρεσης ακμών είναι με τον εντοπισμό των διελεύσεων της δεύτερης παραγώγου από το μηδέν (zero crossing). Οι εικόνες είναι συναρτήσεις δυο μεταβλητών κι έτσι η λαπλασιανή υπολογίζει το μέτρο (magnitude) της δεύτερης παραγώγου, και χωρίς να δίνει πληροφορία για την κατεύθυνση της ακμής. Αυτό όμως δεν μας δημιουργεί πρόβλημα αναφορικά με την εύρεση των ακμών, καθώς αυτό που μας ενδιαφέρει στις περισσότερες εφαρμογές είναι το μέτρο των ακμών και μόνο. Σελίδα 40 από 104

41 Λαπλασιανός τελεστής (Laplacian operator) Για μια συνεχή συνάρτηση η λαπλασιανή δίνεται από τον τύπο: Laplacian = V21(x,y ) Για μια διακριτή συνάρτηση όπως είναι μια εικόνα, μπορεί να προσεγγιστεί από μικρά μητρώα συνέλιξης. Τα πιο δημοφιλή είναι: Ι ι 1* Ό 1 θ' Η διαφορά των δύο μητρώων είναι η συσχετιστικότητα με τα γειτονικά εικονοστοιχεία. Το πρώτα λέμε ότι έχει συσχετιστικότητα 8, δηλαδή η έξοδος μετά την πράξη της συνέλιξης εξαρτάται από τα 8 γειτονικά εικονοστοιχεία του εξεταζόμενου. Ενώ για τον το δεύτερο μητρώο η συσχετιστικότητα είναι 4 καθώς εκτός του κεντρικού εικονοστοιχείου μόνο 4 ακόμη έχουν μη μηδενικές τιμές. Στην Εικόνα 17 που ακολουθεί βλέπουμε το αποτέλεσμα της συνέλιξης μεταξύ εικόνας και των μητρώων. Σελίδα 41 από 104

42 Εικόνα 17: Εφαρμογή Τελεστή Laplace Και με τους δύο πυρήνες οι ακμές ανιχνεύονται πανομοιότυπα [17] [30]. Σχόλια για τον Λαπλασιανό Τελεστή Με την χρήση αυτού του τελεστή μειώνουμε την πολυπλοκότητα υπολογισμού των ακμών σε σχέση με του τελεστές που προσεγγίζουν την πρώτη παράγωγο που προαναφέραμε. Με χρήση του τελεστή 8 συσχετιστικότητας, για κάθε εικονοστοιχείο ακμών χρειαζόμαστε 9 πολλαπλασιασμούς και 8 προσθέσεις, ενώ για το μητρώο με συσχετιστικότητα 4 ο αριθμός πέφτει σε 5 πολλαπλασιασμούς και 4 προσθέσεις. Φυσικά με παραγοντοποίηση και στις δύο περιπτώσεις η απαίτηση για πολλαπλασιαστές πέφτει στους 2. Σε μερικές περιπτώσεις όμως ο λαπλασιανός τελεστής υπολείπεται αξιοπιστίας των τελεστών πρώτης παραγώγου. Εδώ έχουμε ένα trade-off μεταξύ πολυπλοκότητας και αξιοπιστίας που πρέπει να το αξιολογήσουμε [17], [1]. Σελίδα 42 από 104

43 Συμπεριφορά τελεσ τώ ν σε θορυβώδεις εικόνες. Στα πραγματικά συστήματα είναι πολύ πιθανό να συναντήσουμε θόρυβο στις υπό επεξεργασία εικόνες. Παρακάτω εισάγουμε τεχνητά λευκό θόρυβο καθώς και salt & pepper στην αρχική εικόνα, για να δούμε την συμπεριφορά των τελεστών παρουσία θορύβου. Συμεριφορά Τελεστή Roberts σε θόρυβο Στην εικόνα που ακολουθεί βλέπουμε ότι ο τελεστής Roberts ανιχνεύει πάρα πολλά ψευδή εικονοστοιχεία που θεωρεί ότι συνιστούν ακμές λόγω του θορύβου salt & pepper, και με την παρουσία λευκού θορύβου αποτυγχάνει τελείως να ανιχνεύσει ακμές: Εικόνα 18: Συμπεριφορά Τελεστή Robinson παρουσία θορύβου Σελίδα 43 από 104

44 Συμπεριφορές Άλλων Τελεστών σε θορυβώδεις εικόνες Παρόμοια συμπεριφορά παρουσιάζουν αναφέραμε στην προηγούμενη ενότητα. και οι υπόλοιποι τελεστές που Εικόνα 19: Συμπεριφορά τελεστή Prewitt παρουσία Θορύβου Σελίδα 44 από 104

45 Εικόνα 20: Συμπεριφορά τελεστή Sobel παρουσία Θορύβου (I) salt 5. pepper (II) white nolise (IV) white noise edges Εικόνα 21: Συμπεριφορά τελεστή Kirch παρουσία Θορύβου Σελίδα 45 από 104

46 Εικόνα 22: Συμπεριφορά τελεστή Robinson παρουσία Θορύβου Εικόνα 23: Συμπεριφορά τελεστή Laplace παρουσία Θορύβου Τελεστές και Θόρυβος Όλοι οι τελεστές δεν έχουν την επιθυμητή συμπεριφορά παρουσία θορύβου και ειδικά για τον λευκό θόρυβο. Οι τελεστές Robinson, Kirch και Laplacian δεν πλησιάζουν καν τις πραγματικές ακμές, ακόμα και για μια τόσο απλή εικόνα. Ο λόγος που συμβαίνει αυτό είναι ότι οι μητρώα συνέλιξης που χρησιμοποιήσαμε, στην ουσία αποτελούν ψηφιακά υψιπερατά φίλτρα. Έτσι, ενισχύουν τον υψίσυχνο θόρυβο οδηγώντας την έξοδο μακριά από τα επιθυμητά αποτελέσματα. Μια λύση είναι να χρησιμοποιήσουμε μη γραμμικά φίλτρα πριν την Σελίδα 46 από 104

47 συνέλιξη της εικόνας με τα μητρώα ανίχνευσης ακμών. Για παράδειγμα ο salt & pepper θόρυβος μπορεί να εξαλειφθεί με ένα φίλτρο μέσης τιμής, όμως δεν θα έχει την ίδια επίδραση και για τον λευκό θόρυβο. Καταλαβαίνουμε πως δεν είναι μια λύση που θα δίνει πάντα αξιόπιστα αποτελέσματα. Μια πολύ αποτελεσματική λύση πρότεινε ο Canny, χρησιμοποιώντας φιλτράρισμα με ένα γκαουσιανό φίλτρο, και κατόπιν χρησιμοποιεί κανονικά τα μητρώα συνέλιξης που προαναφέραμε. Θα περιγράψουμε τον αλγόριθμό του στην ακόλουθη ενότητα Ανίχνευση Ακμών του Canny (Canny Edge Detector) Ο αλγόριθμος που πρότεινε ο Canny για ανίχνευση ακμών σε εικόνες θεωρείται ο βέλτιστος που μπορούμε να ακολουθήσουμε για ανίχνευση ακμών παρουσία λευκού θορύβου. Για την υλοποίησή του απαιτούνται συγκεκριμένα βήματα όπως αναφέρει στο [31]. Πρόθεση του Canny ήταν να βελτιώσει τους ήδη υπάρχοντες αλγόριθμους όταν ερευνούσε την περιοχή της ανίχνευσης ακμών. Για να το πετύχει αυτό όρισε κάποια κριτήρια για να αξιολογήσει την αποτελεσματικότητα των αλγόριθμων αυτών. Πρώτο και πιο προφανές κριτήριο ήταν η ελαχιστοποίηση του σφάλματος. Είναι πολύ σημαντικό να ανιχνεύονται όλες οι πραγματικές ακμές (πραγματική είναι μια ακμή που υφίσταται και στον τρισδιάστατο πραγματικό κόσμο), και ταυτόχρονα να μην ανιχνεύονται ακμές που δεν υπάρχουν, ή να έχουμε «διπλές» αποκρίσεις σε μια ακμή. Δεύτερο κριτήριο ήταν οι ακμές να είναι σωστά τοποθετημένες τοπικά. Η απόσταση μεταξύ της πραγματικής ακμής και της ακμής που εντοπίζει ο αλγόριθμος πρέπει να ελαχιστοποιηθεί. Επίσης η ακμή πρέπει να ορίζεται σαφώς και όχι να παίρνει εκτεταμένες διαστάσεις. Σελίδα 47 από 104

48 Βασιζόμενος σε αυτά τα κριτήρια ο Canny κατέληξε σε έναν αλγόριθμο όπου αρχικά στην εικόνα εφαρμόζεται ένα γκαουσιανό ψηφιακό φίλτρο (gaussian). Αυτό στοχεύει στην ελαχιστοποίηση της επίδρασης του θορύβου, και η διαδικασία ονομάζεται ομαλοποίηση της εικόνας (smoothing). Η ψηφιακή μορφή του φίλτρου είναι ένα τετραγωνικό μητρώο συνέλιξης. Όσο μεγαλώνει η διάσταση του φίλτρου και η τυπική απόκλιση (σ) της γκαουσιανής δυσδιάστατης κατανομής, τόσο περισσότερο εξομαλύνεται η εικόνα και μειώνεται η επίδραση του λευκού θορύβου. Οι τιμές του γκαουσιανού φίλτρου δίνονται από την σχέση [14], [32]: G ( x, y ) -(*z+yz) e -ί*z+ys) Σ ν * Σ γ ^ 2»* και έχει την μορφή του σχήματος στην Εικόνα 24: Εικόνα 24: Δισδιαστατο γκαουσιανό φίλτρο (Canny) Στην συνέχεια εφαρμόζεται τελεστής διαφόρισης στην εξομαλυμένη εικόνα. Μια βηματική ακμή χαρακτηρίζεται από την τοποθεσία της, την διεύθυνσή της και το Σελίδα 48 από 104

49 μέτρο της. Ανιχνεύεται με την κατευθυντική παράγωγο της εικόνας (directional operator). Αν υποθέσουμε ότι G είναι ένα δυσδιάστατο φίλτρο γκαουσιανής κατανομής και θέλουμε να υπολογίσουμε την συνέλιξη της εικόνας με την πρώτη παράγωγο κατά κατεύθυνση η. G j = ^ = S v G V) Η διεύθυνση η πρέπει να είναι κάθετη στην κατεύθυνση της ακμής, παρόλο που αυτή η διεύθυνση δεν είναι δυνατόν να είναι γνωστή από την αρχή, μπορούμε να την προσεγγίσουμε για την εικόνα f ως εξής: Οι ακμές τότε βρίσκονται από τα τοπικά μέγιστα της συνέλιξης μεταξύ της εικόνας f και του κατευθυνόμενου διαφορικού τελεστή Gn. Και συνδυάζοντας αυτή την σχέση με την (111) παίρνουμε Από αυτή την εξίσωση προκύπτουν τα τοπικά μέγιστα σε κάθετη διεύθυνση από αυτή των ακμών. Ο τελεστής αυτός αναφέρεται στην βιβλιογραφία σαν non-maxima suppression. Με βάση μια ελάχιστη τιμή του μέτρου των ακμών ( Gn * f ) (V) αποφασίζουμε την ύπαρξη ή όχι της ακμής. Για να αποφύγουμε την ανίχνευση ανύπαρκτων ακμών χρησιμοποιούμε κατωφλίωση με υστέρηση. Αν εντοπίσουμε κάποια περιοχή με ένταση ακμών πάνω από ένα ισχυρό κατώφλι τις λαμβάνουμε σαν ακμές. Σελίδα 49 από 104

50 Χαμηλότερες εντάσεις από αυτό το κατώφλι αγνοούνται εκτός και αν είναι γειτονικά συνδεδεμένες με περιοχές μεγάλης έντασης και ξεπερνούν ένα ελάχιστο κατώφλι. Τότε αυτές μάλλον είναι ακμές εξασθενημένες από τον θόρυβο και μετρούνται κανονικά. Αλγόριθμος ανίχνευσης ακμών του Canny Βήματα: Συνέλιξη της εικόνας με γκαουσιανή κατανομή τυπικής απόκλισης Προσέγγιση τοπικών κατευθυνόμενων ακμών με την εξίσωση (ΙΝ) Εύρεση των περιοχών που συνιστούν ακμές με την χρήση της (IV) Υπολογισμός της έντασης των ακμών με την εξίσωση (V) Κατωφλίωση των ακμών με υστέρηση [31], [32] Συμπεριφορά το υ ανιχνευτή ακμών του Canny Στον ανιχνευτή ακμών που πρότεινε ο Canny μας δίνεται η δυνατότητα, ανάλογα με την τιμή της τυπικής απόκλισης που διαλέγουμε για το γκαουσιανό φίλτρο, να ανιχνεύσουμε λεπτομερείς ή γενικότερες ακμές. Στην εικόνα που ακολουθεί μπορούμε να παρατηρήσουμε την επίδραση της αύξησης της τυπικής απόκλισης στην ανίχνευση ακμών μιας εικόνας για τιμές από 0.5 έως 3. Σελίδα 50 από 104

51 Εικόνα 25: Εφαρμογή Αλγόριθμού Ανίχνευσης Ακμών του Canny Η διαφορά στο αποτέλεσμα του αλγόριθμου για διάφορες τιμές τυπικής απόκλισης οφείλεται στο ότι μεγαλώνοντας η τιμή της τυπικής απόκλισης του φίλτρου τόσο περισσότερο ομαλοποιεί την εικόνα και ακμές με πλάτος μικρότερο (τύπου γραμμής και στέγης) από αυτό του πυρήνα της συνέλιξης ουσιαστικά εξαλείφονται από το φίλτρο. Συμπεριφορά παρουσία θορύβου Όπως αναφέρθηκε και σε προηγούμενη παράγραφο σημαντικότερο πλεονέκτημα του ανιχνευτή ακμών που προτάθηκε από τον Canny είναι η συμπεριφορά του παρουσίας λευκού θορύβου. Στην εικόνα που ακολουθεί εφαρμόζουμε το αλγόριθμο του Canny σε δυο εικόνες που έχουμε εισάγει salt & pepper και λευκό θόρυβο. Σελίδα 51 από 104

6-Aνίχνευση. Ακμών - Περιγράμματος

6-Aνίχνευση. Ακμών - Περιγράμματος 6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Υλοποίηση Αλγόριθμου Ανίχνευσης Ακμών σε προγραμματιζόμενη ψηφίδα Xilinx ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Υλοποίηση Αλγόριθμου Ανίχνευσης Ακμών σε προγραμματιζόμενη ψηφίδα Xilinx ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ Υλοποίηση Αλγόριθμου Ανίχνευσης Ακμών σε προγραμματιζόμενη ψηφίδα Xilinx ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση

Διαβάστε περισσότερα

Βελτίωση - Φιλτράρισμα εικόνας

Βελτίωση - Φιλτράρισμα εικόνας Βελτίωση - Φιλτράρισμα εικόνας /7 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται

Διαβάστε περισσότερα

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ

Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ ΚΑΒΑΛΑ 2009 Περίληψη Η παρακάτω πτυχιακή εργασία περιλαμβάνει

Διαβάστε περισσότερα

ΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων:

ΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων: KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών Τµήµα Επιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας

Διαβάστε περισσότερα

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==

Διαβάστε περισσότερα

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Oι οπτικές επιδράσεις, που μπορεί να προκαλέσει μια εικόνα στους χρήστες, αποτελούν ένα από τα σπουδαιότερα αποτελέσματα των λειτουργιών γραφικών με Η/Υ. Τον όρο της οπτικοποίησης

Διαβάστε περισσότερα

DIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης

DIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης DIP_01 Εισαγωγή στην ψηφιακή εικόνα ΤΕΙ Κρήτης Πληροφορίες Μαθήματος ιαλέξεις Πέμπτη 12:15 15:00 Αιθουσα Γ7 ιδάσκων:. Κοσμόπουλος Γραφείο: Κ23-0-15 (ισόγειο( κλειστού γυμναστηρίου) Ωρες γραφείου Τε 16:00

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στην κατάτμηση εικόνας Τεχνικές

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών.

ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. 1 ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011 2 Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. Ενδεδειγμένες και αξιόπιστες μέθοδοι αποτύπωσης Εμπειρικές Τοπογραφικές

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη ΙΙ. Ενότητα 2: Αντίληψη. Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Τεχνητή Νοημοσύνη ΙΙ. Ενότητα 2: Αντίληψη. Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τεχνητή Νοημοσύνη ΙΙ Ενότητα 2: Αντίληψη Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Αντίληψη 2 Περιεχόμενα ενότητας Αντίληψη 3 Αντίληψη

Διαβάστε περισσότερα

Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab

Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab ΑΣΚΗΣΗ 8 Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab 1. Περιγραφή του προτύπου DICOM Η ψηφιακή επεξεργασία ιατρικής εικόνας ξεκίνησε παράλληλα με την ανάπτυξη ενός προτύπου για τη μεταφορά

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design)

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) Ενότητα # 2: Στερεοί Μοντελοποιητές (Solid Modelers) Δρ Κ. Στεργίου

Διαβάστε περισσότερα

Νοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57

Νοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57 Ακμή ή περίγραμμα (edge) σε μια εικόνα Χ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 1 η : Εισαγωγή. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 1 η : Εισαγωγή. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 1 η : Εισαγωγή Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Βασικά στοιχεία της ψηφιακής επεξεργασίας και

Διαβάστε περισσότερα

Κεφάλαιο 8 Φίλτρα. 8.1 Γενικά. Κωνσταντίνος Γ. Περάκης

Κεφάλαιο 8 Φίλτρα. 8.1 Γενικά. Κωνσταντίνος Γ. Περάκης Κεφάλαιο 8 Φίλτρα Κωνσταντίνος Γ. Περάκης Σύνοψη Στην αρχή του κεφαλαίου εκτίθενται αναλυτικά η δομή των φίλτρων, ο τρόπος προσπέλασης της ψηφιακής εικόνας από τα φίλτρα, και η μαθηματική πράξη της συνέλιξης

Διαβάστε περισσότερα

DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης

DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης DIP_06 Συμπίεση εικόνας - JPEG ΤΕΙ Κρήτης Συμπίεση εικόνας Το μέγεθος μιας εικόνας είναι πολύ μεγάλο π.χ. Εικόνα μεγέθους Α4 δημιουργημένη από ένα σαρωτή με 300 pixels ανά ίντσα και με χρήση του RGB μοντέλου

Διαβάστε περισσότερα

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2 Ψηφιακά Φίλτρα Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 Αναλογικά και ψηφιακά φίλτρα Στην επεξεργασία σήματος, η λειτουργία ενός φίλτρου είναι να απομακρύνει τα ανεπιθύμητα μέρη ενός σήματος, όπως ένα

Διαβάστε περισσότερα

Μη γραμμικά Φίλτρα. Μεταπτυχιακό Πρόγραμμα. Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ 1/50

Μη γραμμικά Φίλτρα. Μεταπτυχιακό Πρόγραμμα. Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ 1/50 Μη γραμμικά Φίλτρα Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ /50 Φίλτρα διάμεσης τιμής (median,order statistic) Μη γραμμικά φίλτρα μέσης τιμής Μορφολογικά φίλτρα Ομομορφικά φίλτρα Πολυωνυμικά φίλτρα Σ. Φωτόπουλος

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 Α. Σχεδίαση Ψηφιακών Φίλτρων Β. Φίλτρα FIR Σχετικές εντολές του Matlab: fir, sinc, freqz, boxcar, triang, hanning, hamming, blackman, impz, zplane, kaiser. Α. ΣΧΕΔΙΑΣΗ

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: 401 Πράσινο Άλσος Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Ηλ. Ταχ.: : gmitsis@ucy.ac.cy Ιωάννης Τζιώρτζης

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) Εισαγωγή Μέχρι στιγμής έχουμε δει το Μετασχηματισμό Fourier Διακριτού

Διαβάστε περισσότερα

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 10 Κεφ. 7.0-7.2 Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες Σχεδιασμός Φίλτρου Καθορίζονται

Διαβάστε περισσότερα

Κατάτµηση εικόνας σε οµοιόµορφες περιοχές

Κατάτµηση εικόνας σε οµοιόµορφες περιοχές KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση εικόνας σε οµοιόµορφες περιοχές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη

Διαβάστε περισσότερα

Γραφικά με Η/Υ / Εισαγωγή

Γραφικά με Η/Υ / Εισαγωγή Γραφικά με Η/Υ Εισαγωγή Πληροφορίες μαθήματος (1/4) Υπεύθυνος μαθήματος: Μανιτσάρης Αθανάσιος, Καθηγητής ιδάσκοντες: Μανιτσάρης Αθανάσιος: email: manits@uom.gr Μαυρίδης Ιωάννης: email: mavridis@uom.gr

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου ΜΑΘΗΜΑ 6: ΣΧΕ ΙΑΣΗ ΦΙΛΤΡΩΝ 6. Εισαγωγή Τα φίλτρα είναι µια ειδική κατηγορία ΓΧΑ συστηµάτων τα οποία τροποποιούν συγκεκριµένες συχνότητες του σήµατος εισόδου σε σχέση µε κάποιες άλλες. Η σχεδίαση ψηφιακών

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης DIP_04 Σημειακή επεξεργασία ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός μιας τέτοιας τεχνικής μπορεί να είναι: η βελτιστοποίηση της οπτικής εμφάνισης μιας εικόνας όπως την αντιλαμβάνεται ο άνθρωπος, η τροποποίηση

Διαβάστε περισσότερα

Βίντεο. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 06-1

Βίντεο. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 06-1 Βίντεο Εισαγωγή Χαρακτηριστικά του βίντεο Απόσταση θέασης Μετάδοση τηλεοπτικού σήματος Συμβατικά τηλεοπτικά συστήματα Ψηφιακό βίντεο Εναλλακτικά μορφότυπα Τηλεόραση υψηλής ευκρίνειας Κινούμενες εικόνες

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΣΕΡΡΩΝ Τμήμα ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ

Διαβάστε περισσότερα

Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ. 11/4/2005 Βασιλεία Καραθαναση Λέκτορας Ε.Μ.Π

Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ. 11/4/2005 Βασιλεία Καραθαναση Λέκτορας Ε.Μ.Π Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Επεξεργασία και φιλτράρισμα Λέκτορας Ε.Μ.Π 1 Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Η εικόνα αποτελεί μία πηγή πληροφορίας. Τη συναντάμε ως : εικόνα ακίνητη (φωτογραφία) κινούμενη(τηλεόραση) Επίσης : ασπρόμαυρη

Διαβάστε περισσότερα

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1 Εικόνα Εισαγωγή Ψηφιακή αναπαράσταση Κωδικοποίηση των χρωμάτων Συσκευές εισόδου και εξόδου Βάθος χρώματος και ανάλυση Συμβολική αναπαράσταση Μετάδοση εικόνας Σύνθεση εικόνας Ανάλυση εικόνας Τεχνολογία

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 4 : Δειγματοληψία και κβάντιση (Sampling and Quantization) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

Ευαιθησιομετρία Sensitometry ΑΚΤΙΝΟΛΟΓΙΑ Ι-6

Ευαιθησιομετρία Sensitometry ΑΚΤΙΝΟΛΟΓΙΑ Ι-6 Ευαιθησιομετρία Sensitometry ΑΚΤΙΝΟΛΟΓΙΑ Ι-6 Ακτινοβολία Χ και φιλμ Οι ακτίνες- X προκαλούν στο ακτινολογικό φιλμ κατανομή διαφορετικών ΟΠ επειδή Η ομοιόμορφη δέσμη που πέφτει πάνω στο ΑΘ εξασθενεί σε

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Εργαστήριο Προγραμματισμού και τεχνολογίας Ευφυών συστημάτων (intelligence)

Εργαστήριο Προγραμματισμού και τεχνολογίας Ευφυών συστημάτων (intelligence) Εργαστήριο Προγραμματισμού και τεχνολογίας Ευφυών συστημάτων (intelligence) http://www.intelligence.tuc.gr Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Το εργαστήριο Ένα από τα 3 εργαστήρια του

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

20-Μαρ-2009 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR)

20-Μαρ-2009 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR) ΗΜΥ 429 14. Φίλτρα απόκρισης πεπερασμένου παλμού (FIR) 1 Γενικά βήματα για σχεδιασμό φίλτρων (1) Προσδιορισμός χαρακτηριστικών του φίλτρου: Χαρακτηριστικά σήματος (π.χ. μέγιστη συχνότητα) Χαρακτηριστικά

Διαβάστε περισσότερα

DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης

DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης DIP_04 Βελτιστοποίηση εικόνας ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός µιας τέτοιας τεχνικής µπορεί να είναι: η βελτιστοποίηση της οπτικής εµφάνισης µιας εικόνας όπως την αντιλαµβάνεται ο άνθρωπος, η τροποποίηση

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας Διδάσκων: Αναγνωστόπουλος Χρήστος Κώδικες μετρήσεων αντικειμένων σε εικόνα Χρωματικά μοντέλα: Munsell, HSB/HSV, CIE-LAB Κώδικες μετρήσεων αντικειμένων σε εικόνες Η βασική

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Δισδιάστατα σήματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ. Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών

ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ. Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ Διαγνωστικές και θεραπευτικές εφαρμογές ακτινοβολιών : Κεφάλαιο 11 ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης

DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης DIP_05 Τμηματοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τμηματοποίηση εικόνας είναι η διαδικασία με την οποία διαχωρίζεται μία εικόνα σε κατάλληλες περιοχές ή αντικείμενα. Για την τμηματοποίηση

Διαβάστε περισσότερα

Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας

Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας ΤΨΣ 150 Ψηφιακή Επεξεργασία Εικόνας Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Εκτίµηση Απόκρισης Περιεχόµενα Βιβλιογραφία

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους

Διαβάστε περισσότερα

Οπτική Μοντελοποίηση Ανθρώπινου Προσώπου με Εφαρμογές σε Αναγνώριση

Οπτική Μοντελοποίηση Ανθρώπινου Προσώπου με Εφαρμογές σε Αναγνώριση Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Σημάτων Ελέγχου και Ρομποτικής Οπτική Μοντελοποίηση Ανθρώπινου Προσώπου με Εφαρμογές σε Αναγνώριση Επιβλέπων: καθ. Πέτρος Μαραγκός Ορισμός

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

Συνέλιξη Κρουστική απόκριση

Συνέλιξη Κρουστική απόκριση Συνέλιξη Κρουστική απόκριση Το εργαστήριο αυτό ασχολείται με τα «διασημότερα συστήματα στην επεξεργασία σήματος. Αυτά δεν είναι παρά τα γραμμικά χρονικά αμετάβλητα (ΓΧΑ) συστήματα. Ένα τέτοιο σύστημα μπορεί

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Στην πράξη, για πολύ σημαντικές εφαρμογές, γίνονται μετρήσεις τιμών μιας ποσότητας σε μια κλινική, για μια σφυγμομέτρηση,

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Φεβρουαρίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο

Διαβάστε περισσότερα

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ)

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ) ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ ΔΙΔΑΣΚΩΝ : ΝΤΙΝΤΑΚΗΣ ΙΩΑΝΝΗΣ (MSC) Καθηγητής Εφαρμογών ΚΑΡΔΙΤΣΑ 2013 ΤΙ ΕΙΝΑΙ ΦΩΤΟΑΠΟΔΟΣΗ: ΕΝΝΟΟΥΜΕ ΤΗ ΔΙΑΔΙΚΑΣΙΑ ΚΑΘΟΡΙΣΜΟΥ ΟΛΩΝ ΕΚΕΙΝΩΝ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΩΝ ΩΣΤΕ ΝΑ ΕΧΟΥΜΕ

Διαβάστε περισσότερα

Η γνώση του αναγλύφου

Η γνώση του αναγλύφου ΨΗΦΙΑΚΑ ΜΟΝΤΕΛΑ Ε ΑΦΟΥΣ Η γνώση του αναγλύφου συµβάλλει στον προσδιορισµό Ισοϋψών καµπυλών Κλίσεων του εδάφους Προσανατολισµού Ορατότητας Μεταβολών Κατανοµής φωτισµού ιατοµών Χωµατισµών Υδροκρίτη Οπτικοποίησης

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σήματος Coursework

Ψηφιακή Επεξεργασία Σήματος Coursework ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ψηφιακή Επεξεργασία Σήματος Coursework Κιντσάκης Αθανάσιος 6667 Μόσχογλου Στυλιανός 6978 Τούμπας Κωνσταντίνος

Διαβάστε περισσότερα

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Επεξεργασία Εικόνας Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Μπαρμπούτης Παναγιώτης Α) ΦΙΛΤΡΑ ΟΞΥΝΣΗΣ Αρχικά θα μελετήσουμε την εικόνα από το MRI αρχείο της

Διαβάστε περισσότερα

Τεράστιες ανάγκες σε αποθηκευτικό χώρο

Τεράστιες ανάγκες σε αποθηκευτικό χώρο ΣΥΜΠΙΕΣΗ Τεράστιες ανάγκες σε αποθηκευτικό χώρο Παράδειγμα: CD-ROM έχει χωρητικότητα 650MB, χωρά 75 λεπτά ασυμπίεστου στερεοφωνικού ήχου, αλλά 30 sec ασυμπίεστου βίντεο. Μαγνητικοί δίσκοι χωρητικότητας

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη συμπίεση εικόνας Μη απωλεστικες

Διαβάστε περισσότερα

ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Συµπληρωµατικές Σηµειώσεις Προχωρηµένο Επίπεδο Επεξεργασίας Εικόνας Σύνθεση Οπτικού Μωσαϊκού ρ. Γ. Χ. Καρράς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τοµέας Μηχανολογικών

Διαβάστε περισσότερα

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 5: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μοντέλο φωτισμού Phong

Μοντέλο φωτισμού Phong ΚΕΦΑΛΑΙΟ 9. Στο προηγούμενο κεφάλαιο παρουσιάσθηκαν οι αλγόριθμοι απαλοιφής των πίσω επιφανειών και ακμών. Απαλοίφοντας λοιπόν τις πίσω επιφάνειες και ακμές ενός τρισδιάστατου αντικειμένου, μπορούμε να

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

Γραφικά & Οπτικοποίηση. Κεφάλαιο 1. Εισαγωγή. Γραφικά & Οπτικοπίηση: Αρχές & Αλγόριθμοι Κεφάλαιο 1

Γραφικά & Οπτικοποίηση. Κεφάλαιο 1. Εισαγωγή. Γραφικά & Οπτικοπίηση: Αρχές & Αλγόριθμοι Κεφάλαιο 1 Γραφικά & Οπτικοποίηση Κεφάλαιο 1 Εισαγωγή Ιστορικά Ιστορική ανασκόπηση : 2 Ιστορικά (2) Ρυθμοί ανάπτυξης CPU και GPU 3 Εφαρμογές Ειδικά εφέ για ταινίες & διαφημίσεις Επιστημονική εξερεύνηση μέσω οπτικοποίησης

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ.

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Ιουνίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

Συμπίεση Πολυμεσικών Δεδομένων

Συμπίεση Πολυμεσικών Δεδομένων Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας

Διαβάστε περισσότερα