στρώµατα του ρευστού έχουν κοινή επιφάνεια Α και βαθµίδα ταχύτητας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "στρώµατα του ρευστού έχουν κοινή επιφάνεια Α και βαθµίδα ταχύτητας"

Transcript

1 Γενικά Ιξώδες Κατά τν ροή ρευστού µέσα από αγωγό απαιτείται άσκσ διαφοράς πιέσεως µεταξύ των άκρων του αγωγού για να υπερνικθούν οι δυνάµεις συνοχής µεταξύ των µορίων του ρευστού. Το ιξώδες, το οποίο είναι µέτρο αυτής τς τριβής, είναι εντατική ιδιόττα του ρευστού οποία χαρακτρίζει τν ροή. Όσο πιο µεγάλο το ιξώδες του ρευστού, τόσο πιο αργή ροή για δεδοµέν διαφορά πιέσεως. Το ιξώδες ορίζεται από τ σχέσ (1). Η ταχύττα του ρευστού είναι µικρότερ καθώς πλσιάζει τα τοιχώµατα του δοχείου και µδενίζεται σε αυτά. Παρατρείται, δλαδή, βαθµίδα ταχύττας κάθετα στν διεύθυνσ z τς κινήσεως του ρευστού. Αν δυο διαδοχικά στρώµατα του ρευστού έχουν κοινή επιφάνεια Α και βαθµίδα ταχύττας ένα στρώµα στο άλλο δύναµ: v, ασκείται από το x v F= A (1) x όπου είναι το ιξώδες του ρευστού. Η σχέσ (1) ονοµάζεται νόµος του Poiseuille και γενικεύεται για όλες τις διευθύνσεις στο χώρο. Η µονάδα του ιξώδους είναι 1 Pa s = 1 N s m -2 = 1 kg m -1 s -1, αλλά χρσιµοποιείται και µονάδα poise µε σχέσ 1 poise = 1 g cm -1 s -1 = 0.1 Pa s. Αν ο αγωγός είναι κυλινδρικός σωλήνας µήκους L και ακτίνας R, µπορεί να υπολογιστεί παροχή του ρευστού (όγκος ρευστού ανά µονάδα χρόνου) για ορισµέν διαφορά πιέσεως στα άκρα του αγωγού p. Κατά τν στρωτή ροή δύναµ Poiseuille οποία ασκείται σε ακτίνα r επάνω σε κυλινδρική επιφάνεια A = 2πrL (2) εξισορροπείται από τν διαφορά των πιέσεων οποία ασκείται σε επιφάνεια πr 2. λαδή: v 2πrL = pπr r 2 Μετά από πράξεις καταλήγουµε στν εξίσωσ Poiseuille: V πr p V& = () t 8L Στο ιξωδόµετρο τύπου Ostwald, το οποίο χρσιµοποιούµε σε αυτή τν άσκσ, ως κινούσα δύναµ επενεργεί υδροστατική πίεσ τς στήλς του µετρούµενου υγρού, δλαδή p = ρ g h (5), όπου ρ πυκνόττα του υγρού, g επιτάχυνσ τς βαρύττας και h το ύψος τς στήλς του υγρού. Μετρείται ο χρόνος t για τν εκροή σταθερού όγκου του υγρού V. Από τ σχέσ () έχουµε: V πr ρgh = (6) t 8L απ όπου προκύπτει: (3) 5-1

2 ή απλούστερα: 8LV t= (7) πr gh ρ t= C (8) ρ όπου σταθερά C εξαρτάται µόνο από τν κατασκευή του ιξωδοµέτρου 8LV C= (9) πr gh Μετρώντας το χρόνο ροής ενός πρότυπου υγρού, δλαδή ενός του οποίου είναι γνωστά από τ βιβλιογραφία το ιξώδες και πυκνόττα σε ορισµέν θερµοκρασία προσδιορίζουµε τν σταθερά C. Κατόπιν αρκεί µέτρσ του χρόνου ροής για το µετρούµενο υγρό για να προσδιοριστεί το ιξώδες του σε θερµοκρασία για τν οποία γνωρίζουµε και τν πυκνόττά του. Από σειρά µετρήσεων του ιξώδους σε διάφορες θερµοκρασίες είναι δυνατό να βρούµε τν εξάρτσή του από τν θερµοκρασία. Η εξάρτσ αυτή ακολουθεί συνήθως τν µορφή τς εξισώσεως του Arrhenius: E vis = Ae RT (10) όπου R παγκόσµια σταθερά των ιδανικών αερίων και Α και Ε vis παράµετροι που εξαρτώνται από το µετρούµενο υγρό. Η Ε vis ονοµάζεται ενέργεια ενεργοποιήσεως ροής. Παραδείγµατα διαγραµµάτων Arrhenius µε αριθµτικές τιµές για τν ενέργεια ενεργοποιήσεως ροής δίνονται στο επόµενο σχήµα. ln() E visc (kj/mol) H 2 O (0.8) [16.38 (0.19)] EtOH (0.06) n-proh (0.06) i-proh (0.08) CH 3 COCH (0.03) x10-3 1/T (K -1 ) Σχήµα 1: ιάγραµµα Arrhenius για νερό, αιθανόλ, προπανόλ-1, προπανόλ-2 και ακετόν µε δεδοµένα τς βιβλιογραφίας [CRC Handbook of Chemistry and Physics, 83 rd Ed., 2002, p ]. Αναγράφονται οι τιµές τς ενέργειας ενεργοποιήσεως ροής όπως υπολογίζονται από το διάγραµµα µε τιµές αβεβαιόττας (τυπική απόκλισ) σε παρένθεσ. 5-2

3 Οδγίες εκτέλεσς Από κάθε οµάδα λαµβάνονται 3- µετρήσεις χρόνου ροής µε χρονόµετρο ακριβείας για νερό και για τν (ίδια για τις 3 οµάδες) µετρούµεν ουσία σε µια θερµοκρασία. Κάθε οµάδα εκτελεί τις µετρήσεις σε διαφορετική θερµοκρασία και οι 3 θερµοκρασίες πρέπει να απέχουν 5 10 C µεταξύ τους. Συµπλρώνεται πίνακας µε τις θερµοκρασίες (θ), τις αντίστροφες απόλυτες θερµοκρασίες (1/Τ), τους µέσους χρόνους ροής (t), τις αντίστοιχες υπολογισµένες (από εξίσωσ ή πίνακα) πυκνόττες τς µετρούµενς ουσίας (ρ) και του ιξώδους () τς ουσίας. Eπεξεργασία µετρήσεων Κατασκευάζονται 2 διαγράµµατα: α) = f(θ), β) ln = f(1/t). Από το πρώτο διάγραµµα πρέπει να είναι σαφής ποιοτικά εξάρτσ του ιξώδους από τν θερµοκρασία. Από το δεύτερο διάγραµµα προσδιορίζονται οι παράµετροι τς εξισώσεως Arrhenius σύµφωνα µε τν (11) που αποτελεί τν λογαριθµική έκφρασ τς (10). E vis ln= ln A+ (11) RT ίνονται τα αποτελέσµατα για τν ενέργεια ενεργοποιήσεως ροής (Ε vis ) και τον αντίστοιχο προεκθετικό συντελεστή τς εξισώσεως Arrhenius (A) και υπολογίζεται το ιξώδες τς ουσίας στους 20 C. Συγκρίνονται οι τιµές µε τν βιβλιογραφία. Συµπλρώνετε τα πεδία τς τελευταίας σελίδας. Για κάθε τύπο υπολογισµού δίνετε αναλυτικό παράδειγµα µε εµφανείς τις επιµέρους πράξεις, τις µονάδες των φυσικών µεγεθών και σωστή χρήσ των σµαντικών ψφίων. Πίνακας Ι. Πυκνόττα και ιξώδες του νερού σε διάφορες θερµοκρασίες θ ( C) ρ (g cm -3 ) (mpa s) Το ιδώδες () του νερού µπορεί να υπολογισθεί και από τον τύπο: ln 0 = a a θ ( C) ρ (g cm -3 ) (mpa s) a (12) T0 + θ ( T ) θ όπου 0 = 1 mpa s, T 0 = K, a 0 = , a 1 = K, a 2 = K 2 5-3

4 ίνεται εξάρτσ τς πυκνόττας (ρ) ή του όγκου (V) από τ θερµοκρασία (θ) για µερικές ενώσεις: νερό: ρ(θ) =[ θ θ θ 3 ] g cm -3 για 18 C < θ < 0 C µεθανόλ αιθανόλ προπανόλ-1 προπανόλ-2 βουτανόλ-1 βουτανόλ-2 ρ(15 C)= g cm -3, για -38 C<θ<70 C: V(θ)/V(0 C)= θ x10-6 θ x10-9 θ 3 ρ(20 C)= g cm -3, για 0 C<θ<30 C: V(θ)/V(0 C)= θ ρ(20 C)=0.80 g cm -3, για 0 C<θ<9 C: V(θ)/V(0 C)= θ+.9689x10-6 θ x10-9 θ 3 ρ(20 C)=0.785g cm -3, για 0 C<θ<83 C: V(θ)/V(0 C)= θ+.303x10e -7 θ x10-8 θ 3 ρ(20 C)= g cm -3, για 6 C<θ<108 C: V(θ)/V(0 C)= x10 - θ+2.863x10-6 θ x10-9 θ 3 ρ(20 C)=0.806 g cm -3, για 0 C<θ<20 C: V(θ)/V(0 C)=1+9.0x10 - θ για 20 C<θ<30 C: V(θ)/V(20 C)= x10-3 θ οξεικός µεθυλεστέρας ρ(25 C)=0.927 g cm -3, για 0 C<θ<58 C: V(θ)/V(0 C)= θ x10-7 θ x10-8 θ 3 οξεικός αιθυλεστέρας ρ(20 C)=0.901 g cm -3, για -36 C<θ<72 C: V(θ)/V(0 C)= θ x10-6 θ 2 κυκλοεξάνιο εξάνιο ρ(20 C)= g cm -3, για 25 C<θ<3 C: ρ(θ)=[ x10 - θ] g cm -3 για 0 C<θ<69 C: ρ(θ)=[ x10 - θ-1.08x10-6 θ x10-10 θ 3 ] g cm -3 επτάνιο ρ(20 C)=0.683 g cm -3, ρ(0 C)=0.67 g cm -3 τολουόλιο χλωροφόρµιο τετραχλωράνθρακας ρ(20.89 C)= g cm -3, για 0 C<θ<90 C: V(θ)/V(0 C)= θ+1.779x10-6 θ 2 ρ(25 C)=1.790 g cm -3, για 0 C<θ<63 C: V(θ)/V(0 C)= θ+.6673x10-6 θ x10-8 θ 3 για 0 C<θ<0 C: ρ(θ)=[ x10-3 θ-6.90x10-7 θ 2 ] g cm -3 5-

5 Θέµα Άσκσς: H 2 O θ ( C) (mpa s) t 1 (s) t 2 (s) t 3 (s) t µέσο (s) ρ (g/cm 3 ) C Χµική ένωσ: θ ( C) t 1 (s) t 2 (s) t 3 (s) t µέσο (s) ρ (g/cm 3 ) (mpa s) ln T (K) T -1 (K -1 ) (mpa s) θ ( C) ln /T (x10-3 K -1 ) κλίσ = E visc = Α = (20 C) =

Παραδείγµατα ροής ρευστών (Moody κλπ.)

Παραδείγµατα ροής ρευστών (Moody κλπ.) Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005

Διαβάστε περισσότερα

Μιχαήλ Π. Μιχαήλ Φυσικός

Μιχαήλ Π. Μιχαήλ Φυσικός 3. ΜΗΧΑΝΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ - Ρευστά σε κίνηση Είδη ροής - Ρευµατικές γραµµές και εξίσωση συνέχειας - Διατήρηση ενέργειας, εξίσωση Bernoulli - Πραγµατικά ρευστά Εσωτερική τριβή ιξώδες, Νόµος Poiseuille 3.

Διαβάστε περισσότερα

6 Εξαναγκασμένη ροή αέρα

6 Εξαναγκασμένη ροή αέρα 6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων

Διαβάστε περισσότερα

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους.

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους. Πρόβλημα Λάδι πυκνότητας 900 kg / και κινηματικού ιξώδους 0.000 / s ρέει διαμέσου ενός κεκλιμένου σωλήνα στην κατεύθυνση αυξανομένου υψομέτρου, όπως φαίνεται στο παρακάτω Σχήμα. Η πίεση και το υψόμετρο

Διαβάστε περισσότερα

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής 1.Σκοπός Άσκηση 9 Προσδιορισμός του συντελεστή εσωτερικής τριβής υγρών Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του συντελεστή εσωτερικής τριβής (ιξώδες) ενός υγρού. Βασικές θεωρητικές γνώσεις.1

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 : ΜΕΛΕΤΗ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΩΝ. Επιμέλεια άσκησης : Μισοπολινού-Τάταλα Δουκαίνη

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 : ΜΕΛΕΤΗ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΩΝ. Επιμέλεια άσκησης : Μισοπολινού-Τάταλα Δουκαίνη ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 : ΜΕΛΕΤΗ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Επιμέλεια άσκησης : Μισοπολινού-Τάταλα Δουκαίνη Σκοπός : Θα μετρηθεί ο συντελεστής ιξώδους του νερού με τη μέθοδο ιξωδομέτρου του Όστβαλντ (Ostwald)

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Bernoulli)

Παραδείγµατα ροής ρευστών (Bernoulli) Παραδείγµατα ροής ρευστών (Bernolli) 005-006 Παράδειγµα. Γάλα ρέει µέσα από σωλήνα διαµέτρου.5 c, µε παροχή 0 L.in - σε θερµοκρασία C. Η ροή είναι νµατώδς, τυρβώδς ή µεταβατική? µ.0 Pa s, ρ 09 kg -3..

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Ρευστά Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourses.wordpress.com Βασικές έννοιες Πρώτη φορά συναντήσαμε τη φυσική των ρευστών στη Β Γυμνασίου. Εκεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας 3. Τριβή στα ρευστά Ερωτήσεις Θεωρίας Θ3.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: α. Η εσωτερική τριβή σε ένα ρευστό ονομάζεται. β. Η λίπανση των τμημάτων μιας μηχανής οφείλεται στις δυνάμεις

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό

Διαβάστε περισσότερα

(1) v = k[a] a [B] b [C] c, (2) - RT

(1) v = k[a] a [B] b [C] c, (2) - RT Χηµική Κινητική Αντικείµενο της Χηµικής Κινητικής είναι η µελέτη της ταχύτητας µιας αντιδράσεως, ο καθορισµός των παραγόντων που την επηρεάζουν και η εύρεση ποσοτικής έκφρασης για τον κάθε παράγοντα, δηλ.

Διαβάστε περισσότερα

Λίγη Φυσική. για τη σοκολάτα Ζωή Ευθυμιάδου 1, Βικτωρία Κελαναστάση 2, Αγγελική Κοσμά 3 1 ο Πρότυπο Πειραματικό Λύκειο Θες/νίκης «Μανόλης Ανδρόνικος»

Λίγη Φυσική. για τη σοκολάτα Ζωή Ευθυμιάδου 1, Βικτωρία Κελαναστάση 2, Αγγελική Κοσμά 3 1 ο Πρότυπο Πειραματικό Λύκειο Θες/νίκης «Μανόλης Ανδρόνικος» Λίγη Φυσική. για τη σοκολάτα Ζωή Ευθυμιάδου 1, Βικτωρία Κελαναστάση 2, Αγγελική Κοσμά 3 1 ο Πρότυπο Πειραματικό Λύκειο Θες/νίκης «Μανόλης Ανδρόνικος» 1 zoeefth@hotmail.com, 2 viktwria444@hotmail.com, 3

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ Ρεολογία Επιστήµη που εξετάζει την ροή και την παραµόρφωση των υλικών κάτω από την άσκηση πίεσης. Η µεταφορά των υγρών στην βιοµηχανία τροφίµων συνδέεται άµεσα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου B Λυκείου Θεωρητικό Μέρος Θέμα ο 0 Μαρτίου 0 A. Ποια από τις παρακάτω προτάσεις για μια μπαταρία είναι σωστή; Να εξηγήσετε πλήρως την απάντησή σας. α) Η μπαταρία εξαντλείται πιο γρήγορα όταν τη συνδέσουμε

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 4: Μερικός γραμμομοριακός όγκος Αθανάσιος Τσεκούρας Τμήμα Χημείας . Θεωρία... 3. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 4. Τελικά αποτελέσματα... 7 Σελίδα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

Ασκήσεις στην Μηχανική των Ρευστών

Ασκήσεις στην Μηχανική των Ρευστών 1 η Οµάδα Ερωτήσεις Πολλαπλής Επιλογής 1. Ιξώδες ενός ρευστού ονομάζουμε α. τις δυνάμεις που αντιτίθενται στην κίνησή του όταν αυτό είναι ιδανικό. β. τις δυνάμεις που αντιτίθενται στην κίνησή του όταν

Διαβάστε περισσότερα

α. 0 β. mωr/2 γ. mωr δ. 2mωR (Μονάδες 5) γ) στην ισόθερμη εκτόνωση δ) στην ισόχωρη ψύξη (Μονάδες 5)

α. 0 β. mωr/2 γ. mωr δ. 2mωR (Μονάδες 5) γ) στην ισόθερμη εκτόνωση δ) στην ισόχωρη ψύξη (Μονάδες 5) ΜΑΘΗΜΑ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ Φυσική Β Λυκείου Προσανατολισμού Γκικόντης Λαμπρος ΗΜΕΡΟΜΗΝΙΑ 5 - - 07 ΔΙΑΡΚΕΙΑ ώρες ΘΕΜΑ ο Α. Στις παρακάτω ερωτήσεις -5 να επιλέξετε τη σωστή απάντηση. Α. Μικρό σώμα μάζας m εκτελεί

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IX Μέτρηση Ιξώδους Ρευστών

ΠΕΙΡΑΜΑ IX Μέτρηση Ιξώδους Ρευστών ΠΕΙΡΑΜΑ IX Μέτρηση Ιξώδους Ρευστών Σκοπός πειράµατος Στο πείραµα αυτό θα µετρήσουµε το ιξώδες (εσωτερική τριβή) διαφόρων ρευστών χρησιµοποιώντας τη µέθοδο της πτώσης σφαιριδίων. Θα εξετάσουµε λοιπόν πειραµατικά

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών ΦΥΣ102 1 Πυκνότητα Πυκνότητα είναι η μάζα ανά μονάδα όγκου,

Διαβάστε περισσότερα

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: Υλικά που δεν έχουν καθορισμένο σχήμα (ρέουν), αλλά παίρνουν εκείνο του δοχείου μέσα στο οποίο βρίσκονται. Υγρά (έχουν καθορισμένο όγκο) Αέρια (καταλαμβάνουν ολόκληρο τον όγκο που

Διαβάστε περισσότερα

Προσδιορισµός του συντελεστή εσωτερικής τριβής (ιξώδους) υγρών µε την µέθοδο της πτώσης µικρών σφαιρών

Προσδιορισµός του συντελεστή εσωτερικής τριβής (ιξώδους) υγρών µε την µέθοδο της πτώσης µικρών σφαιρών Μ8 Προσδιορισµός του συντελεστή εσωτερικής τριβής (ιξώδους) υγρών µε την µέθοδο της πτώσης µικρών σφαιρών 1. Εισαγωγή Η έννοια της τριβής υπεισέρχεται και στα ρευστά και είναι σηµαντική για πολλές διαφορετικές

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΚΙΝΗΜΑΤΙΚΟ ΙΞΩΔΕΣ ΔΙΑΦΑΝΩΝ ΚΑΙ ΑΔΙΑΦΑΝΩΝ ΥΓΡΩΝ (ASTM D 445, IP 71)

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΚΙΝΗΜΑΤΙΚΟ ΙΞΩΔΕΣ ΔΙΑΦΑΝΩΝ ΚΑΙ ΑΔΙΑΦΑΝΩΝ ΥΓΡΩΝ (ASTM D 445, IP 71) ΘΕΩΡΙΑ Ιξώδες ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΚΙΝΗΜΑΤΙΚΟ ΙΞΩΔΕΣ ΔΙΑΦΑΝΩΝ ΚΑΙ ΑΔΙΑΦΑΝΩΝ ΥΓΡΩΝ (ASTM D 445, IP 71) Το ιξώδες είναι η ιδιότητα που έχει ένα ρευστό να παρουσιάζει αντίσταση κατά τη ροή του, ως αποτέλεσμα

Διαβάστε περισσότερα

Απόδειξη της σχέσης 3.17 που αφορά στην ακτινωτή ροή µονοφασικού ρευστού σε οµογενές πορώδες µέσο

Απόδειξη της σχέσης 3.17 που αφορά στην ακτινωτή ροή µονοφασικού ρευστού σε οµογενές πορώδες µέσο ΜΗΧΑΝΙΚΗ ΠΕΤΡΕΛΑΙΩΝ ΚΕΦΑΛΑΙΟ 3 Ασκήσεις Απόδειξη της σχέσης 3.7 που αφορά στην ακτινωτή ροή µονοφασικού ρευστού σε οµογενές πορώδες µέσο Νόµος Darcy: A dp π rh dp Q Q µ dr µ dr I e Q µ dr Q µ dr dp dp

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url Ludwig Prandtl (1875 1953) 3. ΦΑΙΝΟΜΕΝΑ ΤΗΣ ΡΟΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Δυναμική Ροή Δυναμική Ροή (potential flow): η ροή ιδανικού ρευστού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του 301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5)

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5) Κίνηση των ιόντων υπό την επίδραση ηλεκτρικού πεδίου Αντώνης Καραντώνης 15 Μαρτίου 2011 1 Σκοπός της άσκησης Σκοπός της άσκησης είναι ο προσδιορισμός της οριακής ταχύτητας των ιόντων υπό την επίδραση ηλεκτρικού

Διαβάστε περισσότερα

5 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

5 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5.1 5 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΛΙΠΑΝΤΙΚΩΝ 5.1 Γενικά Το ιξώδες είναι χαρακτηριστική φυσική ιδιότητα ενός ρευστού. Σαν φυσικό μέγεθος, είναι μέτρο της εσωτερικής τριβής ενός ρευστού και,

Διαβάστε περισσότερα

ΡΕΥΣΤΑ. [απ. 2 ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 5 1

ΡΕΥΣΤΑ. [απ. 2 ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 5 1 1. Ένα ορθογώνιο παραλληλεπίπεδο βάρους 10 Ν ηρεμεί βυθισμένο σε νερό, όπως στο σχήμα. Αν το εμβαδόν της βάσης είναι 100 cm, να βρεθεί πόσο είναι το βυθισμένο ύψος, αν η πυκνότητα του νερού είναι 10 kg/m

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 Εξαναγκασμένη Συναγωγή Εσωτερική Ροή Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Ροή σε Σωλήνες (ie and tube flw) Σε αυτή την διάλεξη θα ασχοληθούμε με τους συντελεστές

Διαβάστε περισσότερα

Εισαγωγή Διάκριση των ρευστών

Εισαγωγή Διάκριση των ρευστών ΥΔΡΑΥΛΙΚΗ Εισαγωγή στην Υδραυλική Αντικείμενο Πυκνότητα και ειδικό βάρος σωμάτων Συστήματα μονάδων Ιξώδες ρευστού, επιφανειακή τάση, τριχοειδή φαινόμενα Υδροστατική πίεση Εισαγωγή Ρευστομηχανική = Μηχανικές

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

Δραστηριότητα A3 - Φυσική Ιξώδες και δείκτης διάθλασης ελαιόλαδου

Δραστηριότητα A3 - Φυσική Ιξώδες και δείκτης διάθλασης ελαιόλαδου Δραστηριότητα A3 - Φυσική Ιξώδες και δείκτης διάθλασης ελαιόλαδου Πολλές από τις φυσικές ιδιότητες του ελαιόλαδου ήταν γνωστές στους αρχαίους Έλληνες και τις χρησιμοποιούσαν για να ελέγχουν την ποιότητά

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµανση Ψύξη ΚλιµατισµόςΙΙ ίκτυα διανοµής αέρα (αερισµού ή κλιµατισµού) Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Μέρηδικτύουδιανοµήςαέρα Ένα δίκτυο διανοµής αέρα εγκατάστασης

Διαβάστε περισσότερα

Γραµµοµοριακός όγκος. Ο Νόµος του Avogadro

Γραµµοµοριακός όγκος. Ο Νόµος του Avogadro ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Γραµµοµοριακός όγκος Ο Νόµος του Avogadro Ελένη ανίλη, Χηµικός, Msc., Ph.D 2 Η ΧΡΗΣΙΜΟΤΗΤΑ ΤΟΥ MOL ΣΤΑ ΑΕΡΙΑ Όπως ήδη ξέρεις τα αέρια είναι πολύ ελαφρά. Είναι δύσκολο να τα ζυγίσουµε όµως

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 3-0- ΣΕΙΡΑ Α ΔΙΑΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστ

Διαβάστε περισσότερα

h 1 M 1 h 2 M 2 P = h (2) 10m = 1at = 1kg/cm 2 = 10t/m 2

h 1 M 1 h 2 M 2 P = h (2) 10m = 1at = 1kg/cm 2 = 10t/m 2 ΕΡΓΑΣΤΗΡΙΟ 4 Ο Ενότητα: Βασικές υδραυλικές έννοιες Πίεση απώλειες πιέσεως Ι. Υδροστατική πίεση Η υδροστατική πίεση, είναι η πίεση που ασκεί το νερό, σε κατάσταση ηρεμίας, στα τοιχώματα του δοχείου που

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3 Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου 2014 1/3 Πρόβλημα 2. Καταστατική Εξίσωση Van der Waals (11 ) Σε ένα πολύ γνωστό μοντέλο του ιδανικού αερίου, του οποίου η καταστατική εξίσωση περιγράφεται από το νόμο

Διαβάστε περισσότερα

ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ ΒΙΟΝΤΙΖΕΛ

ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ ΒΙΟΝΤΙΖΕΛ Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Σχολή Χημικών Μηχανικών Τομέας ΙΙ Μονάδα Μηχανικής Διεργασιών Υδρογονανθράκων και Βιοκαυσίμων ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 23-10-11 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς 9.Μεταφορά Θερμότητας, Αγωγή Αγωγή Αν σε συνεχές μέσο υπάρχει βάθμωση θερμοκρασίας τότε υπάρχει ροή θερμότητας χωρίς ορατή κίνηση της ύλης.

Διαβάστε περισσότερα

CH COOC H H O CH COOH C H OH

CH COOC H H O CH COOH C H OH ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΠΕΙΡΑΜΑ 2 ΧΗΜΙΚΗΣ ΚΙΝΗΤΙΚΗΣ (ΧΚ2) ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ Τίτλος Πειράματος: ΚΙΝΗΤΙΚΗ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ

ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@chem.auth.gr url:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Σχολικό Έτος 016-017 67 ΚΕΦΑΛΑΙΟ Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΕΙΣΑΓΩΓΗ ΣΤΑ ΑΕΡΙΑ 1. Σχετικές Ατομικές και Μοριακές Μάζες Σχετική Ατομική Μάζα (Α r) του ατόμου ενός στοιχείου, ονομάζεται ο αριθμός

Διαβάστε περισσότερα

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών.

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών. Γρηγόρης Δρακόπουλος Φυσικός Ελληνογαλλική Σχολή Καλαμαρί Επιλεγμένες ασκήσεις στη Μηχανική Ρευστών Έ ν ω σ η Ε λ λ ή νω ν Φυσικών Θεσσαλονίκη 06 Ισορροπία υγρού Α. Στο διπλανό σχήμα, φαίνεται δοχείο που

Διαβάστε περισσότερα

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2.1 Εισαγωγή Η θερμοκρασιακή διαφορά μεταξύ δυο σημείων μέσα σ' ένα σύστημα προκαλεί τη ροή θερμότητας και, όταν στο σύστημα αυτό περιλαμβάνεται ένα ή περισσότερα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ. (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου.

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ. (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου. ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου. Στα ιξωδόμετρα αυτά ένας μικρός σε διάμετρο κύλινδρος περιστρέφεται μέσα σε μια μεγάλη μάζα του ρευστού. Για

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ

ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ Οι ρίζες των δέντρων αποτελούνται απο τρία είδη ιστών ένα εκ των οποίων, (ο επιφανειακός ιστός) περιλαµβάνει ειδικά τροποποιηµένα

Διαβάστε περισσότερα

Πραγματικά ρευστά: Επιβεβαίωση του θεωρήματος του Torricelli

Πραγματικά ρευστά: Επιβεβαίωση του θεωρήματος του Torricelli Ιωάννης Α. Σιανούδης Πραγματικά ρευστά: Επιβεβαίωση του θεωρήματος του Torricelli Σκοπός Σκοπός της άσκησης αυτής είναι η επιβεβαίωση μέσα από μια σειρά μετρήσεων και υπολογισμών του θεωρήματος του Torricelli,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ Α Σε κάθε κουτάκι που βρίσκεται δεξιά από τον αριθµό, να σηµειώσετε το γράµµα Σ αν η αντίστοιχη πρόταση είναι σωστή ή το γράµµα Λ αν είναι λανθασµένη.

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

2 ΚΑΤΑΝΟΜΕΣ ΤΑΧΥΤΗΤΑΣ ΡΟΗΣ ΚΟΝΤΑ ΣΕ ΣΤΕΡΕΟ ΟΡΙΟ Γενικά Εξισώσεις τυρβώδους ροής-τυρβώδεις τάσεις Κατανοµή στρωτών και τυρβωδών

2 ΚΑΤΑΝΟΜΕΣ ΤΑΧΥΤΗΤΑΣ ΡΟΗΣ ΚΟΝΤΑ ΣΕ ΣΤΕΡΕΟ ΟΡΙΟ Γενικά Εξισώσεις τυρβώδους ροής-τυρβώδεις τάσεις Κατανοµή στρωτών και τυρβωδών 2 ΚΑΤΑΝΟΜΕΣ ΤΑΧΥΤΗΤΑΣ ΡΟΗΣ ΚΟΝΤΑ ΣΕ ΣΤΕΡΕΟ ΟΡΙΟ 2 2.1 Γενικά 2 2.2 Εξισώσεις τυρβώδους ροής-τυρβώδεις τάσεις 2 2.2.1 Κατανοµή στρωτών και τυρβωδών τάσεων 2 2.2.2 Περιοχές ροής 3 2.3 Κατανοµές ταχυτήτων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

ΙΑΜΟΡΙΑΚΕΣ ΥΝΑΜΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΠΡΟΣΘΕΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ

ΙΑΜΟΡΙΑΚΕΣ ΥΝΑΜΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΠΡΟΣΘΕΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΙΑΜΟΡΙΑΚΕΣ ΥΝΑΜΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΠΡΟΣΘΕΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ εσµός Υδρογόνου 1) Τι ονοµάζεται δεσµός υδρογόνου; εσµός ή γέφυρα υδρογόνου : είναι µια ειδική περίπτωση διαµοριακού δεσµού διπόλου-διπόλου,

Διαβάστε περισσότερα

Μέτρηση ιξώδους λιπαντικών

Μέτρηση ιξώδους λιπαντικών 5 η Εργαστηριακή Άσκηση Μέτρηση ιξώδους λιπαντικών Εργαστήριο Τριβολογίας Μάιος 2011 Αθανάσιος Μουρλάς Η λίπανση Ως λίπανση ορίζεται η παρεμβολή μεταξύ των δύο στοιχείων του τριβοσυστήματος τρίτου κατάλληλου

Διαβάστε περισσότερα

Αέρια. Ασκήσεις ιαγράµµατα στις µεταβολές αερίων Μεταβολές αερίων. 1.3.Νόµοι αερίων. 1

Αέρια. Ασκήσεις ιαγράµµατα στις µεταβολές αερίων Μεταβολές αερίων. 1.3.Νόµοι αερίων.  1 11 ιαγράµµατα στις µεταβολές αερίων Ασκήσεις Ένα αέριο βρίσκεται σε δοχείο σε κατάσταση Α και υπόκειται στις παρακάτω µεταβολές: i) Θερµαίνεται ισόχωρα µέχρι να διπλασιαστεί η απόλυτη θερµοκρασία του ερχόµενο

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΑEI ΠΕΙΡΑΙΑ (ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΟΠΙΣΘΕΛΚΟΥΣΑΣ Σκοπός της άσκησης Η μέτρηση

Διαβάστε περισσότερα

Η Παράξενη Συμπεριφορά κάποιων Μη Νευτώνειων Ρευστών

Η Παράξενη Συμπεριφορά κάποιων Μη Νευτώνειων Ρευστών Η Παράξενη Συμπεριφορά κάποιων Μη Νευτώνειων Ρευστών Θεοχαροπούλου Ηλιάνα 1, Μπακιρτζή Δέσποινα 2, Οικονόμου Ευαγγελία, Σαμαρά Κατερίνα 3, Τζάμου Βασιλική 4 1 ο Πρότυπο Πειραματικό Λύκειο Θεσ/νίκης «Μανόλης

Διαβάστε περισσότερα

Φυσική- Κεφάλαιο Μηχανικής των Ρευστών

Φυσική- Κεφάλαιο Μηχανικής των Ρευστών Φυσική- Κεφάλαιο Μηχανικής των Ρευστών 1 Νοεµβρίου 2013 Το κεφάλαιο αυτό είναι επηρεασµένο από τους [3], [4], [2], [1]. Στερεά Υγρά Αέρια Καταστάσεις Υλης Βασική δοµική µονάδα: το Μόριο. καθορίζει χηµικές

Διαβάστε περισσότερα

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται: Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

κάθετη δύναμη εμβαδόν επιφάνειας Σύμβολο μεγέθους Ορισμός μεγέθους Μονάδα στο S.I.

κάθετη δύναμη εμβαδόν επιφάνειας Σύμβολο μεγέθους Ορισμός μεγέθους Μονάδα στο S.I. 4.1 Η πίεση ονομάζουμε το μονόμετρο φυσικό μέγεθος που ορίζεται ως το πηλίκο του μέτρου της συνολικής δύναμης που ασκείται κάθετα σε μια επιφάνεια προς το εμβαδόν της επιφάνειας αυτής. πίεση = κάθετη δύναμη

Διαβάστε περισσότερα

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα).

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα). 1. Το κυβικό δοχείο του σχήματος ακμής h = 2 m είναι γεμάτο με υγρό πυκνότητας ρ = 1,1 10³ kg / m³. Το έμβολο που κλείνει το δοχείο έχει διατομή Α = 100 cm². Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά

Διαβάστε περισσότερα

Οδηγίες προς υποψηφίους ΚΑΛΗ ΕΠΙΤΥΧΙΑ!

Οδηγίες προς υποψηφίους ΚΑΛΗ ΕΠΙΤΥΧΙΑ! ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Β ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 26 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς αϖό τις ϖαρακάτω ερωτήσεις 1-4 και δίϖλα το γράµµα

Διαβάστε περισσότερα

EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ρεολογία πολυμερών

EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ρεολογία πολυμερών EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ρεολογία πολυμερών Διδάσκων : Κων/νος Τσιτσιλιάνης, Καθηγητής Ουρανία Κούλη, Ε.ΔΙ.Π. Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών 1 Σκοπός Η εξάσκηση των φοιτητών με την ρεολογία

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ Α.E.I. ΠΕΙΡΑΙΑ Τ.Τ. Σ.Τ.Ε.Φ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ ΣΤΗΝ ΕΠΙΦΑΝΕΙΑΣΥΜΜΕΤΡΙΚΗΣ ΑΕΡΟΤΟΜΗΣ &ΥΠΟΛΟΓΙΣΜΟΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ιξωδομετρία

EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ιξωδομετρία EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ιξωδομετρία Διδάσκων : Κων/νος Τσιτσιλιάνης, Καθηγητής Ουρανία Κούλη, Ε.ΔΙ.Π. Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών 1 Σκοπός Η εξοικείωση των φοιτητών με την πειραματική

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ

ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ Εγκατάσταση συστημάτων και διαχείριση εργαστηριακών αποβλήτων των εργαστηρίων του Ε.Ο.Φ. : ΚΑΕ 0899 (90520000-8). 1. Περιγραφή. Ο Εθνικός Οργανισμός Φαρμάκων (Ε.Ο.Φ.) στεγάζεται σε

Διαβάστε περισσότερα

3. ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOULLI Κίνηση σωµατιδίων ρευστού

3. ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOULLI Κίνηση σωµατιδίων ρευστού . ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOLLI Κίνηση σωµατιδίων ρευστού ύναµη, επιτάχυνση F mα εφαρµογή στην κίνηση σωµατιδίου εύτερος νόµος του NEWTON Επιτάχυνση F mα ΒΑΣΙΚΕΣ ΠΑΡΑ ΟΧΕΣ Ρευστά χωρίς ιξώδες Πίεση-Βαρύτητα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΡΟΗΓΟΥΜΕΝΩΝ ΕΤΩΝ ΜΕ ΑΠΑΝΤΗΣΕΙΣ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΡΟΗΓΟΥΜΕΝΩΝ ΕΤΩΝ ΜΕ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΡΟΗΓΟΥΜΕΝΩΝ ΕΤΩΝ ΜΕ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο 1. Η ένωση µε µοριακό τύπο C 6 H 6 ανήκει: 2. Η ένωση µε µοριακό τύπο C 11 H 20 ανήκει: 3. Η ένωση µε µοριακό τύπο C 10 H 20 ανήκει: 4. Η ένωση

Διαβάστε περισσότερα

ΠΑΡΑ ΟΤΕΟ ΥΠΟΕΡΓΟΥ 04. " Εκπαίδευση Υποστήριξη - Πιλοτική Λειτουργία "

ΠΑΡΑ ΟΤΕΟ ΥΠΟΕΡΓΟΥ 04.  Εκπαίδευση Υποστήριξη - Πιλοτική Λειτουργία ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΑΒΑΛΑΣ Επιχειρησιακό Πρόγραµµα "Ψηφιακή Σύγκλιση" Πράξη: "Εικονικά Μηχανολογικά Εργαστήρια", Κωδικός ΟΠΣ: 304282, ΣΑΕ 3458 «Η Πράξη συγχρηµατοδοτείται από το Ευρωπαϊκό

Διαβάστε περισσότερα

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Εξαναγκασµένη συναγωγή Κεφάλαιο 7 2 Ορισµός του προβλήµατος Μηχανισµός µετάδοσης θερµότητας ανάµεσα σε ένα στερεό και σε ένα ρευστό, το οποίο βρίσκεται σε κίνηση

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης ρευστού

Διαβάστε περισσότερα

4 Τριβές σε Σωλήνες και Εξαρτήματα

4 Τριβές σε Σωλήνες και Εξαρτήματα 4 Τριβές σε Σωλήνες και Εξαρτήματα 4.1 Εισαγωγή 4.1.1 ΜΟΡΙΑΚΗ ΘΕΩΡΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Ένα ρευστό δεν είναι παρά ένα σύνολο μορίων, τα οποία αφενός κινούνται (έχουν κινητική ενέργεια) και αφετέρου

Διαβάστε περισσότερα

Καβάλα, Οκτώβριος 2013

Καβάλα, Οκτώβριος 2013 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΑΝ.ΜΑΚΕ ΟΝΙΑΣ - ΘΡΑΚΗΣ Επιχειρησιακό Πρόγραµµα "Ψηφιακή Σύγκλιση" Πράξη: "Εικονικά Μηχανολογικά Εργαστήρια", Κωδικός ΟΠΣ: 304282 «Η Πράξη συγχρηµατοδοτείται από το Ευρωπαϊκό

Διαβάστε περισσότερα

l R= ρ Σε ηλεκτρικό αγωγό µήκους l και διατοµής A η αντίσταση δίνεται από την εξίσωση: (1)

l R= ρ Σε ηλεκτρικό αγωγό µήκους l και διατοµής A η αντίσταση δίνεται από την εξίσωση: (1) ΑΓΩΓΙΜΟΤΗΤΑ ΗΕΚΤΡΟΥΤΩΝ Θέµα ασκήσεως Μελέτη της µεταβολής της αγωγιµότητας ισχυρού και ασθενούς ηλεκτρολύτη µε την συγκέντρωση, προσδιορισµός της µοριακής αγωγιµότητας σε άπειρη αραίωση ισχυρού οξέος,

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

Υδροστατική Πίεση Άνωση. Ειδικά Θέµατα Φυσικής

Υδροστατική Πίεση Άνωση. Ειδικά Θέµατα Φυσικής Υδροστατική Πίεση Άνωση Ειδικά Θέµατα Φυσικής Πίεση Η πίεση ορίζεται ως το πηλίκο της δύναµης που ασκείται κάθετα σε µια επιφάνεια προς το εµβαδόν της επιφάνειας αυτής Η πίεση είναι µονόµετρο µέγεθος Η

Διαβάστε περισσότερα

Κεφάλαιο 1 - Μέτρηση πυκνότητας και ιξώδους ρευστών

Κεφάλαιο 1 - Μέτρηση πυκνότητας και ιξώδους ρευστών Κεφάλαιο 1 - Μέτρηση πυκνότητας και ιξώδους ρευστών Σύνοψη Στο Κεφάλαιο 1 περιλαμβάνονται εργαστηριακές ασκήσεις στις οποίες εφαρμόζονται κλασικές μέθοδοι προσδιισμού της πυκνότητας και του ιξώδους ισμένων

Διαβάστε περισσότερα

υναµική ισορροπία Περιορισµένη περιστροφή Αναστροφή δακτυλίου Αναστροφή διάταξης Ταυτοµέρεια

υναµική ισορροπία Περιορισµένη περιστροφή Αναστροφή δακτυλίου Αναστροφή διάταξης Ταυτοµέρεια υναµική ισορροπία Η φασµατοσκοπία MR µπορεί να µελετήσει φυσικές και χηµικές διεργασίες, οι οποίες µεταβάλλονται µε το χρόνο. Μπορεί, για παράδειγµα, να µελετήσει την αλληλοµετατροπή δύο ή περισσότερων

Διαβάστε περισσότερα

12o KΕΦΑΛΑΙΟ Υ ΡΟΣΤΑΤΙΚΗ ΠΙΕΣΗ ΥΓΡΑ ΣΕ ΙΣΟΡΡΟΠΙΑ

12o KΕΦΑΛΑΙΟ Υ ΡΟΣΤΑΤΙΚΗ ΠΙΕΣΗ ΥΓΡΑ ΣΕ ΙΣΟΡΡΟΠΙΑ KΕΦΑΛΑΙΟ 12o ΥΓΡΑ ΣΕ ΙΣΟΡΡΟΠΙΑ Υ ΡΟΣΤΑΤΙΚΗ ΠΙΕΣΗ Η πίεση στα διάφορα σηµεία του χώρου που καταλαµβάνει κάποιο υγρό ή στα τοιχώµατα του δοχείου µέσα στο οποίο περιέχεται οφείλεται είτε στο βάρος του υγρού

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 ΜΜΚ 31 Μεταφορά Θερμότητας Εξαναγκασμένη Συναγωγή και Σφαίρες ΜΜΚ 31 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 και Σφαίρες (flow across cylinders

Διαβάστε περισσότερα