Trigonometrijske funkcije

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Trigonometrijske funkcije"

Transcript

1 9 1. Trigoometrijske fukcije 1.1. Ako je α + β π,izračuaj 1 + tg α)1 + tg β) Izračuaj zbroj log a tg 1 + log a tg log a tg Izračuaj 40 0 si 0 bez uporabe tablica ili račuala Bez uporabe tablica ili račuala, izračuaj kut α ako je tg α Dokaži da je tg π 7 tg π 7 tg 3π Bez uporabe tablica i kalkulatora izračuaj tg Izračuaj kut α ako je ctg α + a + b + c, 1) ctg α + a, ) gdje su a, b, c prirodi brojevi koji isu djeljivi s 4, a a, bc su iracioali brojevi Izračuaj arc tg 1 + arc tg Dokaži da je za prirodi broj broj π iracioala Dokaži da je si 1 iracioala broj Ako je 0 < α < 90 mjera ekog kuta u stupjevima i racioala broj, α 45, oda dokaži da je broj tg α iracioala.

2 10 1. TRIGONOMETRIJSKE FUNKCIJE 1.1. Dokaži da je za svaki x R bar jeda od brojeva si x, six+1) veći od Odredi ekstreme vrijedosti fukcije y 5six + 1 x Odredi ekstreme fukcije f x) a x + b si x x + c si x Odredi ekstreme vrijedosti fukcije f x, y) x + y x + y) Odredi: a) ajmaju vrijedost fukcije f x) si 100 x x, b) ajveću vrijedost fukcije f x) si x x Dokaži da je 1.. Dokaži jedakost Dokaži da je 1.0. Dokaži da je broj racioala. si π 8 + 3π 8 + si 5π 8 + 7π 8. π 7 4π 7 5π π 7 π 7 + 3π 7 1. si π si 3π 1.1. Odredi vrijedost produkta 1.. Dokaži relaciju si 5π 7π 9π si si π korijea)

3 1. TRIGONOMETRIJSKE FUNKCIJE Dokaži da je za svaki prirodi > 1 si π si π si 1)π Ako je si α + si β a iα + β b, a + b 0, odredi: a) siα + β) iα + β), b) tg α + tg β, α, β 0, π Na - di vezu izme - du parametara a, b, c, d ako je: a x si y si z, b si x y si z, c si x si y z, d x y z Ako je si x si y z) a, si y si z x) b, si z si x z) c, izračuaj six + y + z) Odredi vrijedosti izraza tg x + ctg x,akoje 0< x < π, m R ). si x + x si x x m, 1.8. a) Odredi temelji period fukcije f x) x [x]) si 3πx. b) Je li fukcija f x) x x 1 periodiča? 1.9. Odredi temelji period fukcije x si x Ako je fukcija f x) x + a 1 x + a x a x periodiča, dokaži da su tada brojevi a 1, a,...,a racioali Neka su a 1,...,a reali brojevi, f x) a 1 + x)+ a + x) a + x) 1. Dokaži da iz f x 1 )fx )0 slijedi x 1 x mπ, m Z.

4 1 1. TRIGONOMETRIJSKE FUNKCIJE 1.3. Dokaži da si α si α si 3α 1 e vrijedi i za jeda α R Neka je si x 1 + si x + si x 3 0 x 1 + x + x 3 1. Dokaži da za eki x k {x 1, x, x 3 } vrijedi si x k 0ix k Dokaži da se za svaki prirodi broj tg 15 + ctg 15 može apisati u obliku sume kvadrata tri uzastopa priroda broja Dokažite da ako je α + α 0, tada za svaki eegativi cijeli broj postoje epari cijeli brojevi a i b za koje vrijedi α) 1 4 a + b 17) Dokaži da je za bilo koji N i α R, > 1, siα 0 ) poliom Px) x si α x si α + si 1)α, djeljiv poliomom Qx) x x α Neka su α, β, γ, δ [ π, π ] takvi da je si α + si β + si γ + si δ 1, i α + β + γ + δ Dokaži da je α, β, γ, δ [0, π 6 ] Neka su a, b, A, B dai reali brojevi. Promotrimo fukciju f x) 1 a x b si x A x B si x. Ako je f x) 0zasvakix, dokaži da je a +b ia +B 1. i Rješeja zadataka 1.1. Primjeom adicijskog teorema za fukciju tages, dobivamo 1 + tg α)1 + tg β) 1 +tg α + tg β)+tg α tg β 1 + tgα + β) tg α tg β tgα + β)+tg α tg β tg α tg β + tg α tg β jer iz α + β π 4 slijedi tgα + β) tg π 4 1.

5 1. TRIGONOMETRIJSKE FUNKCIJE 13 Aalogo 1.. Vrijedi tg 1 tg 89 tg 1 ctg 1 1. tg tg 88 tg ctg 1, Kako je još tg45 1, to je cijeli izraz jedak log a tg 1 + log a tg log a tg 89 itd. log a tg 1 tg tg 89 )log a Trasformirajmo brojik: ) 40 si30 si si 10 si 50 si si 0 Zato je tražei izraz jedak Račuajmo a ovaj ači: tg α 3 + 1) + 1) 3 ) + 1) 1) te je α si 15 si 15 si 60 si 45 si 45 si 30 si tg Dokažimo prvo lemu pri kojoj za svaki cijeli > 1 vrijedi si π si π 1... si π 1. 1) Nultočke polioma Px) x 1 x 1)x A)x A )... x A 1 ), gdje je A π + i si π. Imamo lim x 1 x 1 x 1 lim x 1 x x + 1) 1 A)1 A )... 1 A 1 ),

6 14 1. TRIGONOMETRIJSKE FUNKCIJE odakle slijedi 1 A 1 A... 1 A 1.Zak 1,,..., 1 vrijedi tj. 1 A k 1 si kπ k1 1 kπ ) + si kπ sikπ, 1 si kπ 1. k1 Sada je prema lemi 1) tg π 7 tg π 7 tg 3π π 7 π 7 3π 7, odakle je koristeći formule si x six x isiα siπ α) tg π 7 tg π 7 tg 3π si π si 7 4π si 7 π 7 si π si 6π 7 si 3π Iz tg3 36 )tg108 tg0 7 ) tg 7 tg 36 ), primjeom formula tg α tgα 1 tg itg3α tgα + α) α 3tgα tg 3 α 1 3tg α dobivamo 3tg36 tg tg 36 tg36 1 tg 60. Supstitucijom t tg 36 0, 1 slijedi: 3t t 3 1 3t t 1 t t 5 10t + 5t 0 t ) 10t t 5 5.

7 1. TRIGONOMETRIJSKE FUNKCIJE 15 Zbog t 0, 1 slijedi t 5 5, pa je tg tg α tg β Sada, primjeom formule tgα β) 1 + tg α tg β izlazi tg 9 tg45 36 ) tg45 tg tg 45 tg Koristeći 1) i ) u formuli ctgα ctg α 1 ctgα, dobivamo 4 a bc b + c a 5. 3) Budući su a, b, c N, to je razlika 4 a bc Z. Pretpostavimo da je ta razlika različita od ule, tj. 4 a bc + R, R 0. Kvadrirajem dobivamo 16a 4bc + R + 4R bc, odakle slijedi da je bc racioala broj za R 0,što je kotradikcija s uvjetom zadatka. Sada je R 0, pa iz 3) dobivamo 4 a } } bc bc 4a c4 b) 45 b). b + c a 5 b + c a 5 Kako je b 0 i ije djeljivo s 4 dobivamo c 4 4 b b 4 b. Na temelju posljedje jedakosti aslućujemo sljedeće mogućosti 1 4 b 1, tj. b 3; 4 b 1, tj. b 5; 3 4 b, tj. b ; 4 4 b, tj. b 6; Mogućosti 1 i otpadaju, jer a ije elemet N.Zab dobivamo c 6ia 3,teza b 6 dobivamo c ia 3. Dobivee vrijedosti za a, b i c zadovoljavaju sve uvjete zadatka, pa je ctg α i ctgα + 3 odakle je α arc tg + 3), te koačo α Neka je α arc tg 1, β arc tg 1 3. Tražimo γ α + β. Vrijedi tg α 1,tgβ 1 tg α + tg β 3,tgγ tgα + β) 1 tg α tg β 1paje γ π 4 + kπ, k Z.

8 16 1. TRIGONOMETRIJSKE FUNKCIJE 1.9. Dokazujemo idukcijom. Za je π 4, iracioala broj. Pretpostavimo da je za > broj π iracioala. Tada je zbog relacije π π +1 1 i broj π +1 tako der - iracioala Pretpostavimo da je si 1 m, racioala broj. Tada su 1 1 si 1 i 1 si 1 racioali brojevi. Aalogo se dobiva da su brojevi 4,8, 16, 3 racioali. Medutim, - tada bi vrijedilo: ) 3 + si 3 si si 1. S lijeve strae je iracioala, a s dese strae racioala broj. Proturječje! Pretpostavimo suproto, tj. da je tg α p, p, q N, Mp, q) 1, p q. 1) q Po pretpostavci je α racioala pa postoje m, N takvi da je α m 0 i Mm, ) 1. ) Koristeći Moivreove formule za -tu poteciju kompleksih brojeva α + i si α) α + i si α, α i si α) α i si α, te iz ) čijeicu da je si α 0 slijedi α + i si α) α i si α). Podijelivši ovu jedakost s α 0 dobivamo što zbog 1) dalje daje 1 + i tg α) 1 i tg α) q + ip) q ip) što zbog Biome formule možemo zapisati kao ) q ip) [q ip)+ip] q ip) + q ip) 1 ip ) + q ip)ip) 1 +ip). 1 3)

9 1. TRIGONOMETRIJSKE FUNKCIJE 17 Odavde je [ ) ip) 1 q ip) q ip) + 1 ) q ip) 3 ip +... ) + ip) ]. 1 Kompleksi broj a lijevoj strai ove jedakosti mora biti jedak kompleksom broju a desoj, pa moraju biti jedaki i kvadrati jihovih formula, odakle mora vrijediti p) p + q ) z 4) gdje je z kompleksi broj u uglatim zagradama. Očito je z priroda broj, pa zbog 4) zaključujemo da p) mora biti djeljiv s p + q ). S druge strae je Mp, q) 1,pajei Mp, p + q )1 što avodi a to da mora biti djeljiv s p + q. Pokažimo da je to emoguće! Najprije, p i q e mogu biti istovremeo pari jer je to u kotradikciji s 1), pa razlikujemo dva slučaja: i) Ako je p para i q epara ili obruto) oda je p + q epara, pa očito ije djeljiv s p + q ). ii) Ako su p i q epari oda su oi oblika p k ± 1 i q l ± 1; k, l N, pa je p + q k + l + k + l + 1). Odavde zaključujemo da p + q ) sadrži epara faktor. vidjeti da je o različit od 1. Zaista, kada bi bilo k + l + k + l + 1 1, k + l + k + l 0, tj. Treba slijedilo bi k l 0,atojeemoguće jer po pretpostavci je p q. Dobivea kotradikcija pretpostavci 1) dokazuje tvrdju zadatka Neka su A i B točkeajediičoj kružici za koje je si <)COB 1 3,si<)COA 1 3 sl.??). Obilježimo sa X i X točke te kružice takvedaje <)COX x i <)COX x mjereo u radijaima). Moramo pokazati da se barem jeda od točaka X ili X e alazi a luku ACB. U tu je svrhu dovoljo pokazati da je <)AOB maji od jedog radijaa.

10 1. TRIGONOMETRIJSKE FUNKCIJE Imamo si <)AOB si<)cob) si arcsi 1 ) 3 si arc si 1 ) arc si 1 ) ) 4 1 < y X 1_ 3-1_ 3 0 B X A x Sl S druge strae je si 1 > si π 4 > 0.7. Dobili smo si <)AOB < si 1 i stoga je <)AOB < 1,što je trebalo pokazati Napišimo fukciju u obliku y si x + 13 x).ka- ) + 1 ) 13 1, to postoji kut α takav da je α 5 13 i, pa se fukcija dade apisati u obliku ko je 5 13 si α 1 13 y 13 α si x + si α x) 13 six + α). Najveća vrijedost y max 13 poprima se za x π α +kπ, a ajmaja y mi 13 za x π α + kπ f x) a x + b si x x + c si x 1 + x a + b si x + c a + c a + c + a c x + b si x + A six + ϕ), 1 x

11 1. TRIGONOMETRIJSKE FUNKCIJE 19 ) gdje je A a c + b, ϕ arc tg a c pa f x) ima ekstreme b istovremeo kad i six + ϕ). Stoga je f x) mi a + c ) a c + b f x) max a + c ) + a c + b Očito je zbog α 1, f x, y) 3. Kako je za x y π, f x, y) π + π π 3, to je miimum fukcije 3. Trasformiramo li fukciju f x, y) x+ y x y x+ y + 1 x+ y x y ) + 1 x y + 1 Budući je za x y π x+ y 3 1 x y π ,a x y 0 1, to je f π3, 3 π ) 3, maksimum fukcije a) Usporedimo li srediu reda 50 s aritmetičkom srediom za brojeve si x i x, dobivamo: 50 si x) 50 + x) 50 si x + x 1. Stoga je f x) 1 49,kodčega f postiže tu doju graicu za sve x za koje je si x x, pr. x π 4. b) Očito je dovoljo gledati f samo a itervalu 0, π,akojemu su si x ixpozitivi. Nejedakost izmedu - geometrijske i kvadrate sredie za +1) -torku brojeva si x,...,si x, x) daje +1 si x x si x si x + x iz čega slijedi f x),pričemu se taj ekstrem postiže za + 1) +1 si x x, tj. tg x.

12 0 1. TRIGONOMETRIJSKE FUNKCIJE Vrijedi si π 8 + 3π 8 + 5π si 8 + 7π 8 si π 8 + π 5π ) + si 5π π π ) 8 si π 8 + 5π 8 + si 5π 8 + π Ozačimo A π 7 4π 7 5π Tadaje A si π 7 si π 7 π 7 4π 7 5π 7 Odavde je A si π 7 4π 7 5π 7 1 si 5π 7 4π 7 5π π si 4 7 4π si 4π 7 4π si 8π si π 7 π 7 π 7 + 3π 7 1 π 14 π 14 π 7 π 14 π 7 + π 14 3π 7 1 π 1 3π 14 + π 5π 3π π ) π π 7π ) π π Koristili smo formulu trasformacije produkta u sumu: x y 1 [x + y)+x y)]. ) + 7π 14

13 1. TRIGONOMETRIJSKE FUNKCIJE Budući je si 3π si π 6 1,si9π si π 1, izraz 1) postaje 1 si π 5π 7π si si. Koristeći formule si x six x isix π x), izraz 1) dalje možemo trasformirati 1 si π π 4π π π 1 4 si 4π 4π 1 8 π 16 1 si 8π π što je očigledo racioala broj. si π π π 1 16 π π 1.1. Ozačimo li zadai produkt s A, imamo redom: A π 1 16, si si 10 si 5 A si 5 5 ) 10 si 10 ) si 40 ) 8 A si 10 si 0... si 80 8 A si )... si ) 1 A 3 si 0 si 40 si 80 ) 3 si 0 si 40 si 80 ) 3 si 0 si 60 si 0 ) 3 34 si 0 si 3 0 ) 3 8 3si0 4si 3 0 ) 3 8 si , odakle sada jedostavo dobivamo A Za 1je π 4 te je relacija istiita. Pretpostavimo da tvrdja vrijedi za broj : π A,

14 1. TRIGONOMETRIJSKE FUNKCIJE u zapisu je korijea). Tada za broj + 1 imamo π π A + A 1 + A. 4 Dobili smo idetiča izraz, s + 1 korijea. Time je tvrdja dokazaa Jedadžba z 1 ima za rješeja sljedećih kompleksih brojeva: 1 kπ Ozačimo ih redom kπ + i si, z 0 0π + i si 0π 1, z 1 π + i si π,. z 1 1)π k 0, 1,..., 1. + i si 1)π. Ti su brojevi ul-točke polioma z 1. Stoga se taj poliom dade prikazati u obliku z 1 z z 0 )z z 1 ) z z 1 ) Dijeljejem s faktorom z 1) slijedi z 1)z z 1 ) z z 1 ) z 1 z 1 z 1 + z z + 1 z z 1 ) z z 1 ). Ova relacija vrijedi za svaki kompleksi broj z. Izaberimo z 1: 1 z 1 )1 z ) 1 z 1 ) i uzmimo apsolutu vrijedost obiju straa: 1 z 1 1 z 1 z 1.

15 1. TRIGONOMETRIJSKE FUNKCIJE 3 Umošci a desoj strai sreduju - se ovako: 1 z k 1 kπ kπ ) + i si kπ kπ 1 i si sikπ si kπ i kπ ) si kπ si kπ + kπ ) Odavde što dokazuje tvrdju. si kπ. si π siπ si 1)π. tj a) Imamo redom si α + si β α + β a b, tg α + β si α+β α β α+β α β a b 1 α + β) 1 + α + β), a b, odakle kvadrirajem slijedi α + β) b a b + a, tj. siα + β) 1 α + β) b) Kreimo od idetiteta ab a + b. tg α + tg β si α β + si β α α+ β si α β α β. Iz jedadžbi a si α + si β + siα si β i b α + β + α β zbrajajem dobivamo α β) a + b. Nadalje, α β α β)+1 a + b. Kako vrijedi b

16 4 1. TRIGONOMETRIJSKE FUNKCIJE α + β α+ β odakle dobivamo α β, to imamo α+ β si α + β 1 b a + b a a + b, α β 1 α β + α + β ) 1 a + b + Napoko se dobiva tg α + tg β b ) a + b + b a + b 4 a + b. 4a a + b + b. b a + b, 1.5. Redom je ac 1 4 si x si z si y i bd 1 4 si x si z y, odakle zbog y 1 si y slijedi si y ac bd + ac. 1) Dalje je bc 1 4 si y si z si x i ad 1 4 si y si z x odakle slijedi si x bc ad + bc. ) Nadalje je ab 1 4 si x si y si z i cd 1 4 si x si y z, tj. si z ab cd + ab. 3) Jedostavo dobivamo abc d si x si y si z odakle uz 1), ) i 3) koačo slijedi 1.6. Imamo redom: ab + cd) ac + bd) ad + bc) abcd. si x si y z) a [si x siy z)][si x + siy z)] a x + y z si x y + z si x + y z si x y + z x y + z si x + y z x y + z x + y z a a six y + z) six + y z) a. 1)

17 1. TRIGONOMETRIJSKE FUNKCIJE 5 Sličo dobivamo si x + y + z) six + y z) b ) si x + y + z) six y + z) c. 3) Pomožimo li 1), ) i 3), te izvadimo li drugi korije, dobivamo: si x + y + z) six y + z) six + y z) abc. 4) bc Podijelimo li 4) redom s 1), ) i 3) dobivamo si x+y+z) a, ac ab six y+z) b isix+y z), odakle slijedi x+y+z c bc ac ab arc si, x y + z arc si, x + y z arc si a b c.zbrajajem ovih jedadžbi dobivamo bc ac ab x + y + z arc si + arc si + arc si a b c. Upotrebom idetiteta siα + β + γ )si α β γ + α si β γ + α β si γ si α si β si γ, te uz siarc si x) x iarc si x) 1 x, dobivamo bc six + y + z) 1 ac ) 1 ab ) ac + 1 bc ) 1 ab a b c b a c ab + 1 bc ) 1 ac ) abc. c a b 1.7. Vrijedi tg x + ctg x si x x + x si x si x + x 1 si x x si x x. Ozačimo t si x x. Kvadrirajem i sredivajem - izraza si x + x si x x m dobivamo m t t 1 0. Odavde t 1 ± 1 + m m. Zbog t > 0 imamo t m m.zato,tgx + ctg x m 1 + m + 1. )

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Centralni granični teorem i zakoni velikih brojeva

Centralni granični teorem i zakoni velikih brojeva Poglavlje 8 Cetrali graiči teorem i zakoi velikih brojeva 8.1 Cetrali graiči teorem Lema 8.1 Za 1/ x 1 vrijedi Dokaz: Stavimo log1 + x x x. fx := log1 + x x, x [ 1/, 1]. Očito f0 = 0. Nadalje, po teoremu

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Nizovi. Definicija. Niz je funkcija. a: R. Oznake: (a n ) ili a n } Zadatak 2.1 Napišite prvih nekoliko članova nizova zadanih općim članom:

Nizovi. Definicija. Niz je funkcija. a: R. Oznake: (a n ) ili a n } Zadatak 2.1 Napišite prvih nekoliko članova nizova zadanih općim članom: Nizovi Defiicija Niz je fukcija Ozake: (a ) ili a } a: R Zadatak Napišite prvih ekoliko člaova izova zadaih općim člaom: a = a = ( ) (c) a = Zadatak Odredite opće člaove izova: 3 5 7 9 ; 3 7 5 3 ; (c)

Διαβάστε περισσότερα

MJERA I INTEGRAL završni ispit 4. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL završni ispit 4. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupo 8 bodova) MJERA I INTEGRAL završi ispit 4. srpja 216. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte p za ekspoete p [1, +. (b) (6 bodova) Dokažite da

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Teorem o prostim brojevima

Teorem o prostim brojevima Sveučilište u Rijeci - Odjel za matematiku Preddiplomski sveučiliši studij Matematika Zlatko Durmiš Teorem o prostim brojevima Završi rad Rijeka, 22. Sveučilište u Rijeci - Odjel za matematiku Preddiplomski

Διαβάστε περισσότερα

Niz i podniz. Definicija Svaku funkciju a : N S zovemo niz u S. Za n N pišemo a(n) = a n i nazivamo n-tim članom niza.

Niz i podniz. Definicija Svaku funkciju a : N S zovemo niz u S. Za n N pišemo a(n) = a n i nazivamo n-tim članom niza. 2. NIZOVI 1 / 78 Niz i podiz 2 / 78 Niz i podiz Defiicija Svaku fukciju a : N S zovemo iz u S. Za N pišemo a() = a i azivamo -tim člaom iza. Ozaka za iz je (a ) N ili (a ) ili samo (a ). Kodomea iza može

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Teoremi koje ćemo avesti u ovom poglavlju su osovi teoremi koji osiguravaju ispravost primjea diereijalog

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Integral i mjera. Braslav Rabar. 13. lipnja 2007.

Integral i mjera. Braslav Rabar. 13. lipnja 2007. Itegral i mjera Braslav Rabar 13. lipja 2007. Def 1 Neka je X skup tada familiju F podskupova od X zovemo σ-algebra a X ako je X uutra te je zatvorea a komplemetiraje i prebrojive uije tada urede par (X,

Διαβάστε περισσότερα

1 FUNKCIJE. Pretpostavljamo poznavanje prirodnih brojeva N = {1, 2, 3,... },

1 FUNKCIJE. Pretpostavljamo poznavanje prirodnih brojeva N = {1, 2, 3,... }, FUNKCIJE Pretpostavljamo pozavaje prirodih brojeva N = {,, 3,... }, cijelih brojeva Z = {...,,, 0,,,... }, racioalih brojeva Q = { m : m Z, N}. Nećemo defiirati reale brojeve R jer bi as to odvelo previše

Διαβάστε περισσότερα

2 Skupovi brojeva 17. m n N. (m + n) + k = m + (n + k) - asocijativnost sabiranja. m + n = n + m - komutativnost sabiranja

2 Skupovi brojeva 17. m n N. (m + n) + k = m + (n + k) - asocijativnost sabiranja. m + n = n + m - komutativnost sabiranja Skupovi brojeva 17 Skupovi brojeva.1 Skup prirodih brojeva Skup N prirodih brojeva čie brojevi 1,,3,... Nad skupom prirodih brojeva defiisae su operacije sabiraja (+) i možeja ( ), čiji je rezultat takože

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

1 Neprekidne funkcije na kompaktima

1 Neprekidne funkcije na kompaktima Neprekide fukcije a kompaktima.. Teorem. Neka je K kompakta podskup metričkog prostora X, a f : X Y eprekido preslikavaje u metrički prostor Y. Tada je slika f(k) kompakta skup u Y..2. Zadatak. Neka su

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija Društvo matematičara Srbije Pripreme za Juiorske olimpijade školske 007/008 -Dord e Baralić Tel:063/706-706-6 e-mail:djolebar@ptt.yu Matematička idukcija Primer 1. Dokazati da je > za sve N. Ituitivo zamo

Διαβάστε περισσότερα

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora).

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora). UVOD U TEORIJU BROJEVA Drugo predavanje - 10.10.2013. Prosti brojevi Denicija 1.4. Prirodan broj p > 1 zove se prost ako nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a > 1 nije

Διαβάστε περισσότερα

DIFERENCIJALNI RAČUN FUNKCIJA VIŠE VARIJABLI Skica rješenja 1. kolokvija (16. studenog 2015.)

DIFERENCIJALNI RAČUN FUNKCIJA VIŠE VARIJABLI Skica rješenja 1. kolokvija (16. studenog 2015.) DIFERENCIJALNI RAČUN FUNKCIJA VIŠE VARIJABLI Skica rješeja 1. kolokvija (16. studeog 2015.) Zadatak 1 (20 bodova) Neka je fukcija d: R 2 R 2 R daa formulom { x 1 + y d(x, y) = 1, ako je x y, 0, ako je

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

METODA SEČICE I REGULA FALSI

METODA SEČICE I REGULA FALSI METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 1

ELEMENTARNA MATEMATIKA 1 Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Mjera i integral. bilješke s vježbi ak. god /13. Aleksandar Milivojević

Mjera i integral. bilješke s vježbi ak. god /13. Aleksandar Milivojević Mjera i itegral vježbe bilješke s vježbi ak. god. 202./3. atipkali i uredili Aleksadar Milivojević Saji Ružić Sveučiliste u Zagrebu Prirodoslovo-matematički fakultet Matematički odsjek (skripta e može

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Izrada Domaće zadaće 4

Izrada Domaće zadaće 4 Uiverzitet u Sarajevu Elektrotehički fakultet Predmet: Ižejerska matematika I Daa: 76006 Izrada Domaće zadaće Zadatak : Izračuajte : si( ) (cos( )) L 0 a) primjeom L'Hospitalovog pravila; b) izravom upotrebom

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα