ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ"

Transcript

1 ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΘΕΩΡΙΣ ΣΚΗΣΗ Ο πρκάτω πίνκς περιέχει τ πρόσηµ των λγεβρικών τιµών της τχύτητς κι της επιτάχνσης. Σµπληρώστε τον πρκάτω πίνκ. >, > >, < <, > <, <, <, > >, Είδος κίνησης Φορά κίνησης Φορά δινύσµτος >, > >, < <, > <, <, <, > >, Είδος κίνησης Εθύγρµµη οµλά επιτχνόµενη Εθύγρµµη οµλά επιβρδνόµενη Εθύγρµµη οµλά επιβρδνόµενη Εθύγρµµη οµλά επιτχνόµενη Εθύγρµµη οµλά επιτχνόµενη Εθύγρµµη οµλά επιτχνόµενη Εθύγρµµη οµλή κίνηση Φορά κίνησης Θετική Θετική ρνητική ρνητική ρνητική Θετική Φορά δινύσµτος Θετική - -

2 ΣΚΗΣΗ Έν κινητό κινείτι πάνω σε µι εθεί γρµµή εκτελώντς τις κινήσεις το πρκάτω σχήµτος. 3 θ Ε Ε θ Ν βρείτε τ είδη των κινήσεων.. Ν σγκρίνετε τις µεττοπίσεις το τ χρονικά διστήµτ - κι - 3. Γ. Ν γίνον ποιοτικά τ διγράµµτ - κι x - (δίνετι x ).. πό - sec: το κινητό εκτελεί εθύγρµµη οµλά επιτχνόµενη κίνηση µε ρχική τχύτητ διότι η τχύτητ ξάνετι γρµµικά µε το χρόνο πό - sec: το κινητό εκτελεί εθύγρµµη οµλή κίνηση διότι η τχύτητά το πρµένει στθερή πό - 3 sec: το κινητό εκτελεί εθύγρµµη οµλά επιτχνόµενη κίνηση µε ρχική τχύτητ διότι η τχύτητ ξάνετι γρµµικά µε το χρόνο. πό 3-4 sec: το κινητό εκτελεί εθύγρµµη οµλά επιβρδνόµενη κίνηση διότι η τχύτητ µειώνετι γρµµικά µε το χρόνο. πό 4-5 sec: το κινητό εκτελεί εθύγρµµη οµλά επιτχνόµενη κίνηση προς τ ρνητικά µε την ρχική τχύτητ.. Γνωρίζοµε ότι η µεττόπιση σε διάγρµµ - ισούτι µε το εµβδόν πο περικλείετι µετξύ της γρµµικής πράστσης το άξον των χρόνων. Πρτηρούµε ότι Ε < Ε άρ x < x. Γ. < διότι γι τις κλίσεις των εθειών, 3 ισχύει θ < θ. Οµοίως κι γι τις 4,

3 Ο σχεδισµός το διγράµµτος x - έγινε µε βάση τ εµβδά γι κάθε κίνηση. x

4 ΣΚΗΣΗ 3 Ποιες πό τις πρκάτω προτάσεις πο φορούν το διπλνό σχήµ είνι σωστές; Ν ιτιολογήσετε την πάντησή σς. ) T µ m g β) Ν Fy - B γ) T µ (B - Fy) δ) F - T m Τ Ν F νλύοµε την F η οποί σχηµτίζει γωνί µε τον άξον x x (διεύθνση κίνησης) Τ Fy Ν F Fx Ισχύον ΣFx m κι ΣFy Fx - T m Ν + Fy B πό την κτλβίνοµε ότι η πάντηση (δ) είνι λάθος. πό την N B - Fy. Άρ κι η πάντηση (β) είνι λάθος. () Η τριβή δίνετι πό τον τύπο Τ µ Ν Τ µ( - Fy). Άρ η πάντηση (γ) είνι σωστή κι η () είνι λνθσµένη

5 ΣΚΗΣΗ 4 ύο σώµτ Σ, Σ εκτελούν οµλή κκλική κίνηση µε την ίδι σχνότητ f. ν γι τις κτίνες της τροχιάς τος ισχύει R > R ν σγκρίνετε:. Τις γρµµικές τος τχύτητες.. Τις γωνικές τος τχύτητες. Γ. Τις κεντροµόλος τος επιτχύνσεις.. Γνωρίζοµε ότι η γρµµική τχύτητ ενός σώµτος πο εκτελεί οµλή κκλική κίνηση δίνετι πό τον τύπο: πr T Άρ κι πrf T f ιιρώντς R R πrf R > Ισχύει > πr f κτάµέλη R. Ισχύει ω πf. Άρ ω ω. (πrf ) 4π R f Γ. Ισχύει κ κ κ κ 4π Rf R R R (Φέρµε την κ στην τελική µορφή διότι στη σχέση κ είνι διφορετικά κι τ δύο µεγέθη, R.) R κ 4π R f R R > κ R Άρ: κ > κ κ 4π R κ R f - 5 -

6 ΣΚΗΣΗ 5 ύο ίσες µάζες m m m κινούντι οριζόντι µε τχύτητες ίσων µέτρων κι ντίθετης φοράς. Οι µάζες σγκρούοντι κι µετά την κρούση κινούντι σν έν σώµ. Ν ντιστοιχίσετε κτάλληλ τ στοιχεί των πρκάτω στηλών κι ν ιτιολογήσετε τις επιλογές σς. Στήλη. η τιµή της ορµής το σστήµτος πριν την κρούση. Η τιµή της ορµής το σστήµτος µετά την κρούση 3. Η τιµή της µετβολής της ορµής το σστήµτος κτά την κρούση 4. Η τιµή της µετβολής της ορµής της µάζς m κτά την κρούση Στήλη. - m. µηδέν Γ. m. m. Η τιµή της ορµής το σστήµτος πριν την κρούση είνι: r r r (+) P P + P m m Άρ - () P P P πριν πριν πριν πριν m m m m. Γι την τιµή της ορµής το σστήµτος µετά την κρούση, εφόσον το σύστηµ µς είνι µονωµένο, ισχύει η ρχή διτήρησης της ορµής. r r r r P P P Ρ Εποµένως - () πριν µετά µετά µετά 3. Η τιµή της µετβολής της ορµής το σστήµτος είνι: r r r Ρ Ρ Ρ. Άρ 3 - () πριν µετά 4. Η τιµή της µετβολής της ορµής της µάζς m είνι: r r r Ρ Ρ Ρ ( m ) m m. () µετά () πριν Άρ 4 - ( ) - 6 -

7 ΣΚΗΣΗ 6 ύο σώµτ µε µάζες m, m µε m m κινούντι µε τχύτητες, όπο. ν στ δύο σώµτ σκείτι ίδι δύνµη, ντίθετη µε τη φορά κίνησης, ν σγκρίνετε τις ποστάσεις πο θ δινύσον µέχρι ν στµτήσον. F F πό το θεώρηµ της κινητικής ενέργεις έχοµε: ο σώµ: K τελ Κ ο σώµ: K τελ Κ ρχ ρχ W F W F K K F X F Χ K K F X F Χ m m + F X + F Χ ιιρώντς κτά µέλη τις, έχοµε: m F Χ m x m F Χ m x m m () 4 Χ Χ Χ 4 Χ Χ Χ Χ Χ Χ Χ - 7 -

8 ΣΚΗΣΗ 7 Τρεις όµοιες σφίρες εκτελούν τις κινήσεις το σχήµτος. Ποι θ φθάσει στο έδφος µε µεγλύτερη τχύτητ; (οι ντιστάσεις το έρ πρλείποντι) β γ h U Ρ Επειδή κι στις τρεις περιπτώσεις η µόνη δύνµη πο σκείτι στις σφίρες είνι το βάρος, η οποί είνι σντηρητική δύνµη, ισχύει η ρχή διτήρησης της µηχνικής ενέργεις. E Ε Κ U Κ + U MHX (ΡΧ) ΜΗΧ (ΤΕΛ) m ρχ + ρχ τελ τελ m m + mgh m + mgh + gh + + gh Άρ κι οι τρεις σφίρες θ φτάσον στο έδφος µε την ίδι τχύτητ

9 . ΠΡΟΛΗΜΤ ΣΚΗΣΗ Ο οδηγός ενός τοκινήτο πο κινείτι εθύγρµµ διέρχετι πό έν σηµείο κι επιβρδύνει µε στθερή επιβράδνση 5 m/s. ν η µεττόπιση το τοκινήτο πό τη στιγµή πο άρχισε η επιβρδνόµενη κίνηση µέχρι τη στιγµή πο η τχύτητά το µηδενίζετι είνι 4 m ν βρείτε:. Την τιµή της τχύτητς το τοκινήτο στο σηµείο.. Την τχύτητά το ότν διέρχετι πό έν σηµείο το οποίο πέχει m πό το. Γ. Την µεττόπισή το ότν η τχύτητά το στο σηµείο ποδιπλσιστεί.. Την τιµή της µεττόπισης το κινητού κτά το δεύτερο δετερόλεπτο της κίνησής το.. Το τοκίνητο εκτελεί εθύγρµµη οµλά επιβρδνόµενη κίνηση. Ισχύον οι σχέσεις: - κι Χ - Σε Χ 4 m. πό την έχοµε - ντικθιστώντς στη έχοµε: X X X X Οπότε: X X m / s Άρ η τχύτητ το τοκινήτο στο σηµείο είνι m/s.. Ισχύον - κι Χ - Λύνοµε την ως προς : ντικθιστούµε στην : X X X + X + X X ( ) x + 4 m / s - 9 -

10 Γ. Ισχύον - κι x - sec ντικθιστούµε στην X 5 X 4 X 3 m. Το δεύτερο δετερόλεπτο της κίνησης το τοκινήτο είνι πό sec έως sec. Οπότε: X X 5 X,5 7,5 m Άρ X X 5 X 4 X X X 37, 5 X,5 m 3 m - -

11 ΣΚΗΣΗ ύο τοκίνητ κι διέρχοντι ττόχρον τη χρονική στιγµή πό το ίδιο σηµείο Σ µε τχύτητες µέτρων m/s κι m/s, ίδις κτεύθνσης. Το τοκίνητο επιτχύνετι µε επιτάχνση 3 m/s, ενώ το επιβρδύνετι µε επιβράδνση m/s.. Ν βρείτε τη χρονική στιγµή πο τ δύο τοκίνητ σνντιούντι.. Ν πολογίσετε τη µεττόπιση κθενός τοκινήτο πό το σηµείο Σ µέχρι το σηµείο σνάντησής τος. Γ. Ν κάνετε σε κοινό διάγρµµ τις γρφικές πρστάσεις τχύτητς χρόνο κι µεττόπισης χρόνο.. Ν βρείτε την χρονική στιγµή κτά την οποί η τχύτητ το τοκινήτο είνι διπλάσι της. Το σώµ εκτελεί εθύγρµµη οµλά επιτχνόµενη κίνηση οπότε ισχύον: + κι X A +. Το σώµ εκτελεί εθύγρµµη οµλά επιβρδνόµενη κίνηση οπότε ισχύον: κι X +.. Έστω ότι σνντιούντι τη χρονική στιγµή στο σηµείο Μ. Μ Ισχύει: X A X + 3 B ( 5) (ρχική χρονική στιγµή) ή 5 sec. X A X B + X A ,5 5 X A 87,5 m B 4 Γ. Γι 5 sec έχοµε: x(m) 87,5 5 m / s m / s (m/s) (s) 5 (s) - -

12 ) ( ) ( 5 3 sec 6

13 ΣΚΗΣΗ 3 Στο πρκάτω διάγρµµ πριστάνετι η τχύτητ ενός σώµτος σε σνάρτηση µε το χρόνο. (m/s) 3 4. Ν βρείτε τ είδη των κινήσεων κι ν δικιολογήσετε την πάντησή σς.. Ν πολογίσετε την επιτάχνση το σώµτος γι sec. Γ. Ν γίνει το διάγρµµ επιτάχνσης - χρόνο.. Ν βρείτε τη σνολική µεττόπιση κι ν πρστήσετε γρφικά τη µεττόπιση το σώµτος σε κάθε χρονικό διάστηµ. Ε. Ν πολογίσετε τη µέση τχύτητ το σώµτος. Στ. Σε ποι θέση θ βρίσκετι το κινητό γι sec, εάν γι βρίσκετι στη θέση -5 m;. πό - sec, το σώµ εκτελεί εθύγρµµη οµλή κίνηση, επειδή η τχύτητά το πρµένει στθερή µε το χρόνο. πό - sec εκτελεί εθύγρµµη οµλά επιτχνόµενη κίνηση, επειδή η τχύτητά το ξάνετι µε στθερό ρθµό. πό - 4 sec, το σώµ εκτελεί εθύγρµµη οµλά επιβρδνόµενη κίνηση, επειδή η τχύτητά το µειώνετι µε στθερό ρθµό. (s). Η χρονική στιγµή sec νήκει στο χρονικό διάστηµ πό έως sec όπο στθ. τελ ρχ Εποµένως: τελ 3 ρχ m / s Γ. πό - sec έχοµε εθύγρµµη οµλή κίνηση. πό - sec, όπως κι στο () ερώτηµ m/s. πό - 4 sec έχοµε: Τ T 3 3 4,5 m / s. πό - sec: X E άση ύψος πό - sec: m Χ (m) 6 3 (m/s ),5 4 4 (s) (s)

14 B+ β 3+ X E m πό - 4 sec: 3 X3 E3 3 m X ολ X ολ X+ X + X X ολ 6 m Sολ 6 E. µ µ µ 5 m / s 4 ολ S (δεν λλάζει η φορά κίνησης) ολ X ολ Στ. X E+ E X + X x x x x x T T T T X+ x A A m 3 m - 4 -

15 ΣΚΗΣΗ 4 Έν σώµ µάζς m kg ρχικά ηρεµεί στη βάση λείο κεκλιµένο επιπέδο. Τη χρονική στιγµή σκείτι στο σώµ δύνµη F 4 N πράλληλη στο κεκλιµένο επίπεδο, οπότε το σώµ το σώµ ρχίζει ν νεβίνει σε τό. Η δύνµη πύει ν σκείτι τη χρονική στιγµή sec.. Ν πολογίσετε την τχύτητ το σώµτος τη χρονική στιγµή sec.. Ν βρείτε το σνολικό διάστηµ πο δινύει το σώµ µέχρι ν στµτήσει. Γ. Θ επιστρέψει το σώµ στη βάση το κεκλιµένο επιπέδο; ίνοντι ο σντελεστής τριβής ολίσθησης το κεκλιµένο επιπέδο µ,, ηµφ,6, σνφ,8 κι g m/s. Γ N Bx Τ By N F sec Bx φ By Τ φ A. πό ισχύει: Σ Fx m F T Bx m Fµ Ν m g ηµφ m 4, 8,6 4,6 6 3,4 m / s Σ Fy Νy N By N m g σνφ N, 8Ν 8Ν 3,4 64,8 m / s S S 3,4 S 64,8 m. πό Γ ισχύει: Σ Fx m Τx m µ Ν m g ηµφ m, 8,6,6 6 7,6 m / s ΣFy N By N 8 N S S m ολ 64,8 S S 76,5 7,6 S + S S 64,8+ 76, 5 S ολ 34,5 m ολ N Τ Γ. Bx m g ηµφx,6 Bx 6 N T µ ΝΤ, 8Τ,6 Ν Επειδή x > Τ θ επιστρέψει στη βάση το κεκλιµένο επιπέδο. φ Bx φ By - 5 -

16 ΣΚΗΣΗ 5 Σφίρ µάζς m,6 kg κινείτι σε λείο οριζόντιο δάπεδο µε τχύτητ µέτρο m/s κι σγκρούετι µε ρχικά κίνητη σφίρ µάζς m, kg. ν - κριβώς µετά την κρούση η σφίρ µάζς m κινείτι µε τχύτητ µέτρο m/s, ν βρείτε την τχύτητ της σφίρς µάζς m κριβώς µετά την κρούση. (+) πριν m m m m Στο σύστηµ των δύο σφιρών στην οριζόντι διεύθνση δεν σκούντι εξωτερικές δνάµεις (τ βάρη κι οι δνάµεις πό το δάπεδο είνι κτκόρφες κι έχον ΣF ), οπότε ισχύει η ρχή διτήρησης της ορµής. r r πριν µετά r r r P P m + m + m m m + m m ολ ολ m m 7,,4,6 µετά 8 m / s m m m,6,,6-6 -

17 ΣΚΗΣΗ 6 πό έν σηµείο Γ κεκλιµένο επιπέδο γωνίς φ 6º ρίχνετι έν σώµ µάζς m kg. Το σώµ ότν φτάνει στη βάση το κεκλιµένο επιπέδο, σγκρούετι πλστικά µε σώµ ίσης µάζς. Το σσσωµάτωµ σνεχίζει ν κινείτι στο οριζόντιο επίπεδο κι στµτά φού έχει δινύσει ίση πόστση µε τήν πο διένσε στο κεκλιµένο επίπεδο. Ν πολογίσετε:. Τον σντελεστή τριβής ολίσθησης σώµτος - επιπέδο.. Την µετβολή της ορµής το σώµτος m.. Μελετάµε ρχικά την κίνηση το σώµτος m στο κεκλιµένο επίπεδο. Άξονς y y: ΣFy N B y N Bσνφ N m gσνφ Έχοµε T Άξονς x x: µ Ν Τ µmgσνφ Ν ολ Τ φ N T x φ y Γ ΣFx m x T m mgηµφµν m g ηµφ µgσνφ Το σώµ m κάνει εθύγρµµη οµλά επιτχνόµενη κίνηση χωρίς ρχική τχύτητ. Η µεττόπιση S πο δινύει στο κεκλιµένο επίπεδο, κι η τχύτητά το είνι: S S πό τις, έχοµε: S 3 g(ηµφµσνφ) Κτά την πλστική κρούση το σώµτος m µε το σώµ m ισχύει η ρχή διτήρησης της ορµής. r r r m m Pολ στθ. Pρχ Pτελ m (m+ m )V V V m + m m V 4 Γι την κίνηση το σσσωµτώµτος πο είνι εθύγρµµη οµλά επιβρδνό- µενη ισχύον: Άξονς y y: ΣFy N (m+ m ) g ενώ T µ ΝΤ µ(m+ m ) g Άξονς x x: ΣFx (m + m ) Τ (m+ m ) (m + m )g (m + m ) µ µ g Η µεττόπιση πο δινύει το σσσωµάτωµ µέχρι ν στµτήσει είνι: - 7 -

18 S (4) V µg S 5 8µg πό 3, 5 έχω: 4 µ ηµφµσνφ 4µ + µσνφ ηµφµ(4+ σνφ) ηµφ ηµφ ηµ6 µ µ µ 4+ σνφ 4+ σν µ. Η µετβολή της ορµής το σώµτος µάζς m είνι: r r r Ρ Ρ Ρ Ρ Ρ Ρ m V τελ ρχ τελ 3 9 µ Ρ V 3 9 ΕΠΙΜΕΛΕΙ ΘΕΜΤΩΝ: ΣΙΠΕΡ ΘΗΝ - 8 -

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

Ε Α Ε Β. Από τα σχήματα βλέπουμε ότι ισχύει :

Ε Α Ε Β. Από τα σχήματα βλέπουμε ότι ισχύει : ΡΧΗ ΗΣ ΣΕΛΙΔΣ ΤΞΗ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΚΥΡΙΚΗ 4/5/4 - ΕΞΕΤΖΟΜΕΝΟ ΜΘΗΜ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΙ (9) ΘΕΜ. γ,.,. β, 4. β 5. ) Λ, β) Λ, γ) Σ, δ) Λ, ε) Σ ΘΕΜ. i) Σωστ πάντηση είνι η γ. Γι τις τχύτητες

Διαβάστε περισσότερα

1ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Γενικού Λυκείου

1ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Γενικού Λυκείου ο Επνληπτικό Διγώνισμ Φυσικής Α τάξης Γενικού Λυκείου Θέμ Α: (Γι τις ερωτήσεις Α. έως κι Α.4 ν γράψετε στο τετράδιό σς τον ριθμό της πρότσης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πρότση.) Α. Στην ευθύγρμμη

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 8//6 ΘΕΜΑ Οδηγί: Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθμό της ερώτησης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

Α) Να επιλέξετε την σωστή απάντηση. Αν η επίδραση του αέρα είναι αμελητέα τότε το βάρος Β του σώματος θα έχει μέτρο: F α) F β) 3F γ) 3

Α) Να επιλέξετε την σωστή απάντηση. Αν η επίδραση του αέρα είναι αμελητέα τότε το βάρος Β του σώματος θα έχει μέτρο: F α) F β) 3F γ) 3 ΑΠΑΝΤΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ο ΚΕΦΑΛΑΙΟ ο ΘΕΜΑ 376/Β. Σε έν σώμ μάζς m που ρχικά ηρεμεί σε οριζόντιο επίπεδο σκούμε κτκόρυφη στθερή δύνμη μέτρου F, οπότε το σώμ κινείτι κτκόρυφ προς τ πάνω με

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4

Διαβάστε περισσότερα

Κίνηση σε Μαγνητικό πεδίο

Κίνηση σε Μαγνητικό πεδίο Κίνηση σε γνητικό πεδίο 4.1. Ακτίν κι Περίοδος στο ΟΠ. Από έν σημείο Α μέσ σε ομογενές μγνητικό πεδίο έντσης Β=2Τ, εκτοξεύοντι δύο σωμτίδι Σ 1 κι Σ 2 ίδις μάζς m=10-10 kg κι ντίθετων φορτίων, με τχύτητες

Διαβάστε περισσότερα

2 m g ηµφ = m Β. 2 h. t t. s Β = 1 2 (1) R (3) (4) 2 h cm. s 1. 2mg. A cm. A cm

2 m g ηµφ = m Β. 2 h. t t. s Β = 1 2 (1) R (3) (4) 2 h cm. s 1. 2mg. A cm. A cm ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τετάρτη 9 Απριλίου 05 ΘΕΜΑ ύο κύλινδροι Α κι, που έχουν ντίστοιχ µάζες m m κι m B m κι κτίνες κι B, ήνοντι τυτόχρον ελεύθεροι πό το ίδιο ύψος πλάιου επιπέδου χωρίς ρχική τχύτητ.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ ΑΠΑΝΤΗΕΙ ΦΥΙΚΗ Ο.Π Β Λ Γ Λ 3/0/09 ΓΙΑΝΝΗ ΤΖΑΓΚΑΡΑΚΗ ΘΕΜΑ Α Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις Α-Α4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστ πάντηση. Α. ε ποιο πό

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: 15/0/015 ΘΕΜ 1 ο Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις 1-4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

2. Τι ονομάζουμε τροχιά ενός κινητού; Πώς διακρίνονται οι κινήσεις με κριτήριο τη μορφή της τροχιάς του κινητού;

2. Τι ονομάζουμε τροχιά ενός κινητού; Πώς διακρίνονται οι κινήσεις με κριτήριο τη μορφή της τροχιάς του κινητού; ΕΥΘΥΓΡΑΜΜΗ 7 ΕΝΟΤΗΤΑ. ΕΥ ΘΥΓΡ ΑΜΜΗ ΕΡΩΤΗΣΕΙΣ. Ν νφέρετε ποι πό τ σώμτ πο φίνοντι στην εικόν κινούντι Α. ως προς τη Γη. Β. ως προς το τοκίνητο. Θ πρέπει ν λάβομε πόψη μς ότι η κίνηση είνι έννοι σχετικ.

Διαβάστε περισσότερα

Επιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση

Επιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση Υλικό Φσικής-Χηµείς Επνληπτικά Θέµτ. Επιτάχνση κι ισχύς σε κμπλόγρμμη κίνηση Έν σηµεικό σφιρίδιο Σ µάζς m=0,kg είνι δεµένο στο ά- κρο βρούς κι µη εκττού νήµτος µήκος =0,m, το άλλο άκρο το οποίο είνι στερεωµένο

Διαβάστε περισσότερα

Ευθύγραμμες Κινήσεις (Συμπυκνωμένα)

Ευθύγραμμες Κινήσεις (Συμπυκνωμένα) Εθύγρμμες Κινήσεις (Σμπκνωμέν) Χρήση Λελεδάκης Κωστής ( koleygr@gmailcom ) Οι σημειώσεις πεθύνοντι σε κάποιον πο θέλει ν μάθει ή ν θμηθεί τ βσικά στοιχεί των εθύγρμμων κινήσεων (χωρίς πργώγος κι ολοκληρώμτ)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ ΘΕΜ 1ο ΘΕΜΤ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ - 000 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση. 1. Ένς νεµιστήρς

Διαβάστε περισσότερα

Σωτήρης Χρονόπουλος ΦΡΟΝΤΙΣΤΗΡΙΟ ΠΡΟΟΠΤΙΚΗ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ

Σωτήρης Χρονόπουλος ΦΡΟΝΤΙΣΤΗΡΙΟ ΠΡΟΟΠΤΙΚΗ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΗΣΕΙΣ Σωτρης Χρονόπολος 1. Μι σφίρ ηρεμεί στην άκρη ενός τρπεζιού. Στη σφίρ δίνετι τχύτητ 0, όπως φίνετι στην εικόν. Ν γράψετε τις εξισώσεις πο

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Α. Δύο σώματα ίσης μάζας m κινούνται σε οριζόντιο επίπεδο όπως φαίνεται στο παρακάτω σχήμα.

Εισαγωγή στις Φυσικές Επιστήμες ( ) Α. Δύο σώματα ίσης μάζας m κινούνται σε οριζόντιο επίπεδο όπως φαίνεται στο παρακάτω σχήμα. Εισγωγή στις Φυσικές Επιστήμες (7-7-7) Μηχνική Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 Α. Δύο σώμτ ίσης μάζς m κινούντι σε οριζόντιο επίπεδο όπως φίνετι στο πρκάτω σχήμ. Α υ Β a O = Εάν γι t = το σώμ Α κινείτι με στθερή

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 1

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 1 Υλικό Φσικής-Χηµείς ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΙ ΣΩΣΤΟΥ ΛΘΟΥΣ ΜΕ ΙΤΙΟΛΟΓΗΣΗ ) Στην κάτω άκρη ενός ιδνικού τήριο είνι δεµένο έν σώµ πο έχει µάζ m m κι ισορροπεί. Στην κάτω άκρη ενός άλλο οµοίο τήριο είνι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΘΕΜΑ A Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις

Διαβάστε περισσότερα

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E. ΘΕΜΑ Α Α i Σχολικό βιβλίο σελίδ 6 ii Σχολικό βιβλίο σελίδ 6 Α Σχολικό βιβλίο σελίδ 85 Α3 Ισχύει ότι 7 3 7 ()d ()d ()d () 3 Στο,3 είνι () οπότε το εμβδό του χωρίου Ω που ορίζετι πό την κι τις ευθείες, 3

Διαβάστε περισσότερα

Τα προτεινόμενα θέματα είναι από τις γενικές ασκήσεις προβλήματα του Ι. Δ. Σταματόπουλου αποκλειστικά για το site (δεν κυκλοφορούν στο εμπόριο)

Τα προτεινόμενα θέματα είναι από τις γενικές ασκήσεις προβλήματα του Ι. Δ. Σταματόπουλου αποκλειστικά για το site (δεν κυκλοφορούν στο εμπόριο) Τ προτεινόμεν θέμτ είνι πό τις γενικές σκσεις προβλμτ το Ι. Δ. Στμτόπολο ποκλειστικά γι το site (δεν κκλοφορούν στο εμπόριο) Θέμ 6 ο Ομογενς σφίρ μάζς m κι κτίνς R, ισορροπεί πάνω σε κεκλιμένο επίπεδο

Διαβάστε περισσότερα

Επιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση

Επιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση Επιτάχυνση κι ισχύς σε κμπυλόγρμμη κίνηση Έν σημεικό σφιρίδιο Σ μάζς m=0,kg είνι δεμένο m στο άκρο βρούς κι μη Σ εκττού νήμτος μήκους =0,m, το άλλο άκρο του οποίου είνι στερεωμένο σε οριζόντι οροφή. Το

Διαβάστε περισσότερα

ΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ

ΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ ΓΙΟ-ΓΙΟ ΚΙ ΚΟΨΙΜΟ ΝΗΜΤΟΣ Ο ομογενής κύλινδρος(γιο-γιό) του σχήμτος έχει μάζ Μ=5kg κι κτίν R=0,m. Γύρω πό τον κύλινδρο είνι τυλιγμένο βρές κι μη εκττό νήμ, το ελεύθερο άκρο του οποίου τρβάμε προς τ πάνω

Διαβάστε περισσότερα

Ο Ρ Ο Σ Η Μ Ο. Τυπολόγιο: Ευθύγραμμη κίνηση. Μετατόπιση: Δx x 2. Μέση διανυσματική ταχύτητα: Μέση αριθμητική ταχύτητα: υ m s.

Ο Ρ Ο Σ Η Μ Ο. Τυπολόγιο: Ευθύγραμμη κίνηση. Μετατόπιση: Δx x 2. Μέση διανυσματική ταχύτητα: Μέση αριθμητική ταχύτητα: υ m s. Τυπολόγιο: Ευθύγρμμη κίνηση Μεττόπιση: Δ () Μέση δινυσμτική τχύτητ: Δ υμ Δt t t s ολ Μέση ριθμητική τχύτητ: υ s Επιτάχυνση: s μ S t ολ Δυ Δt Ευθύγρμμη ομλή κίνηση: υ στθερό Εξισώσεις επιτάχυνσης τχύτητς

Διαβάστε περισσότερα

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ Δύο ομογενείς δίσκοι, ένς μεγάλος μάζς Μ=3kg κι κτίνς =40 κι ένς μικρός μάζς m=kg κι κτίνς =10, ενώνοντι έτσι ώστε ν συμπίπτουν τ κέντρ τους. Ο δίσκος κτίνς διθέτει υλάκι

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ Σγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pmoiras.weebly.om ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής - τεχνολογικής κατεύθυνσης

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής - τεχνολογικής κατεύθυνσης Γενικές εξετάσεις 009 Φσική Γ κεί θετικής - τεχνγικής κτεύθνσης Θέμ Ν γράψετε στ τετράδιό σς τν ριθμό κθεμιάς πό τις πρκάτ ερτήσεις - 4 κι δίπ τ γράμμ π ντιστιχεί στη σστή πάντηση.. Σε μι φθίνσ τάντση

Διαβάστε περισσότερα

* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη

* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη * '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΔΥΝΑΜΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΔΥΝΑΜΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΔΥΝΑΜΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ Σγγρφή Επιμέει: Πνγιώτης Φ. Μίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pira.wly. ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο 1. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ 1. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ ΟΜΟΣΠΟΝ Ι ΕΚΠΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ 06 ΦΣΗ ΤΞΗ: ΜΘΗΜ: ΘΕΜ. γ. β. δ 4. 5.. Σωστό β. Λάθος γ. Σωστό δ. Λάθος ε. Λάθος ΘΕΜ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηεροηνί: Τρίτη

Διαβάστε περισσότερα

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση Γ. ΕΛΛΕΙΨΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) κι στθερό άθροισµ.. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες

Διαβάστε περισσότερα

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3 Βθμός: /25 Τεστ Μθημτικών Εξετζόμενος-η: Προσντολισμού, Γ Λυκείου Θεωρί 1 Κθηγητής: Ιορδάνης Χτζηνικολάου Συνρτήσεις Θέμ Α Α1. Ν ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων f κι f 1 είνι συμμετρικές

Διαβάστε περισσότερα

Ονοματεπώνυμο. Τμήμα

Ονοματεπώνυμο. Τμήμα Ηλεκτρομγνητισμός (6-7-9) Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 A. Έν σωμάτιο με φορτίο -6. n τοποθετείτι στο κέντρο ενός μη γώγιμου σφιρικού φλοιού εσωτερικής κτίνς c κι εξωτερικής 5 c. Ο σφιρικός φλοιός περιέχει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ Φυσική Κτεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ Θέµ ο κ ΙΑΓΩΝΙΣΜΑ Α. (Βάλτε σε κύκλο το γράµµ µε τη σωστή πάντηση) Αν υξήσουµε την πόστση µετξύ δύο ετερόσηµων σηµεικών ηλεκτρικών φορτίων,. η δυνµική

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ Επαναληπτικά Θέµατα ΟΕΦΕ 0 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ ο. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση µόνο

Διαβάστε περισσότερα

γραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης

γραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9//0 έως 09/0/ γρπτή εξέτση στ ΦΥΣΙΚΗ Γ' κτεύθυνσης Τάξη: Γ Λυκείου Τμήμ: Βθμός: Ημερομηνί: 8//00 Ύλη: Ονομτεπώνυμο: Κθηγητές: Τλντώσεις - Κύμτ Αθνσιάδης Φοίβος,

Διαβάστε περισσότερα

mr 3 e 2λt. 1 + e d dt 2G v 1 = m 2 r o, 2 ˆr + 1 r , v 2 = m 1

mr 3 e 2λt. 1 + e d dt 2G v 1 = m 2 r o, 2 ˆr + 1 r , v 2 = m 1 Εθνικό κι Κποδιστρικό Πνεπιστήμιο Αθηνών, Τμήμ Φυσικής Εξετάσεις στη Μηχνική Ι, Τμήμ Κ Τσίγκνου & Ν Βλχάκη, 4 Σεπτεμβρίου 8 Διάρκει εξέτσης 3 ώρες, Κλή επιτυχί bonus ερωτήμτ Ονομτεπώνυμο:, ΑΜ: Ν ληφθεί

Διαβάστε περισσότερα

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο Μθημτικά Β Κτ/νσης ΕΛΛΕΙΨΗ Ορισμός: Έλλειψη με εστίες Ε κι Ε λέγετι ο γεωμ τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ Ε κι Ε είνι στθερό κι μεγλύτερο του ΕΈ Το στθερό υτό άθροισμ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 6 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθµό κθεµιάς πό τις πρκάτ ερτήσεις - 4 κι δίπλ το γράµµ πο ντιστοιχεί στη σστή πάντηση Στο κύκλµ

Διαβάστε περισσότερα

Φαινόμενο Doppler με επιταχυνόμενο παρατηρητή και όχι μόνο!

Φαινόμενο Doppler με επιταχυνόμενο παρατηρητή και όχι μόνο! Φινόμενο Doppler με επιτχυνόμενο πρτηρητ κι όχι μόνο! Έν πυροσβεστικό όχημ κινείτι με στθερ τχύτητ υ =7Km/h προς κίνητο υ μοτοσικλετιστ. υ Κάποι στιγμ = που πέχουν πόστση d=684m το πυροσβεστικό όχημ ρχίζει

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

* 4. Οµογενές στερεό σώµ στρέφετι γύρω πό στθερό άξον, υπό την επίδρση στθερής ροπής τ. Συνεπώς όλ τ υλικά σηµεί που το ποτελούν. έχουν την ίδι επιτρό

* 4. Οµογενές στερεό σώµ στρέφετι γύρω πό στθερό άξον, υπό την επίδρση στθερής ροπής τ. Συνεπώς όλ τ υλικά σηµεί που το ποτελούν. έχουν την ίδι επιτρό *! " # $ # # " % $ " " % $ " ( # " ) % $ THΛ: 270727 222594 THΛ: 919113 949422 " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Αν στο διπλνό κύκλωµ

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει

Διαβάστε περισσότερα

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω Ερωτήσεις πολλπλής επιλογής 1. ** Αν η εξίσωση µε δύο γνώστους f (, ) = 0 (1) είνι εξίσωση µις γρµµής C, τότε Α. οι συντετγµένες µόνο µερικών σηµείων της C επληθεύουν την (1) Β. οι συντετγµένες των σηµείων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟ ΒΑΙΗ - ΜΑΥΡΑΓΑΝΗ ΤΑΘΗ ΠΑΝΕΗΝΙΕ ΕΞΕΤΑΕΙ 5 - - Οι πρκάτω σημειώσεις βσίστηκν στ έντυπ του Κ.Ε.Ε. (999 ) κι στη θεμτοδοσί των Πνελλδικών Εξετάσεων στ Μθημτικά Κτεύθυνσης της Γ υκείου. τις επόμενες

Διαβάστε περισσότερα

F B1 F B3 F B2. Υλικό Φυσικής Χηµείας ΕΡΩΤΗΣΕΙΣ ΙΚΑΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. 1 B K

F B1 F B3 F B2. Υλικό Φυσικής Χηµείας ΕΡΩΤΗΣΕΙΣ ΙΚΑΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ.  1 B K ΕΡΩΤΗΣΕΙΣ ΙΚΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΤΟΣ Ερώτηση 1 η 1. Μι οµογενής λεπτή δοκός ισορροπεί κθώς βρίσκετι σε επή µε τον τοίχο κι το δάπεδο του σχήµτος. Οι ντιδράσεις του δπέδου κι του τοίχου

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α)

Διαβάστε περισσότερα

* ' 4. Οι κτίνες Röntgen. εκπέµποντι πό ρδιενεργούς πυρήνες που ποδιεγείροντι β. είνι ορτές γ. πράγοντι πό ηλεκτρονικά κυκλώµτ δ. πράγοντι πό επιβράδυ

* ' 4. Οι κτίνες Röntgen. εκπέµποντι πό ρδιενεργούς πυρήνες που ποδιεγείροντι β. είνι ορτές γ. πράγοντι πό ηλεκτρονικά κυκλώµτ δ. πράγοντι πό επιβράδυ * '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 3η εξετστική περίδς 0- - Σελίδ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείυ Τμήμ: Βθμός: Ημερμηνί: 0-04-0 Διάρκει: 3 ώρες Ύλη: Επνληπτικό σε όλη την ύλη. Κθηγητής: ΑΤΡΕΙΔΗΣ ΓΙΩΡΓΟΣ Ονμτεπώνυμ:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

12 η Εβδομάδα Ισορροπία Στερεών Σωμάτων. Ισορροπία στερεών σωμάτων

12 η Εβδομάδα Ισορροπία Στερεών Σωμάτων. Ισορροπία στερεών σωμάτων 1 η Εβδομάδ Ισορροπί Στερεών Σωμάτων Ισορροπί στερεών σωμάτων Γι ν ισορροπεί έν στερεό σώμ πρέπει κι η συνιστμένη όλων των δυνάμεων που σκούντι πάνω του ν είνι ίση με μηδέν κι η συνιστμένη όλων των ροπών

Διαβάστε περισσότερα

Φ3-4o0-0 α) ħ β) ħ γ) δ) Ι r 4. Σφαίρα µάζας κινείται µε σταθερή ταχύτητα και σγκρούεται ελαστικά µε τον κατακόρφο τοίχο το σχήµατος. Αν η γωνία πρόσπ

Φ3-4o0-0 α) ħ β) ħ γ) δ) Ι r 4. Σφαίρα µάζας κινείται µε σταθερή ταχύτητα και σγκρούεται ελαστικά µε τον κατακόρφο τοίχο το σχήµατος. Αν η γωνία πρόσπ Φ3-4o0-0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΚΡΟΥΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις -5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης

Διαβάστε περισσότερα

γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σπουδών

γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σπουδών η εξεταστική περίοδος από 9/0/ έως 6// γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σποδών Τάξη: Β Λκείο Τμήμα: Βαθμός: Ημερομηνία: 09//0 Ύλη: Ονοματεπώνμο: Καθηγητής: Οριζόντια βολή Ομαλή κκλική κίνηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ

ΜΑΘΗΜΑ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΜΑΘΗΜΑ 6. ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Θεωρί Μέθοδος Ασκήσεις ΘΕΩΡΙΑ. Ορισµός. Έστω συνάρτηση y f( πργωγίσιµη στο. Ρυθµός µετβολής του y ως προς στο σηµείο λέγετι η πράγωγος f ( κι Ρυθµός µετβολής του y ως προς λέγετι

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση

Διαβάστε περισσότερα

3. γ Αφού οι άνθρωποι πλησιάζουν τον άξονα περιστροφής Ι 2 < Ι 1 ω1 Ι2

3. γ Αφού οι άνθρωποι πλησιάζουν τον άξονα περιστροφής Ι 2 < Ι 1 ω1 Ι2 ΕΠΑΝΑΛΗΠΙΚΕΣ ΑΠΟΛΥΗΡΙΕΣ ΕΞΕΑΣΕΙΣ Γ ΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΕΡΑ ΙΟΥΛΙΟΥ 005 ΕΞΕΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Ο, β,, 4 δ 5 Σ β Σ Σ δ Σ ε Λ ΘΕΜΑ Ο π I ωq, ω π I ωq I I ωq π I Ι Ι β λ λ 4 δεσμοί d

Διαβάστε περισσότερα

2. ** Να βρείτε την εξίσωση του κύκλου που διέρχεται από το σηµείο (1, 0) και εφάπτεται στις ευθείες 3x + y + 6 = 0 και 3x + y - 12 = 0.

2. ** Να βρείτε την εξίσωση του κύκλου που διέρχεται από το σηµείο (1, 0) και εφάπτεται στις ευθείες 3x + y + 6 = 0 και 3x + y - 12 = 0. Ερωτήσεις νάπτυξης 1. ** Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-,

Διαβάστε περισσότερα

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση 39th International Physics Olympiad - Hanoi - Vietnam - 8 11 Υπολογισμός της πόστσης TG Λύση 3 3 3 Ο όγκος του νερού στην κοιλότητ είνι V = 1cm = 1 m Το μήκος του πυθμέν της κοιλότητς είνι d = L atan 6

Διαβάστε περισσότερα

ΦΥΣ η Πρόοδος: 4-Νοεμβρίου-2005

ΦΥΣ η Πρόοδος: 4-Νοεμβρίου-2005 ΦΥΣ. 3 η Πρόοδος: 4-Νοεμβρίο-5 Πριν ρχίσετε σμπληρώστε τ στοιχεί σς (ονομτεπώνμο κι ριμό ττότητς). Ονομτεπώνμο Αριμός ττότητς Σς δίνοντι 6 ισότιμ προβλήμτ ( βμοί το κέν) κι πρέπει ν πντήσετε σε οποιδήποτε

Διαβάστε περισσότερα

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε

Διαβάστε περισσότερα

2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ

2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ 1.3 ΜΕΤΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ ΚΙ ΕΦΠΤΟΜΕΝΗΣ ΘΕΩΡΙ 1. Μετβολή του ηµιτόνου : Ότν µί οξεί ωνί υξάνετι, υξάνετι κι το ηµίτονο της. ηλδή ν ω > φ τότε ηµω > ηµφ. Μετβολή του συνηµιτόνου : Ότν µί οξεί ωνί

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 63

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 63 ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 6 ΑΣΚΗΣΗ. ύο σφίρες φορτίου q κι µάζς m g, κρέµοντι πό το ίδιο σηµείο µε νήµτ µήκους 40cm. Αν οι σφίρες ισορροπούν ότν τ νήµτ σχηµτίζουν γωνί φ 60 ο, ν ρεθεί το φορτίο q. ίνοντι g 0m/s

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

just ( u) Πατρόκλου 66 Ίλιον

just ( u) Πατρόκλου 66 Ίλιον just f ( u) du it Πτρόκλου 66 Ίλιον 637345 6944 www.group group-aei aei.gr Νίκος Σούρµπης - - Γιώργος Βρδούκς Ν χρκτηρίσετε τ πρκάτω, σηµειώνοντς Σ (σωστό) ή Λ (λάθος). Αν z, z C, τοτε zz = zz. Η εξίσωση

Διαβάστε περισσότερα

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για 3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Έστω z, z C με (z ) = κι (z ) = Αν f() ( z )( z )( z )( z ) = κι f(i ) = 64 8i, τότε ν ποδείξετε ότι: ) f( i )

Διαβάστε περισσότερα

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 3ο Επνληπτικό διγώνισμ στ Μθημτικά κτεύθυνσης της Γ Λυκείου 17-18 Θέμ A Α1 Έστω f μι συνεχής συνάρτηση σ έν διάστημ β ν ποδείξετε ότι: f t dt G β G Α Πότε μι συνάρτηση λέγετι 1-1; Α3 Πότε μι συνάρτηση

Διαβάστε περισσότερα

Πέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ

Πέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 006 Πέµπτη, 5 Μΐου 006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ, που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7 Ε_3.ΦλΘ(α) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Πέµπτη 5 Ιανοαρίο 7 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΗ Α Α Α3 Α4 ΑΠΑΝΤΗΣΗ

Διαβάστε περισσότερα

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ 4 Ν υπολογίσετε το ολοκλήρωµ: 5 + d (988) 4 Αν I v π 4 v = εϕ d, ν Ν*, τότε: ) Ν ποδείξετε ότι γι κάθε ν>, ισχύει: Iv = Iv v β) Ν υπολογίσετε το Ι 5 (99) 4 Ν βρεθεί

Διαβάστε περισσότερα

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2.

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2. Ευθεί Ενότητ 7. Απόστση σημείου πό ευθεί Εμβδόν τριγώνου Εφρμογές 7.1 Ν βρεθεί η πόστση: i) του σημείου Μ(1,3) πό την ευθεί (ε) με εξίσωση 3x-4y- 11=0, ii) του σημείου Ρ(,-3) πό την (η) με εξίσωση 5x+1y-=0.

Διαβάστε περισσότερα

6 η Εργασία. θ(t) = γt 2 - βt 3

6 η Εργασία. θ(t) = γt 2 - βt 3 1 6 η Εργσί 1) Έν τύµπνο σε µι εκτυπωτική µηχνή στρέφετι κτά γωνί θ(t), που δίνετι πό τη σχέση: θ(t) = γt - βt 3 όπου γ =,5 rad/s κι β = 0,4 rad/s 3. ) Υπολογίστε τη γωνική τχύτητ κι την γωνική επιτάχυνση

Διαβάστε περισσότερα

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x Ν εξετάσετε ν είνι ίσες οι συνρτήσεις f() N ποδείξετε ότι f g, ότν γι κάθε Η συνάρτηση f : f,. 4 σκήσεις έν ερώτημ - σε όλη την ύλη ln κι g ln ln ισχύει η σχέση: είνι περιττή κι ισχύει ότι 4 Ν οριστεί

Διαβάστε περισσότερα

Θεωρία 1 Αποδείξτε ότι η διανυσματική ακτίνα του αθροίσματος των μιγαδικών α+βi και γ+δi είναι το άθροισμα των διανυσματικών ακτίνων τους.

Θεωρία 1 Αποδείξτε ότι η διανυσματική ακτίνα του αθροίσματος των μιγαδικών α+βi και γ+δi είναι το άθροισμα των διανυσματικών ακτίνων τους. Θεωρί - Αποδείξεις Θεωρί Αποδείξτε ότι η δινσμτική κτίν το θροίσμτος των μιδικών κι δ είνι το άθροισμ των δινσμτικών κτίνων τος. Αν Μ κι Μ δ είνι οι εικόνες των κι δ ντιστοίχως στο μιδικό επίπεδο τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΑ.Λ. Α ΟΜΑ ΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΕΠΑ.Λ. Α ΟΜΑ ΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΕΠΑ.Λ. Α ΟΜΑ ΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Α. Τι ονοµάζετι εύρος µις µετβλητής; Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς, δίπλ στο γράµµ που ντιστοιχεί σε κάθε πρότση,

Διαβάστε περισσότερα

ευτέρα, 25 Μαΐου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ευτέρα, 25 Μαΐου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΣΕΙΣ 009 ετέρ, 5 Μΐ 009 Γ ΛΥΚΕΙΟΥ ΚΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΜ o Ν γράψετε στ τετράδιό σς τν ριθμό κθεμιάς πό τις πρκάτ ερτήσεις - κι δίπλ τ γράμμ π ντιστιχεί στη σστή πάντηση.. Σε μι φθίνσ τλάντση

Διαβάστε περισσότερα

Καρτεσιανές Συντεταγµένες

Καρτεσιανές Συντεταγµένες Γρφική Πράστση Συνάρτησης Κρτεσινές Συντετγµένες Κρτεσινό σύστηµ συντετγµένων ή ορθογώνιο σύστηµ ξόνων O είνι έν σύστηµ δύο κθέτων ξόνων O κι O ( 0 0) µε κοινή ρχή το σηµείο O,. O Ορθοκνονικό σύστηµ ξόνων

Διαβάστε περισσότερα

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός Τάξη Γ Κεφάλιο Ολοκληρωτικός Λογισμός Θεωρί-Μεθοδολογί-Ασκήσεις Κεφάλιο 3 Ολοκληρωτικός Λογισμός Σε κάθε μί πό τις πρκάτω περιπτώσεις ορίζετι πό τη γρφική πράστση μις τουλάχιστον συνάρτησης κι πό κάποιες

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης 1 η δεκάδ θεµάτων επνάληψης 1. Ν ποδείξετε ότι το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε τρ, όπου τ η ηµιπερίµετρος του τριγώνου κι ρ η κτίν του εγγεγρµµένου κύκλου Ν χρκτηρίσετε τις πρκάτω προτάσεις

Διαβάστε περισσότερα

Β Λυκείου 29 Απριλίου 2001

Β Λυκείου 29 Απριλίου 2001 Ένωση Ελλήνων Φσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Πνεπιστήμι Αθηνών Εργστήρι Φσικών Επιστημών, Τεχνλγίς, Περιβάλλντς Θεωρητικό Μέρς ΘΕΜΑ Λκεί 9 Απριλί Μι γώγιμη μετλλική σφίρ κτίνς περιβάλλετι πό πχύ

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ Συγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pias.weebl.c ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.

Διαβάστε περισσότερα

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ Θέµα ο ΦΥΣΙΚΗ Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ Ισχύον ότι έχομε αφέρει στις κινήσεις σωμάτων με τη διαφορά ότι στη θέση της επιτάχνσης α τοποθετούμε την επιτάχνση βαρύτητας..γενικα Οι βολές είναι κινήσεις μεταβαλλόμενες (επιταχνόμενες

Διαβάστε περισσότερα

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Νόμοι Νεύτων - Δυνάμεις Εισγωγή στην έννοι της Δύνμης Γι ν λύσουμε το πρόβλημ του πως θ κινηθεί έν σώμ ότν ξέρουμε το περιβάλλον

Διαβάστε περισσότερα

1. Δίνεται το τριώνυμο f x 2x 2 2 λ

1. Δίνεται το τριώνυμο f x 2x 2 2 λ 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου Δίνετι το τριώνυμο λ 5 λ 5, όπου λ Ν ποδείξετε ότι η δικρίνουσ του τριωνύμου ισούτι με Δ 4λ 5λ 3 β Ν βρείτε γι ποιες τιμές

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

1. * Το σηµείο Μ (- 2, 3) ανήκει στη γραµµή µε εξίσωση Α. x = 3 Β. x = - 2 Γ. x 2 + y 2 = 1. (x + 2) 2 + (x - 3) 2 = 1 Ε.

1. * Το σηµείο Μ (- 2, 3) ανήκει στη γραµµή µε εξίσωση Α. x = 3 Β. x = - 2 Γ. x 2 + y 2 = 1. (x + 2) 2 + (x - 3) 2 = 1 Ε. Ερωτήσεις πολλπλής επιλογής 1. * Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = Β. = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. * Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α (1, -) κι Β (7, ), έχει συντετγµένες

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo. Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι

Διαβάστε περισσότερα

Επανάληψη Τελευταίας Στιγμής. για εξάσκηση

Επανάληψη Τελευταίας Στιγμής. για εξάσκηση Επνάληψη Τελευτίς Στιγμής. γι εξάσκηση kanellopoulos@hotmail.com 5/4/ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Eπνάληψη Θεωρίς Ερωτήσεις με βάση το σχολικό βιβλίο ) Πότε δύο μιγδικοί ριθμοί βi κι γ δi είνι ίσοι

Διαβάστε περισσότερα