Διδακτική των Μαθηματικών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διδακτική των Μαθηματικών"

Transcript

1 Διδακτική των Μαθηματικών Ονοματεπώνυμο : Μαμτζέλλη Χρυσούλα Τάξη : Γ Δημοτικού Κεφάλαιο 43 : Η συμμετρία Πρόκειται για ένα εισαγωγικό μάθημα στην αξονική συμμετρία. Οι μαθητές θα μάθουν πότε δύο σχήματα ή δύο μέρη του ίδιου σχήματος αποκαλούνται συμμετρικά, αλλά και ότι η ευθεία γραμμή που τα χωρίζει ονομάζεται άξονας συμμετρίας. Άλλωστε στις προηγούμενες τάξεις εμπειρικά και διαισθητικά είχαν ασχοληθεί με αυτές τις έννοιες, όμως, για πρώτη φορά έρχονται αντιμέτωποι με αυτούς τους δύο όρους. Στόχοι του μαθήματος Οι μαθητές θα είναι ικανοί: Να αναγνωρίζουν αν ένα ή δύο διαφορετικά σχήματα είναι συμμετρικά ή όχι. Να εντοπίζουν τον άξονα συμμετρίας αρχικά με τη δίπλωση και στη συνέχεια να φαντάζονται τη δίπλωση (νοερά), για να ελέγχουν αν δεδομένα σχήματα είναι συμμετρικά. Να ανακαλύπτουν και να χαράσσουν τον ή τους άξονες συμμετρίας ενός σχήματος. Να σχεδιάζουν οι ίδιοι το συμμετρικό ενός σχήματος που τους δίνεται. Ενότητα 1 (Βιώνοντας το γνωστό)

2 Τι παρατηρείς στις παραπάνω εικόνες; Συζήτησε με τους συμμαθητές σου γι αυτές και επισημάνετε το κοινό τους σημείο. Αν στις παραπάνω εικόνες διπλώσεις το χαρτί στα δύο σύμφωνα με την κόκκινη γραμμή, τι θα παρατηρήσεις; Ο δάσκαλος έχει ειδοποιήσει τους μαθητές απ την προηγούμενη μέρα να φέρουν μικρούς καθρέφτες, για να πειραματιστούν μ αυτούς και να ανακαλύψουν μόνοι τους τα συμμετρικά διαφόρων σχημάτων. Έτσι, λοιπόν, ζητάει απ τα παιδιά να δουλέψουν εταιρικά (ανά δύο) και να τοποθετήσουν μπροστά απ τον καθρέφτη αντικείμενα, ώστε να φαίνεται μέσα σ αυτόν η εικόνα τους που είναι συμμετρική με το αντικείμενο. Ουσιαστικά, πρόκειται για μια βιωματική εφαρμογή των όσων παρατήρησαν παραπάνω. Ενότητα 2 (Βιώνοντας το νέο) Χώρισε καθεμία απ τις παρακάτω εικόνες με μία ευθεία γραμμή, έτσι ώστε όταν θα τις διπλώσεις κατά μήκος της γραμμής να ταυτιστούν τα δύο μέρη της κάθε εικόνας.

3 Χρωμάτισε τα υπόλοιπα κουτάκια που βρίσκονται κάτω από την κόκκινη γραμμή, έτσι ώστε το πάνω σχέδιο να είναι όμοιο με το κάτω. Δραστηριότητα 3 (Εννοιολόγηση με ονοματοποίηση) Φαντάσου ότι διπλώνεις το χαρτί κατά μήκος της κόκκινης γραμμής. Ποια σχήματα θα ταυτιστούν; α)

4 β) Επιχειρώντας να διπλώσει κάποιος το παραπάνω χαρτί κατά μήκος της κόκκινης γραμμής, θα διαπιστώσει ότι άλλα σχήματα θα ταυτιστούν και άλλα όχι. Γενικά, όταν ένα σχήμα μπορεί να χωριστεί με μία ευθεία γραμμή σε δύο τμήματα, έτσι ώστε το ένα τμήμα να είναι αντανάκλαση του άλλου, τότε το σχήμα αυτό είναι συμμετρικό ως προς την ευθεία αυτή. Η ευθεία γραμμή που χωρίζει το σχήμα αυτό σε δύο ίσα τμήματα ονομάζεται άξονας συμμετρίας. Επομένως, τα σχήματα που ταυτίζονται λέγονται συμμετρικά με άξονα συμμετρίας την ευθεία δίπλωσης. Δύο σχήματα λέμε ότι είναι συμμετρικά όταν κάθε σημείο τους απέχει ίση απόσταση από τον άξονα συμμετρίας τους (συχνή παρανόηση των μαθητών) και ταυτόχρονα υπάρχει ακριβής αντιστοιχία στο μέγεθος και το σχήμα. Για να δημιουργήσει κάποιος το συμμετρικό ενός σχήματος α) σε ένα τετραγωνισμένο χαρτί, θα υπολογίσει την απόσταση κάθε σημείου του σχήματος από τον άξονα συμμετρίας με βάση τα τετραγωνάκια, ενώ β) σε ένα λευκό χαρτί, θα υπολογίσει την ίδια απόσταση με βάση το χάρακα. Ένα σχήμα μπορεί να έχει έναν ή περισσότερους άξονες συμμετρίας. Κάποια συμμετρικά έχουν άξονα συμμετρίας που τα τέμνει, ενώ άλλα είναι συμμετρικά ως προς άξονα συμμετρίας που βρίσκεται έξω από αυτά. Όσο αφορά την παραπάνω άσκηση, η κόκκινη γραμμή αποτελεί τον άξονα συμμετρίας των σχημάτων που ταυτίζονται. Στην (α) περίπτωση, όμως, ο άξονας συμμετρίας βρίσκεται έξω από τα συμμετρικά, ενώ στη (β) περίπτωση τα τέμνει. Ενότητα 4 (Άμεση Εφαρμογή) Φτιάξε στο τετραγωνισμένο χαρτί το συμμετρικό της παρακάτω εικόνας.

5 Φτιάξε στο γεωπίνακα το συμμετρικό της παρακάτω εικόνας. Ενότητα 5 Φτιάξε το συμμετρικό των δύο παρακάτω εικόνων με τη βοήθεια του χάρακα σου. Κάθετος άξονας συμμετρίας

6 Οριζόντιος άξονας συμμετρίας Βρες και χάραξε τους άξονες συμμετρίας των συμμετρικών κεφαλαίων γραμμάτων του ελληνικού αλφαβήτου που δίνονται παρακάτω.

7 Α Θ Ε Κ Δ Ψ Ξ Μ Χ Ενότητα 6 (Κριτική Ανάλυση) Βρες ποιες από τις παρακάτω εικόνες είναι συμμετρικές και ποιες όχι και στη συνέχεια χάραξε τους άξονες συμμετρίας των συμμετρικών εικόνων.

8 α) Στα παρακάτω γεωμετρικά σχήματα τράβηξε τους άξονες συμμετρίας. β) Σχεδίασε δύο άλλα συμμετρικά γεωμετρικά σχήματα και χάραξε τους άξονες συμμετρίας τους. γ)

9 Ο κύκλος είναι συμμετρικό γεωμετρικό σχήμα; Αν είναι, χάραξε έναν άξονα συμμετρίας. Ο άξονας συμμετρίας που σχεδίασες είναι ίδιος με αυτόν που σχεδίασαν οι υπόλοιποι συμμαθητές σου; Τι παρατηρείς; Μπορείς να βγάλεις ένα γενικό συμπέρασμα για τους άξονες συμμετρίας του κύκλου; α) Ποιον αριθμό από το 1 έως το 10 σου θυμίζει ο αριθμός 6; β) Φτιάξε το συμμετρικό του 6 ως προς τον κάθετο άξονα. 6 γ) Αφού φτιάξεις το συμμετρικό του 6 ως προς τον κάθετο άξονα (έστω x), φτιάξε το συμμετρικό του x ως προς τον οριζόντιο άξονα. Συμμετρικό του 6 (x) Συμμετρικό του x δ) Το νέο συμμετρικό που προέκυψε συμπίπτει με τον αριθμό που απάντησες στο (α) ερώτημα;

Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα:

Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα: Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα: Α τάξη Β τάξη Γ τάξη Παρατηρούν μετατοπίσεις και στροφές (90 ο, 180 ο, 360 ο ) και μπορούν αν προβλέψουν το αποτέλεσμα. Αναγνωρίζουν συμμετρικά

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει

Διαβάστε περισσότερα

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ

ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ ΒΙΩΝΟΝΤΑΣ ΤΟ ΓΝΩΣΤΟ ΔΡΑΣΤΗΡΙΟΤΗΤΑ 1 Δέκα μαθητές (εθελοντές) θα μοιραστούν 6 σοκολάτες που βρίσκονται πάνω σε 3 καρέκλες, όπως δείχνει η εικόνα. Κάθε ένας πρέπει να κατευθυνθεί

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

4. Σχέδιο Μαθήματος. Ένα άλλο κεφάλαιο που έχει συναφή σχέση με το αυτό του 25 είναι το 26:

4. Σχέδιο Μαθήματος. Ένα άλλο κεφάλαιο που έχει συναφή σχέση με το αυτό του 25 είναι το 26: Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγική Σχολή Φλώρινας Τμήμα Δημοτικής Εκπαίδευσης Θέμα: Εργασία στη Διδακτική των Μαθηματικών Μάθημα: ΔΙ.ΜΕ.ΠΑ. Β Φάση - Διδακτική των Μαθηματικών Υπεύθυνος καθηγητής:

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της

Διαβάστε περισσότερα

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ - ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα

Διαβάστε περισσότερα

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ Δημοτικό σχολείο Σκύδρας ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Κ Ε Φ Α Λ Α Ι Ο Α Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Σκοπός Σκοπός του κεφαλαίου αυτού είναι να γνωρίσουν οι μαθητές τα υλικά που χρειάζονται για το ελεύθερο σχέδιο και τον τρόπο που θα τα

Διαβάστε περισσότερα

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ 1 3.1 ΣΤΟΙΧΕΙ ΤΡΙΩΝΟΥ ΕΙΗ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι πλευρές, οι γωνίες και οι κορυφές. Ονοµασία : Πλευρές είναι οι,, Κορυφές είναι τα σηµεία,, ωνίες

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Δραστηριότητα 8 ης εβδομάδας ΟΜΑΔΑΣ Α: Γ. Πολυμέρης, Χ. Ηλιούδη, Ν. Μαλλιαρός και Δ. Θεοτόκης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Περιγραφή Η συγκεκριμένη δραστηριότητα αποτελεί μια πρόταση

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Η κατασκευή με τις δύο πινέζες και το νήμα

Η κατασκευή με τις δύο πινέζες και το νήμα Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2014 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: 29/5/2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2014 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: 29/5/2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΑΞΗ: Α ΟΝΟΜΑΤΕΠΩΝΥΜΟ: 29/5/2014 ΘΕΜΑ 1 Ο (ΥΠΟΧΡΕΩΤΙΚΟ) Στο ελατήριο του σχήματος, αναρτήσαμε κυλινδρικές μάζες και μετρήσαμε την αντίστοιχη

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 0.

ραστηριότητες στο Επίπεδο 0. ραστηριότητες στο Επίπεδο 0. Σε αυτό το επίπεδο περιλαµβάνονται δραστηριότητες ταξινόµησης, αναγνώρισης και περιγραφής διαφόρων σχηµάτων. Είναι σηµαντικό να χρησιµοποιούνται πολλά διαφορετικά και ποικίλα

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό.

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό. Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ

ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ Δραστηριότητα 1 Εξερευνώντας το σχηματισμό των ψηφιδωτών. Ένα Ολλανδός ζωγράφος, ο M.C. Escher ( 1898-1972 ), έφτιαχνε ζωγραφικούς πίνακες χρησιμοποιώντας

Διαβάστε περισσότερα

0 0 30 π/6 45 π/4 60 π/3 90 π/2

0 0 30 π/6 45 π/4 60 π/3 90 π/2 Βασικός Πίνακας Μοίρες (Degrees) Ακτίνια (Radians) ΓΩΝΙΕΣ 0 0 30 π/6 45 π/4 60 π/3 90 π/2 Έστω ότι θέλω να μετατρέψω μοίρες σε ακτίνια : Έχω μία γωνία σε φ μοίρες. Για να την κάνω σε ακτίνια, πολλαπλασιάζω

Διαβάστε περισσότερα

Περιεχόμενα. Σελίδα 3 από 21

Περιεχόμενα. Σελίδα 3 από 21 Σελίδα 1 από 21 Σελίδα 2 από 21 Περιεχόμενα Κεφάλαιο 1 Χρήσεις του υπολογιστή... 4 Κεφάλαιο 2 Βασικά τμήματα υπολογιστή... 6 Κεφάλαιο 3 - Ασφάλεια... 9 Κεφάλαιο 4 - Ποντίκι... 11 Κεφάλαιο 5 - Πληκτρολόγιο...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: «Χαράξεις με χάρακα και διαβήτη. Ορθές γωνίες» (Κεφάλαιο : 16 ο ) Σχολείο:

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ.

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: 2 ώρες ΗΜΕΡΟΜΗΝΙΑ: 12 / 6 / 2013 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ Η προοπτική εικόνα, είναι, όπως είναι γνωστό, η προβολή ενός χωρικού αντικειμένου, σε ένα επίπεδο, με κέντρο προβολής, το μάτι του παρατηρητή. Η εικόνα αυτή, θεωρούμε ότι αντιστοιχεί

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Β Δημοτικού Πέτρος Κλιάπης Ο μαθητής σε μια σύγχρονη τάξη μαθηματικών: Δεν αντιμετωπίζεται ως αποδέκτης μαθηματικών πληροφοριών, αλλά κατασκευάζει δυναμικά τη μαθηματική γνώση μέσα από κατάλληλα

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ: ΓΕΩΜΕΤΡΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ [Κ. ΠΑΠΑΜΙΧΑΛΗΣ ρ ΦΥΣΙΚΗΣ] Τίτλος του Σεναρίου ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ Μελέτη των µετασχηµατισµών

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

6 η ενότητα. Εισαγωγή στους δεκαδικούς αριθμούς

6 η ενότητα. Εισαγωγή στους δεκαδικούς αριθμούς 0-0059MATHIMATIKAGDIMOTIKOU3_0 MAΘHTHΣ MAΘHM Γ 3/2/203 4:3 μμ Page 6 η ενότητα Εισαγωγή στους δεκαδικούς αριθμούς 33 34 35 36 37 38 Κεφάλαιο 33 : Πολλαπλασιασμός και διαίρεση με το 0, το 00 και το.000

Διαβάστε περισσότερα

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Λεμονίδης Χ. (2007). Ο εκσυγχρονισμός των μαθηματικών περιεχομένων στα νέα βιβλία της Α και Γ τάξης του Δημοτικού Σχολείου. Γέφυρες, 31:24-31. Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΑΠΟΣΠΑΣΜΕΝΗ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΣΑ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ:

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 015 ΒΑΘΜΟΣ : ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Αριθμητικά.. ΗΜΕΡΟΜΗΝΙΑ: 1/6/015 ΒΑΘΜΟΣ:... ΤΑΞΗ: Α Ολογράφως:... ΧΡΟΝΟΣ: ώρες

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

Νηπιαγωγείο - Δημοτικό

Νηπιαγωγείο - Δημοτικό Νηπιαγωγείο - Δημοτικό Το πρόγραμμα «Τέχνη και Μαθηματικά» για το νηπιαγωγείο δημοτικό, αποτελείται από τρία διδακτικά μέρη, δύο εκ των οποίων είναι κοινά για τους μαθητές όλων των τάξεων (Μέρη Α & Β )

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο.

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ας μελετήσουμε τι συμβαίνει, όταν ένα υγρό περιέχεται σε ένα ακίνητο δοχείο. Τι δυνάμεις ασκεί στο δοχείο; Τι σχέση έχουν αυτές με το βάρος του υγρού; Εφαρμογή

Διαβάστε περισσότερα

Περιβαλλοντική Εκπαίδευση και Μαθηµατικά [Αγωγή Υγείας και Ενεργειακό Ζήτηµα] Άννα Πολυζώη

Περιβαλλοντική Εκπαίδευση και Μαθηµατικά [Αγωγή Υγείας και Ενεργειακό Ζήτηµα] Άννα Πολυζώη ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ: Περιβαλλοντική Εκπαίδευση και Μαθηµατικά [Αγωγή Υγείας και Ενεργειακό Ζήτηµα] Άννα Πολυζώη 3 ο ηµοτικό Σχολείο Ιεράπετρας εκέµβριος 2008 Σελίδα 2 από 11 ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗΝ

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 9 10 (Γ Γυμνασίου Α Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Ποιο από τα ακόλουθα είναι το αποτέλεσμα της διαίρεσης του αριθμού 20102010 με τον

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Ονοματεπώνυμα Σπουδαστριών: Μποτονάκη Ειρήνη (5422), Καραλή Μαρία (5601) Μάθημα: Β06Σ03 Στατιστική

Διαβάστε περισσότερα

Για παραγγελίες των βιβλίων 2310610920

Για παραγγελίες των βιβλίων 2310610920 Για παραγγελίες των βιβλίων 369 Θέματα Προσομοίωσης Πανελλαδικών D.A.T. ΘΕΜΑ o ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 3 ΑΠΡΙΛΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ;

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; Γιώργου Τσαπακίδη Είναι εύκολο να παρατηρήσουμε ότι τα συμμετρικά σχήματα έχουν πολύ περισσότερες ιδιότητες από τα μη συμμετρικά σχήματα. Το ισοσκελές τρίγωνο, που έχει άξονα

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΔΙΔΑΣΚΑΛΙΑΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ

ΣΤΟΙΧΕΙΑ ΔΙΔΑΣΚΑΛΙΑΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΟΙΧΕΙΑ ΔΙΔΑΣΚΑΛΙΑΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ Ονοματεπώνυμο εκπαιδευτικού: Γκουντέλα Βασιλική Ειδικότητα: Φιλόλογος (ΠΕ2) Σχολείο: 4 ο Γυμνάσιο Κομοτηνής Μάθημα: Αρχαία Ελληνικά Διάρκεια: 1 διδακτική

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

ΤΟ ΓΕΝΙΚΟ ΝΟΜΙΚΟ ΠΛΑΙΣΙΟ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΓΥΜΝΑΣΙΟ

ΤΟ ΓΕΝΙΚΟ ΝΟΜΙΚΟ ΠΛΑΙΣΙΟ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΓΥΜΝΑΣΙΟ ΤΟ ΓΕΝΙΚΟ ΝΟΜΙΚΟ ΠΛΑΙΣΙΟ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΓΥΜΝΑΣΙΟ ΓΥΜΝΑΣΙΟ Π.Δ 409 του 1994 Για τις προαγωγικές εξετάσεις Μαΐου Ιουνίου ισχύει το Π.Δ. 508/77 και η Εγκύκλιος ΥΠΕΠΘ Γ2/2764/6-5-96) (ΕΙΔΙΚΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ)

Διαβάστε περισσότερα

Στάμη Τσικοπούλου. ΕΥΚΛΕΙΔΗΣ Β 85τ.1/1

Στάμη Τσικοπούλου. ΕΥΚΛΕΙΔΗΣ Β 85τ.1/1 Πίνακες πολλαπλασιασμού Το Βεδικό τετράγωνο Στάμη Τσικοπούλου Σ τα μαθηματικά και ιδιαίτερα στην αριθμητική ένας πίνακας πολλαπλασιασμού (ή αλλιώς ένας πυθαγόρειος πίνακας) είναι ένας πίνακας που χρησιμοποιείται

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ 1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180

Διαβάστε περισσότερα

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ ÅÕÁÃÃÅËIÁ ÄÅÓYÐÑÇ Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ Â Äçìïôéêïý ÅÊÄÏÓÅÉÓ ÐÁÐÁÄÏÐÏÕËÏÓ Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό Ευαγγελία Δεσύπρη, Φύλλα εργασίας για τα Μαθηματικά Β Δημοτικού Υπεύθυνη

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Μελέτη και γραφική παράσταση συνάρτησης

Μελέτη και γραφική παράσταση συνάρτησης 7 Μελέτη και γραφική παράσταση συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η διαδικασία με την οποία προσδιορίζουμε τα ιδιαίτερα χαρακτηριστικά μιας συνάρτησης ονομάζεται μελέτη συνάρτησης Αυτή συνίσταται

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών ΜΑΘΗΜΑΤΙΚΑ. Μαριάννα Τζεκάκη Καθηγήτρια Α.Π.Θ

Επιμόρφωση Εκπαιδευτικών ΜΑΘΗΜΑΤΙΚΑ. Μαριάννα Τζεκάκη Καθηγήτρια Α.Π.Θ Επιμόρφωση Εκπαιδευτικών ΜΑΘΗΜΑΤΙΚΑ Για την Πρωτοβάθμια Εκπαίδευση Μαριάννα Τζεκάκη Καθηγήτρια Α.Π.Θ Αθήνα, Οκτώβριος - Νοέμβριος 2011 Οδηγίες διδακτικής διαχείρισης με χρήση ΠΣ και ΟΣ Ο εκπαιδευτικός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΙΚΗ ΠΡΑΚΤΙΚΗ IV ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ: Κ. ΧΡΗΣΤΟΥ ΣΥΝΕΡΓΑΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΟΣ: Μ. ΣΤΡΙΛΙΓΚΑ ΘΕΜΑ: Η ΚΑΛΥΤΕΡΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ

Διαβάστε περισσότερα

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική)

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) ΝΤΑΗ ΕΙΡΗΝΗ ΤΜΗΜΑ: Π.Τ.Δ.Ε, ΠΑΤΡΑΣ 2012-13 ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ Ε.ΚΟΛΕΖΑ «ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) [1] Στόχοι της ενότητας(οι μαθητές

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα