ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH"

Transcript

1 ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH 8.1 Γραµµική διαστολή των στερεών Ένα στερεό σώµα θεωρείται µονοδιάστατο, όταν οι δύο διαστάσεις του είναι αµελητέες σε σχέση µε την τρίτη, το µήκος, όπως συµβαίνει στην περίπτωση ενός σύρµατος ή µιας ράβδου. Aν η θερµοκρασία ενός τέτοιου σώµατος µεταβληθεί κατά dt, το µήκος του l µεταβάλλεται κατά dl. Tο φαινόµενο αυτό ονοµάζεται γραµµική διαστολή και το πείραµα αποδεικνύει ότι η µεταβολή του µήκους είναι: dl = βldt (8.1) όπου β σταθερά, µε µονάδες grad -1, που εξαρτάται από το υλικό αλλά και τη θερµοκρασία και ονοµάζεται συντελεστής γραµµικής διαστολής. O συντελεστής γραµµικής διαστολής είναι θετικός για την πλειονότητα των υλικών, δηλαδή το µήκος των περισσότερων µονοδιάστατων σωµάτων αυξάνει µε τη θερµοκρασία. Yπάρχουν όµως και ορισµένα υλικά, όπως το καουτσούκ, µε αρνητικό συντελεστή. Tον µικρότερο συντελεστή γραµµικής διαστολής έχει το κράµα invar, το οποίο χρησιµοποιείται όταν απαιτείται να παραµείνουν σταθερές οι διαστάσεις του σώµατος παρά τη µεταβολή της θερµοκρασίας. Oι διαφορές αυτές των συντελεστών οφείλονται στη δοµή των υλικών. Aύξηση της θερµοκρασίας προκαλεί αύξηση της µέσης ενέργειας των δοµικών λίθων του στερεού, οι οποίοι χρειάζονται µεγαλύτερο χώρο για να µπορέσουν να ταλαντωθούν, µε αποτέλεσµα τη διαστολή του στερεού. Στα πολυµερή όµως υλικά αύξηση της θερµοκρασίας προκαλεί αύξηση της αποστάσεως µεταξύ των ατόµων του µορίου µε ταυτόχρονη ελάττωση της γωνίας µεταξύ δύο διαδοχικών δεσµών και έτσι το συνολικό µήκος του µακροµορίου µικραίνει. Τα υλικά αυτά έχουν αρνητικό συντελεστή διαστολής. Στον Πίνακα 8.1 δίνονται οι συντελεστές γραµµικής διαστολής ορισµένων υλικών. Aπό τη σχέση 8.1 προκύπτει, µε ολοκλήρωση, η εξίσωση που δίνει τη µεταβολή του µήκους του µονοδιάστατου σώµατος για πεπερασµένη µεταβολή της θερµοκρασίας Τ: l = l o exp{β T}

2 102 όπου l o το αρχικό µήκος. εδοµένου ότι ο συντελεστής γραµµικής διαστολής έχει πολύ µικρή τιµή, της τάξεως του 10-5 grad -1, η σχέση αυτή παίρνει τη γραµµική µορφή l = l o (1+β T) (8.2) η οποία είναι εκείνη που χρησιµοποιείται στις πρακτικές εφαρµογές. Πίνακας 8.1 Συντελεστής γραµµικής διαστολής β ορισµένων υλικών υλικό β υλικό β 10-6 grad grad -1 αλουµίνιο 23.9 καουτσούκ 88.2 χαλκός 16.8 γυαλί 8.5 χρυσός 19.6 χάλυβας 10.5 σίδηρος 12.2 invar 0.9 γύψος 2.5 ξύλο πάγος (-10-0 C) Kυβική διαστολή H µεταβολή της θερµοκρασίας στερεού σώµατος κατά dt προκαλεί µεταβολή του όγκου V κατά dv: dv = γvdt (8.3) όπου γ σταθερά, ο συντελεστης κυβικής διαστολής, ο οποίος αποδεικνύεται ότι είναι: γ = 3β Όπως και στην περίπτωση της γραµµικής διαστολής ο τελικός όγκος V του στερεού µετά από πεπερασµένη µεταβολή της θερµοκρασίας T θα δίνεται από τη σχέση: V = V o exp{γ T} ή κατά προσέγγιση: V = V o (1+γ T) (8.4) Mεταβολή του όγκου µε τη θερµοκρασία έχει ως αποτέλεσµα αντίστοιχη µεταβολή της πυκνότητας, η οποία µε τη βοήθεια της σχέσεως 8.4 υπολογίζεται:

3 103 m m ρ ο ρ = = ή ρ = ρ ο (1 γ Τ) (8.5) V V (1 γ Τ) 1 + γ Τ o + Tα ίδια ακριβώς ισχύουν και κατά τη µεταβολή της θερµοκρασίας των υγρών, για τα οποία δεν έχει φυσικά νόηµα η αναφορά σε συντελεστή γραµµικής διαστολής. Στον Πίνακα 8.2 δίνεται ο συντελεστής διαστολής ορισµένων υγρών. 1,0001 0,9997 0,9993 0,9989 0, Oι συντελεστές διαστολής είναι για τη συντριπτική πλειοψηφία των υλικών θετικοί, δηλαδή ο όγκος αυξάνει µε τη θερµοκρασία. E- λάχιστα υλικά Σχήµα 8.1 δεν ακολουθούν αυτό τον κανόνα το γνωστότερο από τα οποία είναι το 1440 νερό. Στην περιοχή µεταξύ 0 και 4 C 1420 το νερό παρουσιάζει αρνητικό συντελεστή διαστολής, µε αποτέλεσµα να 1400 µικραίνει ο όγκος και να αυξάνεται η 1380 πυκνότητα, ενώ αυξάνεται η θερµοκρασία Πέρα από την περιοχή αυτή η Σχήµα 8.2 συµπεριφορά του είναι φυσιολογική. Στα Σχήµατα 8.1 και 8.2 δίνεται η µεταβολή της πυκνότητας του νερού και του freon, αντίστοιχα, για την περιοχή από 0 µέχρι 15 C και 20 C. 8.3 ιαστολή των αερίων

4 104 H διαστολή των τελείων αερίων, δηλαδή των αερίων των οποίων η θερµοκρασία T βρίσκεται µακριά από το σηµείο υγροποιήσεως, δίνεται από τη γνωστή καταστατική εξίσωση των τελείων αερίων: pv = nrt (8.6) στην οποία υπεισέρχονται η πίεση του αερίου p, ο όγκος V, ο αριθµός των γραµµοµορίων n και η παγκόσµια σταθερά των αερίων R. H σχέση 8.6 παίρνει τη µορφή: pv mol = RT (8.7) στην οποία V mol =V/n είναι ο όγκος ενός γραµµοµορίου που ονοµάζεται γραµµοµοριακός όγκος. Πίνακας 8.2 Συντελεστής διαστολής υγρών υγρό νερό υδράργυρος γλυκερίνη βρώµιο αιθανόλη γ 10-6 grad Όταν το αέριο είναι πραγµατικό, πρέπει να ληφθούν υπόψη ορισµένοι παράγοντες που τροποποιούν τη σχέση 8.7 και την καθιστούν πολυπλοκότερη. H πίεση p που υπεισέρχεται σ' αυτήν είναι η πίεση που θα µετρήσει ένα µανόµετρο του οποίου η µεµβράνη είναι τοποθετηµένη κάπου µέσα στο αέριο. Όταν το αέριο βρίσκεται µακριά από το σηµείο υγροποιήσεως, οι µέσες αποστάσεις µεταξύ των µορίων είναι σηµαντικές και γι αυτό και οι δυνάµεις που ασκούν το ένα στο άλλο είναι αµελητέες, αφού εκδηλώνονται µόνο κατά τη στιγµή της κρούσης. Aλλά όταν αυτή η συνθήκη δεν ικανοποιείται, τότε σε ένα µόριο που βρίσκεται στο εσωτερικό του αερίου ασκούνται από παντού δυνάµεις, µε αποτέλεσµα η µέση τιµή της συνισταµένης τους να είναι µηδενική. Aντίθετα σε ένα µόριο, που πλησιάζει την επιφάνεια του δοχείου ή της κάψας του µανόµετρου, ασκούνται µονόπλευρα δυνάµεις, έτσι που η πίεση την οποία δείχνει το µανόµετρο να εµφανίζεται

5 105 µικρότερη από εκείνη που επικρατεί µέσα στο αέριο. Γι αυτό η πίεση p αντικαθίσταται από τον όρο: p + a 2 V moll όπου a σταθερά που εξαρτάται από το αέριο. Aκόµα θα πρέπει να ληφθεί υπόψη ότι ο όγκος του χώρου µέσα στον οποίο κινούνται τα µόρια είναι µικρότερος του V mol, γιατί από αυτόν πρέπει να αφαιρεθεί ο όγκος των ίδιων των µορίων. Έτσι ο όρος V mol αντικαθίσταται από τον V mol -b και τελικώς η εξίσωση 8.7 παίρνει τη µορφή: a + )(V b) = RT (8.8) 2 V (p mol mol Πίνακας 8.3 Σταθερές Van der Waals ορισµένων αερίων αέριο a b 10 5 atm.m 6 /mol m 3 /mol He H 2 N 2 O 2 NO CO CO 2 Cl 2 νερό H εξίσωση 8.8 ονοµάζεται καταστατική εξίσωση των πραγµατικών αερίων ή εξίσωση Van der Waals και η γραφική της παράσταση για το CO 2 για διάφορες θερµοκρασίες δίνεται στο Σχ Στον Πίνακα 8.3 δίνονται οι τιµές των σταθερών a και b για ορισµένα αέρια. H εξίσωση Van der Waals είναι η πρώτη η οποία διατυπώθηκε και από τότε έγιναν επανειληµµένες προσπάθειες για διατύπωση άλλων, που θα έδιναν καλύτερη

6 106 προσέγγιση αλλά οι οποίες απέτυχαν. Kαµία από τις περίπου πενήντα εξισώσεις οι οποίες έχουν προταθεί δεν είναι ιδιαίτερα επιτυχής. Για το λόγο αυτό η εξίσωση 8.8 είναι η ευρύτερα χρησιµοποιούµενη δεδοµένου ότι είναι η απλούστερη και δίνει ικανοποιητική ερµηνεία των φαινο- µένων που σχετίζονται µε τα πραγµατικά αέρια. Σχήµα 8.3

Προσδιορισµός συντελεστή γραµµικής διαστολής

Προσδιορισµός συντελεστή γραµµικής διαστολής Θ1 Προσδιορισµός συντελεστή γραµµικής διαστολής 1. Σκοπός Στην άσκηση αυτή θα µελετηθεί το φαινόµενο της γραµµικής διαστολής και θα προσδιοριστεί ο συντελεστής γραµµικής διαστολής ορείχαλκου ή χαλκού..

Διαβάστε περισσότερα

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ 1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 3 : Ιδανικά Αέρια Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο [1] Να βρεθεί ο αριθμός των ατόμων του αέρα σε ένα κυβικό μικρόμετρο (κανονικές συνθήκες και ιδανική συμπεριφορά) (Τ=300 Κ και P= 1 atm) (1atm=1.01x10 5 Ν/m =1.01x10 5 Pa). [] Να υπολογισθεί η απόσταση

Διαβάστε περισσότερα

C=dQ/dT~ 6.4 cal/mole.grad

C=dQ/dT~ 6.4 cal/mole.grad ΘΕΡΜΟΤΗΤΑ Ηεσωτερικήενέργειαενόςσώµατος, είναι το σύνολο των οποιονδήποτε ενεργειών των ατόµων και των µορίων του Η θερµοκρασία είναι µέτρο της µέσης κινητικής ενέργειας των ατόµων και των µορίων Ε=3ΚΤ/2

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 9: ΘΕΡΜΟΚΡΑΣΙΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 9: ΘΕΡΜΟΚΡΑΣΙΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 9: ΘΕΡΜΟΚΡΑΣΙΑ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης)

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία - Θερμότητα (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία Ποσοτικοποιεί την αντίληψή μας για το πόσο ζεστό ή κρύο είναι

Διαβάστε περισσότερα

Καταστατική εξίσωση ιδανικών αερίων

Καταστατική εξίσωση ιδανικών αερίων Καταστατική εξίσωση ιδανικών αερίων 21-1. Από τι εξαρτάται η συμπεριφορά των αερίων; Η συμπεριφορά των αερίων είναι περισσότερο απλή και ομοιόμορφη από τη συμπεριφορά των υγρών και των στερεών. Σε αντίθεση

Διαβάστε περισσότερα

Θεωρία και Μεθοδολογία

Θεωρία και Μεθοδολογία Θεωρία και Μεθοδολογία Εισαγωγή/Προαπαιτούμενες γνώσεις (κάθετη δύναμη) Πίεση p: p = F A (εμβαδόν επιφάνειας) Μονάδα μέτρησης πίεσης στο S.I. είναι το 1 Ν m2, που ονομάζεται και Pascal (Pa). Συνήθως χρησιμοποιείται

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

3. Ν αποδειχθεί ότι σε ιδανικό αέριο : α = 1/T και κ Τ = 1/Ρ. συµπιεστότητας. 4. Ν αποδειχθεί ότι : dv V

3. Ν αποδειχθεί ότι σε ιδανικό αέριο : α = 1/T και κ Τ = 1/Ρ. συµπιεστότητας. 4. Ν αποδειχθεί ότι : dv V Φυσικοχηµεία Ι / Β. Χαβρεδάκη Ασκήσεις Θερµοδυναµικής Έργο. Θερµότητα. Τέλεια, µη τέλεια διαφορικά. Αρχή διατήρησης της ενέργειας.. α) όσετε την γενική µορφή της καταστατικής εξίσωσης τριών θερµοδυναµικών

Διαβάστε περισσότερα

3. Ν αποδειχθεί ότι σε ιδανικό αέριο : α=1/t και κ Τ =1/Ρ όπου α ο συντελεστής διαστολής και κ T ο ισόθερµος συντελεστής συµπιεστότητας.

3. Ν αποδειχθεί ότι σε ιδανικό αέριο : α=1/t και κ Τ =1/Ρ όπου α ο συντελεστής διαστολής και κ T ο ισόθερµος συντελεστής συµπιεστότητας. Φυσικοχηµεία / Β. Χαβρεδάκη Ασκήσεις Θερµοδυναµικής Εργο. Θερµότητα. Τέλεια µη τέλεια διαφορικά. Αρχη διατήρησης της ενέργειας.. α) όσετε την γενική µορφή της καταστατικής εξίσωσης τριών θερµοδυναµικών

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3 Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου 2014 1/3 Πρόβλημα 2. Καταστατική Εξίσωση Van der Waals (11 ) Σε ένα πολύ γνωστό μοντέλο του ιδανικού αερίου, του οποίου η καταστατική εξίσωση περιγράφεται από το νόμο

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΘEMA ο Επίπεδο κατακόρυφο σώµα από αλουµίνιο, µήκους 430 mm, ύψους 60 mm και πάχους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 METATPOΠEΣ ΦAΣEΩN

ΚΕΦΑΛΑΙΟ 9 METATPOΠEΣ ΦAΣEΩN ΚΕΦΑΛΑΙΟ 9 METATPOΠEΣ ΦAΣEΩN 9.1 Φάσεις υλικών Φάσεις ονοµάζονται οι διαφορετικές µορφές τις οποίες µπορεί να πάρει ένα υλικό. Oι µορφές αυτές είναι κατ' αρχήν η στερεά, η υγρή και η αέρια κατάσταση, είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ

ΚΕΦΑΛΑΙΟ 7 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΚΕΦΑΛΑΙΟ 7 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ 7.1 Mεταφορά θερµότητας H θερµότητα µπορεί να µεταφερθεί από σηµείο του χώρου υψηλότερης θερµοκρασίας T 1 σε άλλο χαµηλότερης T µε αντίστοιχη µεταφορά µάζας. Η µεταφορά είναι

Διαβάστε περισσότερα

F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το

F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το [1] Να αποδειχθούν οι παρακάτω εξισώσεις: F ( F / T ) U = F T = T T T V F CV T = T V G G T H = G T = T ( / ) T P T P G CP T = T P [] Μπορούµε να ορίσουµε ένα άλλο σετ χαρακτηριστικών συναρτήσεων καθαρής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ 5. Η εσωτερική ενέργεια Τα υλικά σώµατα αποτελούνται από δοµικούς λίθους, δηλαδή άτοµα, ιόντα ή µόρια. Kάθε δοµικός λίθος σώµατος διαθέτει δυναµική και κινητική ενέργεια.

Διαβάστε περισσότερα

Ασκήσεις (Εισαγωγή-Ρευστά-Θερμότητα) Κ.-Α. Θ. Θωμά

Ασκήσεις (Εισαγωγή-Ρευστά-Θερμότητα) Κ.-Α. Θ. Θωμά Ασκήσεις (Εισαγωγή-Ρευστά-Θερμότητα) Κινήσεις-Διαγράμματα 1μ. Να σχεδιασθούν το διάστημα s, η ταχύτητα υ και η επιτάχυνση γ για ένα σώμα που πέφτει ελεύθερα επί 4 sec. μ. Η ταχύτητα υ ενός σώματος δίδεται

Διαβάστε περισσότερα

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται 1 2 Θερµότητα χρόνος θέρµανσης Εξάρτηση από είδος (c) του σώµατος Αν ένα σώµα θερµαίνεται από µια θερµική πηγή (γκαζάκι, ηλεκτρικό µάτι), τότε η θερµότητα (Q) που απορροφάται από το σώµα είναι ανάλογη

Διαβάστε περισσότερα

ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ. Πορώδης κόκκος τιτανίου. Χρήση ως καταλύτης αντιδράσεων.

ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ. Πορώδης κόκκος τιτανίου. Χρήση ως καταλύτης αντιδράσεων. ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ Πορώδης κόκκος τιτανίου. Χρήση ως καταλύτης αντιδράσεων. Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015 Χημική κινητική Η χημική κινητική μελετά: Την ταχύτητα με την οποία εξελίσσεται μία

Διαβάστε περισσότερα

Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε:

Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε: ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ 5-6 (Α. Χημική Θερμοδυναμική) η Άσκηση Η αντίδραση CO(g) + H O(g) CO (g) + H (g) γίνεται σε θερμοκρασία 3 Κ. Να υπολογιστεί το κλάσμα των ατμών του

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου B Λυκείου Θεωρητικό Μέρος Θέμα ο 0 Μαρτίου 0 A. Ποια από τις παρακάτω προτάσεις για μια μπαταρία είναι σωστή; Να εξηγήσετε πλήρως την απάντησή σας. α) Η μπαταρία εξαντλείται πιο γρήγορα όταν τη συνδέσουμε

Διαβάστε περισσότερα

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η εξαέρωση ενός υγρού µόνο από την επιφάνειά του, σε σταθερή

Διαβάστε περισσότερα

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: Υλικά που δεν έχουν καθορισμένο σχήμα (ρέουν), αλλά παίρνουν εκείνο του δοχείου μέσα στο οποίο βρίσκονται. Υγρά (έχουν καθορισμένο όγκο) Αέρια (καταλαμβάνουν ολόκληρο τον όγκο που

Διαβάστε περισσότερα

[FeCl. = - [Fe] t. = - [HCl] t. t ] [FeCl. [HCl] t (1) (2) (3) (4)

[FeCl. = - [Fe] t. = - [HCl] t. t ] [FeCl. [HCl] t (1) (2) (3) (4) Μιχαήλ Π. Μιχαήλ ΚΕΦΑΛΑΙΟ 3o ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ 1 3.1 Ερωτήσεις πολλαπλής επιλογής Στις ερωτήσεις 1-34 βάλτε σε ένα κύκλο το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το αντικείµενο µελέτης της χηµικής

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ B ΓΥΜΝΑΣΙΟΥ Κυριακή, 17 Μαΐου 2009 Ώρα: 10:00 12:30 Προτεινόμενες Λύσεις θεμα - 1 (5 μον.) Στον πίνακα υπάρχουν δύο στήλες με ασυμπλήρωτες προτάσεις. Στο τετράδιο των απαντήσεών

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου 2006 Ώρα: 10:30 13.00 Προτεινόµενες Λύσεις ΜΕΡΟΣ Α 1. α) Η πυκνότητα του υλικού υπολογίζεται από τη m m m σχέση d

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΧΗΜΕΙΑ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΧΗΜΕΙΑ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 3 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Στοιχειομετρικοί Υπολογισμοί στη Χημεία

Στοιχειομετρικοί Υπολογισμοί στη Χημεία Στοιχειομετρικοί Υπολογισμοί στη Χημεία Δομικές μονάδες της ύλης ΑΤΟΜΑ ΜΟΡΙΑ ΣΤΟΙΧΕΙΑ ΕΝΩΣΕΙΣ Αριθμός Avogadro N A = 6,02 10 23 mol -1 Δηλαδή αυτός ο αριθμός παριστάνει την ποσότητα μιας ουσίας που περιέχει

Διαβάστε περισσότερα

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας.

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Κεφάλαιο 1 ο :ΝΟΜΟΙ ΑΕΡΙΩΝ ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Επιμέλεια ύλης: Γ.Φ.ΣΙΩΡΗΣ- Φυσικός - 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. 1. Να διατυπώσετε το νόμο του Robert Boyle και να κάνετε το αντίστοιχο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΜΑΘΗΤΡΙΑΣ: ΘΕΜΑ Α Εξεταστέα ύλη: ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΟΡΜΗ ΑΕΡΙΑ Στις ερωτήσεις Α1 Α4 να επιλέξετε τη σωστή απάντηση. Α1. Όταν η πίεση ορισμένης ποσότητας

Διαβάστε περισσότερα

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. 4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη

Διαβάστε περισσότερα

2). i = n i - n i - n i (2) 9-2

2). i = n i - n i - n i (2) 9-2 ΕΠΙΦΑΝΕΙΑΚΗ ΤΑΣΗ ΙΑΛΥΜΑΤΩΝ Έννοιες που πρέπει να γνωρίζετε: Εξίσωση Gbbs-Duhem, χηµικό δυναµικό συστατικού διαλύµατος Θέµα ασκήσεως: Μελέτη της εξάρτησης της επιφανειακής τάσης διαλυµάτων από την συγκέντρωση,

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

Ποσοτική και Ποιoτική Ανάλυση

Ποσοτική και Ποιoτική Ανάλυση Ποσοτική και Ποιoτική Ανάλυση ιδάσκων: Σπύρος Περγαντής Γραφείο: Α206 Τηλ. 2810 545084 E-mail: spergantis@chemistry.uoc.gr Κεφ. 14 Χημική Ισορροπία Μια υναμική Ισορροπία Χημική ισορροπία είναι η κατάσταση

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΛΟΥΜΙΝΙΟΥ (ΕΝΑΕΡΙΑ ΗΛΕΚΤΡΟΦΟΡΑ ΣΥΡΜΑΤΑ)

ΗΛΕΚΤΡΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΛΟΥΜΙΝΙΟΥ (ΕΝΑΕΡΙΑ ΗΛΕΚΤΡΟΦΟΡΑ ΣΥΡΜΑΤΑ) ΗΛΕΚΤΡΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΛΟΥΜΙΝΙΟΥ (ΕΝΑΕΡΙΑ ΗΛΕΚΤΡΟΦΟΡΑ ΣΥΡΜΑΤΑ) Οι ηλεκτρικές εφαρµογές του αλουµινίου εκµεταλλεύονται πρώτιστα την πολύ καλή ηλεκτρική αγωγιµότητα (χαµηλή ειδική αντίσταση) του µετάλλου,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 23-10-11 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

5. Θερμικές τάσεις και παραμορφώσεις

5. Θερμικές τάσεις και παραμορφώσεις 5. Θερμικές τάσεις και παραμορφώσεις Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 5. Θερμικές Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών 2015 1 Περιεχόμενα ενότητας Επίδραση ορθών τάσεων στη μεταβολή

Διαβάστε περισσότερα

ƷƶƴƫƬƩ ƥưƺƴƶƫƭʊ ƣưƶƫƭƨƫʈƨưʊ ƷƶƴƫƬƺƯ ƬƣƵƩƥƱƳƫƣ ƲE04 ƵƱƮƱƴ ƤƘ

ƷƶƴƫƬƩ ƥưƺƴƶƫƭʊ ƣưƶƫƭƨƫʈƨưʊ ƷƶƴƫƬƺƯ ƬƣƵƩƥƱƳƫƣ ƲE04 ƵƱƮƱƴ ƤƘ . E04 & Y 2008 - 04. - ( Meissner - London - - I II - BCS - Cooper - - Josephson (dc) (ac). ( - - ). - - - S,, C, T, P (Parity).. v 9. 9.1 1 9.2 1 9.3 7 9.4 13 9.5 14 9.6 STEFAN-BOLTZMAN 18 9.7 21

Διαβάστε περισσότερα

Κινητική θεωρία ιδανικών αερίων

Κινητική θεωρία ιδανικών αερίων Κινητική θεωρία ιδανικών αερίων (γέφυρα μακροσκοπικών και μικροσκοπικών ποσοτήτων) Εμπειρικές σχέσεις Boyle, Gay-Lussac, Charles, υπόθεση Avogadro «όταν δυο ή περισσότερα αέρια έχουν τα ίδια V, P και Τ

Διαβάστε περισσότερα

PV=nRT : (p), ) ) ) : :

PV=nRT  : (p), ) ) ) :     : Μιχαήλ Π. Μιχαήλ 1 ΘΕΡΜΟ ΥΝΑΜΙΚΟ ΣΥΣΤΗΜΑ 1.Τι ονοµάζουµε σύστηµα και τι περιβάλλον ενός φυσικού συστήµατος; Σύστηµα είναι ένα τµήµα του φυσικού κόσµου που διαχωρίζεται από τον υπόλοιπο κόσµο µε πραγµατικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Αδιαβατικές μεταβολές στην ατμόσφαιρα - Ασκήσεις Αδιαβατικών μεταβολών (2ο φυλλάδιο) Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ. Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ

Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ. Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ 2 Ογκομέτρηση προχοϊδα διάλυμα HCl ΕΔΩ ακριβώς μετράμε τον όγκο ( στην εφαπτομένη της καμπύλης

Διαβάστε περισσότερα

1.4 Καταστάσεις της ύλης - Ιδιότητες της ύλης -Φυσικά και Χημικά φαινόμενα

1.4 Καταστάσεις της ύλης - Ιδιότητες της ύλης -Φυσικά και Χημικά φαινόμενα 1.4 Καταστάσεις της ύλης - Ιδιότητες της ύλης -Φυσικά και Χημικά φαινόμενα Μάθημα 4 Θεωρία Καταστάσεις της ύλης 4.1. Πόσες και ποιες είναι οι φυσικές καταστάσεις που μπορεί να έχει ένα υλικό σώμα; Τέσσερις.

Διαβάστε περισσότερα

P,V PV=nRT : (p), ) ) ) :

P,V PV=nRT :     (p), ) ) ) : Εισαγωγή: ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΟ ΣΥΣΤΗΜΑ 1.Τι ονοµάζουµε σύστηµα και τι περιβάλλον ενός φυσικού συστήµατος; Σύστηµα είναι ένα τµήµα του φυσικού κόσµου που διαχωρίζεται από τον υπόλοιπο

Διαβάστε περισσότερα

Χηµική κινητική - Ταχύτητα αντίδρασης. 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας

Χηµική κινητική - Ταχύτητα αντίδρασης. 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας 5 ο Μάθηµα: Χηµική κινητική - Ταχύτητα αντίδρασης 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας 95 5 o Χηµική κινητική Ταχύτητα αντίδρασης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Χηµική κινητική: Χηµική κινητική

Διαβάστε περισσότερα

Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης

Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης Άσκηση 8 Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης 1.Σκοπός Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός της πυκνότητας στερεών και υγρών με τη μέθοδο της άνωσης. Βασικές Θεωρητικές

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. 2.1 Εισαγωγή

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. 2.1 Εισαγωγή ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ: ΘΕΡΜΟΔΥΝΑΜΙΚΗ 1 2 2.1 Εισαγωγή ΘΕΡΜΟΔΥΝΑΜΙΚΗ Σύστημα: Ένα σύνολο σωματιδίων που τα ξεχωρίζουμε από τα υπόλοιπα για να τα μελετήσουμε ονομάζεται σύστημα. Οτιδήποτε δεν ανήκει στο σύστημα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής. Ενότητα: Στερεά. Διδάσκων: Καθηγητής Κ. Κώτσης. Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης

Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής. Ενότητα: Στερεά. Διδάσκων: Καθηγητής Κ. Κώτσης. Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής Ενότητα: Στερεά Διδάσκων: Καθηγητής Κ. Κώτσης Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης 7. Στερεά Η επιβεβαίωση ότι τα στερεά σώματα αποτελούνται από μια ιδιαίτερη

Διαβάστε περισσότερα

AquaTec Φυσική των Καταδύσεων

AquaTec Φυσική των Καταδύσεων Σημειώσεις για τα σχολεία Τεχνικής Κατάδυσης 1.1 AquaTec Φυσική των Καταδύσεων Βασικές έννοιες και Αρχές Νίκος Καρατζάς www.aquatec.gr Προειδοποίηση: Το υλικό που παρουσιάζεται παρακάτω δεν πρέπει να θεωρηθεί

Διαβάστε περισσότερα

4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier

4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier Χημικός Διδάκτωρ Παν. Πατρών 4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier Τι ονομάζεται θέση χημικής ισορροπίας; Από ποιους παράγοντες επηρεάζεται η θέση της χημικής

Διαβάστε περισσότερα

2.5 θερμική διαστολή και συστολή

2.5 θερμική διαστολή και συστολή 2.5 θερμική διαστολή και συστολή 1. Όταν ένα σώμα θερμαίνεται, ο όγκος του μεγαλώνει. Το φαινόμενο αυτό ονομάζεται διαστολή. 2. Όταν ένα σώμα ψύχεται, ο όγκος του ελαττώνεται. Το φαινόμενο αυτό ονομάζεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3.1 Εισαγωγή Η μετάδοση θερμότητας, στην πράξη, γίνεται όχι αποκλειστικά με έναν από τους τρεις δυνατούς μηχανισμούς (αγωγή, μεταφορά, ακτινοβολία),

Διαβάστε περισσότερα

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας ΚΕΦΑΛΑΙΟ 6 ο ΘΕΡΜΟΤΗΤΑ 6.1 Θερμόμετρα και μέτρηση θερμοκρασίας 1. Τι ονομάζεται θερμοκρασία; Το φυσικό μέγεθος που εκφράζει πόσο ζεστό ή κρύο είναι ένα σώμα ονομάζεται θερμοκρασία. 2. Πως μετράμε τη θερμοκρασία;

Διαβάστε περισσότερα

Θερμοδυναμική του ατμοσφαιρικού αέρα

Θερμοδυναμική του ατμοσφαιρικού αέρα 6 Θερμοδυναμική του ατμοσφαιρικού αέρα 6. Θερμοδυναμικό σύστημα Κάθε ποσότητα ύλης που περιορίζεται από μια κλειστή (πραγματική ή φανταστική) επιφάνεια. Ανοικτό σύστημα: Αν από την οριακή αυτή επιφάνεια

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Ι Ενότητα 3: Καταστάσεις της Ύλης

ΧΗΜΕΙΑ Ι Ενότητα 3: Καταστάσεις της Ύλης ΧΗΜΕΙΑ Ι Ενότητα 3: Καταστάσεις της Ύλης Χρυσή Κ. Καραπαναγιώτη Τμήμα Χημείας Περιεχόμενα Μαθήματος Καταστάσεις της ύλης Στερεά Υγρά Αέρια Φυσικές και Χημικές Ιδιότητες Αλλαγές Σύσταση της ύλης Καθορισμένες

Διαβάστε περισσότερα

Ομογενής και Ετερογενής Ισορροπία

Ομογενής και Ετερογενής Ισορροπία Ομογενής και Ετερογενής Ισορροπία Ομογενής ισορροπία : N 2(g) + O 2(g) 2NO (g) Ετερογενής ισορροπία : Zn (s) + 2H (aq) + Zn (aq) ++ + H 2(g) Σταθερά χηµικής ισορροπίας Kc: Για την αµφίδροµη χηµική αντίδραση:

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Ονοματεπώνυμο:.

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Ονοματεπώνυμο:. ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 Τάξη: B Βαθμός: Μάθημα: Φυσικά (Φυσική και Χημεία) Ημερομηνία: 10/06/2014 Διάρκεια: 2 Ώρες Ολογράφως:.. Υπογραφή:

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. Όλα τα Σωστό-Λάθος της τράπεζας θεμάτων για τη Χημεία Α Λυκείου

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. Όλα τα Σωστό-Λάθος της τράπεζας θεμάτων για τη Χημεία Α Λυκείου Όλα τα Σωστό-Λάθος της τράπεζας θεμάτων για τη Χημεία Α Λυκείου 1. Το ιόν του νατρίου, 11Νa +, προκύπτει όταν το άτομο του Na προσλαμβάνει ένα ηλεκτρόνιο. Λ, όταν αποβάλλει ένα ηλεκτρόνιο 2. Σε 2 mol NH3

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ÓÕÍÅÉÑÌÏÓ. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ÓÕÍÅÉÑÌÏÓ. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις ερωτήσεις 1 έως 4 και δίπλα το

Διαβάστε περισσότερα

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α)

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) Α. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) P = σταθ. V P 2) Ισόχωρη µεταβολή β) = σταθ. 3) Ισοβαρής µεταβολή γ) V

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Όρια καταστατικής εξίσωσης ιδανικού αερίου 2. Αποκλίσεις των Ιδιοτήτων των πραγματικών αερίων από τους Νόμους

Διαβάστε περισσότερα

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων Β' τάξη Γενικού Λυκείου Κεφάλαιο 1 Κινητική θεωρία αερίων Κεφάλαιο 1 Κινητική θεωρία αερίων Χιωτέλης Ιωάννης Γενικό Λύκειο Πελοπίου 1.1 Ποιο από τα παρακάτω διαγράμματα αντιστοιχεί σε ισοβαρή μεταβολή;

Διαβάστε περισσότερα

(1 mol οποιουδήποτε αερίου σε συνθήκες STP καταλαμβάνει όγκο 22,4 L, κατά συνέπεια V mol =22,4 L)

(1 mol οποιουδήποτε αερίου σε συνθήκες STP καταλαμβάνει όγκο 22,4 L, κατά συνέπεια V mol =22,4 L) ΑΠΑΝΤΗΣΕΙΣ σε ol ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ) Πόσα ol είναι τα 4,48 L αέριας NH 3 τα οποία μετρήθηκαν σε συνθήκες ST; n= n= 4,48 n= 0, ol ol,4 ( ol οποιουδήποτε αερίου σε συνθήκες ST καταλαμβάνει όγκο,4 L, κατά

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΟΥ ΞΥΛΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ Ι ΙΟΤΗΤΕΣ ΞΥΛΟΥ

ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΟΥ ΞΥΛΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ Ι ΙΟΤΗΤΕΣ ΞΥΛΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ Ι ΙΟΤΗΤΕΣ ΞΥΛΟΥ ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΟΥ ΞΥΛΟΥ ρ. Γεώργιος Μαντάνης Εργαστήριο Επιστήµης Ξύλου Τµήµα Σχεδιασµού & Τεχνολογίας Ξύλου - Επίπλου ΙΑΣΤΟΛΗ - ΣΥΣΤΟΛΗ Όταν θερµαίνεται το ξύλο αυξάνονται

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

Φάσεις μιας καθαρής ουσίας

Φάσεις μιας καθαρής ουσίας Αντικείμενο μαθήματος: ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΚΑΘΑΡΕΣ ΟΥΣΙΕΣ. Διαδικασίες αλλαγής φάσης. P-v, T-v, και P-T διαγράμματα ιδιοτήτων και επιφάνειες P-v-T Καθαρών ουσιών. Υπολογισμός θερμοδυναμικών ιδιοτήτων από πίνακες

Διαβάστε περισσότερα

6. To στοιχείο νάτριο, 11Na, βρίσκεται στην 1η (IA) ομάδα και την 2η περίοδο του Περιοδικού Πίνακα.

6. To στοιχείο νάτριο, 11Na, βρίσκεται στην 1η (IA) ομάδα και την 2η περίοδο του Περιοδικού Πίνακα. Όλα τα Σωστό-Λάθος της τράπεζας θεμάτων για τη Χημεία Α Λυκείου 1. Το ιόν του νατρίου, 11 Νa +, προκύπτει όταν το άτομο του Na προσλαμβάνει ένα ηλεκτρόνιο. 2. Σε 2 mol NH 3 περιέχεται ίσος αριθμός μορίων

Διαβάστε περισσότερα

ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ

ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ Εισαγωγή Τα περισσότερα είδη ινών είναι υγροσκοπικά, έχουν δηλαδή την ιδιότητα να απορροφούν υγρασία (υδρατμούς) όταν η ατμόσφαιρα

Διαβάστε περισσότερα

ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Η καταστατική εξίσωση των ιδανικών αερίων

ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Η καταστατική εξίσωση των ιδανικών αερίων ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Η καταστατική εξίσωση των ιδανικών αερίων Ελένη ανίλη, Χηµικός, Msc., Ph.D Η καταστατική εξίσωση των ιδανικών αερίων 2 Έχεις ποτέ χρησιµοποιήσει τρόµπα για να φουσκώσεις το λάστιχο του

Διαβάστε περισσότερα

Επιλεγμένα θέματα Κλωστοϋφαντουργικής Φυσικής

Επιλεγμένα θέματα Κλωστοϋφαντουργικής Φυσικής ΑΤΕΙ ΠΕΙΡΑΙΑ Τμήμα Φυσικής, Χημείας και Τεχνολογίας Υλικών Επιλεγμένα θέματα Κλωστοϋφαντουργικής Φυσικής για τους σπουδαστές του τμήματος Κλωστοϋφαντουργίας ρ. Ζαχαριάδου Αικατερίνη 1 Επιλεγμένα θέματα

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 1 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ B ΓΥΜΝΑΣΙΟΥ Κυριακή, 17 Απριλίου, 2005 Ώρα: 10:00 12:30 Οδηγίες: 1) Το δοκίµιο αποτελείται από τρία (3) µέρη µε σύνολο δώδεκα (12) θεµάτων. 2) Απαντήστε

Διαβάστε περισσότερα

ΙΑΜΟΡΙΑΚΕΣ ΥΝΑΜΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΠΡΟΣΘΕΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ

ΙΑΜΟΡΙΑΚΕΣ ΥΝΑΜΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΠΡΟΣΘΕΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΙΑΜΟΡΙΑΚΕΣ ΥΝΑΜΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΠΡΟΣΘΕΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ εσµός Υδρογόνου 1) Τι ονοµάζεται δεσµός υδρογόνου; εσµός ή γέφυρα υδρογόνου : είναι µια ειδική περίπτωση διαµοριακού δεσµού διπόλου-διπόλου,

Διαβάστε περισσότερα

Κεφάλαιο 5: Συντελεστής γραμμικής θερμικής διαστολής

Κεφάλαιο 5: Συντελεστής γραμμικής θερμικής διαστολής Κεφάλαιο 5: Συντελεστής γραμμικής θερμικής διαστολής Σύνοψη Προσδιορισμός του συντελεστή θερμικής γραμμικής διαστολής δύο ράβδων από διαφορετικά υλικά. Προαπαιτούμενη γνώση Κεφάλαιο 1. 5.1 Βασικές έννοιες

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ. Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ. Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 06 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α Α.. γ Α.. β Α.3. γ Α.4. γ Α.5. α ΑΠΑΝΤΗΣΕΙΣ Α.6.. Σ. Λ (Σύµφωνα

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΑΕΡΙΩΝ Η εξίσωση που συνδέει την πίεση τον όγκο και την θερμοκρασία ενός ιδανικού αερίου που βρίσκεται σε κατάσταση ισορροπίας ονομάζεται καταστατική εξίσωση αερίου και δίνεται όπως

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ B ΓΥΜΝΑΣΙΟΥ Κυριακή, 17 Μαΐου 2009 Ώρα: 10:00 12:30 Οδηγίες: 1) Το δοκίμιο αποτελείται από οκτώ (8) θέματα. 2) Απαντήστε σε όλα τα θέματα. 3) Επιτρέπεται η χρήση μόνο μη

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ

ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ Θέματα Πανελλ. Εξετάσεων Χημείας Προσανατολισμού Β Λυκείου 1 ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 1984 2004 (Περιέχει όσα από τα θέματα αναφέρονται στην ύλη της

Διαβάστε περισσότερα

Σημειώσεις. Επιλεγμένα θέματα Κλωστοϋφαντουργικής Φυσικής

Σημειώσεις. Επιλεγμένα θέματα Κλωστοϋφαντουργικής Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Τμήμα Φυσικής Χημείας και Τεχνολογίας Υλικών Σημειώσεις για τους σπουδαστές του τμήματος Κλωστοϋφαντουργίας Επιλεγμένα θέματα Κλωστοϋφαντουργικής Φυσικής ΑΘΗΝΑ 2007 Δρ. Ζαχαριάδου Αικατερίνη

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 1: ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΤΑΧΥΤΗΤΑ ΔΙΑΛΥΣΗΣ

Εργαστηριακή άσκηση 1: ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΤΑΧΥΤΗΤΑ ΔΙΑΛΥΣΗΣ ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΣΤΟΧΟΙ Εργαστηριακή άσκηση 1: ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΤΑΧΥΤΗΤΑ ΔΙΑΛΥΣΗΣ Στο τέλος του πειράματος αυτού θα πρέπει να μπορείς : 1. Να αναγνωρίζεις ότι το φαινόμενο της διάλυσης είναι

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:... Αρ...

ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:... Αρ... ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 16/6/2014 Αριθμητικά ΒΑΘΜΟΣ:..... ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες Ολογράφως:...

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 31-10-10 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

β) Ένα αέριο μπορεί να απορροφά θερμότητα και να μην αυξάνεται η γ) Η εσωτερική ενέργεια ενός αερίου είναι ανάλογη της απόλυτης

β) Ένα αέριο μπορεί να απορροφά θερμότητα και να μην αυξάνεται η γ) Η εσωτερική ενέργεια ενός αερίου είναι ανάλογη της απόλυτης Κριτήριο Αξιολόγησης - 26 Ερωτήσεις Θεωρίας Κεφ. 4 ο ΑΡΧΕΣ ΤΗΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ - ΦΥΣΙΚΗ Ομάδας Προσανατολισμού Θετικών Σπουδών Β Λυκείου επιμέλεια ύλης: Γ.Φ.Σ ι ώ ρ η ς ΦΥΣΙΚΟΣ 1. Σε μια αδιαβατική εκτόνωση

Διαβάστε περισσότερα

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6-1 6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6.1. ΙΑ ΟΣΗ ΤΗΣ ΘΕΡΜΟΤΗΤΑΣ Πολλές βιοµηχανικές εφαρµογές των πολυµερών αφορούν τη διάδοση της θερµότητας µέσα από αυτά ή γύρω από αυτά. Πολλά πολυµερή χρησιµοποιούνται

Διαβάστε περισσότερα

Σκουπιδομαζέματα-επιστημοσκορπίσματα

Σκουπιδομαζέματα-επιστημοσκορπίσματα Στη στήλη Σκουπιδομαζέματα επιστημοσκορπίσματα παρουσιάζονται απλά πειράματα και κατασκευές που μπορούν να πραγματοποιηθούν με καθημερινά υλικά και μπορούν να ενταχθούν, κατά την κρίση του διδάσκοντα,

Διαβάστε περισσότερα

Πειραματική διαδικασία:

Πειραματική διαδικασία: 2 ο Γυμνάσιο Κερατσινίου Εργαστήριο Φυσικής Υπεύθυνος: Μηναΐδης Ι. ΟΝΟΜΑΤΕΠΩΝΥΜΟ :.. Β 1 η Εργαστηριακή άσκηση ΤΜΗΜΑ : ΘΕΩΡΙΑ Μάζα (m) είναι η ποσότητα της ύλης που έχει ένα σώμα. Όγκος (V) είναι ο χώρος

Διαβάστε περισσότερα