ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Ι Θέμα ασκήσεως Αρχή μεθόδου Θεωρία

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Ι Θέμα ασκήσεως Αρχή μεθόδου Θεωρία"

Transcript

1 3-1 ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Ι Θέμα ασκήσεως: Προσδιορισμός κανονικού δυναμικού (Ε) ηλεκτροδίου. Προσδιορισμός του θερμικού συντελεστή ( Ε/ Τ) P. Προσδιορισμός του γινομένου διαλυτότητας του Agl. Αρχή μεθόδου: Μετρείται η Ηλεκτρεγερτική Δύναμη (ΗΕΔ) γαλβανικού στοιχείου αποτελουμένου από ηλεκτρόδιο αναφοράς και ηλεκτρόδιο Ag/AgNO 3 σε σειρά διαλυμάτων AgNO 3. Θεωρία : Ως ηλεκτροχημικό στοιχείο ορίζεται ένα ετερογενές σύστημα αγώγιμων φάσεων, σε επαφή η μία με την άλλη, από τις οποίες η μία τουλάχιστον, είναι ηλεκτρολύτης. Εάν το στοιχείο χρησιμοποιείται για την μετατροπή της ελεύθερης ενέργειας, που εμφανίζει το σύστημα κατά την λειτουργία του, σε ηλεκτρική, τότε ονομάζεται γαλβανικό στοιχείο. Ως δυναμικό ηλεκτροδίου ορίζεται η διαφορά δυναμικού που παρατηρείται μεταξύ του μετάλλου του ηλεκτροδίου και του διαλύματος με το οποίο βρίσκεται σε ισορροπία. Για να μελετηθεί ένα γαλβανικό στοιχείο πρέπει να ορισθεί η πολικότητα και να είναι γνωστή η χημική αντίδραση λειτουργίας του. Οταν ορισθεί ο αρνητικός (άνοδος) και ο θετικός (κάθοδος) πόλος του στοιχείου είναι εύκολο να γραφούν οι αντιδράσεις των ηλεκτροδίων και η τελική αντίδραση λειτουργίας του η οποία αποτελεί, την αντίδραση αυθορμήτου λειτουργίας. (Σημειώνεται ότι η «εξαναγκασμένη» και κατά την αντίθετη φορά, αντίδραση του στοιχείου, γίνεται στο πείραμα της ηλεκτρολύσεως). Γενικά σε κάθε στοιχείο ισχύει: πόλος αποφόρτιση (γαλβανικό στοιχειο) φόρτιση (ηλεκτρολυτικό στοιχειο) (αυθόρμητη λειτουργία) (εξαναγκασμένη λειτουργία) θετικός κάθοδος άνοδος αρνητικός άνοδος κάθοδος Η αντίδραση του στοιχείου γίνεται αυθόρμητα όταν τα ηλεκτρόδια συνδεθούν εξωτερικά, όμως πρέπει αυτό να έχει σχεδιασθεί έτσι ώστε να εμποδίζεται η απ' ευθείας χημική αντίδραση των συστατικών που συμμετέχουν. Ετσι τα ηλεκτρόδια είτε βρίσκονται σε χωριστά δοχεία και η επαφή γίνεται με ηλεκτρολυτικό σύνδεσμο, είτε χωρίζονται από πορώδες διάφραγμα κλπ. Κατά την μέτρηση της ΗΕΔ ενός στοιχείου πρέπει ο τρόπος μετρήσεως να μην προκαλεί σημαντική απομάκρυνση από την ισορροπία, ώστε να μπορεί να θεωρηθεί η λειτουργία του αντιστρεπτή. Η χρησιμοποίηση του ποτενσιόμετρου εξασφαλίζει την προϋπόθεση αυτή. Η έννοια της αντιστρεπτότητας προϋποθέτει ότι κάθε χημική αντίδραση που καθορίζει τη λειτουργία ενός γαλβανικού στοιχείου, μπορεί να γίνει κατά τις δύο κατευθύνσεις, ανάλογα με τη φορά του διερχομένου ρεύματος, στο δε σημείο ισορροπίας η κινούσα δύναμη της αντιδράσεως εξισορροπείται από την αντισταθμίζουσα ΗΕΔ του ποτενσιομέτρου. Το σύστημα επομένως κατά την μέτρηση της ΗΕΔ του με ποτενσιόμετρο κρατείται σε μία κατάσταση δυναμικής ισορροπίας. Αυτός ο τρόπος μέτρησης της ΗΕΔ, καθορίζει την αντιστρεπτή ΗΕΔ του στοιχείου (E). Εφ' όσον το ρεύμα περνά μέσα από το στοιχείο υπό αντιστρεπτές συνθήκες τότε και το ηλεκτρικό έργο (w el ) που εμφανίζεται, είναι αντιστρεπτό. Εάν μεταφέρεται μέσω του στοιχείου φορτίο ίσο με z oulombs, θα ισχύει ότι ze = w el (1) Το ηλεκτρικό αυτό έργο, ισούται με την ελάττωση της ελεύθερης ενθαλπίας η οποία αφορά την χημική αντίδραση του στοιχείου και πρόκειται περί του μεγίστου έργου που μπορεί να αποδόσει το σύστημα. ΔG = w el (2) Κατά τη διέλευση ηλεκτρικού ρεύματος από ένα γαλβανικό στοιχείο, στα ηλεκτρόδια γίνονται συγχρόνως οι αντιδράσεις οξειδώσεως (στην άνοδο) και αναγωγής

2 3-2 (στην κάθοδο). Η ηλεκτρεγερτική δύναμη ενός στοιχείου προσδιορίζεται από τη διαφορά των δυναμικών των ηλεκτροδίων που το αποτελούν αφαιρώντας, από την τιμή του δυναμικού του ηλεκτροδίου που είναι δεξιά τοποθετημένο, την αντίστοιχη τιμή του ηλεκτροδίου που βρίσκεται αριστερά. Τα ηλεκτροχημικά στοιχεία παριστάνονται, κατά παραδοχή, με καθορισμένο τρόπο γραφής, όπου τα μεταλλικά ηλεκτρόδια τοποθετούνται στα άκρα, τα δυσδιάλυτα άλατα και τα αέρια δίπλα στις μεταλλικές φάσεις και στη μέση του διαγράμματος γράφονται οι ευδιάλυτες φάσεις. Κάθε διαχωριστική επιφάνεια χωρίζεται από την άλλη με κάθετο όπως φαίνεται στις περιπτώσεις (α) και (β). (α) Zn ZnSO 4 uso 4 u (β) Ag Agl, Kl el 2, el 3 Pt Για να μελετηθεί ένα γαλβανικό στοιχείο, ακολουθείται η εξής πορεία: (i) Προσδιορίζεται η αριθμητική τιμή της ΗΕΔ και η πολικότητα. (Οι εργασίες αυτές γίνονται με την χρήση του ποτενσιόμετρου) (ii) Παριστάνεται το στοιχείο σε ευθεία γραμμή με το θετικό πόλο δεξιά. (iii) Γράφεται η αντίδραση κάθε ηλεκτροδίου έχοντας υπ' όψιν ότι στο αρνητικό ηλεκτρόδιο (άνοδος) γίνεται οξείδωση και στο θετικό (κάθοδος) αναγωγή. (iv) Ορίζεται η ΗΕΔ του στοιχείου (E ), ως η διαφορά των δυναμικών, του δεξιού ηλεκτροδίου (Ε R ) μείον αυτήν του αριστερού (Ε L ), Ε = E R E L. (v) Γράφεται η τελική αντίδραση ως άθροισμα των δύο ημιαντιδράσεων. Σημειώνεται επίσης και άλλος τρόπος υπολογισμού της αντιδράσεως ενός στοιχείου κατά τον οποίο γράφονται και οι δύο ημιαντιδράσεις ως αντιδράσεις αναγωγής, οπότε η τελική αντίδραση λειτουργίας του γαλβανικού στοιχείου θα προκύψει ως διαφορά των δύο ημιαντιδράσεων σύμφωνα με την σύμβαση της παραγράφου (iv). Παράδειγμα I : Να σχηματισθεί και να μελετηθεί το γαλβανικό στοιχείο που αποτελείται από τα ηλεκτρόδια Ag Agl, l και Zn ZnSO 4. Η ενεργότης του διαλύματος είναι ίση με 1. Απάντηση: Μετρείται η ΗΕΔ του γαλβανικού στοιχείου και βρίσκεται, ότι ισούται με V, ενώ παρατηρείται ότι αρνητικός πόλος είναι το ηλεκτρόδιο του ψευδαργύρου. Το στοιχείο γράφεται επομένως σύμφωνα με το σχήμα Zn ZnSO 4 l, Agl Ag (Α) Α Τρόπος Οι ημιαντιδράσεις θα είναι οι εξής: αριστερά (οξείδωση): Ζn Ζn 2 + 2e δεξιά (αναγωγή): 2 Agl + 2e 2 Ag + 2 l οπότε η αυθόρμητη αντίδραση του στοιχείου είναι το άθροισμα Zn + 2 Agl 2 Ag + Znl 2 Β Τρόπος Ακολουθώντας τον άλλο τρόπο επεξεργασίας θεωρούμε αντιδράσεις αναγωγής και για τα δύο ηλεκτρόδια και αφαιρούμε την αντίδραση του αριστερού ηλεκτροδίου από αυτήν του δεξιού. Το αποτέλεσμα θα είναι το ίδιο όπως φαίνεται και στο παράδειγμα. Αριστερά: Zn e Zn Δεξιά: 2 Agl + 2e 2Ag + 2l οπότε η αυθόρμητη αντίδραση θα είναι Zn + 2 Agl 2 Ag + Znl 2 Παρατήρηση: Τα δυναμικά είναι όλα κανονικά εφ όσον ισχύει η ειδική περίπτωση ότι α = 1 και για τούτο παριστάνονται με αστερίσκο. Κανονικό δυναμικό ηλεκτροδίου. Είναι αυτονόητο ότι δεν υπάρχει τρόπος να μετρηθεί το δυναμικό ενός μόνο ηλεκτροδίου. Η μέθοδος που εφαρμόζεται είναι η χρησιμοποίηση ενός ηλεκτροδίου ως ηλεκτρόδιο αναφοράς, με συμβατικά προκαθορισμένη τιμή, και η μέτρηση της ΗΕΔ στοιχείων που αποτελούνται από το ηλεκτρόδιο αναφοράς και το προς μέτρηση ηλεκτρόδιο. Ως ηλεκτρόδιο αναφοράς έχει ληφθεί το ηλεκτρόδιο υδρογόνου. Στο ηλεκτρόδιο αυτό η ΗΕΔ εκ παραδοχής ισούται με μηδέν, επομένως η όποια αριθμητική τιμή προκύπτει στο στοιχείο που σχηματίζεται, με το προς μέτρηση ηλεκτρόδιο (με ενεργότητα του ηλεκτρολυτικού διαλύματος ίση με 1) αυτή είναι και η τιμή του δυναμικού του ηλεκτροδίου το οποίο ονομάζεται κανονικό δυναμικό (Ε). Κατά τον σχηματισμό ενός γαλβανικού στοιχείου, για την αυθόρμητη λειτουργία του, το ηλεκτρόδιο υδρογόνου μπορεί να είναι είτε το δεξί, είτε το αριστερό ανάλογα με

3 3-3 την αναγωγική ή οξειδωτική τάση του άλλου ηλεκτροδίου. Στον Πίνακα 1 δίνονται οι τιμές των κανονικών δυναμικών. Οι τιμές αυτές αποτελούν τα κανονικά δυναμικά αναγωγής. Σύμφωνα με την παραδοχή που έχει υιοθετηθεί από την IUPA οι ημιαντιδράσεις σημειώνονται πάντα ως αντιδράσεις αναγωγής. Η διατύπωση αυτή προϋποθέτει ότι η τιμή Ε του ηλεκτροδίου, είναι η ΗΕΔ ενός στοιχείου, στο οποίο κάθοδος (δεξιά) είναι το αναφερόμενο ηλεκτρόδιο και άνοδος (αριστερά) το ηλεκτρόδιο υδρογόνου. Πίνακας 1. Κανονικά δυναμικά ηλεκτροδίων Ηλεκτρόδιο Αντίδραση ηλεκτροδίου E (V) Li Li + Li + + e Li Pt a a(oh) 2 OH a(oh) 2 + 2e 2OH + a 3.03 K K + K + + e K s s + s + + e s Ba Ba 2+ Ba e Ba 2.90 a a 2+ a e a 2.87 Na Na + Na + + e Na Mg Mg 2+ Mg e Mg 2.37 Al Al 3+ Al e Al 1.66 Pt H 2 PO 2, HPO 2 3, OH HPO H 2 O + 2e H 2 PO 2 + 3OH 1.65 Zn ZnO 2-2, OH ZnO 2 + 2H e Zn + 4OH Pt SO 2 3, SO 2 4, OH - SO H 2 O + 2e SO OH 0.93 Pt H 2, OH 2H 2 O + 2e H 2 + 2OH Zn Zn 2+ Zn e Zn Ni Ni(OH) 2 OH Ni(OH) 2 + 2e Ni + 2OH Pb PbO 3 O 3 PbO 3 + 2e 2 Pb + O e e 2+ e e e d d 2+ d e d Sn Sn 2+ Sn e Sn Pb Pb 2+ Pb e Pb e e 3+ e e e Pt D 2, D + 2D + + 2e D Pt H 2, H + 2H + + 2e H Pt Sn 2+, Sn 4+ Sn e Sn Pt u +, u 2+ u 2+ + e u Pt S 2 O 2 2 3, S 4 O 6 S 4 O e 2 S 2 O u u 2+ u e u Pt I 2 I I 2 + 2e 2I Pt e(n) 4 3 6, e(n) 6 e(n) e 4 e(n) Pt e 2+, e 3+ e 3+ + e e Ag Ag + Ag + + e Ag Hg Hg 2+ Hg e Hg Pt OH, HO 2 HO 2 + H 2 O + 2e 3OH Pt Hg 2+ 2, Hg 2+ 2Hg e 2+ Hg Pt Br 2, Br Br 2 + 2e 2Br Pt MnO 2 Mn 2+, H + MnO 2 + 4H + + 2e Mn H 2 O Pt r 3+, r 2 O 7, H + r 2 O H + + 6e 2r H 2 O Pt l 2, l l 2 + 2e Pt e 3+, e 4+ e 4+ + e e Pt o 2+, o 3+ o 3+ + e o Pt SO 2 2 4, S 2 O 8 S 2 O e 2 2SO Στην πράξη δεν χρησιμοποιείται το ηλεκτρόδιο υδρογόνου ως ηλεκτρόδιο αναφοράς διότι είναι εξαιρετικά δύσχρηστο. Αντί αυτού χρησιμοποιούνται είτε το

4 3-4 ηλεκτρόδιο καλομέλανος Hg Hg 2 l 2, Kl (m=x), είτε το ηλεκτρόδιο αργύρου χλωριούχου αργύρου, Ag Agl, Kl (m=x). Η ΗΕΔ των ηλεκτροδίων αυτών για καθορισμένη τιμή συγκεντρώσεως Κl (Χ), παρέχεται από πίνακες. Θερμοδυναμική των γαλβανικών στοιχείων. Η ΗΕΔ που μετρείται σε ένα γαλβανικό στοιχείο αντιστοιχεί με το έργο που αφορά την χημική αντίδραση που προκύπτει κατά την λειτουργία του στοιχείου. Εφ' όσον η πίεση και η θερμοκρασία είναι σταθερές, τότε πρόκειται για το μέγιστο έργο (εξ.2) και είναι ίσο με την ελάττωση της ελεύθερης ενθαλπίας. ΔG = ze (3) Παράδειγμα II: Στο γαλβανικό στοιχείο Pt, H 2 (1 bar) H + (α = 1) u 2+ (α = 1) u όπου η ΗΕΔ είναι Ε = V, η συνολική αντίδραση λειτουργίας του στοιχείου είναι H 2 + u 2+ 2H + + u Οταν αντιδρούν από 1 mol υδρογόνου και χαλκού, περνούν 2 mol ηλεκτρονίων από το κύκλωμα, άρα μεταφέρονται ηλεκτρισμού. Το παραγόμενο από το σύστημα έργο είναι V = J και ΔG = J. Οι τιμές αυτές αντιστοιχούν σε στοιχείο όπου οι ενεργότητες είναι ίσες με 1. Ακριβώς οι ίδιοι συλλογισμοί ισχύουν προφανώς και για στοιχείο με τυχαία τιμή m. Η αντιστοιχία μονάδων γίνεται σαφής χρησιμοποιώντας το σύστημα SI. Από τα προηγούμενα είναι προφανές ότι θετική τιμή της ΗΕΔ σημαίνει αυθόρμητη λειτουργία του γαλβανικού στοιχείου. Μία χημική αντίδραση της μορφής aa + bb c + dd (4) συνδέεται με την ελεύθερη ενθαλπία ως εξής: Το χημικό δυναμικό κάθε συστατικού δίνεται από την εξίσωση i i RTlnai (5) όπου τα μ i χημικά δυναμικά των ειδών που συμμετέχουν στην αντίδραση και μ i είναι το χημικό δυναμικό του κάθε συστατικού i σε καθαρή κατάσταση. Η ελεύθερη ενθαλπία της αντιδράσεως θα δίνεται ως r G (6) i1 i όπου ν i οι στοιχειομετρικοί συντελεστές. Η ελεύθερη ενθαλπία (ΔG) της αντιδράσεως προκύπτει από τις εξισώσεις 5 και 6, ως ΔG = ΔG +RT lnq (7) Ως Q ορίζεται ο λόγος του γινομένου των ενεργοτήτων των προϊόντων, προς το γινόμενο των ενεργοτήτων των αντιδρώντων και αφορά καταστάσεις πριν την ισορροπία. Η τιμή της Q στη θέση ισορροπίας ταυτίζεται με την θερμοδυναμική σταθερά ισορροπίας (K). Στη θέση ισορροπίας ισχύει ότι ΔG = 0 οπότε προκύπτει ότι: ΔG= RT ln K (8) Από τον συνδυασμό των εξισώσεων (3) και (7) προκύπτει η εξίσωση Nernst c d RT a ln ad E E a b z a a (9) η οποία είναι μία από τις βασικές εξισώσεις της ηλεκτροχημείας. Η εξίσωση αυτή εκφράζει την εξάρτηση του δυναμικού ενός ηλεκτροδίου που βρίσκεται σε επαφή με ιοντικό διάλυμα, από την συγκέντρωση (ή ακριβέστερα την ενεργότητα) των ιόντων αυτών. i A B

5 3-5 Παράδειγμα III (εφαρμογή της εξισώσεως 9): Στο στοιχείο Zn Zn 2+ u 2+ u η συνολική αντίδραση είναι Zn +u 2+ Zn 2+ + u και η εξίσωση Nernst θα εκφράζεται RT a 2 ln Zn E E 2 a Οταν οι συγκεντρώσεις όλων των συστατικών ισούνται με την μονάδα, τότε από την εξ. 3 G E z και παρατηρούμε ότι το κανονικό δυναμικό συνδέεται με την θερμοδυναμική σταθερά της αντιδράσεως του στοιχείου, σύμφωνα με την σχέση RT E ln K (10) z Εξάρτηση της ΗΕΔ από την θερμοκρασία. Εφ'όσον η λειτουργία κάθε στοιχείου είναι συνδεδεμένη με κάποια χημική αντίδραση, μπορούν να εξαχθούν συμπεράσματα που αφορούν την θερμοδυναμική της αντιδράσεως αυτής παρατηρώντας την επίδραση της πιέσεως και της θερμοκρασίας στην τιμή της ΗΕΔ του στοιχείου. Η προϋπόθεση που τίθεται είναι ότι η αντίδραση πρέπει να είναι αντιστρεπτή υπό Ρ και Τ σταθερά. Σύμφωνα με τα προηγούμενα η αντίδραση του στοιχείου αντιστοιχεί στη μεταβολή της ελεύθερης ενθαλπίας που αποδίδεται ως ηλεκτρικό έργο ΔG = w ε1 = ze (11) Από τη σχέση αυτή είναι δυνατός ο προσδιορισμός των ΔH και ΔS της αντιδράσεως του στοιχείου αρκεί να έχουν γίνει μετρήσεις της ΗΕΔ σε διάφορες θερμοκρασίες. Από τη βασική σχέση G S (12) T η οποία για τη συνολική αντίδραση του στοιχείου γίνεται G S (13) T P βάσει της εξισώσεως ΔG = ze, οδηγεί στην G E S z (14) T P T P Η μεταβολή της ενθαλπίας είναι ΔH = ΔG + TΔS οπότε από τις εξ. 11 και 13, προκύπτει ότι E H z ET T (15) P E Η παράγωγος αποτελεί τον θερμικό συντελεστή της ΗΕΔ του στοιχείου. T P Από την προηγούμενη επεξεργασία προκύπτει ότι από μετρήσεις της ΗΕΔ ενός στοιχείου είναι δυνατός ο υπολογισμός των θερμοδυναμικών ιδιοτήτων της αντιδράσεως του στοιχείου αυτού. (ΣΗΜ: Η μέθοδος αυτή χρησιμοποιείται συχνά αλλά για να είναι αξιόπιστα τα αποτελέσματα πρέπει ο θερμικός συντελεστής να είναι γνωστός με τρία δεκαδικά ψηφία, κάτι που προϋποθέτει πολύ προσεκτικές μετρήσεις θερμοκρασίας και ΗΕΔ). P 2 u

6 3-6 Παράδειγμα III: Η ΗΕΔ του στοιχείου Pt, H 2 (1 bar) Hl (0.01 m) Agl Ag είναι V σε 25, ο δε θερμικός συντελεστής είναι V K 1. Να υπολογισθούν τα μεγέθη ΔG, ΔS, ΔH σε 25 Απάντηση: ΔG = = J mol 1 ΔS = ( ) = JK 1 mol 1 η ΔH μπορεί να υπολογισθεί από την εξ. 14, ή ευκολώτερα από την ΔH = ΔG + TΔS = ( ) = J mol 1 Ηλεκτρόδια αναφοράς. Τα περισσότερο χρησιμοποιούμενα ηλεκτρόδια αναφοράς είναι το ηλεκτρόδιο καλομέλανος και το ηλεκτρόδιο αργύρου-χλωριούχου αργύρου. Ηλεκτρόδιο καλομέλανος Η αντίδραση του ηλεκτροδίου είναι Hg 2 l 2 Hg l (i) Hg 2+ +2e Ηg (ii) Και το δυναμικό του δίνεται από την εξίσωση RT Ecal Ecal ln al (16) Όπου RT Ecal E 2 Hg,Hg ln Ksp 2 2 (17) Οι τιμές του κορεσμένου ηλεκτροδίου καλομέλανος, ως συνάρτηση της θερμοκρασίας δίνονται από την εξίσωση E cal = (θ 25 ) V (18) Ηλεκτρόδιο αργύρου-χλωριούχου αργύρου. Η αντίδραση του ηλεκτροδίου είναι Agl Ag + + l Ag + + e Ag το δυναμικό δίνεται από την εξίσωση RT EAg,Agl EAg,Agl ln al (19) RT όπου EAg,Agl E ln K Ag,Ag sp (20) Οι τιμές της ΗΕΔ του ηλεκτροδίου αργύρου-χλωριούχου αργύρου ως συνάρτηση της θερμοκρασίας δίνεται από την εξίσωση 4 EAg,Agl,Kl V (21) Προσδιορισμός κανονικού δυναμικού ηλεκτροδίου. Σχηματίζεται ένα γαλβανικό στοιχείο αποτελούμενο από ένα ηλεκτρόδιο μετρήσεως και ένα ηλεκτρόδιο αναφοράς. Εάν ζητείται το κανονικό δυναμικό του ηλεκτροδίου Ag/AgNO 3 χρησιμοποιώντας ηλεκτρόδιο καλομέλανος ως αναφοράς, θα ακολουθηθεί η εξής πορεία: Το γαλβανικό στοιχείο έχει την μορφή Hg Hg 2 l 2, Kl (κορ) AgNO 3, Ag (γράφοντας τον αρνητικό πόλο αριστερά και τον θετικό δεξιά). Αντίστοιχη είναι η επεξεργασία προκειμένου να χρησιμοποιηθεί το ηλεκτρόδιο αργύρου-χλωριούχου αργύρου. ΠΑΡΑΤΗΡΗΣΗ. Το ηλεκτρόδιο αναφοράς Hg Hg 2 l 2 είναι αντιστρεπτό ως προς τα ιόντα l, ενώ το ηλεκτρόδιο μετρήσεως, Ag AgNO 3 (m), είναι αντιστρεπτό ως προς τα ιόντα αργύρου, από των οποίων την συγκέντρωση και επηρεάζεται-σύμφωνα με την εξίσωση Nernst.

7 3-7 Η ΗΕΔ του στοιχείου δίνεται από την σχέση: ή όπου και θεωρώντας α = ή E E E E E (22) R L Ag/Ag cal RT E E Ag,Ag ln a E Ag cal (23) RT E E ln aag (24) E E E (24α) Ag,Ag Η γραφική παράσταση f Ag cal RT E E ln Ag (25) 2.303RT E E log Ag (25α) E log (εξ. 25α) δίνει την τιμή του κανονικού δυναμικού E ως τεταγμένη επί την αρχή. Θεωρώντας την εξίσωση (24α) για τα κανονικά δυναμικά, προκύπτει το κανονικό δυναμικό του ηλεκτροδίου ως το άθροισμα E E E. cal Ag,Ag Πείραμα Α. Προσδιορισμός της τιμής του κανονικού δυναμικού ηλεκτροδίου Ag, AgNO 3 Το γαλβανικό στοιχείο έχει τη μορφή Hg Hg 2 l 2, Kl (κορ) AgNO 3 Ag. Για την μέτρηση χρησιμοποιείται και γέφυρα άλατος. Από το διάλυμα AgNO M που υπάρχει στη θέση σας παρασκευάζονται σε ογκομετρικές των 100 ml οι συγκεντρώσεις 0.01, 0.03, 0.003, M. Κάθε διάλυμα παρασκευάζεται στην ογκομετρική των 100 ml, αδειάζεται σε κωνική και καλύπτεται με μεμβράνη. Σε κωνική τοποθετείται επίσης ποσότης του αρχικού διαλύματος 0.1 Μ. Οι πέντε κωνικές τοποθετούνται σε θερμοστάτη και παραμένουν τουλάχιστον για 10 min. Στον θερμοστάτη τοποθετείται επίσης και το δοχείο μετρήσεως καθώς και το δοχείο με το ηλεκτρόδιο αναφοράς. Τα διαλύματα αρχίζουν να τοποθετούνται στο στοιχείο για την μέτρηση, αρχίζοντας από το αραιότερο. Κατά την στιγμή της μετρήσεως και όχι πιο πρίν, τοποθετείται η γέφυρα άλατος. Λαμβάνεται μία ένδειξη στο ποτενσιόμετρο η οποία αποτελεί και την ΗΕΔ του στοιχείου στη δεδομένη συγκέντρωση και θερμοκρασία. Το ίδιο επαναλαμβάνεται για όλα τα διαλύματα. Ακολουθούν άλλες δύο σειρές μετρήσεων σε διαφορετικές θερμοκρασίες (οι οποίες καθορίζονται από τον υπεύθυνο) κατά την ίδια διαδικασία. Πείραμα Β. Προσδιορισμός του γινομένου διαλυτότητος του Agl. Το γαλβανικό στοιχείο είναι το ίδιο με αυτό του πειράματος Α. Στο πείραμα αυτό δεν χρειάζεται θερμοστάτηση αλλά οι μετρήσεις γίνονται στη θερμοκρασία περιβάλλοντος η οποία όμως πρέπει να σημειώνεται κατά την στιγμή των μετρήσεων με θερμόμετρο εμβαπτιζόμενο στο δοχείο μετρήσεως. Τα διαλύματα που χρησιμοποιούνται είναι 0.1 M Kl και 0.01 M AgNO 3. Σε ποτήρι ζέσεως 100 ml τοποθετούνται με σιφώνιο 50 ml διαλύματος 0.01 M AgNO 3 και το ποτήρι τοποθετείται σε αναδευτήρα. Γεμίζεται προχοΐδα με 25 ml διαλύματος 0.1 M Kl. Τοποθετούνται τα ηλεκτρόδια στο διάλυμα και τίθεται σε λειτουργία ο αναδευτήρας. Λαμβάνεται αρχικά η μέτρηση στο διάλυμα 0.01 M και προστίθεται από την προχοΐδα το Kl στις εξής ποσότητες: Ενδείξεις προχοΐδας: 1.0, 2.0, 3.0, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 7.0, 8.0,

8 , 12.0, 15.0, Μετά από κάθε προσθήκη λαμβάνεται μέτρηση στο ποτενσιόμετρο. Υπολογισμοί - αποτελέσματα. Πείραμα Α. 1. Αναφέρεται το γαλβανικό στοιχείο που χρησιμοποιήθηκε. Παρατηρείται η πολικότητα από την πειραματική εργασία και γράφονται οι ημιαντιδράσεις καθώς και η συνολική αντίδραση που αφορά την αυθόρμητη λειτουργία του στοιχείου. 2. Αναφέρεται η εξίσωση Nernst για την περίπτωση του πειράματος. 3. Συμπληρώνεται ο πίνακας Ι με τις μετρήσεις και σχεδιάζονται οι γραφικές παραστάσεις E f log για κάθε θερμοκρασία. Ag 4. Από τις γραφικές παραστάσεις προσδιορίζονται οι ποσότητες E και τις κλίσεις για κάθε θερμοκρασία σύμφωνα με την εξ. (25α) και τοποθετούνται στον Πίνακα ΙΙ. Συγκρίνονται οι κλίσεις των ευθειών με τις θεωρητικές τιμές 2.303RT/. 5. Υπολογίζονται οι τιμές E από την εξίσωση (24α) με την βοήθεια της (18) για κάθε Ag,Ag θερμοκρασία, τοποθετούνται στον πίνακα ΙΙ και απεικονίζονται σε διάγραμμα, απ όπου εκτιμάται η τιμή του E σε θερμοκρασία 25 η οποία συγκρίνεται με την αντίστοιχη Ag,Ag τιμή του πίνακα Με τις τιμές E του ερωτήματος 4 σχεδιάζεται η E = f(t) και υπολογίζεται ο θερμικός συντελεστής. 7. Από τις εξισώσεις 11, 14 και 15 υπολογίζονται οι τιμές ΔG, ΔH, ΔS για όλες τις θερμοκρασίες και αναφέρεται η μεταβολή της καταστάσεως την οποία αφορούν τα μεγέθη αυτά. (Αυτή καθορίζεται από τον αριθμό των e που μετέχουν στην αντίδραση του στοιχείου). Οι τιμές τοποθετούνται στον πίνακα ΙΙΙ. Πίνακας Ι θ 1 = θ 2 = θ 3 = AgNO3 (mol/l) E (mv) E (mv) E (mv) log Ag Πίνακας II θ E ( ) (mv) κλίσεις 2.303RT/ (mv) EAg,Ag (mv) ΔG (kj mol 1 ) ΔH (kj mol 1 ) ΔS (J K 1 mol 1 )

9 3-9 Πείραμα Β. 1. Οι τιμές που ελήφθησαν κατά την τιτλοδότηση τοποθετούνται στον πίνακα (III). 2. Σχεδιάζεται η γραφική παράσταση E = f(v Kl ) και προσδιορίζεται γραφικά το ισοδύναμο σημείο V e V V e l V 3. Υπολογίζεται η συγκέντρωση των ιόντων l ( l ), από τον τύπο για μετρήσεις μετά το ισοδύναμο σημείο. 4. Υπολογίζεται η συγκέντρωση των ιόντων Ag + από την εξίσωση Nernst (25α) για κάθε πειραματική τιμή E μετά το ισοδύναμο σημείο. Η τιμή E για την θερμοκρασία του πειράματος λαμβάνεται από την καμπύλη του ερωτήματος 5 του πειράματος Α. 5. Υπολογίζεται η τιμή της σταθεράς του γινομένου διαλυτότητος K sp του χλωριούχου αργύρου (από τις τιμές των ερωτημάτων 3 και 4), για όλες τις μετρήσεις, μετά το ισοδύναμο V e. Πίνακας V Kl (ml) ΙΙΙ E (mv) l (mol/l) Ag + (mol/l) K sp

πόλος αποφόρτιση (γαλβανικό στοιχ.) φόρτιση (ηλεκτρολυτικό στοιχ.) (αυθόρµητη λειτουργία) (εξαναγκασµένη λειτουργία zfe c = w el (1) 7-1

πόλος αποφόρτιση (γαλβανικό στοιχ.) φόρτιση (ηλεκτρολυτικό στοιχ.) (αυθόρµητη λειτουργία) (εξαναγκασµένη λειτουργία zfe c = w el (1) 7-1 ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Θέµα ασκήσεως Προσδιορισµός κανονικού δυναµικού (Ε) ηλεκτροδίου (ξίσωση Nernst). Αυθόρµητη αντίδραση στοιχείου. Σύνδεση δυναµικού γαλβανικού στοιχείου µε θερµοδυναµικά µεγέθη (Υπολογισµός

Διαβάστε περισσότερα

ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ II

ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ II 4-1 ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ II Θέμα ασκήσεως: Ποτενσιομετρική τιτλοδότηση, προσδιορισμός κανονικού δυναμικού ηλεκτροδίου, πειραματική επαλήθευση της εξισώσεως Nernst. Αρχή μεθόδου: Μετρείται η ΗΕΔ γαλβανικού

Διαβάστε περισσότερα

ΓΑΛΒΑΝΙΚΑ ΚΑΙ ΗΛΕΚΤΡΟΛΥΤΙΚΑ ΚΕΛΙΑ

ΓΑΛΒΑΝΙΚΑ ΚΑΙ ΗΛΕΚΤΡΟΛΥΤΙΚΑ ΚΕΛΙΑ ΓΑΛΒΑΝΙΚΑ ΚΑΙ ΗΛΕΚΤΡΟΛΥΤΙΚΑ ΚΕΛΙΑ Σκοπός Εργαστηριακής Άσκησης Η κατανόηση του μηχανισμού λειτουργίας των γαλβανικών και ηλεκτρολυτικών κελιών καθώς και των εφαρμογών τους. Θεωρητικό Μέρος Όταν φέρουμε

Διαβάστε περισσότερα

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚΕΣ ΟΓΚΟΜΕΤΡΗΣΕΙΣ

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚΕΣ ΟΓΚΟΜΕΤΡΗΣΕΙΣ ΟΞΕΙΔΟΑΝΑΓΩΓΙΚΕΣ ΟΓΚΟΜΕΤΡΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΤΜΗΜΑ ΒΙΟΧΗΜΕΙΑΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ Γαλβανικά στοιχεία-στοιχείο Daniel Zn (s) + Cu +2 (aq) Zn +2 + Cu (s) Zn(s) Zn +2 (aq) + 2e - (ημιαντίδραση οξείδωσης)

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΧΗΜΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ

ΗΛΕΚΤΡΟΧΗΜΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΒΙΟΧΗΜΕΙΑΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΧΗΜΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΠΟΤΕΝΣΙΟΜΕΤΡΙΑ ΠΟΤΕΝΣΙΟΜΕΤΡΙΑ Με τον όρο ποτενσιομετρία περιγράφεται ένα σύνολο ηλεκτροχημικών τεχνικών ανάλυσης,

Διαβάστε περισσότερα

ΟΞΕΙΔΟΑΝΑΓΩΓΗ - ΗΛΕΚΤΡΟΧΗΜΕΙΑ. Χρήστος Παππάς Επίκουρος Καθηγητής

ΟΞΕΙΔΟΑΝΑΓΩΓΗ - ΗΛΕΚΤΡΟΧΗΜΕΙΑ. Χρήστος Παππάς Επίκουρος Καθηγητής - ΗΛΕΚΤΡΟΧΗΜΕΙΑ Χρήστος Παππάς Επίκουρος Καθηγητής 1 Οξείδωση ονομάζεται η αύξηση του αριθμού οξείδωσης. Κατά τη διάρκεια της οξείδωσης αποβάλλονται ηλεκτρόνια. Αναγωγή ονομάζεται η μείωση του αριθμού

Διαβάστε περισσότερα

Ag + (aq) /Ag (s). H ημιαντίδραση αναγωγής και η. Ag (s)

Ag + (aq) /Ag (s). H ημιαντίδραση αναγωγής και η. Ag (s) ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤOΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΠΕΙΡΑΜΑ 4 ΗΛΕΚΤΡΟΧΗΜΕΙΑΣ (HX4) ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ Τίτλος Πειράματος: ΝΟΜΟΣ ΤΟΥ

Διαβάστε περισσότερα

l R= ρ Σε ηλεκτρικό αγωγό µήκους l και διατοµής A η αντίσταση δίνεται από την εξίσωση: (1)

l R= ρ Σε ηλεκτρικό αγωγό µήκους l και διατοµής A η αντίσταση δίνεται από την εξίσωση: (1) ΑΓΩΓΙΜΟΤΗΤΑ ΗΕΚΤΡΟΥΤΩΝ Θέµα ασκήσεως Μελέτη της µεταβολής της αγωγιµότητας ισχυρού και ασθενούς ηλεκτρολύτη µε την συγκέντρωση, προσδιορισµός της µοριακής αγωγιµότητας σε άπειρη αραίωση ισχυρού οξέος,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 3-4 (Α. Χημική Θερμοδυναμική) η Άσκηση mol ιδανικού αερίου με c.88 J mol - K - και c p 9. J mol - K - βρίσκονται σε αρχική πίεση p =.3 kpa και θερμοκρασία Τ =

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. OFF V/dc. A/ac A/dc V/Ω + γέφυρα άλατος. κίνηση κατιόντων.

Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. OFF V/dc. A/ac A/dc V/Ω + γέφυρα άλατος. κίνηση κατιόντων. Σημειώσεις για το μάθημα Φυσική Χημεία ΙΙ Ηλεκτροχημικά στοιχεία Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. m OFF V/dc V/ac Ω Ω A/ac A/dc V/Ω A com I e e- - I γέφυρα άλατος Cu(s) κίνηση κατιόντων - Zn(s)

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ ΠΕΧΑΜΕΤΡΙΑ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ ΠΕΧΑΜΕΤΡΙΑ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ ΠΕΧΑΜΕΤΡΙΑ Ιωάννης Πούλιος Αθανάσιος Κούρας Ευαγγελία Μανώλη ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 54124 ΘΕΣΣΑΛΟΝΙΚΗ

Διαβάστε περισσότερα

Άσκηση. Ισχυρό οξύ: Η 2 SeO 4 Ασθενές οξύ: (CH 3 ) 2 CHCOOH Ισχυρή βάση: KOH Ασθενής βάση: (CH 3 ) 2 CHNH 2

Άσκηση. Ισχυρό οξύ: Η 2 SeO 4 Ασθενές οξύ: (CH 3 ) 2 CHCOOH Ισχυρή βάση: KOH Ασθενής βάση: (CH 3 ) 2 CHNH 2 Ασκήσεις κεφ. 1-3 Άσκηση Κατατάξτε τις παρακάτω ενώσεις ως ισχυρά και ασθενή οξέα ή ισχυρές και ασθενείς βάσεις α) Η 2 SeO 4, β) (CH 3 ) 2 CHCOOH γ) KOH, δ) (CH 3 ) 2 CHNH 2 Ισχυρό οξύ: Η 2 SeO 4 Ασθενές

Διαβάστε περισσότερα

Η ηλεκτροχηµεία µελετά τις χηµικές µεταβολές που προκαλούνται από ηλεκτρικό ρεύµα ή την παραγωγή ηλεκτρισµού από χηµικές αντιδράσεις.

Η ηλεκτροχηµεία µελετά τις χηµικές µεταβολές που προκαλούνται από ηλεκτρικό ρεύµα ή την παραγωγή ηλεκτρισµού από χηµικές αντιδράσεις. Ηλεκτροχηµεία Ηλεκτροχηµεία Η ηλεκτροχηµεία µελετά τις χηµικές µεταβολές που προκαλούνται από ηλεκτρικό ρεύµα ή την παραγωγή ηλεκτρισµού από χηµικές αντιδράσεις. Η επιµετάλλωση στη χρυσοχοΐα γίνεται µε

Διαβάστε περισσότερα

Κεφάλαιο της φυσικοχημείας που ερευνά τις διεργασίες που. και οι φορείς του ηλεκτρικού ρεύματος (ηλεκτρόνια, ιόντα).

Κεφάλαιο της φυσικοχημείας που ερευνά τις διεργασίες που. και οι φορείς του ηλεκτρικού ρεύματος (ηλεκτρόνια, ιόντα). ΗΛΕΚΤΡΟΧΗΜΕΙΑ Κεφάλαιο της φυσικοχημείας που ερευνά τις διεργασίες που λαμβάνουν χώρα σε διαλύματα ή τήγματα, όπου συμμετέχουν και οι φορείς του ηλεκτρικού ρεύματος (ηλεκτρόνια, ιόντα). Πραγματοποίηση

Διαβάστε περισσότερα

Ηλεκτρόλυση νερού ή ηλεκτρόλυση αραιού διαλύματος θειικού οξέος με ηλεκτρόδια λευκοχρύσου και με χρήση της συσκευής Hoffman.

Ηλεκτρόλυση νερού ή ηλεκτρόλυση αραιού διαλύματος θειικού οξέος με ηλεκτρόδια λευκοχρύσου και με χρήση της συσκευής Hoffman. Σύντομη περιγραφή του πειράματος Ηλεκτρόλυση νερού ή ηλεκτρόλυση αραιού διαλύματος θειικού οξέος με ηλεκτρόδια λευκοχρύσου και με χρήση της συσκευής Hoffman. Διδακτικοί στόχοι του πειράματος Στο τέλος

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΧΗΜΕΙΑ. Κλάδος Χημείας που ασχολείται με τις αντιδράσεις οξείδωσης αναγωγής, που είτε παράγουν είτε χρησιμοποιούν ενέργεια.

ΗΛΕΚΤΡΟΧΗΜΕΙΑ. Κλάδος Χημείας που ασχολείται με τις αντιδράσεις οξείδωσης αναγωγής, που είτε παράγουν είτε χρησιμοποιούν ενέργεια. ΗΛΕΚΤΡΟΧΗΜΕΙΑ Κλάδος Χημείας που ασχολείται με τις αντιδράσεις οξείδωσης αναγωγής, που είτε παράγουν είτε χρησιμοποιούν ενέργεια. Αυτές οι αντιδράσεις λέγονται ηλεκτροχημικές αντιδράσεις αναγωγή (+ 2e-)

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 4-5 (Α. Χημική Θερμοδυναμική) η Άσκηση Από τα δεδομένα του πίνακα που ακολουθεί και δεχόμενοι ότι όλα τα αέρια είναι ιδανικά, να υπολογίσετε: α)

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Πεχαμετρία Προσδιορισμός των σταθερών διάστασης μονοπρωτικών και πολυπρωτικών οξέων από μετρήσεις ph

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Πεχαμετρία Προσδιορισμός των σταθερών διάστασης μονοπρωτικών και πολυπρωτικών οξέων από μετρήσεις ph ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Πεχαμετρία Προσδιορισμός των σταθερών διάστασης μονοπρωτικών και πολυπρωτικών οξέων από μετρήσεις ph Ιωάννης Πούλιος ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΙΣ ΜΕΣΕΠΙΦΑΝΕΙΕΣ ΔΥΝΑΜΙΚΑ ΑΠΟΣΥΝΘΕΣΕΩΣ ΗΛΕΚΤΡΟΛΥΤΩΝ

ΗΛΕΚΤΡΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΙΣ ΜΕΣΕΠΙΦΑΝΕΙΕΣ ΔΥΝΑΜΙΚΑ ΑΠΟΣΥΝΘΕΣΕΩΣ ΗΛΕΚΤΡΟΛΥΤΩΝ 5-1 ΗΛΕΚΤΡΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΙΣ ΜΕΣΕΠΙΦΑΝΕΙΕΣ ΔΥΝΑΜΙΚΑ ΑΠΟΣΥΝΘΕΣΕΩΣ ΗΛΕΚΤΡΟΛΥΤΩΝ Έννοιες που θα γνωρίσετε: Δομή και δυναμικό ηλεκτρικής διπλής στιβάδας, πολώσιμη και μη πολώσιμη μεσεπιφάνεια, κανονικό και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Ανόργανη Χημεία Ι. Ηλεκτροχημεία. Διδάσκοντες: Αναπλ. Καθ. Α. Γαρούφης, Επίκ. Καθ. Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Ανόργανη Χημεία Ι. Ηλεκτροχημεία. Διδάσκοντες: Αναπλ. Καθ. Α. Γαρούφης, Επίκ. Καθ. Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανόργανη Χημεία Ι Ηλεκτροχημεία Διδάσκοντες: Αναπλ. Καθ. Α. Γαρούφης, Επίκ. Καθ. Γ. Μαλανδρίνος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

2-1. I I i. ti (3) Q Q i. όπου Q το συνολικό ηλεκτρικό φορτίο που μεταφέρεται και είναι: (4)

2-1. I I i. ti (3) Q Q i. όπου Q το συνολικό ηλεκτρικό φορτίο που μεταφέρεται και είναι: (4) 2-1 ΑΡΙΘΜΟΙ ΜΕΤΑΦΟΡΑΣ ΙΟΝΤΩΝ Θέμα ασκήσεως: Προσδιορισμός αριθμού μεταφοράς ιόντων με την μέθοδο Horf. Θεωρία Κατά την εφαρμογή ηλεκτρικού πεδίου σε ιοντικό διάλυμα, ηλεκτρικό ρεύμα διέρχεται από αυτό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Γαλβανικά στοιχεία Ημιστοιχεία

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Γαλβανικά στοιχεία Ημιστοιχεία ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Γαλβανικά στοιχεία Ημιστοιχεία Ιωάννης Πούλιος ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 54124 ΘΕΣΣΑΛΟΝΙΚΗ 2 ΓΑΛΒΑΝΙΚΑ

Διαβάστε περισσότερα

Εντροπία Ελεύθερη Ενέργεια

Εντροπία Ελεύθερη Ενέργεια Μάθημα Εντροπία Ελεύθερη Ενέργεια Εξαγωγική Μεταλλουργία Καθ. Ι. Πασπαλιάρης Εργαστήριο Μεταλλουργίας ΕΜΠ Αυθόρμητες χημικές αντιδράσεις Ηαντίδρασηοξείδωσηςενόςμετάλλουμπορείναγραφτείστη γενική της μορφή

Διαβάστε περισσότερα

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5)

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5) Κίνηση των ιόντων υπό την επίδραση ηλεκτρικού πεδίου Αντώνης Καραντώνης 15 Μαρτίου 2011 1 Σκοπός της άσκησης Σκοπός της άσκησης είναι ο προσδιορισμός της οριακής ταχύτητας των ιόντων υπό την επίδραση ηλεκτρικού

Διαβάστε περισσότερα

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά στοιχεία. Κεφ.4 εξίσωση του Nernst. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π.

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά στοιχεία. Κεφ.4 εξίσωση του Nernst. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Σημειώσεις για το μάθημα Φυσική Χημεία ΙΙ Ηλεκτροχημικά στοιχεία Κεφ.4 εξίσωση του Nernst Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Τμήμα Χημείας ΑΠΘ ΚΕΦΑΛΑΙΟ 4 ΕΞΙΣΩΣΗ NERNST 4.1 Εξίσωση Nernst Μια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Ακαδημαϊκό έτος 01-13 5 η Γραπτή Εργασία (Ηλεκτροχημεία) 1 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Ημερομηνία: Προσωπικός Αριθμός: Βαθμολογία θεμάτων 1 3 4 5 6 7 8 9 10 5η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ"

Διαβάστε περισσότερα

[FeCl. = - [Fe] t. = - [HCl] t. t ] [FeCl. [HCl] t (1) (2) (3) (4)

[FeCl. = - [Fe] t. = - [HCl] t. t ] [FeCl. [HCl] t (1) (2) (3) (4) Μιχαήλ Π. Μιχαήλ ΚΕΦΑΛΑΙΟ 3o ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ 1 3.1 Ερωτήσεις πολλαπλής επιλογής Στις ερωτήσεις 1-34 βάλτε σε ένα κύκλο το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το αντικείµενο µελέτης της χηµικής

Διαβάστε περισσότερα

(1) i mig,k = z 2 kf 2 u k c k (2) i mig = i mig,k = z 2 kf 2 u k c k. k=1. k=1

(1) i mig,k = z 2 kf 2 u k c k (2) i mig = i mig,k = z 2 kf 2 u k c k. k=1. k=1 Αριθμοί μεταφοράς Α. Καραντώνης 1 Σκοπός Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός των αριθμών μεταφοράς με τη μέθοδο Hittorf. Ειδικότερα, προσδιορίζονται ο αριθμοί μεταφοράς κατιόντων υδρογόνου

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Κεφάλαιο 1ο-ΟΞΕΙΔΩΑΝΑΓΩΓΗ 1 ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Ορισμοί : -Αριθμός οξείδωσης: I)Σε μία ιοντική ένωση ο αριθμός οξείδωσης κάθε στοιχείου είναι ίσος με το ηλεκτρικό φορτίο που έχει το

Διαβάστε περισσότερα

ΑΓΩΓΙΜΟΤΗΤΑ ΗΛΕΚΤΡΟΛΥΤΩΝ

ΑΓΩΓΙΜΟΤΗΤΑ ΗΛΕΚΤΡΟΛΥΤΩΝ 1-1 ΑΓΩΓΙΜΟΤΗΤΑ ΗΛΕΚΤΡΟΛΥΤΩΝ Θέμα ασκήσεως: Μελέτη της μεταβολής της αγωγιμότητας ισχυρού και ασθενούς ηλεκτρολύτη με την συγκέντρωση, προσδιορισμός της μοριακής αγωγιμότητας σε άπειρη αραίωση ισχυρού

Διαβάστε περισσότερα

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚEΣ ΓΕΩΧΗΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Αριάδνη Αργυράκη

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚEΣ ΓΕΩΧΗΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Αριάδνη Αργυράκη 1 ΟΞΕΙΔΟΑΝΑΓΩΓΙΚEΣ ΓΕΩΧΗΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ Αριάδνη Αργυράκη Περιεχόμενα 2 1. Ορισμοί 2. Εξισορρόπηση αντιδράσεων οξειδοαναγωγής 3. Διαγράμματα Eh-pH 4. Σημαντικές βιο-γεωχημικές αντιδράσεις ΑΝΤΙΔΡΑΣΕΙΣ ΟΞΕΙΔΟΑΝΑΓΩΓΗΣ

Διαβάστε περισσότερα

Εργαστηριακός υπολογισμός του πρότυπου δυναμικού ενός οξειδοαναγωγικού ημιστοιχείου.

Εργαστηριακός υπολογισμός του πρότυπου δυναμικού ενός οξειδοαναγωγικού ημιστοιχείου. Εργαστήριο Φυσικής Χηµείας Π. Δ. Γιαννακουδάκης Εργαστηριακός υπολογισμός του πρότυπου δυναμικού ενός οξειδοαναγωγικού ημιστοιχείου. 1. κατηγορίες ημιστοιχείων Ένα ημιστοιχείο αποτελείται πάντα από δύο

Διαβάστε περισσότερα

Στα 25, 2 ml 0,0049 mol HCl 1000 ml x = 0,194 mol HCl Μοριακότητα ΗCl = 0,194 M

Στα 25, 2 ml 0,0049 mol HCl 1000 ml x = 0,194 mol HCl Μοριακότητα ΗCl = 0,194 M ΛΥΣΕΙΣ ΟΛΥΜΠΙΑΔΑΣ ΧΗΜΕΙΑΣ Β ΛΥΚΕΙΟΥ 0 ΜΕΡΟΣ Α (0 μονάδες) Ερώτηση (3μον.) (α) Η (g) + Cl (g) HCl (g) mol H : mol Cl ή 400 ml H : 400 ml Cl 600 ml H : 600 ml Cl Το Cl βρίσκεται σε περίσσεια. Ολόκληρη η

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: 08-11-2015 ΔΙΑΡΚΕΙΑ: 3 ώρες

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: 08-11-2015 ΔΙΑΡΚΕΙΑ: 3 ώρες ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: 08--05 ΔΙΑΡΚΕΙΑ: 3 ώρες ΘΕΜΑ Α Για τις ερωτήσεις Α. Α.5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΕΩΣ ΚΟΥΛΟΜΕΤΡΙΑ Μ. ΚΟΥΠΠΑΡΗΣ Μ.ΚΟΥΠΠΑΡΗΣ - ΠΑΡΑΔΟΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΑΝΑΛΥΤΙΚΗ ΧΗΜΕΙΑ ΙΙ

ΗΛΕΚΤΡΟΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΕΩΣ ΚΟΥΛΟΜΕΤΡΙΑ Μ. ΚΟΥΠΠΑΡΗΣ Μ.ΚΟΥΠΠΑΡΗΣ - ΠΑΡΑΔΟΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΑΝΑΛΥΤΙΚΗ ΧΗΜΕΙΑ ΙΙ *1 ΗΛΕΚΤΡΟΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΕΩΣ ΚΟΥΛΟΜΕΤΡΙΑ Μ. ΚΟΥΠΠΑΡΗΣ Slide 1 *1 *; 28/3/2012 ΗΛΕΚΤΡΟΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΕΩΣ Στην ποτενσιομετρία: ΗΗΕΔ του ηλεκτροχημικού στοιχείου (γαλβανικού) γίνεται υπό μηδενική

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Ορισμοί : -Αριθμός οξείδωσης: I)Σε μία ιοντική ένωση ο αριθμός οξείδωσης κάθε στοιχείου είναι ίσος με το ηλεκτρικό φορτίο που έχει το αντίστοιχο ιόν Παράδειγμα:

Διαβάστε περισσότερα

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά. στοιχεία. Κεφ.6 ηλεκτρολυτικά. στοιχεία. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π.

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά. στοιχεία. Κεφ.6 ηλεκτρολυτικά. στοιχεία. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Σημειώσεις για το μάθημα Φυσική Χημεία ΙΙ Ηλεκτροχημικά στοιχεία Κεφ.6 ηλεκτρολυτικά στοιχεία Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Ni 2+ 2 e- Ni 2+ Τμήμα Χημείας ΑΠΘ ΚΕΦΑΛΑΙΟ 6 ΗΛΕΚΤΡΟΛΥΤΙΚΑ ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Ανόργανη Χημεία Ι. Ηλεκτροχημεία. Διδάσκοντες: Αναπλ. Καθ. Α. Γαρούφης, Επίκ. Καθ. Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Ανόργανη Χημεία Ι. Ηλεκτροχημεία. Διδάσκοντες: Αναπλ. Καθ. Α. Γαρούφης, Επίκ. Καθ. Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανόργανη Χημεία Ι Ηλεκτροχημεία Διδάσκοντες: Αναπλ. Καθ. Α. Γαρούφης, Επίκ. Καθ. Γ. Μαλανδρίνος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α.

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 003-04 (Α. Χημική Θερμοδυναμική) η Άσκηση Θεωρείστε ως σύστημα ένα δοχείο με αδιαβατικά τοιχώματα, μέσα στο οποίο αναμιγνύουμε λίτρο νερού θερμοκρασίας Τ

Διαβάστε περισσότερα

και FeCl ένα άλλο που περιέχει I2 διαλυμένο σε ΚΙ, θα πραγματοποιηθεί η αντίδραση (3)

και FeCl ένα άλλο που περιέχει I2 διαλυμένο σε ΚΙ, θα πραγματοποιηθεί η αντίδραση (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΠΕΙΡΑΜΑ 3A ΗΛΕΚΤΡΟΧΗΜΕΙΑΣ (HX3A) ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ Τίτλος Πειράματος: ΔΥΝΑΜΙΚΑ

Διαβάστε περισσότερα

ΟΞΕΑ, ΒΑΣΕΙΣ ΚΑΙ ΑΛΑΤΑ. ΜΑΘΗΜΑ 1 o : Γενικά για τα οξέα- Ιδιότητες - είκτες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ

ΟΞΕΑ, ΒΑΣΕΙΣ ΚΑΙ ΑΛΑΤΑ. ΜΑΘΗΜΑ 1 o : Γενικά για τα οξέα- Ιδιότητες - είκτες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΟΞΕΑ, ΒΑΣΕΙΣ ΚΑΙ ΑΛΑΤΑ 1.1 Τα οξέα ΜΑΘΗΜΑ 1 o : Γενικά για τα οξέα Ιδιότητες είκτες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες χηµικές ενώσεις ονοµάζονται οξέα; Με ποιόν χηµικό τύπο παριστάνουµε γενικά τα οξέα; Οξέα είναι

Διαβάστε περισσότερα

Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε:

Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε: ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ 5-6 (Α. Χημική Θερμοδυναμική) η Άσκηση Η αντίδραση CO(g) + H O(g) CO (g) + H (g) γίνεται σε θερμοκρασία 3 Κ. Να υπολογιστεί το κλάσμα των ατμών του

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ

ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ ΟΞΕΙΔΟΑΝΑΓΩΓΗ: ΟΡΙΣΜΟΊ ΟΞΕΊΔΩΣΗΣ ΟΡΙΣΜΟΊ ΑΝΑΓΩΓΉΣ Οξείδωση είναι η ένωση ενός στοιχείου με οξυ Αναγωγή είναι η ένωση ενός στοιχείου με υδρο γόνο ή η αφαίρεση υδρογόνου από μία χημική γόνο ή η αφαίρεση

Διαβάστε περισσότερα

2.3 ΜΕΡΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΜΕΤΑΛΛΩΝ. Επιμέλεια παρουσίασης Παναγιώτης Αθανασόπουλος Δρ - Χημικός

2.3 ΜΕΡΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΜΕΤΑΛΛΩΝ. Επιμέλεια παρουσίασης Παναγιώτης Αθανασόπουλος Δρ - Χημικός 2.3 ΜΕΡΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΜΕΤΑΛΛΩΝ Επιμέλεια παρουσίασης Παναγιώτης Αθανασόπουλος Δρ - Χημικός Σκοπός του μαθήματος: Να επισημαίνουμε τη θέση των μετάλλων στον περιοδικό πίνακα των στοιχείων. Να αναφέρουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 - Μελέτη της ηλεκτρόλυσης CuSO 4 ΑΣΚΗΣΗ 8. Μελέτη της ηλεκτρόλυσης CuSO 4

ΑΣΚΗΣΗ 8 - Μελέτη της ηλεκτρόλυσης CuSO 4 ΑΣΚΗΣΗ 8. Μελέτη της ηλεκτρόλυσης CuSO 4 ΑΣΚΗΣΗ 8 Μελέτη της ηλεκτρόλυσης CuSO 4 Συσκευές: Ένα τροφοδοτικό συνεχούς τάσης, ένα αμπερόμετρο, ένα χρονόμετρο και ένα βολτάμετρο. Το βολτάμετρο ή κουλομβόμετρο αποτελείται από ένα γυάλινο δοχείο που

Διαβάστε περισσότερα

M M n+ + ne (1) Ox + ne Red (2) i = i Cdl + i F (3) de dt + i F (4) i = C dl. e E Ecorr

M M n+ + ne (1) Ox + ne Red (2) i = i Cdl + i F (3) de dt + i F (4) i = C dl. e E Ecorr Επιταχυνόμενες μέθοδοι μελέτης της φθοράς: Μέθοδος Tafel και μέθοδος ηλεκτροχημικής εμπέδησης Αντώνης Καραντώνης, και Δημήτρης Δραγατογιάννης 1 Σκοπός της άσκησης Στην άσκηση αυτή θα μελετηθεί η διάβρωση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ

ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

5.1 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ

5.1 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ 5.1 ΑΣΚΗΣΗ 5 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ Α' ΜΕΡΟΣ: Ηλεκτρόλυση του νερού. ΘΕΜΑ: Εύρεση της μάζας οξυγόνου και υδρογόνου που εκλύονται σε ηλεκτρολυτική

Διαβάστε περισσότερα

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά στοιχεία. Κεφ.1 Ηλεκτροδιαλυτική τάση. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π.

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά στοιχεία. Κεφ.1 Ηλεκτροδιαλυτική τάση. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Σημειώσεις για το μάθημα Φυσική Χημεία ΙΙ Ηλεκτροχημικά στοιχεία Κεφ.1 Ηλεκτροδιαλυτική τάση Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Τμήμα Χημείας ΑΠΘ 1. ΚΕΦΑΛΑΙΟ 1 ΗΛΕΚΤΡΟΔΙΑΛΥΤΙΚΗ ΤΑΣΗ 1.1 των µετάλλων

Διαβάστε περισσότερα

7. ΔΙΑΛΥΤΟΤΗΤΑ ΚΑΙ ΙΣΟΡΡΟΠΙΕΣ ΣΥΜΠΛΟΚΩΝ ΙΟΝΤΩΝ

7. ΔΙΑΛΥΤΟΤΗΤΑ ΚΑΙ ΙΣΟΡΡΟΠΙΕΣ ΣΥΜΠΛΟΚΩΝ ΙΟΝΤΩΝ 7. ΔΙΑΛΥΤΟΤΗΤΑ ΚΑΙ ΙΣΟΡΡΟΠΙΕΣ ΣΥΜΠΛΟΚΩΝ ΙΟΝΤΩΝ Σχηματισμός ιζήματος χρωμικού μολύβδου(ιι) ΠΕΡΙΕΧΟΜΕΝΑ Η σταθερά γινομένου διαλυτότητας Διαλυτότητα και επίδραση κοινού ιόντος Υπολογισμοί καθίζησης Επίδραση

Διαβάστε περισσότερα

Περιοριστικό αντιδρών

Περιοριστικό αντιδρών Περιοριστικό αντιδρών Όταν αντιδρώντα προστίθενται σε ποσότητες διαφορετικές από τις γραμμομοριακές αναλογίες που δείχνει η χημική εξίσωση, μόνο το ένα από τα αντιδρώντα πιθανόν να καταναλωθεί πλήρως,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ

ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@chem.auth.gr url:

Διαβάστε περισσότερα

3 o Μάθημα : Αντιδράσεις απλής αντικατάστασης

3 o Μάθημα : Αντιδράσεις απλής αντικατάστασης 3 o Μάθημα : Αντιδράσεις απλής αντικατάστασης 1. Στόχοι του μαθήματος Οι μαθητές να γνωρίσουν:i) πότε πραγματοποιείται μια αντίδραση απλής αντικατάστασης, με βάση τη σειρά δραστικότητας των μετάλλων και

Διαβάστε περισσότερα

Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β

Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β Ακαδημαϊκό έτος 4-5 ΘΕΜΑ Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = [] α [B] β Χρησιμοποιώντας τη μέθοδο των αρχικών ταχυτήτων βρήκαμε ότι η αντίδραση είναι δεύτερης τάξης ως προς Α και πρώτης

Διαβάστε περισσότερα

ΑΡΧΗ LE CHATELIER - ΔΙΑΛΥΤΟΤΗΤΑ

ΑΡΧΗ LE CHATELIER - ΔΙΑΛΥΤΟΤΗΤΑ ΑΡΧΗ LE CHATELIER - ΔΙΑΛΥΤΟΤΗΤΑ Σκοπός Εργαστηριακής Άσκησης Η παρατήρηση και η κατανόηση της Αρχής Le Chatelier και η μελέτη της διαλυτότητας των ιοντικών ενώσεων Θεωρητικό Μέρος Αρχή Le Chatelier Οι

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΕΚΦΩΝΗΣΕΙΣ

ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 004 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Στην

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ

ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ ΠΑΡΑΡΤΗΜΑ 3-ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ 1 Εισαγωγή Τα διαγράμματα φάσεων δεν είναι εμπειρικά σχήματα αλλά είναι ουσιαστικής σημασίας

Διαβάστε περισσότερα

Αναγωγή Οξειδίων με Άνθρακα, Μονοξείδιο του Άνθρακα και Υδρογόνο

Αναγωγή Οξειδίων με Άνθρακα, Μονοξείδιο του Άνθρακα και Υδρογόνο Μάθημα Αναγωγή Οξειδίων με Άνθρακα, Μονοξείδιο του Άνθρακα και Υδρογόνο Εξαγωγική Μεταλλουργία Καθ. Ι. Πασπαλιάρης Εργαστήριο Μεταλλουργίας ΕΜΠ Αναγωγικά μέσα Πως μπορεί να απομακρυνθεί το O 2 (g) από

Διαβάστε περισσότερα

Θερμόχήμεία Κεφάλαιό 2 ό

Θερμόχήμεία Κεφάλαιό 2 ό Θερμόχήμεία Κεφάλαιό 2 ό Επιμέλεια: Χημικός Διδάκτωρ Πανεπιστημίου Πατρών 11 12 Τι είναι η χημική ενέργεια των χημικών ουσιών; Που οφείλεται; Μπορεί να αποδοθεί στο περιβάλλον; Πότε μεταβάλλεται η χημική

Διαβάστε περισσότερα

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ ΟΞΕΙΔΟΑΝΑΓΩΓΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ Σκοπός Εργαστηριακής Άσκησης Η παρατήρηση και η κατανόηση των μηχανισμών των οξειδοαναγωγικών δράσεων. Θεωρητικό Μέρος Οξείδωση ονομάζεται κάθε αντίδραση κατά την οποία συμβαίνει

Διαβάστε περισσότερα

και FeCl ένα άλλο που περιέχει I2 διαλυμένο σε ΚΙ, θα πραγματοποιηθεί η αντίδραση (3)

και FeCl ένα άλλο που περιέχει I2 διαλυμένο σε ΚΙ, θα πραγματοποιηθεί η αντίδραση (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ ΠΕΙΡΑΜΑ 3Β ΗΛΕΚΤΡΟΧΗΜΕΙΑΣ (HX3Β) Τίτλος Πειράματος: ΔΥΝΑΜΙΚΑ

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΡΙΝ ΑΡΧΙΣΕΤΕ ΝΑ ΓΡΑΦΕΤΕ ΝΑ ΜΕΛΕΤΗΣΕΤΕ ΜΕ ΠΡΟΣΟΧΗ ΤΙΣ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΠΟΥ ΑΚΟΛΟΥΘΟΥΝ:

ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΡΙΝ ΑΡΧΙΣΕΤΕ ΝΑ ΓΡΑΦΕΤΕ ΝΑ ΜΕΛΕΤΗΣΕΤΕ ΜΕ ΠΡΟΣΟΧΗ ΤΙΣ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΠΟΥ ΑΚΟΛΟΥΘΟΥΝ: ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΔΙΑΓΩΝΙΣΜΟΣ ΠΑΓΚΥΠΡΙΑΣ ΟΛΥΜΠΙΑΔΑΣ ΧΗΜΕΙΑΣ 2011-2012 Β ΦΑΣΗ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΠΡΙΝ ΑΡΧΙΣΕΤΕ ΝΑ

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΧΗΜΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ - ΠΟΤΕΝΣΙΟΜΕΤΡΙΑ

ΗΛΕΚΤΡΟΧΗΜΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ - ΠΟΤΕΝΣΙΟΜΕΤΡΙΑ ΗΛΕΚΤΡΟΧΗΜΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ - ΠΟΤΕΝΣΙΟΜΕΤΡΙΑ Αρχές Ποτενσιοµετρικής Τιτλοδότησης Η ποτενσιοµετρία περιλαµβάνει τη µέτρηση της ηλεκτρεγερτικής δύναµης (Η.Ε..) µεταξύ δύο ηλεκτροδίων, του ενδεικτικού

Διαβάστε περισσότερα

CH COOC H H O CH COOH C H OH

CH COOC H H O CH COOH C H OH ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΠΕΙΡΑΜΑ 2 ΧΗΜΙΚΗΣ ΚΙΝΗΤΙΚΗΣ (ΧΚ2) ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ Τίτλος Πειράματος: ΚΙΝΗΤΙΚΗ

Διαβάστε περισσότερα

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ ΜΑΘΗΜΑ: «ΓΕΝΙΚΗ ΧΗΜΕΙΑ» Α ΕΞΑΜΗΝΟ (ΧΕΙΜΕΡΙΝΟ) Διδάσκουσα: ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Cmmns. Για

Διαβάστε περισσότερα

XHMEIA. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο. Να δώσετε τη σωστή απάντηση στις παρακάτω περιπτώσεις.

XHMEIA. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο. Να δώσετε τη σωστή απάντηση στις παρακάτω περιπτώσεις. ΘΕΜΑ ο Α ΛΥΚΕΙΟΥ-ΧΗΜΕΙΑ ο ΔΙΑΓΩΝΙΣΜΑ Να δώσετε τη σωστή απάντηση στις παρακάτω περιπτώσεις.. Η πυκνότητα ενός υλικού είναι 0 g / cm. Η πυκνότητά του σε g/ml είναι: a. 0,00 b., c. 0,0 d. 0,000. Ποιο από

Διαβάστε περισσότερα

Παράδειγµα κριτηρίου σύντοµης διάρκειας

Παράδειγµα κριτηρίου σύντοµης διάρκειας 3.9. Κριτήρια αξιολόγησης Παράδειγµα κριτηρίου σύντοµης διάρκειας ΟΜΑ Α Α Αντικείµενο εξέτασης: Οξέα - βάσεις (ιδιότητες - ονοµατολογία) Στοιχεία µαθητή: Επώνυµο:... Όνοµα:... Τάξη:... Τµήµα:...Μάθηµα:...

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: XHMEIA A ΛΥΚΕΙΟΥ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: XHMEIA A ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: XHMEIA A ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Α1. Το ιόν 56 Fe +2 περιέχει:

Διαβάστε περισσότερα

[Fe(CN) 6 ] 3 + e [Fe(CN) 6 ] 4

[Fe(CN) 6 ] 3 + e [Fe(CN) 6 ] 4 Μελέτη μίας αντιστρεπτής ηλεκτροχημικής αντίδρασης με την τεχνική της κυκλικής βολταμμετρίας Αντώνης Καραντώνης και Δήμητρα Γεωργιάδου 1 Σκοπός της άσκησης Η κυκλική βολταμμετρία αποτελεί μια ευρέως χρησιμοποιούμενη

Διαβάστε περισσότερα

Αρχές ισοσταθμίσεως της μάζας και ηλεκτρικής ουδετερότητας

Αρχές ισοσταθμίσεως της μάζας και ηλεκτρικής ουδετερότητας Αρχές ισοσταθμίσεως της μάζας και ηλεκτρικής ουδετερότητας Κατά τη λύση προβλημάτων χημικής ισορροπίας, χρησιμοποιούμε, συνήθως, εκτός από τις εκφράσεις των σταθερών ισορροπίας, (δηλαδή τις εξισώσεις που

Διαβάστε περισσότερα

Στοιχειμετρικοί υπολογισμοί σε διαλύματα

Στοιχειμετρικοί υπολογισμοί σε διαλύματα Στοιχειμετρικοί υπολογισμοί σε διαλύματα 23-1. Τι εκφράζουν οι συντελεστές μιας χημικής αντίδρασης; Οι συντελεστές σε μία χημική εξίσωση καθορίζουν την αναλογία mol των αντιδρώντων και προϊόντων στην αντίδραση.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. 2NH + 3Cl N + 6HCl. 3 (g) 2 (g) 2 (g) (g) 2A + B Γ + 3. (g) (g) (g) (g) ποια από τις παρακάτω εκφράσεις είναι λανθασµένη;

ΕΚΦΩΝΗΣΕΙΣ. 2NH + 3Cl N + 6HCl. 3 (g) 2 (g) 2 (g) (g) 2A + B Γ + 3. (g) (g) (g) (g) ποια από τις παρακάτω εκφράσεις είναι λανθασµένη; Επαναληπτικά Θέµατα ΟΕΦΕ ΘΕΜΑ ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις..4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

3.5 Αντιδράσεις οξειδοαναγωγής

3.5 Αντιδράσεις οξειδοαναγωγής 3.5 Αντιδράσεις οξειδοαναγωγής Αντίδραση σιδήρου με Cu 2+ (aq) Αριστερά: Ένα σιδερένιο καρφί και ένα διάλυμα θειικού χαλκού(ιι), το οποίο έχει χρώμα μπλε. Κέντρο: Ο Fe αντιδρά με Cu 2+ (aq) παρέχοντας

Διαβάστε περισσότερα

I (aq) κι έτσι σχηματίζεται το ευδιάλυτο σύμπλοκο ιόν

I (aq) κι έτσι σχηματίζεται το ευδιάλυτο σύμπλοκο ιόν ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΠΕΙΡΑΜΑ 3 ΧΗΜΙΚΗΣ ΚΙΝΗΤΙΚΗΣ (ΧΚ3) ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 203-4 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ Τίτλος Πειράματος: ΚΙΝΗΤΙΚΗ

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. 2NH + 3Cl N + 6HCl. 3 (g) 2 (g) 2 (g) (g) 2A + B Γ + 3. (g) (g) (g) (g) ποια από τις παρακάτω εκφράσεις είναι λανθασµένη;

ΕΚΦΩΝΗΣΕΙΣ. 2NH + 3Cl N + 6HCl. 3 (g) 2 (g) 2 (g) (g) 2A + B Γ + 3. (g) (g) (g) (g) ποια από τις παρακάτω εκφράσεις είναι λανθασµένη; Επαναληπτικά Θέµατα ΟΕΦΕ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ ο ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις..4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g)

Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g) Α. Θεωρητικό μέρος Άσκηση 5 η Μελέτη Χημικής Ισορροπίας Αρχή Le Chatelier Μονόδρομες αμφίδρομες αντιδράσεις Πολλές χημικές αντιδράσεις οδηγούνται, κάτω από κατάλληλες συνθήκες, σε κατάσταση ισορροπίας

Διαβάστε περισσότερα

ΚΕΦ.6 ΒΟΛΤΑΜΜΕΤΡΙΑ 6.4 ΑΜΠΕΡΟΜΕΤΡΙΑ

ΚΕΦ.6 ΒΟΛΤΑΜΜΕΤΡΙΑ 6.4 ΑΜΠΕΡΟΜΕΤΡΙΑ ΚΕΦ.6 ΒΟΛΤΑΜΜΕΤΡΙΑ 6.4 ΑΜΠΕΡΟΜΕΤΡΙΑ Μ. ΚΟΥΠΠΑΡΗΣ 1 ΒΟΛΤΑΜΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Βολταμμετρικές (βολταμπερομετρικές) τεχνικές (Volt, Ampere-μετρώ): ομάδα αναλυτικών τεχνικών που βασίζονται στην παρατήρηση της

Διαβάστε περισσότερα

W el = q k φ (1) W el = z k e 0 N A φn k = z k F φn k (2)

W el = q k φ (1) W el = z k e 0 N A φn k = z k F φn k (2) Το ηλεκτρολυτικό διάλυμα στην ισορροπία Αντώνης Καραντώνης 19 Απριλίου 211 Σταθερές 1. Σταθερά των αερίων, R = 8.314 J mol 1 K 1 2. Στοιχειώδες φορτίο, e = 1.62 1 19 C 3. Αριθμός Avogadro, N A = 6.23 1

Διαβάστε περισσότερα

12. Ογκομετρικοί κύλινδροι των 10 και 50mL g ΜnO Σπάτουλα ή ένα μικρό κουτάλι. 8. Απιονισμένο νερό. 18. Πουάρ

12. Ογκομετρικοί κύλινδροι των 10 και 50mL g ΜnO Σπάτουλα ή ένα μικρό κουτάλι. 8. Απιονισμένο νερό. 18. Πουάρ ΜΕΛΕΤΗ ΤΗΣ ΚΑΤΑΛΥΤΙΚΗΣ ΔΙΑΣΠΑΣΗΣ ΤΟΥ Η 2 Ο 2 -ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΚΑΘΗΓΗΤΗ- Α. Διδακτικοί στόχοι Στο τέλος του μαθήματος οι μαθητές θα: 1. έχουν γνωρίσει μια ετερογενή και μια ομογενή καταλυτική αντίδραση.

Διαβάστε περισσότερα

Επιχάλκωση μεταλλικού αντικειμένου και συγκεκριμένα ενός μικρού ελάσματος αλουμινίου με τη μέθοδο της γαλβανοπλαστικής επιμετάλλωσης.

Επιχάλκωση μεταλλικού αντικειμένου και συγκεκριμένα ενός μικρού ελάσματος αλουμινίου με τη μέθοδο της γαλβανοπλαστικής επιμετάλλωσης. Σύντομη περιγραφή του πειράματος Επιχάλκωση μεταλλικού αντικειμένου και συγκεκριμένα ενός μικρού ελάσματος αλουμινίου με τη μέθοδο της γαλβανοπλαστικής επιμετάλλωσης. Διδακτικοί στόχοι του πειράματος Στο

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

Διάλυμα καλείται κάθε ομογενές σύστημα, το οποίο αποτελείται από δύο ή περισσότερες χημικές ουσίες, και έχει την ίδια σύσταση σε όλη του τη μάζα.

Διάλυμα καλείται κάθε ομογενές σύστημα, το οποίο αποτελείται από δύο ή περισσότερες χημικές ουσίες, και έχει την ίδια σύσταση σε όλη του τη μάζα. 1. ΔΙΑΛΥΜΑ Διάλυμα καλείται κάθε ομογενές σύστημα, το οποίο αποτελείται από δύο ή περισσότερες χημικές ουσίες, και έχει την ίδια σύσταση σε όλη του τη μάζα. Ετερογενές σύστημα καλείται αυτό, το οποίο αποτελείται

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη ενέργεια Gibbs. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη ενέργεια Gibbs. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ÓÕÍÅÉÑÌÏÓ. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ÓÕÍÅÉÑÌÏÓ. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις ερωτήσεις 1 έως 4 και δίπλα το

Διαβάστε περισσότερα

ΤΕΣΤ 30 ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΧΗΜΕΙΑΣ

ΤΕΣΤ 30 ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΧΗΜΕΙΑΣ ΤΕΣΤ 30 ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΧΗΜΕΙΑΣ ο αριθμός Avogadro, N A, L = 6,022 10 23 mol -1 η σταθερά Faraday, F = 96 487 C mol -1 σταθερά αερίων R = 8,314 510 (70) J K -1 mol -1 = 0,082 L atm mol -1 K -1 μοριακός

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική

Διαβάστε περισσότερα

Ισορροπία (γενικά) Ισορροπίες σε διαλύματα. Εισαγωγική Χημεία

Ισορροπία (γενικά) Ισορροπίες σε διαλύματα. Εισαγωγική Χημεία Ισορροπία (γενικά) Ισορροπίες σε διαλύματα Εισαγωγική Χημεία 2013-14 1 Χημική Ισορροπία Εισαγωγική Χημεία 2013-14 2 Ισορροπία: Βαθμός συμπλήρωσης αντίδρασης Ν 2 (g) + 3H 2(g) 2NH 3 (g) Όταν αναφερόμαστε

Διαβάστε περισσότερα

Βαθμός ιοντισμού. Για ισχυρούς ηλεκτρολύτες ισχύει α = 1. Για ασθενής ηλεκτρολύτες ισχύει 0 < α < 1.

Βαθμός ιοντισμού. Για ισχυρούς ηλεκτρολύτες ισχύει α = 1. Για ασθενής ηλεκτρολύτες ισχύει 0 < α < 1. Βαθμός ιοντισμού Ο ιοντισμός μιας ομοιοπολικής ένωσης στο νερό μπορεί να είναι πλήρης ή μερικώς. Ένα μέτρο έκφρασης της ισχύος των ηλεκτρολυτών, κάτω από ορισμένες συνθήκες είναι ο βαθμός ιοντισμού (α).

Διαβάστε περισσότερα

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ ΜΑΘΗΜΑ: «ΧΗΜΕΙΑ ΙΙ» Β ΕΞΑΜΗΝΟ (ΕΑΡΙΝΟ) Διδάσκουσα: ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ. ΚΕΦ.3.1: ΧΗΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ (α)

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ. ΚΕΦ.3.1: ΧΗΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ (α) ΚΕΦ.3.1: ΧΗΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ (α ΧΗΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ είναι οι μεταβολές κατά τις οποίες από κάποια αρχικά σώματα (αντιδρώντα παράγονται νέα σώματα (προϊόντα. CO 2 O γλυκόζη (Φωτοσύνθεση Σάκχαρα αλκοόλη

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ. ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΠΟΤΕΝΣΙΟΜΕΤΡΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ph ΚΑΙ ΠΕΧΑΜΕΤΡΙΚΕΣ ΤΙΤΛΟΔΟΤΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ. ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΠΟΤΕΝΣΙΟΜΕΤΡΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ph ΚΑΙ ΠΕΧΑΜΕΤΡΙΚΕΣ ΤΙΤΛΟΔΟΤΗΣΕΙΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 11 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 310 997766 e mail: dtsiplak@chem.auth.gr url:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: ΜΕΤΡΗΣΗ ΑΤΜΟΣΦΑΙΡΙΚΩΝ ΣΥΣΤΑΤΙΚΩΝ ΚΑΘ ΥΨΟΣ (ΟΖΟΝΤΟΒΟΛΙΣΗ)

ΚΕΦΑΛΑΙΟ 8: ΜΕΤΡΗΣΗ ΑΤΜΟΣΦΑΙΡΙΚΩΝ ΣΥΣΤΑΤΙΚΩΝ ΚΑΘ ΥΨΟΣ (ΟΖΟΝΤΟΒΟΛΙΣΗ) ΚΕΦΑΛΑΙΟ 8: ΜΕΤΡΗΣΗ ΑΤΜΟΣΦΑΙΡΙΚΩΝ ΣΥΣΤΑΤΙΚΩΝ ΚΑΘ ΥΨΟΣ (ΟΖΟΝΤΟΒΟΛΙΣΗ) 8.1 Γενικά Η γνώση της κατακόρυφης κατανομής της συγκέντρωσης του ατμοσφαιρικού όζοντος είναι ιδιαίτερα σημαντική για την κατανόηση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 4. Για την αντίδραση 2Α + Β Γ βρέθηκαν τα παρακάτω πειραματικά δεδομένα:

ΑΣΚΗΣΕΙΣ. 4. Για την αντίδραση 2Α + Β Γ βρέθηκαν τα παρακάτω πειραματικά δεδομένα: ΑΣΚΗΣΕΙΣ 1. Αν είναι γνωστό ότι οι παρακάτω αντιδράσεις είναι απλές (ενός μόνον σταδίου), να βρεθεί η τάξη καθεμίας από αυτές, καθώς επίσης οι διαστάσεις (μονάδες) της σταθεράς της ταχύτητας. α) Α Π β)

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015

ΘΕΡΜΟΧΗΜΕΙΑ Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015 ΘΕΡΜΟΧΗΜΕΙΑ Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015 ΘΕΡΜΟΧΗΜΕΙΑ Κάθε ουσία, εκτός από άτομα μόρια ή ιόντα, περιέχει χημική ενέργεια. H χημική ενέργεια οφείλεται στις δυνάμεις του δεσμού (που συγκρατούν

Διαβάστε περισσότερα

ΔΙΑΒΡΩΣΗ ΟΡΙΣΜΟΣ ΣΚΟΠΟΣ ΤΗΣ ΜΕΛΕΤΗΣ ΚΑΙ ΕΡΕΥΝΑΣ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΖΗΜΙΕΣ ΑΠΟ ΤΗΝ ΔΙΑΒΡΩΣΗ ΖΗΜΙΕΣ ΣΤΗΝ ΕΛΛΑΔΑ (ΑΙΤΙΑ) ΣΥΜΠΕΡΑΣΜΑΤΑ ΔΙΑΒΡΩΣΗ = ΟΞΕΙΔΩΣΗ

ΔΙΑΒΡΩΣΗ ΟΡΙΣΜΟΣ ΣΚΟΠΟΣ ΤΗΣ ΜΕΛΕΤΗΣ ΚΑΙ ΕΡΕΥΝΑΣ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΖΗΜΙΕΣ ΑΠΟ ΤΗΝ ΔΙΑΒΡΩΣΗ ΖΗΜΙΕΣ ΣΤΗΝ ΕΛΛΑΔΑ (ΑΙΤΙΑ) ΣΥΜΠΕΡΑΣΜΑΤΑ ΔΙΑΒΡΩΣΗ = ΟΞΕΙΔΩΣΗ 1 ΔΙΑΒΡΩΣΗ ΟΡΙΣΜΟΣ ΣΚΟΠΟΣ ΤΗΣ ΜΕΛΕΤΗΣ ΚΑΙ ΕΡΕΥΝΑΣ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΖΗΜΙΕΣ ΑΠΟ ΤΗΝ ΔΙΑΒΡΩΣΗ ΖΗΜΙΕΣ ΣΤΗΝ ΕΛΛΑΔΑ (ΑΙΤΙΑ) ΣΥΜΠΕΡΑΣΜΑΤΑ ΔΙΑΒΡΩΣΗ = ΟΞΕΙΔΩΣΗ 2 ΔΙΑΒΡΩΣΗ ΟΡΙΣΜΟΣ: Κάθε αυθόρμητη ή εκβιασμένη, ηλεκτρομηχανική

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ 1 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Ιωάννης Πούλιος ΝΟΜΟΣ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 54124 ΘΕΣΣΑΛΟΝΙΚΗ ΝΟΜΟΣ ΤΗΣ ΚΑΤΑΝΟΜΗΣ

Διαβάστε περισσότερα

Επίδραση των οξέων στα μέταλλα και το μάρμαρο

Επίδραση των οξέων στα μέταλλα και το μάρμαρο Επίδραση των οξέων στα μέταλλα και το μάρμαρο Επίδραση των οξέων στα μέταλλα Τα μέταλλα που είναι πιο δραστικά από το υδρογόνο (εκτός από το Pb) αντικαθιστούν το υδρογόνο στα οξέα (με εξαίρεση το HNO 3

Διαβάστε περισσότερα

Θέµατα προηγούµενων εξεταστικών περιόδων. 1 ο Θέµα Ιανουαρίου 2005

Θέµατα προηγούµενων εξεταστικών περιόδων. 1 ο Θέµα Ιανουαρίου 2005 Θέµατα προηγούµενων εξεταστικών περιόδων 1 ο Θέµα Ιανουαρίου 2005 Σε ένα επίπεδο ηλεκτρόδιο ενεργού επιφάνειας 2 cm 2, που χρησιµοποιείται ως άνοδος σε µία ηλεκτρολυτική κυψέλη που περιέχει διάλυµα 2*10-3

Διαβάστε περισσότερα

Παράγοντες που επηρεάζουν τη θέση της χημικής ισορροπίας. Αρχή Le Chatelier.

Παράγοντες που επηρεάζουν τη θέση της χημικής ισορροπίας. Αρχή Le Chatelier. Παράγοντες που επηρεάζουν τη θέση της χημικής ισορροπίας. Αρχή Le Chatelier. H θέση ισορροπίας επηρεάζεται από τους εξής παράγοντες χημικής ισορροπίας: Τη συγκέντρωση των αντιδρώντων ή των προϊόντων. Την

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ ΥΠΟΨΗΦΙΩΝ ΑΣΕΠ

ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ ΥΠΟΨΗΦΙΩΝ ΑΣΕΠ ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ ΥΠΟΨΗΦΙΩΝ ΑΣΕΠ Οι ερωτήσεις προέρχονται από την τράπεζα των χιλιάδων θεμάτων του συνεξεταζόμενου γνωστικού αντικειμένου Χημείας ΠΕ 04 που επιμελήθηκε η εξειδικευμένη ομάδα εισηγητών των

Διαβάστε περισσότερα