3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ"

Transcript

1 3. 3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ 3. Εισαγγή Στην μελέτη τν συστημάτν, μία από τις μεθόδους που χρησιμοποιούνται είναι η απόκριση κατά συχνότητα ή η συχνοτική απόκριση. Η μέθοδος αυτή μελετά την συμπεριφορά του συστήματος σε όλο το εύρος συχνοτήτν. Καθώς σύμφνα με την ανάλυση κατά Fourierένα οποιοδήποτε σήμα αποτελείται από το άθροισμα μιας σειράς αρμονικών συχνοτήτν δηλαδή ημιτονικών και συνημιτονικών σημάτν, η απόκριση ενός συστήματος σε ένα ο- ποιοδήποτε σήμα, μεταφράζεται ς η απόκρισή του σε όλες τις αρμονικές αυτού του σήματος. Προφανώς, οι αρμονικές με το μεγαλύτερο πλάτος παίζουν μεγαλύτερο ρόλο στην α- πόκριση. Όσο περισσότερες αρμονικές συμμετέχουν, τόσο πιο πιστή γίνεται η ανασύσταση του σήματος. Οι απότομες αλλαγές στα σήματα, για να περιγραφούν, απαιτούν υψηλές αρμονικές. 3. Συνάρτηση Μεταφοράς Συστήματος Ένα φυσικό σύστημα μπορεί να περιγραφεί από μια διαφορική εξίσση της γενικής μορφής: A m m d e t A m dt m m d e t de t... A Ae t m dt dt d e t d e t B B... B dt dt de t Be t dt 3. Εάν θερήσουμε πς οι αρχικές συνθήκες για t= είναι μηδενικές, τότε η αντέρ διαφορική εξίσση, μπορεί να δοθεί σε μορφή μετασχηματισμού Laplace ς εξής: m m A A A A S B B B E B m m Η αντέρ σχέση μας οδηγεί με μια Συνάρτηση Μεταφοράς Σ.Μ. κατά Laplace, η οποία περιγράφει την σχέση που υπάρχει μεταξύ τν σημάτν εισόδου και εξόδου του συστήματος, δηλαδή με άλλα λόγια μας περιγράφει το πς μεταφέρεται το σήμα από την είσοδο στην έξοδο του συστήματος και τι «υφίσταται» κατά την μεταφορά αυτή. Η Σ.Μ. στην γενική της μορφή θα είναι: S F E Am B m A B m m A A B B όπου: F: Σ.Μ. του Συστήματος. E: Είσοδος στο Σύστημα, μετασχηματισμένη κατά LAPLACE. S: Έξοδος του Συστήματος, μετασχηματισμένη κατά LAPLACE. Για ένα φυσικό σύστημα, δηλαδή που μπορεί να έχει φυσική υπόσταση, ισχύει: η m. 3.

2 Μετατροπή της Συνάρτησης Μεταφοράς σε γινόμενο παραγόντν Η συνάρτηση μεταφοράς μπορεί επίσης να εκφραστεί υπό μορφή ενός κλάσματος, όπου τα πολυώνυμα του αριθμητή και του παρανομαστή θα είναι γινόμενα παραγόντν: j i p z E S F 3.3 όπου: m B A θέτοντας δε: j i p z K 3.4 Η έκφραση Κ ονομάζεται ενίσχυση της Σ.Μ, μπορεί δε να έχει και κάποιες διαστάσεις. Έτσι η Σ.Μ. γίνεται: j i p z K E S F εάν j p Παράδειγμα μετατροπής Έστ η Σ.Μ: F όπου m B A p z B A j j m όπου 333, K p z j j άρα,5,333,5,333 F

3 Ανάπτυξη της Σ.Μ σε μορφή γινομένου παραγόντν τυπικών όρν Οι ρίζες z i τν πολυνύμν του αριθμητή και p j του παρανομαστή μηδενικά και πόλοι α- ντίστοιχα μπορεί να είναι μηδενικές, πραγματικές, ή συζυγείς μιγαδικές. Η κάθε μία δε, μπορεί να είναι κάποιου βαθμού πολλαπλότητας. Έτσι ο αριθμητής και ο παρανομαστής μετά την παραγοντοποίηση, θα αποτελούνται από όρους της μορφής: a για ρίζα α a a b a b για ρίζα β για ρίζα jb γ Η περίπτση γ μπορεί να γραφεί και υπό την γνστή μορφή: 3.6 όπου: a b και b 3.7 Εάν στις εκφράσεις α, β, γ, προστεθεί και η έκφραση: L e δ η οποία εκφράζει την παρουσία μιας καθαρής καθυστέρησης στο σύστημα, τότε οι Συναρτήσεις Μεταφοράς όλν τν γραμμικών συστημάτν μπορούν να είναι εκφράσεις τν: Κ, α, β, γ, δ. 3.6 Αρμονική ανάλυση Ορίζεται σαν αρμονική ανάλυση ή απόκριση κατά συχνότητα, ή στατική απόκριση του συστήματος σε μία ημιτονική είσοδο. Η απόκριση του συστήματος σ' αυτό το τυπικό ημιτονικό σήμα θα είναι επίσης ένα ημιτονικό σήμα πού μπορεί να διαφέρει, ς προς αυτό της εισόδου, στο πλάτος και στην φάση του. Έτσι με την βοήθεια μιας γεννήτριας συχνοτήτν και ενός καταγραφικού μπορούμε να έχουμε τις αποκρίσεις του συστήματος σ' ένα ευρύ φάσμα συχνοτήτν, που καλύπτουν ικανοποιητικά την περιοχή της ζώνης διέλευσής του. Ό- πς θα δούμε και στην συνέχεια τν μαθημάτν, από την αρμονική ανάλυση μπορούμε να ορίσουμε την Σ.Μ του συστήματος. Στην θερητική της υπόσταση η αρμονική ανάλυση, μπορεί να περιγραφεί από τον μετασχηματισμό κατά FOURIER της εξόδου του συστήματος, όταν αυτό διεγείρεται από ημιτονική είσοδο. Όπς ήδη γνρίζουμε ο μετασχηματισμός Fourier μιας συνάρτησης και ο αντίστροφός του δίδεται:

4 3.4 f t f t F j f t e F j jt F j e dt j t d Ο μετασχηματισμός αυτός υπάρχει εάν ισχύει η παρακάτ συνθήκη: 3.8 f t dt 3.9 Αντίστοιχα ο μετασχηματισμός LAPLACE και ο αντίστροφός του, δίδονται: f t f t f t e t F dt j F j j F e t d 3. Από τις εξισώσεις τν μετασχηματισμών Fourier και Laplace, παρατηρούμε ότι μπορούμε να περάσουμε από τον ένα στον άλλο, αντικαθιστώντας ανάλογα το με j, ή αντίστροφα. Έτσι με δεδομένο ότι στην αρμονική ανάλυση η μεταβλητή γίνεται =j, η έκφραση της Σ.Μ θα είναι μια μιγαδική έκφραση Τj με μεταβλητή, η οποία θα έχει για κάθε τιμή της, ένα μέτρο και ένα όρισμα. Θέτοντας στην διάφορες τιμές, θα μας προκύψουν τα πλάτη ενισχύσεις και οι φάσεις διαφορές φάσεν της Σ.Μ του συστήματος. Η αποτύπση αυτής της συμπεριφοράς του συστήματος κατά πλάτος και κατά συχνότητα αρμονική ανάλυση γίνεται πάν σε διαγράμματα. Η παρουσίαση αυτή στα διαγράμματα μας δίνει την τιμή του μέτρου και της φάσης ενός συστήματος για όλο το εύρος τν συχνοτήτν. Το βασικό διάγραμμα είναι το διάγραμμα ΒΟDΕ. 3.7 Διαγράμματα ΒODΕ Εάν έχουμε ένα σύστημα, και εφαρμόσουμε στην είσοδό του ένα ημιτονικό σήμα V i it, η έξοδος του συστήματος θα είναι κι αυτή ένα ημιτονικό σήμα το οποίο θα διαφοροποιείται ενδεχομένς από το σήμα της εισόδου- ς προς το πλάτος και την φάση του. Σχήμα 3. Σύστημα με είσοδο και έξοδο

5 3.5 Η μορφή τν δύο σημάτν θα είναι όπς φαίνονται στο Σχήμα 3., όπου φαίνεται πς έ- χουν διαφορετικό πλάτος και διαφορά φάσης. Σχήμα 3. Σήματα εισόδου και εξόδου Η διαφορά που έχουν τα δύο σήματα στο πλάτος τους V i και V o μπορεί να εκφρασθεί ς ενίσχυση ή υποβάθμιση του σήματος και εκφράζεται ς ο λόγος τ δύο πλατών V i και V o. Ο λόγος αυτός είναι καθαρός αριθμός. Η ενίσχυση ή υποβάθμιση λέγεται και πλάτος της Σ.Μ. και μπορεί να εκφρασθεί και ς λογαριθμικός λόγος, σύμφνα με την σχέση: A db log T j 3. Η διαφορά φάσης φ τν δύο σημάτν λέγεται και φάση και δίδεται από την σχέση : o T Ακολουθώντας αυτή την διαδικασία υπολογισμού για το πλάτος και την φάση σε όλη την περιοχή τν συχνοτήτν, οδηγούμαστε στην συμπλήρση ενός πίνακα της κάτθι μορφής: Συχνότητα rad/ec 3. k... Πλάτος db A A A 3. A k... A Φάση o φ φ φ 3. φ k... φ Πίνακας 3. Τιμές πλάτους και φάσης

6 3.6 Σχήμα 3.3 Διάγραμμα BODE Η παρουσίαση στο διάγραμμα ΒΟDΕ μιας Σ.Μ, συνίσταται στο να χαράζουμε ξεχριστά, συναρτήσει της κυκλικής συχνότητας, τις καμπύλες πλάτους -σε db- και φάσης -σε ο -. Αυτό γίνεται βάζοντας στο διάγραμμα τα σημεία που προκύπτουν από τις τιμές του Πίνακας 3. και χαράσσοντας την καμπύλη που τα ενώνει. 3.8 Η συμπεριφορά τν όρν της Σ.Μ. στα διαγράμματα ΒODΕ Μια Σ.Μ., όπς είδαμε προηγουμένς, έχει την μορφή γινομένου τν εξής όρν: a K όπου α, β, γ: ακέραιοι, θετικοί, αρνητικοί ή μηδενικοί αριθμοί. L e 3.3 Καθώς η Σ.Μ. μπορεί να αποτελείται από συνδυασμό τν αντέρ όρν, για την χάραξη της καμπύλης πλάτους της Τj, χαράσσουμε πρώτα τις καμπύλες πλάτους συναρτήσει της συχνότητας του κάθε όρου της Τj χριστά, και στη συνέχεια με γραφική πρόσθεση τν επιμέρους καμπυλών, έχουμε την τελική καμπύλη του πλάτους σε db της [Τj]. Για την χάραξη της καμπύλης φάσης της Τj χαράσσουμε τις καμπύλες φάσης τν επιμέρους όρν της Τj και στη συνέχεια, αθροίζοντας γραφικά, έχουμε την τελική καμπύλη φάσης της Τj.

7 3.7 Οι όροι αυτοί, όταν δέχονται στην είσοδό τους ημιτονικό σήμα δηλαδή το =j αντί για =σ+j είναι μιγαδικοί αριθμοί που έχουν μέτρο και όρισμα πλάτος και φάση δηλαδή, οι τιμές τν οποίν είναι συνάρτηση της συχνότητας που είναι η συχνότητα του ημιτονικού σήματος εισόδου. Στην συνέχεια θα παρουσιάσουμε στο διάγραμμα ΒΟDΕ, μία-μία τις βασικές συναρτήσεις. α Όρος της μορφής Κj α. Το πλάτος της συνάρτησης σε db θα είναι: a a Adb log K logk log K a log 3.4 Αυτό μας δείχνει ότι η καμπύλη του πλάτους Alog είναι μια ευθεία της γενικής μορφής: ax+b=c, μόνο που εδώ η μεταβλητή x παίρνει τιμές σε λογαριθμική κλίμακα. Την χαράσσουμε βαθμονομώντας τον άξονα τν Χ για την, με λογαριθμική βαθμονόμηση και στον άξονα τν Υ τις τιμές του AdB γραμμικά βαθμονομημένα Σχήμα 3.4. Το σημείο = δεν φιγουράρει στο διάγραμμα γιατί ο άξονας είναι βαθμονομημένος λογαριθμικά για την. Α db db Γραμμική κλίμακα Άξονας τν db Λογαριθμική κλίμακα Γραμμική κλίμακα Λογαριθμική κλίμακα Σχήμα 3.4 Για το διάστημα μιας οκτάβας δηλαδή από ές, η κλίση της ευθείας Α είναι: [ logk a log ] [logk a log] a [log log] a log a log a 6db/ octave όπου log 6db Η ευθεία τέμνει τον άξονα τν db στο σημείο τέτοιο ώστε: 3.5

8 3.8 log logk log logk K a a 3.6 για = είναι: A db = K db. Για α=, η Α, είναι μια οριζόντια ευθεία στην θέση K db. Στα Σχήματα , φαίνονται οι τρεις περιπτώσεις, για α=, α>, α<. Α db α= Κ db Σχήμα 3.5 Καμπύλη πλάτους για α= Α db a> Κ Κλίση 6 α db/octave db ο =/Κ /α Σχήμα 3.6 Καμπύλη πλάτους για α> Α db a< Κ Κλίση 6 α db/octave ο =/Κ /α Σχήμα 3.7 Καμπύλη πλάτους για α< db

9 3.9 Το διάγραμμα φάσης του όρου K α j είναι η καμπύλη Φ=arg [Κj], δηλαδή μια ευθεία οριζόντια με Φ = a 9. a 9 Σχήμα 3.8 Καμπύλη φάσης Εάν πάρουμε τώρα το διάστημα μιας δεκάδας δηλαδή από ές, η κλίση της ευθείας Α είναι: [ logk a log ] [logk a log] a [log log] a log a log a db/ decade 3.7 β όρος της μορφής +jτ β Το μέτρο του θα είναι: Για β= και τ> είναι : +jτ. Ο όρος έχει μια πραγματική αρνητική ρίζα: Εξίσση πλάτους j j j log db 3.8 για τότε j j db db για τότε j j db db Άρα έχουμε δύο ασύμπττους, * τις ευθείες Α= ή dβ και Α=τ ή μια ευθεία με κλίση 6 db /octave που τέμνει τον άξονα τν db για =/τ. Το διάγραμμα φάσης του όρου + jτ φαίνεται στο ίδιο σχήμα και ορίζεται: Εξίσση φάσης όταν Arg j ta : και όταν * Οι ασύμπττες πλάτους και φάσης χαράσσονται πρώτα και μας βοηθούν στην σστή χάραξη τν καμπυλών, οι οποίες προγραμματίζονται στο κομπιούτερ από τις εξισώσεις πλάτους και φάσης.

10 3. για 45 Στο Σχήμα 3.9 φαίνονται για διάφορες τιμές της, οι διαφορές μεταξύ πραγματικών καμπυλών και ασύμπττν, για το πλάτος και την φάση. T db db 3 db db 6 db/oct ή db/dec db /τ /τ /τ +9 o +45 o 6,5 ο ο 4 4 ο 6,5ο o /4τ /τ /τ /τ 4/τ Παράδειγμα Έστ η Σ.Μ: Σχήμα 3.9 Διαγράμματα πλάτους και φάσης της +jτ T j,5 Τ db 9 45 o,, rad Σχήμα 3. Διαγράμματα πλάτους και φάσης της T j,5

11 3. γ Όρος της μορφής -jτ β για β= και τ> Το πλάτος του όρου αυτού καθ' ότι είναι συζυγής με τον προηγούμενο, θα είναι ακριβώς το ίδιο με του προηγούμενου. Η φάση του όμς θα διαφέρει και θα είναι: ta 3. δηλαδή αντιθέτου προσήμου απ' αυτήν του προηγούμενου όρου και άρα το διάγραμμα φάσης του, θα είναι συμμετρικό ς προς τον άξονα τν ο Σχήμα 3.. T db 6 db/oct ή db/dec db o -45 o /τ -9 o Σχήμα 3. Διαγράμματα πλάτους και φάσης της -jτ Παράδειγμα Έστ η Σ.Μ. T j j Το διάγραμμά της απεικονίζεται στο Σχήμα 3.. Τ db 3 - o -45 o -9 o,, r/ Σχήμα 3. Διαγράμματα πλάτους και φάσης της -τ

12 3. δ Όροι της μορφής +jτ - και -jτ - Οι όροι αυτοί έχουν τα μέτρα τους ίδια σε dβ, οι δε φάσεις τους είναι ίδιες σε απόλυτες τιμές, αλλά αντίθετου προσήμου, όπς φαίνεται στο Σχήμα 3.3 και στο Σχήμα 3.5 καθώς και στα παραδείγματα που ακολουθούν. T db db 3 db db -6 db/oct ή - db/dec /4τ /τ /τ /τ 4/τ o -45 o 4 ο 6,5 ο 6,5 ο 4 ο -9 o Σχήμα 3.3 Διαγράμματα πλάτους και φάσης της +jτ - Παράδειγμα Έστ η Σ.Μ. T j, j Τ db o -45 o -9 o,, r/ Σχήμα 3. 4 Διαγράμματα πλάτους και φάσης της +,j -

13 3.3 T db -6 db/oct ή - db/dec +9 o 45 o o /τ Παράδειγμα Έστ η Σ.Μ. Σχήμα 3.5 Διαγράμματα πλάτους και φάσης της -jτ - T j, j Τ db o -45 o -9 o,, r/ Σχήμα 3.6 Διαγράμματα πλάτους και φάσης της -,j -

14 3.4 Παρατήρηση: K Εάν έχουμε έναν όρο της μορφής: T j j Χαράσσουμε πρώτα τον όρο: T j j μετά τον Κ και στην συνέχεια κάνουμε την σύνθεσή τους, όπς φαίνεται και στα σχήματα που ακολουθούν. A db -6 db/oct db /τ Σχήμα 3.7 Διάγραμμα πλάτους του όρου /+jτ A db Κ db Σχήμα 3.8 Διάγραμμα πλάτους του Κ. A db Κdb -6 db/oct db /τ Σχήμα 3.9 Σύνθεση τν δύο όρν. Στην ουσία η σύνθεση είναι μία μετατόπιση του όρου /+jτ κατά Κ db.

15 3.5 Παράδειγμα χάραξης διαγράμματος της μορφής: D όπου ή D όπου a a a Η D είναι η Σ.Μ. ενός διορθτή καθυστέρησης φάσης. Επειδή /ατ</τ, πάν στον άξονα τν, θα εμφανισθεί πρώτα ο όρος του παρανομαστή και μετά ο όρος του αριθμητή. A db -6 db/oct db o -45 o /aτ -9 o Σχήμα 3. Όρος παρανομαστή T db 6 db/oct ή db/dec db +9 o /τ +45 o o Σχήμα 3. Όρος αριθμητή. Στην συνέχεια κάνουμε την σύνθεση τν δύο όρν και έχουμε τις καμπύλες της όλης συνάρτησης μεταφοράς που φαίνεται στο Σχήμα 3..

16 3.6 A db db -6 db/oct /aτ α/τ /τ o -45 o -9 o Σχήμα 3. Συνολική χάραξη ε Όρος της μορφής: για ξ> και γ= θα είναι: j j για A db log Adb db για A db log 3. Η καμπύλη αυτή του πλάτους θα έχει δύο ασύμπττες, στην αρχή και στο τέλος τν συχνοτήτν. Στην αρχή η ασύμπττος θα είναι ο άξονας τν db και η άλλη ασύμπττος θα είναι μία ευθεία με κλίση db/oct ή 4dB/dec που τέμνει τον άξονα db για =. Η μορφή της καμπύλης εξαρτάται από την παράμετρο ξ. Η καμπύλη του μέτρου έχει ένα ελάχιστο για την συχνότητα R τέτοιο ώστε: A για R για δηλαδή, 7 Διαφορετικά το ελάχιστο βρίσκεται για = και είναι db. Για ξ<,7 λοιπόν η ελαχίστη τιμή του πλάτους Α είναι: 3. A mi 3.3

17 3.7 Εάν το ξ είναι πολύ μικρό τότε έχουμε: και A 3.4 R Για ξ>,7 το μέτρο του πλάτους Α είναι πάντα μεγαλύτερο της μονάδας. mi Το όρισμα δίνεται από: για για 8 : Φ=9 ta 3.5 Η αύξηση του ορίσματος Φ στην περιοχή του εξαρτάται από την τιμή του ξ Σχήμα 3.3 κατά τρόπον ώστε για μικρό ξ, η αύξηση του ορίσματος είναι απότομη. A db db/oct ξ>,7 ξ Φ ο 8 o R ξ<,7 db 9 o o ξ μεγάλο ξ μικρό Σχήμα 3.3 Διάγραμμα BODE συστήματος ου βαθμού Με δεδομένη την αντέρ μορφή της απόκρισης του τύπου: μπορούμε να δώσουμε την μορφή του τύπου: όπου 3.6

18 3.8 Η εξέταση του όρου μας οδηγεί στο Σχήμα 3.4 και στο Σχήμα 3.5, για τις καμπύλες πλάτους και φάσης. Επειδή ο όρος είναι ίδιος με τον προηγούμενο αλλά βρίσκεται στον παρανομαστή, τα διαγράμματα θα είναι αντίστροφα αυτών του προηγούμενου όρου. ξ= Σχήμα 3.4 Καμπύλες πλάτους για διάφορες τιμές του ξ ξ= Σχήμα 3.5 Καμπύλες φάσης για διάφορες τιμές του ξ

19 3.9 Στον όρο αυτόν, αντίστροφα απ ότι στον προηγούμενο, για ξ<ο,7, θα έχουμε ένα μέγιστο πλάτους : A max 3.7 για την τιμή της συχνότητας που προκύπτει όπς προηγουμένς από την ανάλυση του α- κρότατου για το πλάτος. A για R 3.8 για δηλαδή, 7 Παρατήρηση Αν η τιμή του γ είναι γ> τότε προσθέτουμε γραφικά γ φορές τον όρο. ζ Όρος της μορφής e -jl. Ο όρος αυτός λέγεται όρος καθαρής καθυστέρησης L και η παρουσία του στην Σ.Μ σημαίνει ότι το σήμα εξόδου καθυστερεί του σήματος εισόδου κατά χρόνο L, ενώ το πλάτος του παραμένει αμετάβλητο, καθώς το μέτρο του όρου είναι πάντα ίσο με την μονάδα. Σχήμα 3.6 Επίδραση του όρου καθαρής καθυστέρησης Το όρισμα Φ είναι: Για L rad L 57, Σχέση μεταξύ διαγραμμάτν πλάτους και φάσης. Επειδή τα διαγράμματα πλάτους και φάσης εξάγονται από την ίδια συνάρτηση μεταφοράς, είναι φανερό ότι δεν είναι το ένα ανεξάρτητο από το άλλο, αλλά υπάρχει μια σχέση μεταξύ Α και Φ.

20 Συστήματα με Ελάχιστη Διαφορά Φάσης Ε.Δ.Φ και Συστήματα χρίς Ε.Δ.Φ. Ο ερευνητής BODE απέδειξε ότι είναι δυνατό να εξαγάγουμε την μορφή της καμπύλης φάσης ενός γραμμικού συστήματος, από την απόκρισή του κατά πλάτος, με την προϋπόθεση ότι η συνάρτηση μεταφοράς του είναι Ε.Δ.Φ, δηλαδή δεν έχει ούτε πόλους ούτε μηδενικά με θετικό πραγματικό μέρος, ούτε καθαρή καθυστέρηση. Εάν αντίθετα κάτι τέτοιο συμβαίνει, η Σ.Μ δεν είναι Ε.Δ.Φ και δεν είναι δυνατόν να υπάρξει μια σχέση μεταξύ Α και Φ. Για την κατανόηση τν αντέρ θα εξετάσουμε ένα παράδειγμα μιας Σ.Μ που δεν είναι Ε.Δ.Φ. Έστ η Σ.Μ που ακολουθεί: T Με μηδενικό Διάγραμμα πλάτους: A T j ή db και πόλο Διάγραμμα φάσης: ta t ta t ta t Τα διαγράμματα πλάτους και φάσης του εν λόγ συστήματος φαίνονται στο. Καθώς φαίνεται από τα διαγράμματα, η καμπύλη της φάσης συνάρτηση του είναι ανεξάρτητη του πλάτους, καθ' ότι το πλάτος παραμένει db για όλες τις συχνότητες. Τα συστήματα αυτά όπου δεν μπορεί να εξαχθεί καμία σχέση μεταξύ διαγραμμάτν πλάτους και φάσης, καλούνται συστήματα χρίς Ελάχιστη Διαφορά Φάσης, καθ' ότι περιέχουν: ή όρους στο δεξιό μιγαδικό ημιεπίπεδο, ή καθαρή καθυστέρηση ή και τα δύο. Αντίθετα τα άλλα λέγονται συστήματα Ελάχιστης Διαφοράς Φάσης Ε.Δ.Φ και μπορούμε να εξάγουμε γι αυτά σχέσεις ανάμεσα στις καμπύλες ασύμπττες πλάτους και της φάσης τους. A db o /τ T db τ τ -9 o -8 ο Σχήμα 3.7 Καμπύλες πλάτους και φάσης Σ.Μ χρίς Ε.Δ.Φ.

21 Καθορισμός του διαγράμματος φάσης ενός συστήματος Ε.Δ.Φ. συναρτήσει του διαγράμματος πλάτους του. Εάν το σύστημα είναι Ε.Δ.Φ, υπάρχει μια μαθηματική σχέση νόμος του ΒΟDΕ που μας δίνει την διαφορά φάσης Φ α στην συχνότητα α, συναρτήσει του πλάτους του, γι' αυτήν την συχνότητα. Η σχέση αυτή είναι: l A l A a d 3.3 Η σχέση αυτή είναι δύσκολη στη χρήση της. Πρακτικά ο νόμος του ΒΟDΕ μας οδηγεί σε μια απλή σχέση μεταξύ τν ασύμπττν τν καμπυλών πλάτους και φάσης: Όταν η ασύμπττος του διαγράμματος πλάτους Α είναι μια ευθεία κλίσης α όπου α ακέραιος μέσα σε ένα διάστημα,, τότε η ασύμπττος του διαγράμματος φάσης Φ μέσα στο ίδιο διάστημα, είναι μια ευθεία οριζόντια στο σημείο α.9 ο. Παράδειγμα Έστ η Σ.Μ. K T με οι ασύμπττες πλάτους και φάσης της Σ.Μ φαίνονται στο παρακάτ σχήμα. A db -6 db/oct T K τ - db/oct o /τ -9 o -8 ο Σχήμα 3.8 Σύστημα Ε.Δ.Φ

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

Παράρτημα 2. Διαγράμματα Bode

Παράρτημα 2. Διαγράμματα Bode Παράρτημα Διαγράμματα Bde Αντικείμενο Μελετώνται αποκρίσεις συχνότητας μέτρου και φάσης συναρτήσεν μεταφοράς κυκλμάτν πρώτου και δεύτερου βαθμού. Οι αποκρίσεις αυτές προσδιορίζονται αρχικά με ασυμπττική

Διαβάστε περισσότερα

Απόκριση Συχνότητας Γ. Τσιατούχας

Απόκριση Συχνότητας Γ. Τσιατούχας ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Απόκριση Συχνότητας V Technology and oputer Architecture ab Απόκριση Συχνότητας Γ. Τσιατούχας ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Διάρθρση. Πεδίο μιγαδικής συχνότητας

Διαβάστε περισσότερα

1. Φάσμα συχνοτήτων 2. Πεδίο μιγαδ

1. Φάσμα συχνοτήτων 2. Πεδίο μιγαδ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιαννίνν ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ 5 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρση. Φάσμα συχνοτήτν. Πεδίο μιγαδικής μγ συχνότητας Πόλοι & μηδενικά

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 10: Σύστηματα και απόκριση συχνότητας Λογαριθμικά διαγράμματα BODE

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 10: Σύστηματα και απόκριση συχνότητας Λογαριθμικά διαγράμματα BODE ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 10: Σύστηματα και απόκριση συχνότητας Λογαριθμικά διαγράμματα BODE Δ. Δημογιαννόπουλος, dimogia@teipir.gr

Διαβάστε περισσότερα

1. Φάσμα συχνοτήτων 2. Πεδίο μιγαδ

1. Φάσμα συχνοτήτων 2. Πεδίο μιγαδ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ 5 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρωση. Φάσμα συχνοτήτων. Πεδίο μιγαδικής μγ συχνότητας Πόλοι & μηδενικά

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE Δρ Γιώργος Μαϊστρος, Χημικός Μηχανικός

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Ε. Μ. Πολυτεχνείο Εργαστήριο Ηλεκτρονικής ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Γ. ΠΑΠΑΝΑΝΟΣ ΠΑΡΑΡΤΗΜΑ : Συναρτήσεις Δικτύων Βασικοί ορισμοί Ας θεωρήσουμε ένα γραμμικό, χρονικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ο. ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS

ΚΕΦΑΛΑΙΟ 5 ο. ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS ΚΕΦΑΛΑΙΟ 5 ο ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS Εισαγωγή Η μελέτη ενός ΣΑΕ μπορεί να γίνει με την επίλυση της διαφορικής εξίσωσης που το περιγράφει και είναι τόσο πιο δύσκολο, όσο μεγαλυτέρου βαθμού

Διαβάστε περισσότερα

Άσκηση 1 η Να εξετάσετε αν τα ακόλουθα σήματα είναι περιοδικά. Στην περίπτωση περιοδικού σήματος, ποια είναι η θεμελιώδης περίοδος; 1 )

Άσκηση 1 η Να εξετάσετε αν τα ακόλουθα σήματα είναι περιοδικά. Στην περίπτωση περιοδικού σήματος, ποια είναι η θεμελιώδης περίοδος; 1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα ΠΛΗ 44: Σήματα και Επεξεργασία Εικόνας Ακαδημαϊκό Έτος 007 00 Ημερομηνία Εξέτασης 4.0.00

Διαβάστε περισσότερα

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις Θέματα Εξετάσεν Ιουνίου 00 στο μάθημα Σήματα και Συστήματα και Λύσεις ΘΕΜΑ. μονάδες Έστ το αιτιατό σύστημα d y t y t x t d t όπου x t η είσοδος και y t η έξοδος του συστήματος. α Να υπολογιστεί η συνάρτηση

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα κυκλώματα που θεωρούμε εδώ είναι γραμμικά

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ 7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους

Διαβάστε περισσότερα

( ) ( s) Συντονισµός Συντονισµός στο κύκλωµα RLC σειράς. Η αντίσταση εισόδου του κυκλώµατος είναι

( ) ( s) Συντονισµός Συντονισµός στο κύκλωµα RLC σειράς. Η αντίσταση εισόδου του κυκλώµατος είναι Συνάρτηση µεταφοράς Η συνάρτηση µεταφοράς ορίζεται ς ο λόγος του µετασχηµατισµού aplace της εξόδου y(t) του κυκλώµατος προς το µετασχηµατισµό aplace της εισόδου x(t). Η είσοδος όπς και η έξοδος µπορεί

Διαβάστε περισσότερα

1. Φίλτρα διέλευσης χαμηλών συχνοτήτων 2. Φίλτρα διέλευσης υψηλών συχνοτήτων 3. Ζωνοπερατά φίλτρα

1. Φίλτρα διέλευσης χαμηλών συχνοτήτων 2. Φίλτρα διέλευσης υψηλών συχνοτήτων 3. Ζωνοπερατά φίλτρα ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιαννίνν ΦΙΛΤΡΑ 5 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρση. Φίλτρα διέλευσης χαμηλών συχνοτήτν. Φίλτρα διέλευσης υψηλών συχνοτήτν 3. Ζνοπερατά

Διαβάστε περισσότερα

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα

Διαβάστε περισσότερα

ΦΙΛΤΡΑ. Κατηγορίες Φίλτρων

ΦΙΛΤΡΑ. Κατηγορίες Φίλτρων ΦΙΛΤΡΑ Τα φίλτρα είναι στοιχείο ή διάταξη που μπορεί να επιτρέπει τη διέλευση ή να ανακόπτει ή να διαχρίζει σε μέρη ένα φάσμα συχνοτήτν, δηλ. μια συγκεκριμένη ομάδα συχνοτήτν. Μια από τις πιο συνηθισμένες

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Απόκριση Συχνότητας Αναλογικών Σ.Α.Ε Διαγράμματα BODE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες

Διαβάστε περισσότερα

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier

2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier 2.1 2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier 2.1 Εισαγωγή Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια της μεθόδου Fourier συνίσταται στο ότι μία κυματομορφή μιας οποιασδήποτε

Διαβάστε περισσότερα

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier 2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια του μετασχηματισμού Fourier συνίσταται στο ότι μία κυματομορφή

Διαβάστε περισσότερα

5.15 Εφαρμογές της ομογενούς Δ.Ε. 2ης τάξης με σταθερούς συντελεστές

5.15 Εφαρμογές της ομογενούς Δ.Ε. 2ης τάξης με σταθερούς συντελεστές 4 ΚΕΦΑΛΑΙΟ 5 α) y -y +y e x /x 5 Aπ. u(/)x -3 e x β) y +ysecx Aπ. u[csx]ln csx +xsinx γ) y +4ysin x Aπ. u[cs (x)+]/ ) Γενικεύοντας την παραπάν πορεία για n>, δείξτε ότι τα v i (x) ικανοποιούν το σύστημα

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #4 Η ιδιότητα της συνέλιξης Απόκριση Συχνότητας ΓΧΑ Συστημάτν Απόκριση συχνότητας ΓΧΑ Συστημάτν που περιγράφονται από Διαφορικές Εξισώσεις Η ιδιότητα πολλαπλασιασμού

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

Γ. Τσιατούχας. 1. Διαγράμματα Bode. VLSI systems and Computer Architecture Lab. Φροντιστήρια ΙV

Γ. Τσιατούχας. 1. Διαγράμματα Bode. VLSI systems and Computer Architecture Lab. Φροντιστήρια ΙV ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΦΡΟΝΤΙΣΤΗΡΙΑ ΙV Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Θέματα. Διαγράμματα Bode. Φίλτρα VLSI systems and Computer Architecture Lab Πρόβλημα:

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση

Διαβάστε περισσότερα

Ευστάθεια συστημάτων

Ευστάθεια συστημάτων 1. Ευστάθεια συστημάτων Ευστάθεια συστημάτων Κατά την ανάλυση και σχεδίαση ενός συστήματος αυτομάτου ελέγχου, η ευστάθεια αποτελεί έναν πολύ σημαντικό παράγοντα και, γενικά, είναι επιθυμητό να έχουμε ευσταθή

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourir µιας συνάρτησης χρίς να καταφεύγουµε στην εξίσση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση συχνότητας

Διαβάστε περισσότερα

ΜΟΝΤΕΛΑ ΕΝΙΣΧΥΤΩΝ ΚΑΙ ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΛΕΞΗ 4

ΜΟΝΤΕΛΑ ΕΝΙΣΧΥΤΩΝ ΚΑΙ ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΛΕΞΗ 4 ΜΟΝΤΕΛΑ ΕΝΙΣΧΥΤΩΝ ΚΑΙ ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΛΕΞΗ 4 Το βασικό μοντέλο ενισχυτή Χαρακτηριστικά Ενίσχυση σημάτων μηδενικής (σχεδόν) τάσης Τροφοδοσία από μια ή περισσότερες DC πηγές Απαιτεί κατάλληλο DC biasing

Διαβάστε περισσότερα

Μετασχηματισμοί Laplace

Μετασχηματισμοί Laplace Μετασχηματισμοί Laplace Ιδιότητες μετασχηματισμών Laplace Βασικά ζεύγη μετασχηματισμών Laplace f(t) F(s) δ(t) 1 u(t) 1 / s t 1 / s 2 t n n! / s n1 e αt, α>0 1 / (s α) te αt, α>0 1 / (s α) 2 ημωt ω / (s

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι

Διαβάστε περισσότερα

Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα

Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα Τι είναι σήμα; Σεραφείμ Καραμπογιάς Ως σήμα ορίζεται ένα φυσικό μέγεθος το οποίο μεταβάλλεται σε σχέση με το χρόνο ή το χώρο ή με οποιαδήποτε άλλη ανεξάρτητη μεταβλητή ή μεταβλητές. Παραδείγματα: Σήμα

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ. Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z 7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Σκοπός του Κεφαλαίου είναι να ορίσει

Διαβάστε περισσότερα

Στερεό: Γραφικές παραστάσεις-συμπεράσματα

Στερεό: Γραφικές παραστάσεις-συμπεράσματα Στερεό: Γραφικές παραστάσεις-συμπεράσματα Γενικές παρατηρήσεις: Από την γραφική παράσταση ενός μεγέθους ( συνήθς σε συνάρτηση με το χρόνο) μπορούμε να έχουμε διάφορα συμπεράσματα, τόσο για το μεταβαλλόμενο

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Συνάρτηση Απόκρισης Συχνότητας

Δυναμική Μηχανών I. Συνάρτηση Απόκρισης Συχνότητας Δυναμική Μηχανών I 7 3 Συνάρτηση Απόκρισης Συχνότητας 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Απόκριση

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ:

Διαβάστε περισσότερα

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier

Διαβάστε περισσότερα

3. Κεφάλαιο Μετασχηματισμός Fourier

3. Κεφάλαιο Μετασχηματισμός Fourier 3 Κεφάλαιο 3 Ορισμοί Ο μετασχηματισμός Fourir αποτελεί την επέκταση των σειρών Fourir στη γενική κατηγορία των συναρτήσεων (περιοδικών και μη) Όπως και στις σειρές οι συναρτήσεις θα εκφράζονται με τη βοήθεια

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 16: Απόκριση συχνότητας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης 6 Nv 6 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος

Διαβάστε περισσότερα

Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT. Οκτώβριος 2005 ΨΕΣ 1

Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT. Οκτώβριος 2005 ΨΕΣ 1 Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT Οκτώβριος 2005 ΨΕΣ 1 Γενικά Μορφές Μετασχηµατισµού Fourir Σήµατα που αντιστοιχούν στους τέσσερους τύπους µετασχηµατισµών α Μετασχηµατισµός Fourir FT β Σειρά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

3 η ενότητα ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΝΙΣΧΥΤΩΝ

3 η ενότητα ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΝΙΣΧΥΤΩΝ ρ. Λάμπρος Μπισδούνης Καθηγητής 3 η ενότητα ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΝΙΣΧΥΤΩΝ T.E.I. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Περιεχόμενα 3 ης ενότητας Στην τρίτη ενότητα θα μελετήσουμε την απόκριση

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 6: Απόκριση Συχνότητας Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier Διακριτού Χρόνου Η έννοια της Απόκρισης Συχνότητας Ιδιότητες της Απόκρισης

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at

Διαβάστε περισσότερα

Ειδικά Θέματα Ηλεκτρονικών 1

Ειδικά Θέματα Ηλεκτρονικών 1 Ειδικά Θέματα Ηλεκτρονικών 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3...2 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΝΙΣΧΥΤΩΝ...2 3.1 Απόκριση συχνότητας ενισχυτών...2 3.1.1 Παραμόρφωση στους ενισχυτές...5 3.1.2 Πιστότητα των ενισχυτών...6 3.1.3

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση Εξαναγκασμένη Ταλάντωση Αρμονική Φόρτιση Αρμονική Ταλάντωση Εξαναγκασμένη Ταλάντωση: Αρμονική Φόρτιση: Δ8- Η αρμονική διέγερση αποτελεί θεμελιώδη μορφή διέγερσης στη Δυναμική των Κατασκευών λόγω της μαθηματικής

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΚΑΤΕΥΘΥΝΣΗ : «ΕΦΑΡΜΟΣΜΕΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΑ

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

ΕΝΙΣΧΥΤΗΣ ΜΕ ΣΥΖΕΥΞΗ ΜΕΣΩ ΠΥΚΝΩΤΗ

ΕΝΙΣΧΥΤΗΣ ΜΕ ΣΥΖΕΥΞΗ ΜΕΣΩ ΠΥΚΝΩΤΗ ΕΝΙΣΧΥΤΗΣ ΜΕ ΣΥΖΕΥΞΗ ΜΕΣΩ ΠΥΚΝΩΤΗ ΕΠΩΝΥΜΟ ΟΝΟΜΑ Α.Μ. ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΔΙΕΞΑΓΩΓΗΣ:.... /..../ 20.. ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:.... /..../ 20.. ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΤΟΧΟΙ η κατανόηση

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί

Διαβάστε περισσότερα

2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις:

2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: Στοχαστικά σήµατα Έννοια του στοχαστικού σήµατος Θερούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: & α Γνρίζουµε µε απόλυτη βεβαιότητα (µε πιθανότητα ένα), ότι η αρχική

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι

Συστήματα Αυτομάτου Ελέγχου Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #10: Σύστηματα και Απόκριση Συχνότητας - Λογαριθμικά Διαγράμματα BODE Δημήτριος Δημογιαννόπουλος

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier

Διαβάστε περισσότερα

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του

Διαβάστε περισσότερα

Προτεινόµενες Ασκήσεις στην Απόκριση Συχνότητας

Προτεινόµενες Ασκήσεις στην Απόκριση Συχνότητας Προτεινόµενες Ασκήσεις στην Απόκριση Συχνότητας από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλµάτν», Ν. Μάργαρη Πρόβληµα Το κύκλµα του Σχ. είναι ένα απλό χαµηλοπερατό φίλτρο. Να βρεθεί η συνάρτηση µεταφοράς τάσης.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

3 ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ

3 ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ 3 ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ OURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Στη πράξη πολλές φορές χρειάζεται να προσδιορίσουμε την έξοδο ενός συστήματος, όταν αυτό διεγείρεται από ένα σήμα. Στο προηγούμενο κεφάλαιο,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1)

ΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1) Αριθμός Εξέτασης 7 α.α) ος τρόπος: Έστω z i. Τότε ΑΠΑΝΤΗΣΕΙΣ z i και Re z. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι z z,ισχύει επίσης ότι. Είναι z z z z z z z z z z z

Διαβάστε περισσότερα

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Τα φίλτρα είναι ηλεκτρικά δικτυώματα που αφήνουν να περνούν απαραμόρφωτα ηλεκτρικά σήματα μέσα σε συγκεκριμένες ζώνες συχνοτήτων και ταυτόχρονα μηδενίζουν κάθε άλλο ηλεκτρικό

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Κεφάλαιο 4. Απόκριση συχνότητας

Κεφάλαιο 4. Απόκριση συχνότητας Κεφάλαιο 4 Απόκριση συχνότητας Εισαγωγή Στο κεφάλαιο αυτό θα μελετήσουμε την απόκριση συχνότητας ενός κυκλώματος, δηλαδή τον τρόπο με τον οποίο μεταβάλλεται μία τάση ή ένα ρεύμα του κυκλώματος όταν μεταβάλλεται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό. ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY Αν μια συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο, τότε είναι και συνεχής στο σημείο αυτό Αν μια συνάρτηση f είναι συνεχής σ ένα

Διαβάστε περισσότερα

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

Κεφάλαιο 0 Μιγαδικοί Αριθμοί Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 21/01/2011 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 21/01/2011 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ /0/0 ΘΕΜΑ ο (5 μονάδες) Για τον ενισχυτή του παρακάτω σχήματος δίνονται: 0 Ω, Ε kω, Β 00 kω, 4 kω, L kω, e 5 kω και 00 (α) Να προσδιορίσετε την ενίσχυση τάσης (A

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές.

Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές. Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές. Παραδείγµατα: Σήµα οµιλίας Πίεση P() Σήµα εικόνας y I

Διαβάστε περισσότερα

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ Μέτρα Περιγραφικής Στατιστικής Πληθυσμιακοί παράμετροι: τα αριθμητικά μεγέθη που εκφράζουν τις στατιστικές ιδιότητες ενός πληθυσμού (που προσδιορίζουν / περιγράφουν τη φυσιογνωμία και τη δομή του) Στατιστικά

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not deined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση

Διαβάστε περισσότερα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1) Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,

Διαβάστε περισσότερα

Κεφάλαιο 5 Μετασχηματισμός z και Συνάρτηση μεταφοράς

Κεφάλαιο 5 Μετασχηματισμός z και Συνάρτηση μεταφοράς Κεφάλαιο Μετασχηματισμός και Συνάρτηση μεταφοράς Σύνοψη Στο κεφάλαιο αυτό δίνεται ο ορισμός του μετασχηματισμού και παρουσιάζονται οι ιδιότητες του μετασχηματισμού Δίνεται ο ορισμός της συνάρτησης μεταφοράς

Διαβάστε περισσότερα