[ΥΛΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΣΥΝΘΕΣΗΣ ΜΟΥΣΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ FPGA]

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "[ΥΛΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΣΥΝΘΕΣΗΣ ΜΟΥΣΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ FPGA]"

Transcript

1 2014 Π.Μ.Σ. Ηλεκτρονικής Φυσικής (Ραδιοηλεκτρολογίας) Τμήμα Φυσικής, Σχολή Θετικών Επιστημών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πορλιδάς Δημήτριος [ΥΛΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΣΥΝΘΕΣΗΣ ΜΟΥΣΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ FPGA]

2 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΕΡΙΛΗΨΗ ΓΕΝΝΗΤΡΙΑ ΚΥΜΑΤΟΜΟΡΦΩΝ ΣΕΙΡΕΣ ΦΟΥΡΙΕ FPGA ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΓΕΝΝΗΤΡΙΑΣ ΚΥΜΑΤΟΜΟΡΦΩΝ Σύνθεση κύματος Δημιουργία ημιτονικών συνημιτονικών σειρών Κυματομορφές ΣΥΣΤΗΜΑ ΣΥΝΘΕΣΗΣ ΜΟΥΣΙΚΟΥ ΣΗΜΑΤΟΣ ΜΟΥΣΙΚΕΣ ΝΟΤΕΣ ΧΡΟΙΑ ΤΟΝΟΣ ΗΧΟΥ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΠΕΡΙΟΡΙΣΜΟΙ & ΑΝΤΙΜΕΤΩΠΙΣΗ ΣΥΝΘΕΣΗ & ΑΝΑΠΑΡΑΓΩΓΗ ΗΧΟΥ ΚΙΘΑΡΑΣ ΣΥΝΘΕΣΗ & ΑΝΑΠΑΡΑΓΩΓΗ ΗΧΟΥ ΒΙΟΛΙΟΥ ΣΥΝΘΕΣΗ & ΑΝΑΠΑΡΑΓΩΓΗ ΗΧΟΥ ΣΑΞΟΦΩΝΟ ΟΛΟΚΛΗΡΩΣΗ ΥΛΟΠΟΙΗΣΗΣ ΠΗΓΕΣ

3 1. ΠΕΡΙΛΗΨΗ Μια σύνθετη κυματομορφή είναι δυνατό να αναλυθεί και να περιγραφεί με πιο απλό τρόπο, ώστε να είναι δυνατή η επεξεργασία της αλλά και η αναπαραγωγή της. Η Ανάλυση Φουριέ είναι μια μέθοδος που μας δίνει αυτή τη δυνατότητα, αθροίζοντας απειροσειρές ημιτονικών και συνημιτονικών συναρτήσεων. Με τη βοήθεια της Ανάλυσης Φουριέ και με κατάλληλες ηλεκτρονικές διατάξεις, όπως οι γεννήτριες κυματομορφών, είναι δυνατό να απεικονιστεί η κυματομορφή με τη μορφή ηλεκτρικού σήματος. Μια γεννήτρια κυματομορφών είναι δυνατό να υλοποιηθεί σε ένα FPGA. Τα FPGA είναι ολοκληρωμένα κυκλώματα, τα οποία έχουν τη δυνατότητα να παραμετροποιηθούν με κατάλληλο προγραμματισμό και να συμπεριφερθούν σαν οποιοδήποτε σχεδόν ψηφιακό κύκλωμα ή διάταξη. Ο ήχος των μουσικών οργάνων έχει τα χαρακτηριστικά σύνθετων κυματομορφών. Είναι δυνατό να γίνει ανάλυση των ήχων αυτών σε σειρές ημιτονικών συναρτήσεων και με τη βοήθεια της γεννήτριας κυματομορφών να υλοποιηθεί ένα σύστημα σύνθεσης μουσικού σήματος, ώστε να αναπαράγει παρόμοιους ήχους και να προσομοιώνει διάφορα όργανα. Στη συνέχεια περιγράφεται η μέθοδος υλοποίησης ενός συστήματος σύνθεσης μουσικού σήματος σε FPGA και παρουσιάζονται τα αποτελέσματα. Abstract A composite waveform can be analyzed and described in a simpler way that can be processed and reproduced. The Fourier Analysis is a method that gives us this possibility by summing infinite series of sine and cosine functions. With Fourier analysis and by suitable electronic devices, such as waveform generators, it is possible to represent a waveform in the form of electrical signal. A waveform generator can be implemented in an FPGA. The FPGAs are integrated circuits, that have the ability to parameterized with programming and behave like almost any digital circuit or device. The sound of musical instruments has the characteristics of complex waveforms. It is possible to analyze these sounds into series of sinusoidal functions, and using a waveform generator to implement a music signal synthesizer, in order to reproduce similar sounds and simulates various musical organs. The following describes the method of implementation of a music signal synthesizer in FPGA and the results presented. 2

4 2. ΓΕΝΝΗΤΡΙΑ ΚΥΜΑΤΟΜΟΡΦΩΝ 2.1 ΣΕΙΡΕΣ ΦΟΥΡΙΕ Η συμπεριφορά ενός συστήματος ανεξάρτητων και εξαρτημένων μεταβλητών μπορεί να αποτυπωθεί γραφικά σε σύστημα αξόνων και να βρεθεί μια μαθηματική έκφραση που να προσδιορίζει τη σχέση των μεταβλητών. Όταν μια ανεξάρτητη μεταβλητή συνδέεται με μια εξαρτημένη μέσω κάποιας σχέσης και η αποτύπωση της σχέσης τους γίνει σε ορθογώνιο σύστημα συντεταγμένων, η γραφική παράσταση μπορεί να είναι μια καμπύλη ή να έχει επαναλαμβανόμενα τμήματα και να αποτελεί μια κυματομορφή. Η μαθηματική αποτύπωση της σχέσης των μεταβλητών είναι η συνάρτηση που περιγράφει την καμπύλη ή την κυματομορφή. Μια πολύπλοκη κυματομορφή είναι δυνατό να αναλυθεί και να περιγραφεί με πιο απλό τρόπο, ώστε να είναι δυνατή η επεξεργασία της αλλά και η αναπαραγωγή της. Η Ανάλυση Φουριέ είναι μια μέθοδος που μας δίνει αυτή τη δυνατότητα αθροίζοντας απειροσειρές ημιτονικών και συνημιτονικών συναρτήσεων. Είναι συνεπώς δυνατό για μια κυματομορφή που ορίζεται σε ένα διάστημα (-π, π) να βρεθούνε οι συχνότητες που υπάρχουν σε αυτή καθώς και τα πλάτη τους, έτσι ώστε η κυματομορφή να περιγράφεται με το άθροισμα: ( ) ( ) Τα πλάτη για κάθε συχνότητα f n =nf, όπου f είναι η θεμελιώδης συχνότητα, δίνονται από τις σχέσεις: ( ) ( ) ( ) ( ) Σαν παράδειγμα μπορούμε να θεωρήσουμε τη βηματική συνάρτηση που απεικονίζεται στο σχήμα 1 όπου στον κατακόρυφο άξονα απεικονίζεται το πλάτος και στον οριζόντιο ο χρόνος. Στα σχήματα 2, 3 και 4 απεικονίζονται οι συνημιτονικές συναρτήσεις που συμμετέχουν για να συνθέσουν τη βηματική συνάρτηση του σχήματος 1 και στο σχήμα 5 το 3

5 άθροισμα των τριών αυτών συναρτήσεων. Στο παράδειγμα αυτό η σειρά είναι πεπερασμένη (άθροισμα τριών συνημίτονων) και για αυτό διακρίνονται διαφορές στη μορφή μεταξύ της αρχικής συνάρτησης και της παραγόμενης από την Ανάλυση Φουριέ. Σχήμα 1. Βηματική συνάρτηση. Σχήμα 2. Συνημιτονική συνάρτηση f=220hz. Σχήμα 3. Συνημιτονική συνάρτηση f=1100hz. Σχήμα 5. Άθροισμα των συναρτήσεων. Σχήμα 4. Συνημιτονική συνάρτηση f=1540hz. 4

6 2.2 FPGA Είναι δυνατό να γίνει χρήση ηλεκτρονικών διατάξεων ώστε να απεικονιστεί με τη μορφή ηλεκτρικού σήματος οποιαδήποτε κυματομορφή. Εφόσον η προς απεικόνιση κυματομορφή αναλυθεί σε άθροισμα ημίτονων και συνημίτονων και προσδιοριστούν οι συχνότητες και τα πλάτη, μπορούν να σχεδιαστούν ηλεκτρονικά κυκλώματα ώστε να συνθέσουν αυτές τις συχνότητες και να τις αθροίσουν. Το παραγόμενο ηλεκτρικό σήμα θα είναι πανομοιότυπο της κυματομορφής και οι μεταξύ τους διαφορές θα ελαχιστοποιούνται όσο αυξάνουν οι όροι του αθροίσματος. Η ηλεκτρονική διάταξη που χρησιμοποιήθηκε ως γεννήτρια για την παραγωγή κυματομορφών βασίζεται σε ένα ολοκληρωμένο κύκλωμα που ονομάζεται FPGA (Field- Programmable Gate Array) το οποίο λειτουργεί σε συνεργασία με ένα μετατροπέα ψηφιακού σήματος σε αναλογικό DAC (Digital to Analog Converter). Η αρχή λειτουργίας της διάταξης βασίστηκε στην ψηφιακή σύνθεση και άθροιση των συχνοτήτων στο FPGA. Τα FPGA είναι ολοκληρωμένα κυκλώματα, τα οποία έχουν σχεδιαστεί να παραμετροποιούνται από τον μηχανικό ή τον σχεδιαστή της εφαρμογής για την οποία θα χρησιμοποιηθούν αφού κατασκευαστούν. Για την παραμετροποίηση τους χρησιμοποιείται μια γλώσσα περιγραφής υλικού (Hardware Description Language) και στη συνέχεια προγραμματίζονται ηλεκτρονικά με βοηθητικές διατάξεις. Μετά τον προγραμματισμό τους μπορούν να συμπεριφερθούν σαν οποιοδήποτε σχεδόν ψηφιακό κύκλωμα ή διάταξη. Στη δομή τους συμπεριλαμβάνουν προγραμματιζόμενα λογικά στοιχεία που ονομάζονται «Logic Blocks», καθώς και εσωτερικές συνδέσεις, οι οποίες επιτρέπουν τα Logic Blocks να συνδέονται μεταξύ τους και να συνδυάζονται, ώστε να εκτελούν πολύπλοκες συνδυαστικές λειτουργίες. Στη γεννήτρια κυματομορφών χρησιμοποιήθηκε το FPGA XC3S500E της οικογένειας Spartan-3E της Xilinx. Το ολοκληρωμένο αυτό αποτελείται από περίπου πύλες οι οποίες υλοποιούν διαφόρων τύπων Logic Blocks: Configurable Logic Blocks (CLBS) Input/Output Blocks (IOBs) RAM Blocks Multiplier Blocks Digital Clock Manager Blocks (DCM) Τα Logic Blocks διατάσσονται με κατάλληλο τρόπο ώστε να είναι δυνατός ο συνδυασμός τους (σχήμα 6). 5

7 Σχήμα 6. Διάταξη των Logic Blocks στο FPGA. Τα CLBs είναι η κύρια διάταξη όπου υλοποιούνται τόσο τα σύγχρονα, όσο και τα συνδυαστικά κυκλώματα και είναι οργανωμένα σε διάταξη στηλών και σειρών. Κάθε CLB αποτελείται από 4 slices. Κάθε slice περιέχει 2 Look-Up Tables τεσσάρων εισόδων (4-input LTUs), τα οποία, στα 2 από τα 4 slices, είναι δυνατό να λειτουργήσουν ως μνήμη 16bit (16x1 RAM block) ή ως καταχωρητής ολίσθησης 16bit (shift register). Επίσης κάθε slice περιέχει 2 Flip-Flops, 2 πολυπλέκτες (multiplexers), πύλες για αριθμητική λογική και κύκλωμα κρατούμενου (carry). Ο συνολικός αριθμός των CLBs του συγκεκριμένου FPGA είναι και κατά αντιστοιχία ο συνολικός αριθμός των slices είναι 4.656, ενώ των LTUs είναι και ομοίως και των Flip-Flops. Τα IOBs είναι υπεύθυνα για την επικοινωνία της εσωτερικής λογικής του FPGA με εξωτερικά στοιχεία μέσω ακροδεκτών. Το πρωτόκολλο επικοινωνίας τους είναι παραμετροποιήσιμο (TTL, CMOS, PCI, HSTL, SSTL) με τάση λειτουργίας από 1,2V ως 3,3V (ανάλογα με το πρωτόκολλο και τη λειτουργία). Τα περισσότερα έχουν αμφίδρομη λειτουργία εκτός από ορισμένα, ο αριθμός των οποίων δεν ξεπερνάει το 25% του συνολικού, που εκτελούν λειτουργία μόνο εισόδου. Το FPGA που χρησιμοποιήθηκε διαθέτει 232 IOBs οργανωμένα σε 4 περιοχές (Banks). Τα RAM Blocks χρησιμοποιούνται για αποθήκευση δεδομένων και έχουν δομή διπλής θύρας εισόδου εξόδου (dual port). Το κάθε Block διαθέτει δύο πανομοιότυπες θύρες 6

8 (ports), Α & Β, οι οποίες έχουν πρόσβαση στη μνήμη ανεξάρτητα η μία από την άλλη. Η κάθε μία μπορεί να γράφει δεδομένα στη μνήμη και να τα διαβάζει, αλλά υπάρχει και η δυνατότητα η μία να γράφει δεδομένα και να τα διαβάζει η άλλη. Το κάθε RAM Block έχει χωρητικότητα bits, συμπεριλαμβανομένων και των bit ισοτιμίας (parity bits). Το συγκεκριμένο FPGA συμπεριλαμβάνει 20 Blocks, δηλαδή συνολικά bits. Οι πολλαπλασιαστές (Multiplier Blocks) εκτελούν πολλαπλασιασμούς προσημασμένων αριθμών μεγέθους 18bits σε μορφή συμπληρώματος του δύο και εξάγουν προσημασμένο αποτέλεσμα επίσης σε μορφή συμπληρώματος του δύο, μεγέθους 36bits. Εκτός από πολλαπλασιασμούς έχουν τη δυνατότητα να εκτελέσουν κυκλική μετατόπιση αλλά και να χρησιμοποιηθούν ως αποθηκευτικοί χώροι. Επίσης διαθέτουν επιπλέον καταχωρητές ώστε να είναι δυνατή η διαδοχική σύνδεση των Blocks, δομή που χρησιμοποιείται σε αλγόριθμους ψηφιακής επεξεργασίας σήματος όπως τα FIR φίλτρα. Συνολικά υπάρχουν 20 Multiplier Blocks διαθέσιμα στο FPGA που χρησιμοποιήθηκε, οργανωμένα σε δύο στήλες μαζί με τα RAM Blocks. Τα DCM αναλαμβάνουν τη δημιουργία και διαχείριση παλμών ρολογιού για το ολοκληρωμένο. Για να εκτελέσουν αυτή τη λειτουργία διαθέτουν ένα Delay-Locked Loop (DLL) το οποίο είναι ένα αμιγώς ψηφιακό σύστημα ελέγχου. Το DLL έχει μια είσοδο χρονισμού από εξωτερική πηγή και με ένα σύστημα ανάδρασης παράγει παλμούς ρολογιού με συχνότητες πολλαπλάσιες ή υποπολλαπλάσιες της συχνότητας του σήματος εισόδου ή με διαφορά φάσης από αυτό. Επίσης διατηρεί τα χαρακτηριστικά των σημάτων ρολογιού σταθερά και με μεγάλη ακρίβεια. Το FPGA στη συγκεκριμένη εφαρμογή διαθέτει 4 DCMs. Για την ανάπτυξη της εφαρμογής χρησιμοποιήθηκε το αναπτυξιακό σύστημα SPARTAN 3E το οποίο, εκτός από το FPGA που περιγράφηκε παραπάνω, διαθέτει και μια σειρά ηλεκτρονικών διατάξεων και βοηθητικών κυκλωμάτων: 64MB DDR SDRAM 100+MHz 16MB NOR Flash 2x16 LCD Screen PS/2, VGA, RS232, Ethernet Ports Switches, Buttons, LEDs, Rotary encoder 2xSPI 14bit ADC & 4xSPI 12bit DAC 50MHz Clock Oscillator 40 I/O Pins Ο βασικός σχεδιασμός της γεννήτριας κυματομορφών παρουσιάζεται σε μπλοκ διάγραμμα στο σχήμα 7. 7

9 Σχήμα 7. Βασικός σχεδιασμός της γεννήτριας κυματομορφών. 8

10 2.3 ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΓΕΝΝΗΤΡΙΑΣ ΚΥΜΑΤΟΜΟΡΦΩΝ Η κυματομορφή που παράγεται είναι ένα άθροισμα ημίτονων, συνημίτονων και σταθερών όρων, σύμφωνα με τη σειρά Φουριέ που παρουσιάστηκε στη σελ. 8. Τα ημίτονα και τα συνημίτονα παράγονται σε ξεχωριστές γεννήτριες το καθένα, οι οποίες είναι ακολουθιακά κυκλώματα, ενώ ο σταθερός όρος δίνεται ως σταθερά και μπορεί να παραμετροποιηθεί. Ο σχεδιασμός βασίζεται στην ψηφιακή άθροιση των όρων του αθροίσματος. Ο αριθμός των όρων περιορίζεται από το μέγεθος των καταχωρητών και τον χώρο του FPGA (αριθμό των CLBs του FPGA). Το μέγεθος των καταχωρητών, και συνεπώς οι όροι του αθροίσματος, είναι δυνατό να μεταβληθούν ανάλογα με τις ανάγκες της κυματομορφής Σύνθεση κύματος Στο μπλοκ διάγραμμα του σχήματος 7 διακρίνονται τα δομικά στοιχεία των γεννητριών. Το ρολόι του συστήματος (50 MHz) χρονίζει έναν μετρητή (Counter), ο οποίος συγκρίνει την τρέχουσα τιμή του με μια σταθερά (Constant). Με αυτή τη διάταξη υλοποιείται ένας διαιρέτης της συχνότητας συστήματος (System Frequency Divider). Για την παραγωγή των συχνοτήτων στους διαιρέτες συχνότητας δε χρησιμοποιήθηκαν τα DCMs, γιατί στο σχεδιασμό χρειάζεται να χρησιμοποιηθούν ταυτόχρονα περισσότερες διαφορετικές συχνότητες από όσες είναι δυνατό να παράγουν τα DCMs. Υπάρχει όμως δυνατότητα, εφόσον το επιτρέπει το υλικό, να γίνει χρήση των DCMs για την παραγωγή της συχνότητας συστήματος για κάθε γεννήτρια, ώστε να αυξηθεί η ευελιξία της γεννήτριας κυματομορφών. Όταν η τιμή του μετρητή γίνει ίση με τη σταθερά, αυξάνει ο μετρητής διεύθυνσης κύματος (Address Counter) κατά ένα. Ο μετρητής διεύθυνσης κύματος διευθυνσιοδοτεί έναν πίνακα, στον οποίο είναι αποθηκευμένη μία περίοδος ενός ημιτονικού κύματος με αριθμητικές αξίες, έτσι ώστε αν αυτές απεικονιστούν σε μια γραφική παράσταση να σχηματιστεί μια πλήρης περίοδος (σχήμα 8). Το μέγεθος του πίνακα εξαρτάται από την ποιότητα της κυματομορφής που ζητείται και επηρεάζει τις συχνότητες που δύναται να παράγει η γεννήτρια. Στο σχεδιασμό επηρεάζει το μέγεθος των μετρητών διεύθυνσης κύματος. Περιορίζεται από τις ανάγκες της εφαρμογής για παραγόμενες συχνότητες και το χώρο του FPGA. Στο σχήμα 8 παρουσιάζεται η γραφική παράσταση της περιόδου ενός 9

11 ημιτονικού κύματος όπως είναι αποθηκευμένη σε ένα πίνακα μεγέθους 1x64 στοιχείων των 8bit. 176 Decimal value Address Σχήμα 8. Περίοδος ημιτονικού κύματος πίνακα 1x64 byte. Οι διευθύνσεις 0-63 του πίνακα αντιστοιχούν σε φάση 0-2π του κύματος. Η αριθμητική αξία του κάθε στοιχείου του πίνακα αντιστοιχεί στο πλάτος της παραγόμενης τάσης μετά τη μετατροπή του σε αναλογικό σήμα και μπορεί να υπολογιστεί με την παρακάτω σχέση κάνοντας στρογγυλοποίηση στην πλησιέστερη μονάδα: ( ) ( ) ( ) Dv: V DC : V c : V pp : n m : N m : N Bit : Η αριθμητική αξία του κάθε στοιχείου του πίνακα Το πλάτος της DC τάσης Το πλάτος της μέγιστης τάσης που μπορεί να παράγει το DAC Το πλάτος της τάσης του παραγόμενου κύματος από κορυφή σε κορυφή Ο αριθμός της διεύθυνσης του στοιχείου Ο συνολικός αριθμός των στοιχείων του πίνακα (μέγεθος του πίνακα) Ο αριθμός των bit του κάθε στοιχείου Στο συγκεκριμένο παράδειγμα το παραγόμενο κύμα θα έχει πλάτος 1V από κορυφή σε κορυφή και μια DC συνιστώσα πλάτους 1,65V, αν χρησιμοποιηθεί DAC 8bit 0-3,3V. Η DC συνιστώσα υπάρχει στο σχεδιασμό της γεννήτριας κυματομορφών για να αποφευχθεί η χρήση αρνητικών αριθμών και αρνητικών τάσεων στο DAC, με στόχο απλούστερο 10

12 σχεδιασμό και οικονομία χώρου στο FPGA. Στα σχήματα 9α ως 9δ παρουσιάζονται πραγματικά στιγμιότυπα από απεικόνιση σε παλμογράφο τεσσάρων ημιτονικών κυματομορφών που παρήχθησαν στη γεννήτρια κυματομορφών με πίνακα διαφορετικού μεγέθους για την κάθε μία. Σχήμα 9α. Πίνακας 1x4 Bytes. Σχήμα 9β. Πίνακας 1x8 Bytes. Σχήμα 9γ. Πίνακας 1x16 Bytes. Σχήμα 9δ. Πίνακας 1x256 Bytes. Για τη δημιουργία του αθροίσματος είναι δυνατό να χρησιμοποιηθεί ένας μόνο πίνακας. Σε αυτή την περίπτωση το πλάτος του κύματος για κάθε συχνότητα που συμμετέχει στο άθροισμα θα διαμορφώνεται με επαναλήψεις του όρου. Εναλλακτικά μπορούν να κατασκευαστούν πίνακες που ο κάθε ένας θα αντιστοιχεί σε κύμα με διαφορετικό πλάτος. Οι δύο προσεγγίσεις είναι ισοδύναμες γιατί παρουσιάζουν σχεδόν την ίδια πολυπλοκότητα στο σχεδιασμό, ενώ ο χώρος που καταλαμβάνεται στο FPGA σε κάθε περίπτωση εξαρτάται από τις παραμέτρους του αθροίσματος. Επίσης είναι δυνατό να είναι αποθηκευμένο μόνο το ένα τέταρτο της περιόδου (0-π/2) αφού τα υπόλοιπα τρία τέταρτα παρουσιάζουν συμμετρίες ως προς αυτό. Η παραγωγή του κύματος σε αυτή την περίπτωση 11

13 απαιτεί επιπλέον βαθμίδα σύνθεσης που αυξάνει την πολυπλοκότητα. Τα παραπάνω κυκλώματα συμπεριλαμβάνονται στη βαθμίδα Waveform Option της κάθε γεννήτριας. Οι πίνακες αποτελούν τη ROM του συστήματος και συμπεριλαμβάνονται στη βαθμίδα Waveforms. Στο σχεδιασμό επιλέχθηκε οι πίνακες να είναι Logic Vectors ώστε να μπορούν όλες οι γεννήτριες να έχουν ταυτόχρονα πρόσβαση σε αυτούς σε οποιαδήποτε διεύθυνση χρειάζεται. Κάτι τέτοιο δε θα ήταν δυνατό αν οι πίνακες ήταν αποθηκευμένοι σε RAM Block Δημιουργία ημιτονικών συνημιτονικών σειρών Όπως αναφέρθηκε παραπάνω, η κάθε γεννήτρια παράγει τη δική της ημιτονική κυματομορφή ανεξάρτητα από τις άλλες. Για τις συνημιτονικές κυματομορφές δεν υπάρχουν ξεχωριστοί πίνακες, αλλά η διευθυνσιοδότηση των πινάκων είναι μετατοπισμένη κατά το ένα τέταρτο του μεγέθους του πίνακα που αντιστοιχεί σε π/2. Η στιγμιαία τιμή του κύματος κάθε γεννήτριας εισάγεται στους καταχωρητές f 1 f n στο ανερχόμενο μέτωπο του παλμού του ρολογιού συστήματος (σχήμα 10). Οι καταχωρητές αυτοί έχουν το ίδιο μέγεθος με τα διανύσματα του πίνακα (8bit στο συγκεκριμένο παράδειγμα). Σχήμα 10. Διάγραμμα αθροιστών και καταχωρητών της γεννήτριας κυματομορφών. 12

14 Για λόγους ευταξίας, η σειρά των ημίτονων αθροίζεται ξεχωριστά από τη σειρά των συνημίτονων και το κάθε άθροισμα εισάγεται σε έναν καταχωρητή στο κατερχόμενο μέτωπο του παλμού του ρολογιού συστήματος (σχήμα 9). Ο καταχωρητής του κάθε αθροίσματος έχει μέγεθος ανάλογο με το πλήθος των όρων του αθροίσματος, ώστε να μη προκύπτει κρατούμενο (carry) από την άθροιση. Αν για παράδειγμα το άθροισμα των ημίτονων (ή των συνημίτονων) περιέχει έως 16 όρους των 8bit ο καταχωρητής του αθροίσματος θα πρέπει να είναι 12bit. Κατά την άθροιση λαμβάνεται υπόψη ότι κάθε κύμα έχει και DC τάση και ότι το άθροισμα πρέπει και αυτό να έχει DC τάση και γίνονται οι ανάλογες διορθώσεις. Στη συνέχεια αθροίζονται οι δύο καταχωρητές και η σταθερά και το αποτέλεσμα εισάγεται στον καταχωρητή εξόδου στο ανερχόμενο μέτωπο του παλμού του ρολογιού συστήματος (σχήμα 10). Το μέγεθος του καταχωρητή εξόδου εξαρτάται από τη σταθερά, ώστε να μη προκύπτει κρατούμενο και από αυτή την άθροιση. Στον καταχωρητή εξόδου είναι χρήσιμο να τοποθετηθεί και ένας συγκριτής περιοριστής, ώστε να υπάρχει δυνατότητα να περιορίζεται το πλάτους εξόδου εντός ορίων ή να ενημερώνεται κάποια σημαία όταν το πλάτος ξεπεράσει κάποιες οριακές τιμές. Και σε αυτή την άθροιση λαμβάνεται υπόψη ότι κάθε σειρά έχει και DC τάση και ότι το άθροισμα πρέπει και αυτό να έχει DC τάση ξεχωριστά από τη σταθερά και γίνονται οι ανάλογες διορθώσεις. Η εισαγωγή των δεδομένων στους καταχωρητές σε διαφορετική φάση του παλμού του ρολογιού (μορφή τεχνικής pipeline) προτιμήθηκε στο σχεδιασμό, για να εξασφαλιστεί ότι θα έχουν ολοκληρωθεί οι αλλαγές σε όλα τα λογικά κυκλώματα που υλοποιούν τη διάταξη πριν οριστικοποιηθούν τα αποτελέσματα Κυματομορφές Στα σχήματα 11 και 12 παρουσιάζονται στιγμιότυπα από απεικόνιση σε παλμογράφο δύο διαφορετικών κυματομορφών που παρήχθησαν στη γεννήτρια κυματομορφών. Οι όροι του αθροίσματος στην κυματομορφή του σχήματος 11 επιλέχτηκαν ώστε να μοιάζει με το θεωρητικό παράδειγμα του σχήματος 5 (σελ. 4). Για την κυματομορφή του σχήματος 12 επιλέχτηκαν τυχαίοι όροι, με στόχο να προκύψει αρκετά πολύπλοκη. 13

15 Σχήμα 11. Πραγματικό στιγμιότυπο κυματομορφής του αθροίσματος: ( ), ( ). Σχήμα 12. Πραγματικό στιγμιότυπο κυματομορφής του αθροίσματος: ( ), ( ). 14

16 3. ΣΥΣΤΗΜΑ ΣΥΝΘΕΣΗΣ ΜΟΥΣΙΚΟΥ ΣΗΜΑΤΟΣ 3.1 ΜΟΥΣΙΚΕΣ ΝΟΤΕΣ Ο ήχος είναι ένα διαμήκης κύμα, δηλαδή η μετατόπιση του μέσου διάδοσης είναι προς την κατεύθυνση της διάδοσης του κύματος. Στον αέρα διαδίδεται από τη δόνηση και την ταλάντωση των μορίων του. Από μια πηγή που ταλαντώνει κάποια μόρια αέρα δημιουργούνται περιοδικές διαφορές πίεσης, οι οποίες διαδίδονται στο περιβάλλον δημιουργώντας ηχητικά κύματα. Το ανθρώπινο αυτί αποκρίνεται στη συνέχεια σε αυτές τις διαφορές πίεσης. Οι νότες είναι ήχοι σε καθορισμένες συχνότητες (θεμελιώδης), οι οποίες όταν συνδυάζονται κατάλληλα αφήνουν στον άνθρωπο μία ευχάριστη ακουστική αίσθηση. Οι μουσικές νότες ταξινομούνται σε οκτάβες, οι οποίες επαναλαμβάνονται. Δύο διαδοχικές οκτάβες συμπεριλαμβάνουν τις ίδιες νότες σε διπλάσιες θεμελιώδης συχνότητες. Σε μια οκτάβα διακρίνουμε επτά διαφορετικές νότες. Η ονοματολογία που έχει επικρατήσει παγκοσμίως αντιστοιχίζει τα επτά πρώτα γράμματα του λατινικού αλφάβητου σε επτά βασικές νότες: A, B, C, D, E, F, G. Παράλληλα όμως γίνεται χρήση και της λατινικής ονοματολογίας η οποία είναι αντίστοιχα: la, si, do, re, mi, fa, sol. Επιπλέον, τις περισσότερες φορές γίνεται χρήση και ενός αριθμού στο όνομα της νότας, ο οποίος δηλώνει σε ποια οκτάβα ανήκει η νότα. Ανάμεσα σε ορισμένες από τις επτά βασικές νότες έχουμε μερικές ακόμα, οι οποίες χαρακτηρίζονται ως διέσεις των βασικών και συμβολίζονται με την προσθήκη του συμβόλου # στο όνομα της βασικής νότας. Η σειρά στις νότες τελικά διαμορφώνεται με τα εξής βήματα: A, A#, B, C, C#, D, D#, E, F, F#, G, G#. Η μεταβολή από το ένα βήμα στο άλλο ονομάζεται ημιτόνιο, ενώ δύο διαδοχικά ημιτόνια συνιστούν έναν τόνο. Η σχέση που έχουν οι θεμελιώδης συχνότητες μεταξύ τους σε δύο διαδοχικά ημιτόνια δίνεται από τη μαθηματική έκφραση: Ως χαρακτηριστική νότα, βάση της οποίας ρυθμίζονται τα περισσότερα όργανα, είναι η Α4 με συχνότητα 440H. Στο σχήμα 13 παρουσιάζεται το διάγραμμα από τις νότες που χρησιμοποιούμε στη μουσική. Στον οριζόντιο άξονα απεικονίζονται οι νότες, ενώ στον κατακόρυφο άξονα οι συχνότητες σε λογαριθμική κλίμακα. 15

17 Σχήμα 13. Πλήρης κλίμακα συχνοτήτων στις μουσικές νότες. 16

18 3.2 ΧΡΟΙΑ ΤΟΝΟΣ ΗΧΟΥ Όταν μια νότα παράγεται από οποιοδήποτε μουσικό όργανο, η συχνότητα του ηχητικού κύματος που προκύπτει δεν περιέχει μόνο τη θεμελιώδη συχνότητα, αλλά και ακέραια πολλαπλάσια αυτής, τα οποία ονομάζονται αρμονικές συχνότητες. Κάθε μουσικό όργανο έχει τον δικό του χαρακτηριστικό ήχο, ώστε να μπορούμε να το ξεχωρίζουμε από τα άλλα μουσικά όργανα και να το αναγνωρίζουμε. Το χαρακτηριστικό αυτό ονομάζεται χροιά ή τόνος του οργάνου και οφείλεται στις αρμονικές που παράγει και την ένταση που κάθε αρμονική συμμετέχει στην τελική διαμόρφωση του ήχου. Έτσι είναι δυνατό να προσδιοριστεί το φάσμα συχνοτήτων για κάθε όργανο και να αποτυπωθεί σε διάγραμμα. Στο σχήμα 14 παρουσιάζεται το φάσμα συχνοτήτων του βιολιού όπου διακρίνονται οι δέκα πρώτες αρμονικές (harmonics). Η πρώτη αρμονική (1) είναι η θεμελιώδης συχνότητα (fundamental frequency) και οι υπόλοιπες αρμονικές (2-10) είναι οι παράγωγες συχνότητες πρώτη ως ένατη (overtones 1 st to 9 th ). Σχήμα 14. Διάγραμμα φάσματος συχνοτήτων βιολιού. Με βάση το φάσμα συχνοτήτων ενός μουσικού οργάνου μπορούμε να αναπαραστήσουμε κάθε νότα με μια μαθηματική έκφραση βασιζόμενοι στις σειρές Φουριέ. 17

19 Συνεπώς, η μαθηματική έκφραση της νότας που αντιστοιχεί στη θεμελιώδη συχνότητα των 500Hz σε ένα βιολί, με βάση το διάγραμμα φάσματος συχνοτήτων του σχήματος 14, είναι: ( ) ( ), Η παραπάνω μαθηματική έκφραση μπορεί μετατραπεί σε ηλεκτρικό σήμα χρησιμοποιώντας τη γεννήτρια κυματομορφών που περιγράφηκε στο κεφ. 2.3 και στη συνέχεια, με κατάλληλη διάταξη (ενισχυτής, μεγάφωνο κλπ), να μετατραπεί σε ακουστικό σήμα. Ο τροποποιημένος σχεδιασμός της γεννήτριας κυματομορφών, ώστε να ανταποκρίνεται στις απαιτήσεις της παραγωγής μουσικού σήματος, παρουσιάζεται σε μπλοκ διάγραμμα στο σχήμα

20 Σχήμα 15. Βασικός σχεδιασμός της γεννήτριας σύνθεσης μουσικού σήματος. 19

21 3.3 ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ Στο σχεδιασμό της γεννήτριας κυματομορφών έγιναν ορισμένες μετατροπές ώστε να ανταποκρίνεται στις καινούριες απαιτήσεις. Η βασικότερη μετατροπή είναι ότι αφαιρέθηκαν οι γεννήτριες συνημίτονων. Η κάθε μία νότα συνθέτεται ξεχωριστά ως άθροισμα σειράς ημίτονων από 6 αρμονικές, τη θεμελιώδη και πέντε παράγωγες. Το αποτέλεσμα εισάγεται στον καταχωρητή της νότας, ώστε να υπάρχει δυνατότητα να αθροιστεί με τους καταχωρητές από τις υπόλοιπες νότες. Οι καταχωρητές που θα αθροιστούν στη συνέχεια και συνεπώς οι νότες που θα συμμετέχουν στην τελική διαμόρφωση του ήχου, καθορίζονται από εξωτερική παράμετρο, που στη συγκεκριμένη εφαρμογή είναι ένα πλήκτρο. Υπάρχει δηλαδή δυνατότητα ο τελικός ήχος να προέρχεται από μία μόνο νότα ή συνδυασμό περισσότερων (συγχορδίες). Επίσης προσαρμόστηκε μηχανισμός απόσβεσης της έντασης του ήχου (fade out), ώστε να δημιουργείται ακουστικό αποτέλεσμα χτυπήματος χορδής. Στη βαθμίδα Waveforms αποθηκεύτηκαν 9 πίνακες 1x64 στοιχείων 8 bit και κάθε πίνακας μπορεί να συνθέσει ένα ημιτονικό κύμα ορισμένου πλάτους, από 63mV pp ως 1V pp με βήματα των 3dB (V 0 =1mV). Στο σχήμα 16 παρουσιάζεται η γραφική παράσταση της περιόδου των ημιτονικών κυμάτων όπως είναι αποθηκευμένα στους πίνακες για τη ROM του συστήματος. 176 Decimal value db Byte Σχήμα 16. Περίοδος ημιτονικών κυμάτων των πινάκων της ROM του συστήματος. 20

22 3.4 ΠΕΡΙΟΡΙΣΜΟΙ & ΑΝΤΙΜΕΤΩΠΙΣΗ Ο σχεδιασμός θέτει μερικούς περιορισμούς, με αποτέλεσμα να υπάρχουν σε ορισμένες περιπτώσεις αποκλίσεις, τόσο στη δημιουργία της επιθυμητής θεμελιώδους συχνότητας και των αρμονικών, όσο και στο επιθυμητό ακουστικό αποτέλεσμα. Οι αποκλίσεις αυτές είναι δυνατό να εξαλειφθούν με διάφορους τρόπους, οι οποίοι θα παρουσιάζονται καθώς αναλύονται οι περιορισμοί. Ο κυριότερος περιορισμός είναι η δημιουργία μιας συχνότητας με μεγάλη ακρίβεια. Η συχνότητα του ρολογιού του συστήματος είναι 50MHz και μία πλήρης περίοδος του ημιτονικού κύματος που χρησιμοποιείται στην εφαρμογή συντίθεται από 64 Bytes. Συνεπώς η μέγιστη συχνότητα (f m ) ημιτονικού κύματος που είναι δυνατό να παραχθεί είναι: f m = /64= Hz Επειδή οι συχνότητες στη γεννήτρια παράγονται από τη διαίρεση της συχνότητας του ρολογιού με μια σταθερά (constant), η οποία είναι ακέραιος αριθμός, οι συχνότητες που είναι δυνατό να συνθέσει το σύστημα (f p ) περιορίζονται στις τιμές που δίνει το αποτέλεσμα της διαίρεσης της μέγιστης συχνότητας με τη σταθερά: f p = /constant Hz Για τη σύνθεση μιας νότας χρησιμοποιούνται 6 αρμονικές (η θεμελιώδης συχνότητα και οι πέντε πρώτες παράγωγες), οι οποίες είναι ακέραια πολλαπλάσια μιας συχνότητας. Συνεπώς, για την παραγωγή των παράγωγων συχνοτήτων οι σταθερές που θα χρησιμοποιηθούν θα πρέπει να είναι αριθμοί που προκύπτουν από την τέλεια διαίρεση της σταθεράς της θεμελιώδους συχνότητας με τους ακέραιους 2, 3, 4, 5 και 6, ώστε να έχουν συχνότητες που θα είναι ακέραια πολλαπλάσια της θεμελιώδους. Άρα η ελάχιστη τιμή που μπορεί να πάρει η σταθερά της θεμελιώδους συχνότητας είναι το ελάχιστο κοινό πολλαπλάσιο των αριθμών 2, 3, 4, 5 και 6, το οποίο είναι 60 και οι δυνατές τιμές είναι ακέραια (n) πολλαπλάσια του 60. Αυτό μας περιορίζει ακόμα περισσότερο τις συχνότητες που μπορούν να παραχθούν για τη θεμελιώδη συχνότητα (f f ): f f = /60n=13.020,833/n Hz (n = ακέραιος) 21

23 Στο σχήμα 17 παρουσιάζεται σε διάγραμμα η απόκλιση που παρουσιάζουν οι νότες της κλίμακας ΑΜ (la magore) που συντέθηκαν από τη γεννήτρια. f (Hz) A A# B C C# D D# E F F# G G# A note Normal notes Synth notes Σχήμα 17. Απόκλιση που παρουσιάζουν οι νότες της γεννήτριας. Η απόκλιση αυτή, αν και είναι δύσκολο να διακριθεί από το ανθρώπινο αυτί, είναι δυνατό να περιοριστεί, ακόμα και να εξαλειφθεί τελείως. Στο σχεδιασμό της γεννήτριας έγινε χρήση του ρολογιού συστήματος για τη σύνθεση συχνοτήτων, με αποτέλεσμα να υπάρξουν οι περιορισμοί που αναφέρθησαν παραπάνω. Υπάρχει όμως δυνατότητα, εφόσον το επιτρέπει το υλικό, να γίνει χρήση των DCMs για την παραγωγή της συχνότητας συστήματος για τις γεννήτριες που συνθέτουν τις νότες, ώστε να αυξηθεί η ευελιξία της διάταξης στον τομέα της παραγωγής συχνοτήτων. Η απόκλιση γίνεται μεγαλύτερη όσο αυξάνει η θεμελιώδης συχνότητα μιας νότας, δηλαδή όσο πηγαίνουμε ψηλότερα στη μουσική κλίμακα, με αποτέλεσμα, να γίνεται αντιληπτή από ένα σημείο και μετά. Τα μουσικά όργανα δεν παρουσιάζουν το ίδιο φάσμα συχνοτήτων σε όλη τη μουσική κλίμακα που μπορούν να παίξουν. Συμβαίνει μάλιστα, όσο ψηλότερα πηγαίνουμε τόσο να περιορίζεται η ένταση των ανώτερων αρμονικών. Αυτό οφείλεται στις δυνατότητες δόνησης του οργάνου κατασκευαστικά, αλλά και σε περιορισμούς από μηχανήματα που συνεργάζονται με το μουσικό όργανο. Για παράδειγμα, σε μια κιθάρα το σκάφος της δονείται λιγότερο στις υψηλές νότες και επειδή η δόνηση του σκάφους συμμετέχει στην παραγωγή αρμονικών, όταν παίζονται υψηλές νότες οι ανώτερες 22

24 E3 F3# G3# A3# C4 D4 E4 F4# G4# A4# C5 D5 E5 F5# G5# A5# C6 D6 αρμονικές τους παρουσιάζουν σημαντικά χαμηλότερο πλάτος, τόσο ώστε να είναι δυνατό να θεωρηθεί ότι δε συμμετέχουν καθόλου στον παραγόμενο ήχο. Επιπλέον, στην ηλεκτρική κιθάρα οι ενισχυτές και τα μεγάφωνα που χρησιμοποιούνται σε αυτούς, παρουσιάζουν χαμηλή απόκριση σε συχνότητες της τάξης των 4kHz. Οι νότες στις τελευταίες οκτάβες σε μια κιθάρα έχουν θεμελιώδη συχνότητα μεγαλύτερη του 1kHz, με αποτέλεσμα, από την τέταρτη αρμονική και πάνω πρακτικά να μην ακούγονται. Αυτό έχει και σαν αποτέλεσμα, τα μουσικά όργανα όταν παίζουν υψηλές νότες να αλλάζει η χροιά τους και να είναι σχετικά δύσκολη η αναγνώρισή τους. Υπάρχει συνεπώς η δυνατότητα σε υψηλές νότες να μη γίνεται χρήση και των έξι αρμονικών, αλλά μόνο τεσσάρων. Κάτι τέτοιο διαμορφώνει το ελάχιστο κοινό πολλαπλάσιο από 60 σε 12, με αποτέλεσμα να είναι μεγαλύτερος ο αριθμός των τιμών που μπορούν να επιτευχθούν για τη θεμελιώδη συχνότητα. Στο σχήμα 18 παρουσιάζεται σε διάγραμμα η απόκλιση που έχουν οι νότες που συντέθηκαν από τη γεννήτρια με έξι αρμονικές για ολόκληρο το εύρος της κιθάρας (κόκκινα σημεία) και με τέσσερις αρμονικές για τις τρεις τελευταίες νότες (πράσινα σημεία). f (Hz) note Normal notes Synth notes 4 Harmonics Σχήμα 18. Απόκλιση που παρουσιάζουν οι νότες που συντέθηκαν από τη γεννήτρια με έξι αρμονικές για ολόκληρο το εύρος κιθάρας και με τέσσερις αρμονικές για τις τρεις τελευταίες νότες. 23

25 Όπως αναφέρθηκε και παραπάνω, μία πλήρης περίοδος του ημιτονικού κύματος που χρησιμοποιείται στην εφαρμογή συντίθεται από 64 Bytes. Είναι δυνατό να χρησιμοποιηθεί χαμηλότερη ανάλυση, κατασκευάζοντας κατάλληλους πίνακες, για την παραγωγή του κύματος, χωρίς να έχει αυτό σημαντικές επιπτώσεις στην ποιότητα των κυματομορφών. Στο σχήμα 9γ σελ. 11 φαίνεται άλλωστε ότι από 16 Byte και πάνω η ποιότητα της ημιτονικής κυματομορφής είναι ικανοποιητική. Με βάση τους υπολογισμούς της σελ. 21 μπορούμε εύκολα να καταλήξουμε στο συμπέρασμα ότι για κάθε υποδιπλασιασμό της ανάλυσης διπλασιάζεται η διακριτική ικανότητα του συστήματος για παραγωγή συχνοτήτων. Η αρχιτεκτονική του συστήματος, επίσης, επιτρέπει για την ίδια νότα, διαφορετικές αρμονικές να έχουν διαφορετική ανάλυση. Στο σχήμα 16 σελ. 20 μπορούμε να παρατηρήσουμε ότι καθώς ελαττώνεται το πλάτος του ημιτονικού κύματος υπάρχει λιγότερη πληροφορία για τη σύνθεσή του. Είναι εφικτό, για τα χαμηλά πλάτη να γίνεται χρήση μικρότερων αναλύσεων, αφού ούτως ή άλλως υπάρχει χαμένη πληροφορία και στις υψηλές αναλύσεις. Και αυτή η τεχνική είναι δυνατό να βελτιώσει τη διακριτική ικανότητα του συστήματος για παραγωγή συχνοτήτων, αυξάνει όμως την πολυπλοκότητά του και συνεπώς τον χώρο που καταλαμβάνει ο σχεδιασμός στο FPGA. 24

26 3.5 ΣΥΝΘΕΣΗ & ΑΝΑΠΑΡΑΓΩΓΗ ΗΧΟΥ ΚΙΘΑΡΑΣ Σχήμα 19. Διάγραμμα φάσματος συχνοτήτων κιθάρας. Για την αναπαραγωγή ήχων κιθάρας σχεδιάστηκε μηχανισμός απόσβεσης του ήχου, όπως αναφέρθηκε στo κεφ. 3.3, όπου γίνεται ελάττωση της έντασης του ήχου (fade out) καθώς συνθέτονται οι νότες στις γεννήτριές τους. Για να υλοποιηθεί αυτή η λειτουργία το πλάτος της κυματομορφής κάθε αρμονικής ελαττώνονταν, βάση κάποιας χρονικής συνάρτησης, επιλέγοντας σε κατάλληλα χρονικά σημεία διαφορετικό πίνακα. Η συνάρτηση βάση της οποίας γίνεται η ελάττωση της έντασης του ήχου προήλθε πειραματικά από το ακουστικό αποτέλεσμα σε συνδυασμό με την εικόνα του διαγράμματος. Στην πραγματικότητα δεν υπάρχει κάποιος συγκεκριμένος ρυθμός, γιατί κάθε τύπος κιθάρας έχει κατασκευαστικές ιδιαιτερότητες, με αποτέλεσμα να παρουσιάζονται διαφορές στην απόσβεση του ήχου, όπως και στη χροιά, οι οποίες είναι αντιληπτές. Με κατάλληλες αλλαγές στις παραμέτρους της γεννήτριας κυματομορφών είναι δυνατό να επιτευχθούν ήχοι κατάλληλοι, ώστε να καλύψουν τη διαφορετικότητα ή ακόμα και να παρουσιάσουν καινούριες ιδιαιτερότητες. Στο σχήμα 20 παρουσιάζεται το 25

27 διάγραμμα που δείχνει τη μείωση του πλάτους της θεμελιώδους συχνότητας μιας νότας σε συνάρτηση με το χρόνο που αναπαράγεται. Σχήμα 20. Μείωση του πλάτους της θεμελιώδους συχνότητας μιας νότας σε συνάρτηση με το χρόνο αναπαραγωγής της. Επίσης είναι δυνατό να ενσωματωθούν στο σχεδιασμό ψηφιακά φίλτρα για προσομοίωση διάφορων εφέ για ηλεκτρική κιθάρα που χρησιμοποιούνται από μουσικούς. Στη συγκεκριμένη εφαρμογή τροποποιήθηκε ο περιοριστής της βαθμίδας εξόδου ώστε να συμπεριφέρεται σαν Overdrive. Το Overdrive είναι ένα εφέ που χρησιμοποιείται κατά κόρο από μουσικούς ηλεκτρικής κιθάρας. Η λειτουργία του συγκεκριμένου εφέ βασίζεται στην υπεροδήγηση των βαθμίδων προενίσχυσης, ώστε να οδηγηθούν σε κόρο. Αυτό έχει σαν αποτέλεσμα να ψαλιδίζονται οι κορυφές στην κυματομορφή του ήχου και να παράγεται παραμορφωμένος. Στο σχήμα 21 παρουσιάζεται ένα πραγματικό στιγμιότυπο κυματομορφής ήχου κιθάρας από τη γεννήτρια μετά την εφαρμογή του ψηφιακού Overdrive. 26

28 Σχήμα 21. Πραγματικό στιγμιότυπο κυματομορφής ήχου κιθάρας από τη γεννήτρια μετά την εφαρμογή του ψηφιακού Overdrive. 27

29 3.6 ΣΥΝΘΕΣΗ & ΑΝΑΠΑΡΑΓΩΓΗ ΗΧΟΥ ΒΙΟΛΙΟΥ Ο ήχος του βιολιού έχει σταθερή ένταση, η οποία εξαρτάται από την πίεση που ασκεί ο μουσικός στη χορδή με το δοξάρι καθώς το σέρνει σε αυτή. Επίσης είναι δυνατό να τροποποιηθεί σε μικρό βαθμό και η χροιά του ήχου, ανάλογα με τον τρόπο που «πατάει» το δοξάρι. Τα χαρακτηριστικά αυτά είναι δυνατό να προσομοιωθούν ώστε να παραχθεί από τη γεννήτρια μουσικό σήμα παρόμοιο με τον ήχο του βιολιού. Στο σχήμα 22 παρουσιάζεται το διάγραμμα φάσματος συχνοτήτων βιολιού, όπου με κόκκινο χρώμα είναι οι αρμονικές που συνθέτουν στον πραγματικό ήχο και με μπλε οι αρμονικές που χρησιμοποιούνται στη γεννήτρια. db Synth Violin f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 harmonic Σχήμα 22. Διάγραμμα φάσματος συχνοτήτων βιολιού. 28

30 3.7 ΣΥΝΘΕΣΗ & ΑΝΑΠΑΡΑΓΩΓΗ ΗΧΟΥ ΣΑΞΟΦΩΝΟΥ Ο ήχος του σαξόφωνου έχει και αυτός σταθερή ένταση η οποία εξαρτάται από τη δύναμη που φυσάει ο μουσικός στο στόμιο του οργάνου. Επίσης είναι δυνατό να τροποποιηθεί σε μεγάλο βαθμό και η χροιά του ήχου ανάλογα με τον τρόπο που φυσάει ή ανάλογα με το υλικό του στομίου (mouthpiece). Για αυτό το λόγο δεν υπάρχει ένα συγκεκριμένο φάσμα συχνοτήτων για το σαξόφωνο, ούτε μια συγκεκριμένη χροιά, αλλά εξαρτώνται από τον μουσικό και είναι το χαρακτηριστικό γνώρισμα του κάθε ενός. Τα χαρακτηριστικά αυτά είναι δυνατό να προσομοιωθούν και να παραχθούν από τη γεννήτρια ήχοι, παρόμοιοι με τον ήχο του σαξόφωνου, ώστε να καλύψουν τη διαφορετικότητα ή ακόμα και να παρουσιάσουν καινούριες ιδιαιτερότητες. Στο σχήμα 23 παρουσιάζεται ένα διάγραμμα φάσματος συχνοτήτων σαξόφωνου, το οποίο είναι σχετικά πιο συνηθισμένο, όπου με κόκκινο χρώμα είναι οι αρμονικές που συνθέτουν στον πραγματικό ήχο και με μπλε οι αρμονικές που χρησιμοποιούνται στη γεννήτρια. db Synth Saxophone f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 harmonic Σχήμα 23. Διάγραμμα φάσματος συχνοτήτων σαξόφωνου. 29

31 3.8 ΟΛΟΚΛΗΡΩΣΗ ΥΛΟΠΟΙΗΣΗΣ Στη συνέχεια παρουσιάζονται πραγματικά στιγμιότυπα από απεικόνιση σε παλμογράφο τεσσάρων κυματομορφών που αντιστοιχούν σε διαφορετικούς μουσικούς ήχους όπως παρήχθησαν στη γεννήτρια κυματομορφών. Σχήμα 24α. Hammond ( ). Σχήμα 24β. Κιθάρα Σχήμα 24γ. Βιολί. Σχήμα 24δ. Σαξόφωνο. Για τη μετατροπή του ψηφιακού σήματος σε αναλογικό χρησιμοποιήθηκε ένα απλό R2R Ladder, το θεωρητικό κύκλωμα του οποίου παρουσιάζεται στο σχήμα 25. Αυτή η μέθοδος μετατροπής ψηφιακού σήματος σε αναλογικό παρουσιάζει μικρές αποκλίσεις στην ακρίβεια της μετατροπής και έχει υψηλή αντίσταση εξόδου. Οι αποκλίσεις αυτές δεν είναι σημαντικές για τη συγκεκριμένη εφαρμογή στα στάδια που αναπτύχθηκε. Επίσης ο παλμογράφος που χρησιμοποιήθηκε για τις καταγραφές έχει εκ κατασκευής υψηλή αντίσταση εισόδου όπως και η διάταξη που χρησιμοποιήθηκε για ενίσχυση του ήχου και 30

32 αναπαραγωγή. Για τους παραπάνω λόγους δεν ήταν απαραίτητο να γίνει χρήση DAC με καλύτερα χαρακτηριστικά. Σχήμα 25. R2R Ladder για μετατροπή ψηφιακού σήματος σε αναλογικό. Στο σχήμα 26 παρουσιάζονται τα στατιστικά που αφορούν τη χρήση του FPGA για την υλοποίηση της γεννήτριας κυματομορφών και για το σύστημα σύνθεσης μουσικού σήματος. Η υλοποίηση του συστήματος σύνθεσης μουσικού σήματος παρουσιάζει σημαντικά αυξημένες απαιτήσεις, αφού έχει καταλάβει σχεδόν ολόκληρο το FPGA. Η εφαρμογή από την οποία έγινε η εξαγωγή της αναφοράς συμπεριλαμβάνει: οκτώ νότες με αντίστοιχα πλήκτρα, τέσσερα διαφορετικά όργανα (ένα εκ των οποίων είναι η κιθάρα με το σύστημα απόσβεσης ήχου) με επιλογή από δύο διακόπτες και τέσσερις διαφορετικές ρυθμίσεις overdrive με επιλογή από δύο διακόπτες. Στο σχήμα 27 παρουσιάζεται σε διάγραμμα ολόκληρο το ακουστικό φάσμα και τα μουσικά όργανα με τις περιοχές που μπορούν να αναπαράγουν ήχους. 31

33 Σχήμα 26. Χρήση του FPGA για την υλοποίηση της γεννήτριας κυματομορφών και για το σύστημα σύνθεσης μουσικού σήματος. 32

34 Σχήμα 27. Ακουστικό φάσμα και μουσικά όργανα. 33

35 4. ΠΗΓΕΣ Kendall Milar (FAST FOURIER TRANSFORM ANALYSIS OF OBOES, OBOE REEDS AND OBOISTS: WHAT MATTERS MOST TO TIMBRE?) XILINX

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 7 Ακούγοντας Πρώτη Ματιά στην Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 7 Ακούγοντας Πρώτη Ματιά στην Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 7 Ακούγοντας Πρώτη Ματιά στην Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Τύπων. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος

Διαβάστε περισσότερα

Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας. Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις

Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας. Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις Περίληψη Τριγωνομετρικές Συναρτήσεις Κυματική Παλμογράφος STEM Εφαρμογές

Διαβάστε περισσότερα

Πτυχιακή Εργασία Σχεδίαση κυκλωμάτων επικοινωνίας με απλές οθόνες, με τη γλώσσα VHDL και υλοποίηση στις αναπτυξιακές πλακέτες LP-2900 και DE2.

Πτυχιακή Εργασία Σχεδίαση κυκλωμάτων επικοινωνίας με απλές οθόνες, με τη γλώσσα VHDL και υλοποίηση στις αναπτυξιακές πλακέτες LP-2900 και DE2. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Πτυχιακή Εργασία Σχεδίαση κυκλωμάτων επικοινωνίας με απλές οθόνες, με τη γλώσσα VHDL και υλοποίηση στις αναπτυξιακές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Μνήμη και Προγραμματίσιμη Λογική

Μνήμη και Προγραμματίσιμη Λογική Μνήμη και Προγραμματίσιμη Λογική Η μονάδα μνήμης είναι ένα στοιχείο κυκλώματος στο οποίο μεταφέρονται ψηφιακές πληροφορίες προς αποθήκευση και από το οποίο μπορούμε να εξάγουμε αποθηκευμένες πληροφορίες

Διαβάστε περισσότερα

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ FM ΔΙΑΜΟΡΦΩΣΗ Σήμα FM Η ακόλουθη εξίσωση δίδει την ισοδύναμη για τη διαμόρφωση συχνότητας έκφραση

Διαβάστε περισσότερα

Εργαστηριακές ασκήσεις λογικών κυκλωμάτων 11 A/D-D/A

Εργαστηριακές ασκήσεις λογικών κυκλωμάτων 11 A/D-D/A 11.1 Θεωρητικό μέρος 11 A/D-D/A 11.1.1 Μετατροπέας αναλογικού σε ψηφιακό σήμα (A/D converter) με δυαδικό μετρητή Σχ.1 Μετατροπέας A/D με δυαδικό μετρητή Στο σχήμα 1 απεικονίζεται σε block diagram ένας

Διαβάστε περισσότερα

Το ολοκληρωμένο κύκλωμα μιας ΚΜΕ. «Φέτα» ημιαγωγών (wafer) από τη διαδικασία παραγωγής ΚΜΕ

Το ολοκληρωμένο κύκλωμα μιας ΚΜΕ. «Φέτα» ημιαγωγών (wafer) από τη διαδικασία παραγωγής ΚΜΕ Το ολοκληρωμένο κύκλωμα μιας ΚΜΕ Η Κεντρική Μονάδα Επεξεργασίας (Central Processing Unit -CPU) ή απλούστερα επεξεργαστής αποτελεί το μέρος του υλικού που εκτελεί τις εντολές ενός προγράμματος υπολογιστή

Διαβάστε περισσότερα

Κεφάλαιο 3 Αρχιτεκτονική Ηλεκτρονικού Τμήματος (hardware) των Υπολογιστικών Συστημάτων ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ

Κεφάλαιο 3 Αρχιτεκτονική Ηλεκτρονικού Τμήματος (hardware) των Υπολογιστικών Συστημάτων ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Κεφάλαιο 3 Αρχιτεκτονική Ηλεκτρονικού Τμήματος (hardware) των Υπολογιστικών Συστημάτων ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Τι εννοούμε με τον όρο υπολογιστικό σύστημα και τι με τον όρο μικροϋπολογιστικό σύστημα; Υπολογιστικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Σχεδίαση Ψηφιακών Συστημάτων. Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Σχεδίαση Ψηφιακών Συστημάτων. Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ᄃ Σχεδίαση Ψηφιακών Συστημάτων Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης TMHMA MHXANOΛOΓIAΣ. Δρ. Φασουλάς Γιάννης

Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης TMHMA MHXANOΛOΓIAΣ. Δρ. Φασουλάς Γιάννης Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης TMHMA MHXANOΛOΓIAΣ Δρ. Φασουλάς Γιάννης jfasoulas@staff.teicrete.gr Θα μάθετε: Έννοιες που σχετίζονται με την μετατροπή μεταξύ αναλογικών και ψηφιακών σημάτων Πώς

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

FSK Διαμόρφωση και FSK Αποδιαμόρφωση (FSK Modulation-FSK Demodulation)

FSK Διαμόρφωση και FSK Αποδιαμόρφωση (FSK Modulation-FSK Demodulation) FSK Διαμόρφωση και FSK Αποδιαμόρφωση (FSK Modulation-FSK Demodulation) ΣΚΟΠΟΙ ΤΗΣ ΑΣΚΗΣΗΣ Η εκμάθηση της αρχής λειτουργίας της ψηφιακής διαμόρφωσης συχνότητας (Frequency Shift Keying, FSK) και της αποδιαμόρφωσής

Διαβάστε περισσότερα

5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Μνήµη Η µνήµη καταλαµβάνει το µεγαλύτερο µέρος ενός υπολογιστικού συστήµατος Δύο τύποι: ROM - RAM RΟΜs CPU

Διαβάστε περισσότερα

Ιατρικά Ηλεκτρονικά. Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων

Ιατρικά Ηλεκτρονικά. Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/

Διαβάστε περισσότερα

4. ΕΝΙΣΧΥΤΗΣ ΜΕ ΑΜΕΣΗ ΣΥΖΕΥΞΗ

4. ΕΝΙΣΧΥΤΗΣ ΜΕ ΑΜΕΣΗ ΣΥΖΕΥΞΗ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΤΟΧΟΙ 4. ΕΝΙΣΧΥΤΗΣ ΜΕ ΑΜΕΣΗ ΣΥΖΕΥΞΗ Ημερομηνία:.... /.... /...... Τμήμα:.... Ομάδα: η κατανόηση της αρχής λειτουργίας ενός ενισχυτή δύο βαθμίδων με άμεση σύζευξη η εύρεση της περιοχής

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία Τεχνικών Σχολών

Διαβάστε περισσότερα

Flip-Flop: D Control Systems Laboratory

Flip-Flop: D Control Systems Laboratory Flip-Flop: Control Systems Laboratory Είναι ένας τύπος συγχρονιζόμενου flip- flop, δηλαδή ενός flip- flop όπου οι έξοδοί του δεν αλλάζουν μόνο με αλλαγή των εισόδων R, S αλλά χρειάζεται ένας ωρολογιακός

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

Συστοιχία Επιτόπια Προγραμματιζόμενων Πυλών Field Programmable Gate Arrays (FPGAs)

Συστοιχία Επιτόπια Προγραμματιζόμενων Πυλών Field Programmable Gate Arrays (FPGAs) Συστοιχία Επιτόπια Προγραμματιζόμενων Πυλών Field Programmable Gate Arrays (FPGAs) Οι προγραμματιζόμενες λογικές διατάξεις (PLDs Programmable Logic Devices) είναι ψηφιακά ολοκληρωμένα κυκλώματα (ICs) που

Διαβάστε περισσότερα

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Παράσταση ενός φυσικού αριθμού 1 1.2 Δεκαδικό σύστημα 1 1.3 Δυαδικό σύστημα 2 1.4 Οκταδικό σύστηνα 2 1.5 Δεκαεξαδικό σύστημα 2 1.6 Μετατροπές από ένα

Διαβάστε περισσότερα

Σύστημα ψηφιακής επεξεργασίας ακουστικών σημάτων με χρήση προγραμματιζόμενων διατάξεων πυλών. Πτυχιακή Εργασία. Φοιτητής: ΤΣΟΥΛΑΣ ΧΡΗΣΤΟΣ

Σύστημα ψηφιακής επεξεργασίας ακουστικών σημάτων με χρήση προγραμματιζόμενων διατάξεων πυλών. Πτυχιακή Εργασία. Φοιτητής: ΤΣΟΥΛΑΣ ΧΡΗΣΤΟΣ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Σύστημα ψηφιακής επεξεργασίας ακουστικών σημάτων με χρήση προγραμματιζόμενων διατάξεων πυλών. Πτυχιακή Εργασία Φοιτητής:

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σηµμάτων

Ψηφιακή Επεξεργασία Σηµμάτων Ψηφιακή Επεξεργασία Σηµμάτων Διάλεξη 3: DSP for Audio Δρ. Θωµμάς Ζαρούχας Επιστηµμονικός Συνεργάτης Μεταπτυχιακό Πρόγραµμµμα: Τεχνολογίες και Συστήµματα Ευρυζωνικών Εφαρµμογών και Υπηρεσιών 1 Προεπισκόπηση

Διαβάστε περισσότερα

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 9. Tα Flip-Flop

ΑΣΚΗΣΗ 9. Tα Flip-Flop ΑΣΚΗΣΗ 9 Tα Flip-Flop 9.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των στοιχείων μνήμης των ψηφιακών κυκλωμάτων. Τα δομικά στοιχεία μνήμης είναι οι μανδαλωτές (latches) και τα Flip-Flop. 9.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΙΣΑΓΩΓΗ: Ο τελεστικός ενισχυτής είναι ένα προκατασκευασμένο κύκλωμα μικρών διαστάσεων που συμπεριφέρεται ως ενισχυτής τάσης, και έχει πολύ μεγάλο κέρδος, πολλές φορές της τάξης του 10 4 και 10 6. Ο τελεστικός

Διαβάστε περισσότερα

Ειδικά Θέματα Ηλεκτρονικών 1

Ειδικά Θέματα Ηλεκτρονικών 1 Ειδικά Θέματα Ηλεκτρονικών 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3...2 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΝΙΣΧΥΤΩΝ...2 3.1 Απόκριση συχνότητας ενισχυτών...2 3.1.1 Παραμόρφωση στους ενισχυτές...5 3.1.2 Πιστότητα των ενισχυτών...6 3.1.3

Διαβάστε περισσότερα

Μάθημα 4: Κεντρική Μονάδα Επεξεργασίας

Μάθημα 4: Κεντρική Μονάδα Επεξεργασίας Μάθημα 4: Κεντρική Μονάδα Επεξεργασίας 4.1 Γενικά Ο υπολογιστής επεξεργάζεται δεδομένα ακολουθώντας βήμα βήμα, τις εντολές ενός προγράμματος. Το τμήμα του υπολογιστή, που εκτελεί τις εντολές και συντονίζει

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Κυκλωμάτων» Χειμερινό εξάμηνο

Κυκλωμάτων» Χειμερινό εξάμηνο «Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Εισαγωγή στα Συστήματα Ολοκληρωμένων Κυκλωμάτων Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής http://diceslab.cied.teiwest.gr E-mail: pkitsos@teimes.gr

Διαβάστε περισσότερα

Στάσιμα κύματα - Μέτρηση της ταχύτητας του ήχου με το σωλήνα Kundt

Στάσιμα κύματα - Μέτρηση της ταχύτητας του ήχου με το σωλήνα Kundt Στάσιμα κύματα - Μέτρηση της ταχύτητας του ήχου με το σωλήνα Kundt Η χρησιμοποιούμενη διάταξη φαίνεται στο ακόλουθο σχήμα: Το μεγάφωνο του σωλήνα Kundt συνδέεται στην έξοδο SIGNAL OUT της γεννήτριας συχνοτήτων.

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Ψηφιακός ήχος και κινούμενα γραφικά

Ψηφιακός ήχος και κινούμενα γραφικά ΕΣΔ200 Δημιουργία Περιεχομένου ΙI Ψηφιακός ήχος και κινούμενα γραφικά Εισαγωγή Το παρακάτω σχήμα περιγράφει τους δυνατούς τρόπους δημιουργίας αποθήκευσης και. αναπαραγωγής ψηφιακού ήχου Ο Ήχος από φυσική

Διαβάστε περισσότερα

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. A. Στάσιμα κύματα σε χορδές

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. A. Στάσιμα κύματα σε χορδές Σκοπός της άσκησης Σε αυτή την άσκηση θα μελετήσουμε τα στάσιμα κύματα σε χορδές και σωλήνες. A. Στάσιμα κύματα σε χορδές Εισαγωγή Μία γεννήτρια ημιτονοειδούς σήματος διεγείρει έναν δονητή ο οποίος δημιουργεί

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Βασικά στοιχεία των Κυκλωμάτων

Κεφάλαιο 1 ο. Βασικά στοιχεία των Κυκλωμάτων Κεφάλαιο 1 ο Βασικά στοιχεία των Κυκλωμάτων Ένα ηλεκτρικό/ηλεκτρονικό σύστημα μπορεί εν γένει να παρασταθεί από ένα κυκλωματικό διάγραμμα ή δικτύωμα, το οποίο αποτελείται από στοιχεία δύο ακροδεκτών συνδεδεμένα

Διαβάστε περισσότερα

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 3 η :

Διαβάστε περισσότερα

Από τις τριγωνομετρικές συναρτήσεις στο Mp3

Από τις τριγωνομετρικές συναρτήσεις στο Mp3 Από τις τριγωνομετρικές συναρτήσεις στο Mp3 Εισαγωγή Οι περισσότεροι μαθητές δεν γνωρίζουν πως μία από τις περισσότερο αγαπημένες τους συνήθειες που είναι η ανταλλαγή τραγουδιών στο διαδίκτυο (ή και στο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.

Διαβάστε περισσότερα

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ:

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΣΤΟΙΧΕΙΩΔΕΣ ΤΗΛΕΦΩΝΙΚΟ ΣΥΣΤΗΜΑ Εισαγωγή. Η διεξαγωγή της παρούσας εργαστηριακής άσκησης προϋποθέτει την μελέτη τουλάχιστον των πρώτων παραγράφων του

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ HARDWARE ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΑΡΧΙΤΕΚΤΟΝΙΚΗ HARDWARE ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 7ο ΑΡΧΙΤΕΚΤΟΝΙΚΗ HARDWARE ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Γενικό διάγραμμα υπολογιστικού συστήματος Γενικό διάγραμμα υπολογιστικού συστήματος - Κεντρική Μονάδα Επεξεργασίας ονομάζουμε

Διαβάστε περισσότερα

Μέτρηση της ταχύτητας του ήχου στον αέρα.

Μέτρηση της ταχύτητας του ήχου στον αέρα. Α2 Μέτρηση της ταχύτητας του ήχου στον αέρα. 1 Σκοπός Στο πείραμα αυτό θα μελετηθεί η συμπεριφορά των στάσιμων ηχητικών κυμάτων σε σωλήνα με αισθητοποίηση του φαινομένου του ηχητικού συντονισμού. Επίσης

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι απαριθμητές ή μετρητές (counters) είναι κυκλώματα που

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 6: Δειγματοληψία - Πειραματική Μελέτη Δρ. Ηρακλής Σίμος Τμήμα:

Διαβάστε περισσότερα

ΑΝΑLOG TO DIGITAL CONVERTER (ADC)

ΑΝΑLOG TO DIGITAL CONVERTER (ADC) ΑΝΑLOG TO DIGITAL CONVERTER (ADC) O ADC αναλαμβάνει να μετατρέψει αναλογικές τάσεις σε ψηφιακές ώστε να είναι διαθέσιμες εσωτερικά στο μικροελεγκτή για επεξεργασία. Η αναλογική τάση που θέλουμε να ψηφιοποιηθεί

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1η: ΜΕΛΕΤΗ ΤΟΥ MOSFET Σκοπός της άσκησης Στην άσκηση αυτή θα μελετήσουμε το τρανζίστορ τύπου MOSFET και τη λειτουργία

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 4 η :

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS)

ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS) ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS) Αντικείμενο της άσκησης: H σχεδίαση και η χρήση ασύγχρονων απαριθμητών γεγονότων. Με τον όρο απαριθμητές ή μετρητές εννοούμε ένα ακολουθιακό κύκλωμα με FF, οι καταστάσεις

Διαβάστε περισσότερα

ΠΟΜΠΟΣ ΕΚΤΗΣ ΑΝΙΧΝΕΥΤΗΣ

ΠΟΜΠΟΣ ΕΚΤΗΣ ΑΝΙΧΝΕΥΤΗΣ Σαν ήχος χαρακτηρίζεται οποιοδήποτε μηχανικό ελαστικό κύμα ή γενικότερα μία μηχανική διαταραχή που διαδίδεται σε ένα υλικό μέσο και είναι δυνατό να ανιχνευθεί από τον άνθρωπο μέσω της αίσθησης της ακοής.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα ομιλίας Είδη /Κατηγορίες Σημάτων Στοιχειώδη Σήματα Χαρακτηριστικές Τιμές Σημάτων Τεχνικές

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Κεφάλαιο 4 : Λογική και Κυκλώματα

Κεφάλαιο 4 : Λογική και Κυκλώματα Κεφάλαιο 4 : Λογική και Κυκλώματα Σύνοψη Τα κυκλώματα που διαθέτουν διακόπτες ροής ηλεκτρικού φορτίου, χρησιμοποιούνται σε διατάξεις που αναπαράγουν λογικές διαδικασίες για τη λήψη αποφάσεων. Στην ενότητα

Διαβάστε περισσότερα

Αφήγηση Μαρτυρία. Μουσική. Ενίσχυση μηνύματος Μουσική επένδυση Ηχητικά εφέ

Αφήγηση Μαρτυρία. Μουσική. Ενίσχυση μηνύματος Μουσική επένδυση Ηχητικά εφέ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ Ο ΗΧΟΣ ΗΧΗΤΙΚΗ ΕΠΕΝΔΥΣΗ ΕΦΑΡΜΟΓΩΝ ΠΟΛΥΜΕΣΩΝ ΗΧΟΙ ΠΕΡΙΕΧΟΜΕΝΟΥ Αφήγηση Μαρτυρία Εκφώνηση Μουσική ΗΧΟΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΗΧΟΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Ενίσχυση μηνύματος Μουσική επένδυση Ηχητικά εφέ

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές

Τελεστικοί Ενισχυτές Τελεστικοί Ενισχυτές Ενισχυτές-Γενικά: Οι ενισχυτές είναι δίθυρα δίκτυα στα οποία η τάση ή το ρεύμα εξόδου είναι ευθέως ανάλογη της τάσεως ή του ρεύματος εισόδου. Υπάρχουν τέσσερα διαφορετικά είδη ενισχυτών:

Διαβάστε περισσότερα

ε. Ένα κύκλωμα το οποίο παράγει τετραγωνικούς παλμούς και απαιτείται εξωτερική διέγερση ονομάζεται ασταθής πολυδονητής Λ

ε. Ένα κύκλωμα το οποίο παράγει τετραγωνικούς παλμούς και απαιτείται εξωτερική διέγερση ονομάζεται ασταθής πολυδονητής Λ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 16/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ (ΣΥΣΤΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΕΝΔΕΙΚΤΙΚΕΣ

Διαβάστε περισσότερα

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level)

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Ερωτήσεις Επανάληψης 1. Ένας καθηγητής λογικής μπαίνει σε ένα εστιατόριο και λέει : Θέλω ένα σάντουιτς ή ένα σουβλάκι και τηγανητές πατάτες. Δυστυχώς,

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 4: Πειραματική μελέτη συστημάτων διαμόρφωσης συχνότητας (FΜ) Δρ.

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Εργαστήριο: Εισαγωγή στο Βασικό Εξοπλισµό Μετρήσεως Σηµάτων Σκοποί: 1. Η εξοικείωση µε τη βασική

Διαβάστε περισσότερα

15 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

15 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 18 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Μάθημα 5: Χαρακτηριστικά της Κ.Μ.Ε.

Μάθημα 5: Χαρακτηριστικά της Κ.Μ.Ε. Μάθημα 5: Χαρακτηριστικά της Κ.Μ.Ε. 5.1 Το ρολόι Κάθε μία από αυτές τις λειτουργίες της Κ.Μ.Ε. διαρκεί ένα μικρό χρονικό διάστημα. Για το συγχρονισμό των λειτουργιών αυτών, είναι απαραίτητο κάποιο ρολόι.

Διαβάστε περισσότερα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία ΙΙ, Πρακτικής

Διαβάστε περισσότερα

Analog vs Digital. Δούρβας Ιωάννης ΙΩΑΝΝΗΣ ΔΟΥΡΒΑΣ

Analog vs Digital. Δούρβας Ιωάννης ΙΩΑΝΝΗΣ ΔΟΥΡΒΑΣ Analog vs Digital Δούρβας Ιωάννης Ηλεκτρονικός Υπολογιστής ψηφιακή μηχανή Ο υπολογιστής αποτελείται από ένα σύνολο (εκατομμύρια) ηλεκτρικά κυκλώματα. Για τα ηλεκτρικά κυκλώματα υπάρχουν μόνο 2 καταστάσεις.

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ 1.1 ΣΚΟΠΟΣ Η εξοικείωση με τη λειτουργία των Λογικών Πυλών και των Πινάκων Αληθείας. 1.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Οι λογικές πύλες είναι ηλεκτρονικά κυκλώματα που δέχονται στην είσοδο ή στις

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 10 Μετάδοση και Αποδιαμόρφωση Ραδιοφωνικών Σημάτων Λευκωσία, 2010 Εργαστήριο 10

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ : ΚΥΜΑΤΑ (ΤΡΕΧΟΝΤΑ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:.

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ : ΚΥΜΑΤΑ (ΤΡΕΧΟΝΤΑ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ : ΚΥΜΑΤΑ (ΤΡΕΧΟΝΤΑ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:.. Αν η εξίσωση ενός αρμονικού κύματος είναι y = 0ημ(6πt - πx) στο S.I., τότε η ταχύτητα διάδοσης του κύματος είναι ίση με: α. 0m/s β. 6m/s γ. m/s δ. 3m/s..

Διαβάστε περισσότερα

Ο Ήχος. Υπεύθυνος Καθηγητής: Παζούλης Παναγιώτης

Ο Ήχος. Υπεύθυνος Καθηγητής: Παζούλης Παναγιώτης ιαθεµατική Εργασία µε Θέµα: Οι Φυσικές Επιστήµες στην Καθηµερινή µας Ζωή Ο Ήχος Τµήµα: β1 Γυµνασίου Υπεύθυνος Καθηγητής: Παζούλης Παναγιώτης Συντακτική Οµάδα: Γεώργιος Ελευθεριάδης Ο Ήχος Έχει σχέση ο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση Ονοµατεπώνυµο: Αριθµός Μητρώου: Εξάµηνο: Υπογραφή Εργαστήριο Ηλεκτρικών Κυκλωµάτων και Συστηµάτων 1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος σε βηµατική και αρµονική διέγερση Μέρος Α : Απόκριση στο πεδίο

Διαβάστε περισσότερα

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής.

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής. Από το προηγούμενο μάθημα... Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 2 η : «Βασικές Β έ αρχές ψηφιακού ήχου» Φλώρος Ανδρέας Επίκ. Καθηγητής Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν

Διαβάστε περισσότερα

«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Μηχανές Πεπερασμένων Καταστάσεων

«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Μηχανές Πεπερασμένων Καταστάσεων «Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Μηχανές Πεπερασμένων Καταστάσεων Παρασκευάς Κίτσος http://diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής ΤΕ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 Τεχνολογία Ι Θεωρητικής Κατεύθυνσης Τεχνικών Σχολών Μάθημα : Μικροϋπολογιστές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 Τελεστικός ενισχυτής

ΚΕΦΑΛΑΙΟ 7 Τελεστικός ενισχυτής ΚΕΦΑΛΑΙΟ 7 Τελεστικός ενισχυτής Ο τελεστικός ενισχυτής, TE (operational ampliier, op-amp) είναι ένα από τα πιο χρήσιμα αναλογικά κυκλώματα. Κατασκευάζεται ως ολοκληρωμένο κύκλωμα (integrated circuit) και

Διαβάστε περισσότερα

Φίλτρα διέλευσης: (α) χαμηλών συχνοτήτων (β) υψηλών συχνοτήτων

Φίλτρα διέλευσης: (α) χαμηλών συχνοτήτων (β) υψηλών συχνοτήτων 2 1 η ΕΝΟΤΗΤΑ Φίλτρα διέλευσης: (α) χαμηλών συχνοτήτων (β) υψηλών συχνοτήτων 3 ο Εργαστήριο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 3 Άσκηση 3 η. 3.1 Φίλτρο διελεύσεως χαμηλών συχνοτήτων ή Χαμηλοπερατό φίλτρο με μία σταθερά χρόνου.

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

Μάθημα 3.2: Κεντρική Μονάδα Επεξεργασίας

Μάθημα 3.2: Κεντρική Μονάδα Επεξεργασίας Κεφάλαιο 3 ο Αρχιτεκτονική Υπολογιστών Μάθημα 3.: Κεντρική Μονάδα Επεξεργασίας Όταν ολοκληρώσεις το κεφάλαιο θα μπορείς: Να σχεδιάζεις την εσωτερική δομή της ΚΜΕ και να εξηγείς τη λειτουργία των επιμέρους

Διαβάστε περισσότερα

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας ΔΙΟΔΟΣ Οι περισσότερες ηλεκτρονικές συσκευές όπως οι τηλεοράσεις, τα στερεοφωνικά συγκροτήματα και οι υπολογιστές χρειάζονται τάση dc για να λειτουργήσουν σωστά.

Διαβάστε περισσότερα

Ο Ήχος ως Σήμα & η Ακουστική Οδός ως Σύστημα

Ο Ήχος ως Σήμα & η Ακουστική Οδός ως Σύστημα Εθνκό & Καποδιστριακό Πανεπιστήμιο Αθηνών Ο Ήχος ως Σήμα & η Ακουστική Οδός ως Σύστημα Βασικές Έννοιες Θάνος Μπίμπας Επ. Καθηγητής ΕΚΠΑ Hon. Reader UCL Ear InsUtute Διαταραχές Φωνής & Ακοής στις Ερμηνευτικές

Διαβάστε περισσότερα

Ανάλυση και υλοποίηση ταλαντωτή τύπου Colpitts

Ανάλυση και υλοποίηση ταλαντωτή τύπου Colpitts Εργασία στο μάθημα «Εργαστήριο Αναλογικών VLSI» Ανάλυση και υλοποίηση ταλαντωτή τύπου Colpitts Ομάδα Γεωργιάδης Κωνσταντίνος konsgeorg@inf.uth.gr Σκετόπουλος Νικόλαος sketopou@inf.uth.gr ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ

Διαβάστε περισσότερα

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Α Γενικού Λυκείου (Μάθημα Επιλογής)

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Α Γενικού Λυκείου (Μάθημα Επιλογής) ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Α Γενικού Λυκείου (Μάθημα Επιλογής) Σύγχρονα Υπολογιστικά Συστήματα τους υπερυπολογιστές (supercomputers) που χρησιμοποιούν ερευνητικά εργαστήρια τα μεγάλα συστήματα (mainframes)

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα K24 Ψηφιακά Ηλεκτρονικά : TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 2 3 Γενικά Όπως είδαμε και σε προηγούμενα μαθήματα, ένα ψηφιακό κύκλωμα ονομάζεται

Διαβάστε περισσότερα

1/3/2009. Φλώρος Ανδρέας Επίκ. Καθηγητής. Ευαισθησία μικροφώνων

1/3/2009. Φλώρος Ανδρέας Επίκ. Καθηγητής. Ευαισθησία μικροφώνων Ηλεκτροακουστικοί μετατροπείς Μάθημα: «Ηλεκτροακουστική & Ακουστική Χώρων» Μετατρέπουν ακουστική/ηλεκτρική/μηχανική ενέργεια που παράγεται σε κάποιο υποσύστημα σε κάποια άλλη μορφή Συνδιάζουν πολλαπλά

Διαβάστε περισσότερα

3 η ΕΝΟΤΗΤΑ. Το διπολικό τρανζίστορ

3 η ΕΝΟΤΗΤΑ. Το διπολικό τρανζίστορ 3 η ΕΝΟΤΗΤΑ Το διπολικό τρανζίστορ Άσκηση 8η. Στατικές χαρακτηριστικές κοινού εκπομπού του διπολικού τρανζίστορ. 1. Πραγματοποιήστε την συνδεσμολογία του κυκλώματος του Σχ. 1α (τρανζίστορ 2Ν2219). Σχήμα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το

Διαβάστε περισσότερα

Σωστή απάντηση το: Γ. Απάντηση

Σωστή απάντηση το: Γ. Απάντηση Ειδικά Θέματα Ελέγχου Ορθής Λειτουργίας VLSI Συστημάτων - Σχεδιασμός για Εύκολο Έλεγχο Εξετάσεις ΟΣΥΛ & ΕΤΥ 4-7- 2016 Ειδικά Θέματα Σχεδίασης Ψηφιακών Συστημάτων Εξετάσεις μαθήματος επιλογής Τμήματος Μηχανικών

Διαβάστε περισσότερα