TYXH H BEBAIOTHTA; Η ΙΑΛΕΚΤΙΚΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΟΥ ΧΑΟΥΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TYXH H BEBAIOTHTA; Η ΙΑΛΕΚΤΙΚΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΟΥ ΧΑΟΥΣ"

Transcript

1 TYXH H BEBAIOTHTA; Η ΙΑΛΕΚΤΙΚΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΟΥ ΧΑΟΥΣ Τάσος Μπούντης Καθηγητής Τµήµατος Μαθηµατικών Πανεπιστήµιο Πατρών Πάτρα τηλ./φαξ: http//:www.math.upatras.gr~crans http//:www.math.upatras.gr~bountis 1. Εισαγωγή Από την πρώτη κιόλας εµφάνιση του ανθρώπου στη γη, οι έννοιες της τάξης και του χάους, του προβλέψιµου και του απρόβλεπτου, του καθοριστικού και του τυχαίου έπαιξαν σηµαντικό ρόλο στον τρόπο που ο άνθρωπος αντιλαµβανόταν τη φύση γύρω του. Όλοι σχεδόν οι µέχρι σήµερα γνωστοί πολιτισµοί περιείχαν θεότητες που εκπροσωπούσαν την τάξη ή τη δηµιουργία και το χάος ή την άβυσσο, το άµορφο κενό. Στην Αρχαία Ελλάδα, όπου λατρεύτηκε µε τον δυϊσµό Απόλλωνα- ιονύσου η λογική και το όνειρο, η διαύγεια και η µέθη έζησε και ο Αριστοτέλης ο οποίος επιχείρησε µε το έργο του να δείξει ότι η φύση - έµψυχη ή άψυχη- διέπεται από αιτιοκρατικούς νόµους και λειτουργεί σύµφωνα µε κανόνες που ο άνθρωπος µπορεί να κατανοήσει και ίσως να χρησιµοποιήσει προς όφελός του. Η Αριστοτέλεια λογική επηρέασε την Ευρωπαϊκή διανόηση για πολλούς αιώνες. Μετά µάλιστα από την τόσο επιτυχή περιγραφή της κίνησης των ουρανίων σωµάτων από τους νόµους του Kepler και του Νεύτωνα, και µετά την εντυπωσιακή πρόοδο των επιστηµών τον 17ο αιώνα, ο ντετερµινισµός, ή η αιτιοκρατική ερµηνεία του σύµπαντος, φαινόταν να ορθώνεται σαν ένα ακλόνητο οχυρό. Η κυριαρχία του ανθρώπινου νου πάνω στη φύση εµφανιζόταν αδιαµφισβήτητη. Εκφράστηκε µάλιστα, στα 1814, από τον ίδιο τον Laplace µε τον εξής χαρακτηριστικό τρόπο: «Μια διάνοια που σε µια δεδοµένη στιγµή θα γνώριζε όλες τις δυνάµεις που κινούν τη φύση και την αντίστοιχη κατάσταση των όντων που την αποτελούν, ενώ ταυτόχρονα θα ήταν τόσο ευρεία ώστε να αναλύει όλα τα δεδοµένα, θα είχε την δυνατότητα να συµπεριλάβει σε ένα σχήµα τόσο τις κινήσεις των µεγαλυτέρων σωµάτων του σύµπαντος όσο και εκείνες των ελαχίστων ατόµων. Τίποτε δεν θα ήταν αβέβαιο γι αυτήν, το µέλλον και το παρελθόν θα ήταν πάντα παρόντα στα µάτια της». Ο 19ος και ο 20ος αιώνας όµως ήρθαν να αποκαλύψουν ότι η πραγµατικότητα είναι πολύ διαφορετική. Οι αντιφάσεις στις οποίες υπέπεσε ο Boltzmann στη προσπάθειά του να συνδυάσει το Νευτώνειο µοντέλο µε την επιστήµη της Θερµοδυναµικής, η ενδογενής αβεβαιότητα των νόµων της Κβαντοµηχανικής και τέλος τα παράδοξα του 1

2 Russell και το θεώρηµα του Godel, ήρθαν να καταφέρουν καίρια πλήγµατα στην απόλυτη κυριαρχία του ντετερµινισµού και να κλονίσουν συθέµελα το αιτιοκρατικό οχυρό του Laplace. Στο άρθρο αυτό θα περιγράψουµε πως, µε την καθιέρωση της νέας επιστήµης της «Μη Γραµµικής υναµικής και του Χάους», ολοκληρώθηκε στα χρόνια µας η κατάρρευση του ντετερµινισµού ακόµα και στα πιο απλά συστήµατα της Κλασσικής Φυσικής. Θα επιχειρήσουµε να δείξουµε πως τα µαθηµατικά αποτελέσµατα των Poincare (τέλος του 19ου αιώνα), Smale (1967) και Ruelle και Takens (1973) οι αριθµητικοί υπολογισµοί Φυσικών όπως ο Lorenz και ο Feigenbaum αλλά και οι πειραµατικές ανακαλύψεις πολλών άλλων, θεµελίωσαν επιστηµονικά τις βασικές έννοιες της Χαοτικής υναµικής. Θα δούµε πως η θεωρία του Χάους συνδέει διαλεκτικά το προβλέψιµο και το απρόβλεπτο, το κανονικό και το τυχαίο, ανακαλύπτοντας τάξη µέσα στη χαοτική συµπεριφορά συστηµάτων που περιγράφονται από ντετερµινιστικές µη γραµµικές εξισώσεις. Έτσι θα οδηγηθούµε τελικά στο συµπέρασµα ότι και ο απόλυτος ντετερµινισµός αλλά και η απόλυτη τυχαιότητα δεν είναι παρά εξιδανικεύσεις, ακραίες και οριακές καταστάσεις που αποτελούν την εξαίρεση και όχι τον κανόνα. Το παιγνίδι της Φύσης και της Ζωής παίζεται κάπου ανάµεσα στην τύχη και τη βεβαιότητα σαν µία παρτίδα σκάκι: Οι κανόνες είναι γνωστοί και απλοί, οι διαφορετικοί συνδυασµοί όµως που επιτρέπονται είναι τόσο πολλοί, ώστε να προσδίδουν στον κόσµο γύρω µας µια θαυµαστή πολυπλοκότητα κινήσεων και µορφών που ποτέ δεν θα µπορέσουµε να κατανοήσουµε και να ελέγξουµε πλήρως. Ισως η πιο σηµαντική συµβολή της Θεωρίας του Χάους να είναι η συνειδητοποίηση ότι όσο βαθύτερα κατανοούµε τη Φύση και τη Ζωή, τόσο θα συναντάµε εκπλήξεις και απρόοπτα, µαζί µε νέες προκλήσεις και ερωτήµατα που πρέπει να αντιµετωπίζουµε συνεχώς σε µία συναρπαστική αλληλουχία χωρίς τέλος 2. Τύχη ή Βεβαιότητα ; Η πρώτη αναφορά στον όρο «χάος» στην Ελληνική ιστορία γίνεται από τον Ησίοδο, τον 8ο αιώνα π.χ., στο έργο του «Θεογονία», µε την έννοια του «κενού» που υπήρχε στον κόσµο πριν δηµιουργηθεί η Γη. Από το χάος, σύµφωνα µε τον Ησίοδο, προήλθε η Νεφέλη και το Σκότος αλλά και η Ηµέρα και ο Αιθέρας. Έτσι η έννοια του χάους δεν περιορίσθηκε στο κενό και την ανυπαρξία αλλά αποτέλεσε και την κοιτίδα της δηµιουργίας, την γενεσιουργό αιτία για την ύπαρξη και την εξέλιξη του «καινούργιου» και του «ζωντανού». Η διαλεκτική της απουσίας (ως αβεβαιότητα) και της παρουσίας (ως σιγουριά) είχε γεννηθεί! ύσκολα θα βρει κανείς στην ιστορία της ανθρωπότητας πολιτισµό που να µην έχει αναπτύξει, ως µια από τις θεµελιώδεις αρχές του, τον δυϊσµό ανάµεσα στο φως και το σκοτάδι, τη δηµιουργία και την καταστροφή. Αυτό συνήθως γίνεται υπό τη µορφή ενός ζεύγους θεοτήτων: Οι θεοί Nut και Ra συµβόλιζαν αντιστοίχως την άβυσσο και τον ήλιο για τους αρχαίους Αιγυπτίους ενώ το Yin και το Yang αντιπροσώπευαν τον ουρανό (χάος) και 2

3 την γη (τάξη) για τους Κινέζους. Τέλος ο Βισνού, θεότητα της τάξης, λατρεύεται ακόµα και σήµερα στην Ινδία, σε αντιδιαστολή µε τον Σίβα, θεό της καταστροφής αλλά µε την προϋπόθεση της γέννησης του καινούργιου. Φυσικά δεν χρειάζεται να αναφέρουµε τον Απόλλωνα και τον ιόνυσο στην Αρχαία Ελλάδα που έδωσαν θεϊκή οντότητα στις έννοιες της τάξης-λογικής και της αταξίας- µέθης αντιστοίχως. Με το έργο του Αριστοτέλη όµως, τον 4ο αιώνα π.χ., προβάλλεται και υποστηρίζεται τελικά η άποψη ότι η φύση και η ζωή διέπονται από τάξη και αιτιοκρατικούς κανόνες που ο άνθρωπος έχει υποχρέωση να προσπαθήσει να κατανοήσει. Είναι σηµαντικό να αναφέρουµε ότι το πρωταρχικό ερώτηµα που έκανε τον άνθρωπο, από καταβολής κόσµου, να προβληµατισθεί σχετικά µε τους νόµους και την προβλεψιµότητα της φύσης, ήταν η κίνηση των ουρανίων σωµάτων. Κατ αρχάς η περιοδικότητα της ανατολής και της δύσης, του ήλιου και των τροχιών της σελήνης, αλλά και των αστέρων στον ουρανό, εδραίωσε την πίστη του ανθρώπου στην αιτιοκρατία. Γεγονότα όπως η πρόβλεψη της έκλειψης ηλίου από τον Θαλή τον Μιλήσιο κατά τη διάρκεια µιας µάχης µεταξύ Λυδών και Μήδων το 585 π.χ., δηµιούργησαν την πεποίθηση ότι µε µαθηµατικούς υπολογισµούς και επιστηµονικές µετρήσεις, το µέλλον του ανθρώπου στη γη θα µπορούσε να προβλεφθεί µε ακρίβεια. Χρειάστηκε να περάσουν 2000 χρόνια για να φτάσουµε στην εποχή του Κοπέρνικου, ο οποίος, το 1473, βελτίωσε σηµαντικά το µοντέλο του Πτολεµαίου για την αναπαράσταση των τροχιών των πλανητών του ηλιακού συστήµατος. Όµως, η πιο σηµαντική πρόοδος στο θέµα αυτό έγινε το 1596 από τον Kepler, ο οποίος πρότεινε το σχήµα της έλλειψης για τις πλανητικές τροχιές µέσω του οποίου εξηγήθηκαν µε αξιοθαύµαστη ακρίβεια οι αποκλίσεις του µοντέλου του Κοπέρνικου από τις µέχρι τότε γνωστές αστρονοµικές παρατηρήσεις. Τέλος, η ιδιοφυία του µεγάλου Isaac Newton ( ) ήρθε να αποδείξει, στο πρόβληµα της βαρυτικής έλξης, την ύπαρξη φαινοµενικά απλών µαθηµατικών εξισώσεων που περιγράφουν παγκόσµιους νόµους. Οι νόµοι αυτοί διέπουν από την κίνηση ενός µήλου που πέφτει στη γη µέχρι τις τροχιές των πιο αποµακρυσµένων αστέρων του σύµπαντος. Το µήνυµα του Νεύτωνα ήταν ξεκάθαρο: ώστε µου τις σωστές µαθηµατικές εξισώσεις και τις κατάλληλες αρχικές συνθήκες και θα σας περιγράψω µε ακρίβεια τη κίνηση ενός συστήµατος µαζών υπολογίζοντας το µέλλον και το παρελθόν του για όσο µεγάλο χρονικό διάστηµα θέλετε. Και πράγµατι οι επιτυχίες των Μαθηµατικών στην περιγραφή φυσικών φαινοµένων άρχισαν να διαδέχονται η µία την άλλη, µε εντυπωσιακούς ρυθµούς, τον 17ο, 18ο και 19ο αιώνα: Ο L. Euler εφαρµόζει τον Απειροστικό Λογισµό στη Μαθηµατική Φυσική και λύνει ένα µεγάλο αριθµό προβληµάτων της Μηχανικής και της Υδροδυναµικής. Ο D Alembert λύνει το πρόβληµα της παλλόµενης χορδής µέσω Μερικών ιαφορικών Εξισώσεων, ο D. Bernoulli αναλύει την µουσική και τους ήχους ως υπερθέσεις ηµιτονοειδών ταλαντώσεων, ο J. L. Lagrange κάνει µεγάλη πρόοδο στην επιστήµη της Ακουστικής, ενώ ο J. Fourier επιτυγχάνει να περιγράψει σωστά το πρόβληµα της ροής θερµότητας. 3

4 Ένας µετά τον άλλον, οι κλάδοι της Φυσικής αρχίζουν να υποτάσσονται στον έλεγχο µαθηµατικών µεθόδων. Η ελαστικότητα µελετείται αποτελεσµατικά από τους Laplace και Poisson, η Υδροδυναµική και η Ηλεκτροστατική ενοποιούνται υπό τη µαθηµατική θεωρία Πεδίων υναµικού και ο Ηλεκτροµαγνητισµός παρουσιάζεται µε άψογη κοµψότητα υπό το ενιαίο πλαίσιο των εξισώσεων του Maxwell. Μέσα στον ενθουσιασµό και την ευφορία που προκάλεσαν οι εντυπωσιακές αυτές ανακαλύψεις, µια µικρή ανησυχητική «λεπτοµέρεια» φαίνεται ότι πέρασε στο περιθώριο: Οι περισσότερες διαφορικές εξισώσεις που περιγράφουν ρεαλιστικά τα ως άνω φυσικά φαινόµενα είναι µη γραµµικές και εποµένως πολύ δύσκολο έως αδύνατο να επιλυθούν αναλυτικά εκτός από πολύ λίγες περιπτώσεις. Για το λόγο αυτό, οι επιστήµονες αναγκαζόντουσαν να καταφύγουν σε γραµµικοποιήσεις και σηµαντικές απλουστεύσεις των προβληµάτων τους, οι οποίες µπορούσαν να δώσουν ενδιαφέροντα αποτελέσµατα. Η αναγκαιότητα της αντιµετώπισης µη επιλύσιµων εξισώσεων δεν είχε προκύψει ακόµα. Έτσι φτάνουµε στην περίφηµη ρήση του Pierre Simon de Laplace, to 1814, που περιέχεται στο έργο του «Φιλοσοφικά οκίµια επί των Πιθανοτήτων», και την οποία διατυπώσαµε στην Εισαγωγή του παρόντος άρθρου. Η ρήση αυτή αποτελεί την αποθέωση του ντετερµινισµού και σηµατοδοτεί µία από τις σοβαρότερες απόπειρες να αναδειχθεί η αιτιοκρατία σε αποφασιστικό παράγοντα στην προσπάθειά του ανθρώπου να ερµηνεύσει τη φύση και τη ζωή. Αυτή η αναγωγική και µηχανιστική αντίληψη για τη λειτουργία της φύσης κυριάρχησε µέχρι το τέλος του 19ου αιώνα, οπότε εµφανίστηκαν στο προσκήνιο οι θεωρίες του L. Boltzmann για την Θερµοδυναµική θεώρηση της χρονικής εξέλιξης φυσικών συστηµάτων όπως τα αέρια, που αποτελούνται από δισεκατοµµύρια δισεκατοµµυρίων µόρια ή άτοµα. Ο βασικός στόχος του Boltzmann ήταν να εξηγήσει, βάσει των νόµων της Κλασσικής Μηχανικής, πως είναι δυνατόν ένα αέριο να φτάσει σε µία κατάσταση ισορροπίας, όπου τα µόρια θα καταλαµβάνουν οµοιογενώς όλο το διαθέσιµο χώρο, σε µία κατανοµή πλήρους αταξίας και «µοριακού χάους». υστυχώς τα επιχειρήµατα του Boltzmann συνάντησαν σοβαρότερες αντιρρήσεις από πολλούς φυσικούς της εποχής του, οι οποίες συνίσταντο κυρίως στα εξής: Αν η ισορροπία είναι το «µοιραίο» επακόλουθο της δυναµικής του αερίου, τότε, αντέτειναν οι αντίπαλοί του, αν αντιστρέφαµε τις ταχύτητες όλων των µορίων, αυτά θα έπρεπε πάλι να κινηθούν προς την οµοιογενή κατανοµή. Όµως οι εξισώσεις της Κλασσικής Μηχανικής είναι αναλλοίωτες υπό την αντιστροφή του χρόνου και έτσι µία αλλαγή ταχυτήτων σαν αυτή που αναφέραµε θα οδηγούσε τα µόρια πίσω στην αρχική τους κατάσταση, αντί στην ισορροπία. Επί πλέον, αυτή η ιδιότητα της αντιστρεψιµότητας δείχνει ότι οι εξισώσεις δεν διακρίνουν µεταξύ της «έµπροσθεν» και «όπισθεν» φοράς του χρόνου, και εποµένως δεν µπορούν να ξεχωρίσουν το µέλλον από το παρελθόν, όπως απαιτούσε η θεώρηση του Boltzmann. Μία άλλη σοβαρή αντίρρηση επίσης βασίστηκε στο γεγονός ότι οι νόµοι της Μηχανικής που χρησιµοποίησε ο Boltzmann, υπονοούν ότι µετά από µεγάλα χρονικά διαστήµατα το αέριο θα επανέρχεται όσο κοντά θέλουµε στην αρχική κατάσταση, 4

5 πράγµα που αποκλείει την σταθεροποίησή του για πάντα στην οµοιογενή ισορροπία που ήθελε να αποδείξει ο Boltzmann. Έτσι η Επιστήµη της Φυσικής και συγκεκριµένα η Στατιστική Φυσική εισήλθε στον 20ο αιώνα συνοδευόµενη από ένα πολύ σοβαρό παράδοξο: Πως θα ήταν δυνατόν να συµβιβαστούν οι νόµοι της Θερµοδυναµικής (όπως π.χ. ο 2ος νόµος της συνεχώς αυξανόµενης αταξίας ενός κλειστού συστήµατος) µε τους νόµους της Κλασσικής Μηχανικής; Πως µεταβαίνουµε από την αντιστρέψιµη δυναµική των 2-3 σωµάτων στην στατιστική µελέτη των δισεκατοµµυρίων µορίων ενός αερίου; Χωρίς να το ξέρει ούτε ο Boltzmann, που αυτοκτόνησε από κατάθλιψη στα 1906, ούτε πολλοί από τους επικριτές του, η απάντηση στο παραπάνω ερώτηµα είχε ήδη δοθεί λίγο πριν την εκπνοή του 19ου αιώνα από τον µεγάλο Γάλλο Μαθηµατικό Henri Poincarè. Ο Poincare, προσπαθώντας να λύσει το πρόβληµα 3 σωµάτων, Γη, Ηλιος και Σελήνη, που είχε τεθεί το 1887 µε έπαθλο 2500 κορώνες από τον Βασιλιά Όσκαρ της Σουηδίας, ανακάλυψε κάτι πραγµατικά εντυπωσιακό: ότι δηλαδή, οι εξισώσεις της Κλασσικής Μηχανικής, για το πρόβληµα αυτό, ήταν αδύνατον να λυθούν αναλυτικά µε τις ως τότε γνωστές µαθηµατικές µεθόδους! Ο Poincarè κέρδισε το έπαθλο, αλλά η ανακάλυψη που είχε κάνει ήταν πολύ πιο σηµαντική και θεµελιώδης από την απόδειξη της µη επιλυσιµότητας του προβλήµατος 3 σωµάτων: Ουσιαστικά αυτό που απέδειξε ο Poincarè ήταν ότι ακόµα και στα πιο απλά προβλήµατα της Μηχανικής και της Αστρονοµίας, διαθέτουν στο χώρο φάσεων τους ( * ) περιοχές όπου οι λύσεις (ή τροχιές) εξαρτώνται εξαιρετικά ευαίσθητα από την επιλογή των αρχικών συνθηκών. Αυτό σηµαίνει, µε δύο λόγια, ότι ακόµα και τα απλούστερα ντετερµινιστικά συστήµατα της Φυσικής που περιγράφονται από µη γραµµικές εξισώσεις και κινούνται σε ένα χώρο φάσεων 3 τουλάχιστον διαστάσεων, έχουν περιοχές όπου οι τροχιές τους είναι έντονα ασταθείς, ώστε ακόµα και ελάχιστες αλλαγές στην αρχική κατάσταση οδηγούν σε τεράστιες αλλαγές στην εξέλιξη της κίνησης. Οι περιοχές αυτές ονοµάσθηκαν, 70 χρόνια αργότερα, χαοτικές και η έντονη αστάθεια που τις χαρακτηρίζει, χάος. Έτσι, η αβεβαιότητα του προσδιορισµού της δυναµικής έκανε την εµφάνισή της µε φυσιολογικό και συγκεκριµένο τρόπο, σε φυσικά συστήµατα που θα τα χαρακτηρίζαµε απολύτως αιτιοκρατικά. Ο ντετερµινισµός του Laplace, µε την έννοια της δυνατότητας πρόβλεψης της δυναµικής για απεριόριστο χρόνο στο µέλλον (ή το παρελθόν) δέχτηκε ένα καίριο πλήγµα, από το οποίο δεν επρόκειτο να συνέλθει ποτέ. 3. Η Θεωρία του Χάους Έπρεπε βέβαια να περάσουν πολλά χρόνια προτού γίνουν ευρέως κατανοητές οι ανακαλύψεις του Poincare και η σηµασία τους για τη Φυσική και τις άλλες ( * ) Χώρος φάσεων είναι ο χώρος όλων των δυνατών θέσεων και ταχυτήτων ενός συστήµατος της Κλασσικής Μηχανικής. 5

6 εφαρµοσµένες επιστήµες. Ενας από τους πρώτους που διαισθάνθηκαν την απήχηση των αποτελεσµάτων του Poincare και τα επέκτειναν σε δυναµικά συστήµατα διακριτού χρόνου που περιγράφονται από αλγεβρικές, µη γραµµικές απεικονίσεις, ήταν ο Αµερικανός Μαθηµατικός G. D. Birkhoff. Οι εργασίες του Birkhoff, στη δεκαετία του 1920, έδειξαν περίτρανα ότι οι ανακαλύψεις του Poincare δεν περιοριζόντουσαν µόνο στον κλάδο των διαφορικών εξισώσεων. Ακόµα και απλές εξισώσεις διαφορών (απεικονίσεων) που χρησιµοποιούνται συχνά για τη µοντελοποίηση βιολογικών ή οικονοµικών συστηµάτων µπορούν να εµφανίσουν πλούσια και πολύπλοκη συµπεριφορά που δεν επιδέχεται αναλυτική λύση µέσω γνωστών µεθόδων. Όµως η επόµενη σηµαντική εξέλιξη στην ανάπτυξη της θεωρίας του Χάους επρόκειτο να καθυστερήσει λίγες δεκαετίες. Συγκεκριµένα, χρειάστηκε να εµφανισθεί στο προσκήνιο στα 1960 περίπου ο µεγάλος Αµερικανός τοπολόγος S. Smale για να γίνει κατανοητή σε όλο της το µεγαλείο η θεωρία του Poincarè. Χρησιµοποιώντας απλά γεωµετρικά παραδείγµατα, ο Smale έδειξε ότι ένα µεγάλο πλήθος δι-διάστατων αιτιοκρατικών απεικονίσεων εµπεριέχουν λύσεις µε ιδιότητες τόσο τυχαίες, όσο και η ρίψη ενός νοµίσµατος ή το παιγνίδι της ρουλέτας! Τα συµπεράσµατα του Smale γενικεύθηκαν από τους Μαθηµατικούς Φυσικούς D. Ruelle (Γαλλία) και F. Takens (Ολλανδία) το 1973, ενώ η πειραµατική τους επαλήθευση σε εργαστηριακές µελέτες της χαοτικής κίνησης υγρού ανάµεσα σε δύο περιστρεφόµενους κυλίνδρους, δηµοσιοποιήθηκε 2 χρόνια αργότερα από τους Αµερικανούς Φυσικούς J. Gollub και H. Swinney. Εν τω µεταξύ, το 1963, ο Αµερικανός µετεωρολόγος E. Lorenz δηµοσίευσε µία πολύ σηµαντική εργασία στην οποία περιέγραφε την εκπληκτική διαπίστωση ότι οι λύσεις ενός απλού ντετερµινιστικού µοντέλου 3 διαφορικών εξισώσεων, αν και διακρίνονται από τη γνωστή ευαίσθητη εξάρτηση από τις αρχικές συνθήκες που αναφέραµε πιο πάνω, τελικά συγκεντρώνονται όλες σε ένα πολύπλοκο σύνολο στο χώρο των φάσεων που ονοµάσθηκε παράξενος ή χαοτικός ελκυστής. Ο ελκυστής του Lorenz παρουσιάζει µία τόσο σύνθετη δοµή υπό συνεχείς µεγεθύνσεις, που δίνει την εντύπωση ότι εκτείνεται πέραν των 2 διαστάσεων, χωρίς όµως και να «γεµίζει» ένα τµήµα του 3-διάστατου χώρου. Σήµερα, ξέρουµε ότι το αντικείµενο αυτό έχει διάσταση περίπου 2.1 και ανήκει στην κατηγορία των φράκταλς, αυτών των απείρως πολύπλοκων συνόλων, τα οποία σίγουρα θα γνωρίζει ο αναγνώστης, από τις τόσο όµορφες έγχρωµες εικόνες τους που συναντάµε καθηµερινά στη βιβλιογραφία. Τέλος, σε όλα αυτά, πρέπει να προσθέσουµε και την πολύ σηµαντική ανακάλυψη του Αµερικανού Μαθηµατικού Φυσικού M. Feigenbaum, ο οποίος απέδειξε µε τη βοήθεια απλών µη γραµµικών απεικονίσεων, το 1977, την δυνατότητα µετάβασης στο χάος, µέσω µιας ακολουθίας διακλαδώσεων µε «παγκόσµια» χαρακτηριστικά. Η µεγάλη σηµασία της ανακάλυψης του Feigenbaum αποκαλύφθηκε 2 χρόνια αργότερα στα 1979, όταν οι Γάλλοι Φυσικοί A. Libchaber και M. Maurer, επιβεβαίωσαν πειραµατικά ότι κατά την αυξανόµενη θέρµανση ενός λεπτού στρώµατος υγρού, είναι δυνατόν να παρατηρηθεί µετάβαση στο χάος µε τον ίδιο ακριβώς τρόπο και τις ίδιες παγκόσµιες σταθερές που προέβλεπε η θεωρία του Feigenbaum. 6

7 Σήµερα, µετά και τις εντυπωσιακές ανακαλύψεις της γεωµετρίας των φράκταλς, βρισκόµαστε µπροστά στην εδραίωση µιας νέας κατεύθυνσης στον χώρο των επιστηµών που λέγεται Επιστήµη της Πολυπλοκότητας. Το ένα της σκέλος αφορά στο «χάος», ως πολύπλοκη και απρόβλεπτη εξέλιξη της δυναµικής µη γραµµικών συστηµάτων στο χρόνο, και το άλλο στα «φράκταλς», ως πολύπλοκες µορφές στο χώρο που εµφανίζουν ιδιότητες αυτο-οµοιότητας υπό αλλαγή κλίµακας, όπως αυτό της φτέρης του Barnsley που δείχνουµε στο κάτωθι σχήµα. Εικόνα 1. Η φτέρη του Barnsley. Προσέξτε την αυτο-οµοιότητα µεταξύ του µεγάλου µίσχου και της αλληλουχίας των µικρότερων που βρίσκονται επάνω του. Γνωρίζουµε επίσης ότι πολλά (τα περισσότερα ίσως) φυσικά, βιολογικά και οικονοµικά συστήµατα που µελετάµε δεν είναι ούτε απολύτως προβλέψιµα, ούτε εντελώς τυχαία. Θα µπορούσαµε µάλιστα να πούµε ότι οι κλιµατικές αλλαγές, η λειτουργία της καρδιάς, οι σεισµοί, οι διακυµάνσεις του χρηµατιστηρίου και τόσα άλλα, είναι χαοτικά φαινόµενα που διέπονται από ένα πολύ µικρότερο αριθµό µεταβλητών (3-5) από ότι ίσως θα φανταζόµαστε. Επιπλέον σήµερα είµαστε σε θέση να προσδιορίσουµε και το ποσοστό του «θορύβου» ή «τυχαιότητας» που υπάρχει στα δεδοµένα ενός συστήµατος σχετικά µε την αντίστοιχη συµβολή της αιτιοκρατικής δυναµικής. Αν το ποσοστό αυτό είναι χαµηλό, τότε µπορούµε να χρησιµοποιήσουµε τη µεθοδολογία του χάους για να βελτιώσουµε τη δυνατότητα πρόβλεψης και ελέγχου που διαθέτουµε για τα συστήµατα αυτά. Ακόµα όµως και αν υποθέταµε ότι οι εξισώσεις που τα διέπουν είναι απολύτως ντετερµινιστικές, χωρίς ίχνος θορύβου, πάλι θα ήταν αδύνατον να προβλέψουµε την χαοτική τους εξέλιξη για µεγάλα χρονικά διαστήµατα. Στατιστικά, θα γνωρίζαµε που βρίσκονται, αφού µπορούµε να προσδιορίσουµε µε ακρίβεια τη θέση και το µέγεθος των χαοτικών περιοχών στο χώρο των φάσεων. Για κάθε συγκεκριµένη 7

8 αρχική κατάσταση όµως, η ενδογενής αβεβαιότητα του χάους δεν θα µας επέτρεπε να παρακολουθήσουµε την εξέλιξη της δυναµικής για µεγάλα διαστήµατα στο χρόνο. 4. Συµπεράσµατα Είναι γεγονός ότι ο αιώνας µας σηµαδεύτηκε από µία σειρά συγκλονιστικών επιστηµονικών ανακαλύψεων: Η ντετερµινιστική θεωρία της Γενικής Σχετικότητας του Einstein και οι µετέπειτα εφαρµογές και πειραµατικές της επαληθεύσεις µας αποκάλυψαν πολλά ενδιαφέροντα στοιχεία για την έκταση, την ηλικία και το µέλλον του σύµπαντος. Από την άλλη µεριά, η πιθανοκρατική θεωρία της Κβαντοµηχανικής µε τους νόµους της αβεβαιότητας που την διέπουν µας φανέρωσε τα µυστικά της δοµής της ύλης και των λειτουργιών του µικρόκοσµου των στοιχειωδών σωµατιδίων. Καµία άλλη επιστήµη όµως δεν πραγµατοποίησε τόσο εντυπωσιακά άλµατα όσο η Βιολογία και συγκεκριµένα ο κλάδος της Γενετικής: Αποκαλύπτοντας τη δοµή του DNA και τον ρόλο των γονιδίων στο εσωτερικό του κυττάρου, µας οδήγησε στο συµπέρασµα ότι, παρά την ύπαρξη συγκεκριµένων κανόνων διάταξης των βάσεων στη διπλή έλικα, τελικά η ζωή δοκιµάζει, ως ένα βαθµό τυχαία, διαφορετικούς συνδυασµούς γονιδίων, επιλέγοντας τελικά αυτόν που είναι περισσότερο ανθεκτικός στις περιβαλλοντικές συνθήκες. Όµως, στον αιώνα µας δεν έλειψαν και οι εντυπωσιακές ανακαλύψεις στο χώρο των Μαθηµατικών: Στις αρχές του 1900, ο Αγγλος Μαθηµατικός και Φιλόσοφος Bertrand Russel κλόνισε συθέµελα το οικοδόµηµα της Συνολοθεωρίας, προτείνοντας παραδείγµατα συνόλων για τα οποία ήταν αδύνατο να απαντηθούν βασικά ερωτήµατα, όπως π.χ. το αν ανήκαν ή όχι στον εαυτό τους. Το θέµα επίσης της πληρότητας και αυτοσυνέπειας µιας µαθηµατικής θεωρίας έθιξε και ο ιδιοφυής Ούγγρος Μαθηµατικός K. Gödel, µέσω µιας σειράς εκπληκτικών θεωρηµάτων που απέδειξε γύρω στα Το κύριο αποτέλεσµα του Gödel ήταν ότι υπάρχουν µαθηµατικές θεωρίες οι οποίες είναι αδύνατον να είναι πλήρεις και συγχρόνως συνεπείς µε τον εαυτό τους. Ετσι, διατυπώνοντας µια θεωρία υπό τη µορφή αλγόριθµου, ο οποίος σταµατάει ανάλογα µε το αν έχει βρεθεί λύση ή όχι η λύση του προβλήµατος, είναι δυνατόν να µην µπορούµε ποτέ να προβλέψουµε µε απόλυτη σιγουριά αν ο αλγόριθµος τελικά τερµατίζεται ή όχι! Συµπεραίνουµε λοιπόν από τα παραπάνω ότι, σε όλες τις βασικές έννοιες των θετικών επιστηµών, η τύχη και η βεβαιότητα συνυπάρχουν, χωρίς να είναι δυνατόν πάντα να τις διαχωρίσουµε πλήρως. Σε κάθε περίπτωση βέβαια, το πρώτο βήµα του επιστήµονα είναι να προσδιορίσει το ποσοστό της τύχης, σε σχέση µε αυτό της βεβαιότητας, ώστε να αποφανθεί µέχρι ποιο σηµείο θα ήταν δυνατόν να βελτιωθεί η δυνατότητα πρόβλεψης του συγκεκριµένου φαινοµένου. Η διαλεκτική αυτή µεταξύ βεβαιότητας και τύχης γίνεται ολοφάνερη στην Επιστήµη της Πολυπλοκότητας και ειδικότερα στη θεωρία του Χάους: Όπως προσπαθήσαµε να δείξουµε εδώ, η θεωρία αυτή ήρθε να γεφυρώσει το χάσµα ανάµεσα στη Στατιστική και την Κλασσική Μηχανική. Επισηµαίνοντας την ενδογενή αστάθεια που 8

9 χαρακτηρίζει ευρείες περιοχές στο χώρο των φάσεων, το χάος µας αποκάλυψε την αναγκαιότητα µιας στατιστικής ανάλυσης της δυναµικής στις εν λόγω χαοτικές περιοχές. Έτσι µάθαµε ότι η «αβεβαιότητα» και το «τυχαίο» δεν είναι εξωτερικοί παράγοντες που χρειάζεται να εισαγάγουµε τεχνητά στις εξισώσεις µας, για να µιµηθούµε την τάση προς την ισορροπία που εµφανίζουν τα συστήµατα της Θερµοδυναµικής. Είναι βασικοί συντελεστές που είναι παρόντες µέσα στις χαοτικές περιοχές και το αν τελικά θα επηρεάσουν ή όχι τη δυναµική θα εξαρτηθεί από την επιλογή των αρχικών συνθηκών. Καταλήγοντας λοιπόν, µπορούµε να πούµε ότι, µε το τέλος του 20ου αιώνα φτάσαµε στην απάντηση της διαφοράς ανάµεσα στη Στατιστική και την Κλασσική Μηχανική και την κατανόηση της διάκρισης ανάµεσα στην τυχαιότητα και τον ντετερµινισµό: Φαίνεται ότι ο κόσµος µας είναι κατά κύριο λόγο αιτιοκρατικός και περιγράφεται από ντετερµινιστικά συστήµατα εξισώσεων, η οµορφιά του όµως και τα απρόοπτα και γοητευτικά µυστικά του δεν θα λείψουν ποτέ αφού θα είναι πάντοτε κρυµµένα µέσα στις χαοτικές περιοχές της µη γραµµικής µαθηµατικής περιγραφής του. 5. Βιβλιογραφία 1. J. Gleick, «Χάος: Μία Νέα Επιστήµη», Εκδ. Κάτοπτρο, Αθήνα, 1990 (Viking Penguin, New York, 1987). 2. Α. Μπούντης, «υναµικά Συστήµατα και Χάος», Τόµος Α, Εκδ. Γ. Παπασωτηρίου, Αθήνα, Α. Μπούντης, «υναµικά Συστήµατα και Χάος», Τόµος B, Εκδόσεις Πανεπιστηµίου Πατρών, A. Mπούντης, «Ο Θαυµαστός Κόσµος των Φράκταλ», Leader Books, Athens, «Τάξη και Χάος», Τόµοι Α, Β, Γ,, Ε, Στ, Z, και Η Πρακτικών Ελληνικών Θερινών Σχολείων/Συνεδρίων, επιµ. Α. Μπούντης, Σπ. Πνευµατικός και Στ. Πνευµατικός, εκδ. Γ. Πνευµατικός, Αθήνα, 1988, 1990, 1993, 1998, 1999, και 2000, 2001 και J. S. Nicolis, «Dynamics of Hierarchical Systems: An Evolutionary Approach», Springer Verlag, Berlin, G. Nicolis και I. Prigogine, «Exploring Complexity», W. H. Freeman, New York, G. Nicolis, «Introduction to Nonlinear Science», Cambridge University Press, H. O. Peitgen, H. Jurgens και D. Saupe, «Chaos and Fractals», Springer Verlag, Berlin, M. Barnsley, "Fractals Everywhere", Academic Press, San Diego, M. Schroeder, «Fractals, Chaos and Power Laws», W. H. Freeman, New York, I. Stewart, «Παίζει ο Θεός Ζάρια;», Εκδ. Κωσταράκη, Αθήνα, 1991 (Blackwell, 1989). 13. I. Prigogine και I. Stengers, «Τάξη Μέσα από το Χάος», εκδ. Κέδρος, 1986 (Heinemann, London, 1984). 9

Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη

Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη Στις 14 Οκτωβρίου 2010 έφυγε από τη ζωή ο Μπενουά Μάντελμπροτ (Benoît Mandelbrot), ο άνθρωπος που έδωσε το όνομά του σ ένα από τα πιο περίπλοκα

Διαβάστε περισσότερα

Γουλιέλμος Μαρκόνι (1874-1937) (Ιταλός Φυσικός)

Γουλιέλμος Μαρκόνι (1874-1937) (Ιταλός Φυσικός) Γουλιέλμος Μαρκόνι (1874-1937) (Ιταλός Φυσικός) Υπήρξε εφευρέτης του πρώτου σήματος ασυρμάτου τηλεφώνου και εκμεταλλεύτηκε εμπορικά την εφεύρεση. Ίδρυσε το 1897 την Ανώνυμη Εταιρεία Ασυρμάτου Τηλεγράφου

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ. φυσικό σύστηµα; Πρόκειται για κίνηση σε συντηρητικό πεδίο δυνάµεων;

ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ. φυσικό σύστηµα; Πρόκειται για κίνηση σε συντηρητικό πεδίο δυνάµεων; ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ Είδαµε ότι η φυσική κίνηση ενός σωµατιδίου σε συντηρητικό πεδίο ικανοποιεί την αρχή ελάχιστης δράσης του Hamilton µε Λαγκρανζιανή, όπου η κινητική ενέργεια του

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-15 (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 )

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-15 (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 ) ΠΑΡΑΣΚΕΥΗ 19/6/2015 ΠΕΜΠΤΗ 18/6/2015 ΤΕΤΑΡΤΗ 17/6/2015 ΤΡΙΤΗ 16/6/2015 ΔΕΥΤΕΡΑ 15/6/2015 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ

Διαβάστε περισσότερα

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά,

Διαβάστε περισσότερα

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία Β. Δρακόπουλος Σχολικός Σύμβουλος Δευτεροβάθμιας Εκπαίδευσης Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Ε.Κ.Π.Α. Σχολή Θετικών

Διαβάστε περισσότερα

2009: 22892841 ή 22892832, Εmail: stavrost@ucy.ac.cy ή haris@ucy.ac.cy. www.ucy.ac.cy/fmweb/metaptihiaka.htm

2009: 22892841 ή 22892832, Εmail: stavrost@ucy.ac.cy ή haris@ucy.ac.cy. www.ucy.ac.cy/fmweb/metaptihiaka.htm ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΡΟΚΗΡΥΞΗ ΘΕΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΓΙΑ ΤΟ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2009-2010 Το Πανεπιστήµιο Κύπρου ανακοινώνει ότι δέχεται αιτήσεις για περιορισµένο αριθµό θέσεων στο

Διαβάστε περισσότερα

2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΕΠΟ 22. ΘΕΜΑ: Οι βασικοί σταθµοί του νεώτερου Εµπειρισµού από τον Locke µέχρι και τον Hume. ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ Α.

2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΕΠΟ 22. ΘΕΜΑ: Οι βασικοί σταθµοί του νεώτερου Εµπειρισµού από τον Locke µέχρι και τον Hume. ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ Α. Θέµατα & Ασκήσεις από: www.arnos.gr 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΕΠΟ 22 ΘΕΜΑ: Οι βασικοί σταθµοί του νεώτερου Εµπειρισµού από τον Locke µέχρι και τον Hume. ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ Α. ΕΙΣΑΓΩΓΗ Σύµφωνα µε τη θεωρία του εµπειρισµού

Διαβάστε περισσότερα

Αρχικά σπούδασε Ιατρική, όμως ο καθηγητής του Οστίλιο Ρίτσι (μαθηματικός) τον έστρεψε στις Θετικές Επιστήμες.

Αρχικά σπούδασε Ιατρική, όμως ο καθηγητής του Οστίλιο Ρίτσι (μαθηματικός) τον έστρεψε στις Θετικές Επιστήμες. Γαλιλαίος (1581-1643) Γεννήθηκε στην Πίζα το 1581 Αρχικά σπούδασε Ιατρική, όμως ο καθηγητής του Οστίλιο Ρίτσι (μαθηματικός) τον έστρεψε στις Θετικές Επιστήμες. Ως δευτεροετής φοιτητής ανακάλυψε: 1. Τον

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Στις φυσικές επιστήµες για να λύσουµε προβλήµατα ακολουθούµε συνήθως τα εξής βήµατα: 1. Μαθηµατική διατύπωση. Για να διατυπώσουµε µαθηµατικά ένα πρόβληµα

Διαβάστε περισσότερα

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Ν. Λυγερός Παρουσίαση εργασίας φοιτητή Θα µιλήσουµε για το θεώρηµα του Lagrange. Αλλά προτού φτάσουµε εκεί, θα ήθελα να εισάγω ορισµένες έννοιες που θα µας

Διαβάστε περισσότερα

Εισαγωγή: ΑυτοοργΑνωση, AνΑδυση και ΠολυΠλοκοτητΑ κεφάλαιο 1: ΜοριΑκη BιολογιΑ και EΠιστηΜΕσ τησ ΠληροφοριΑσ

Εισαγωγή: ΑυτοοργΑνωση, AνΑδυση και ΠολυΠλοκοτητΑ κεφάλαιο 1: ΜοριΑκη BιολογιΑ και EΠιστηΜΕσ τησ ΠληροφοριΑσ Περιεχόμενα Περιεχόμενα Εισαγωγή: Αυτοοργάνωση, Aνάδυση και Πολυπλοκότητα... 15 Πώς μπορούν τα πράγματα να αυτοοργανώνονται;... 15 Προσπάθεια να δοθεί ένας προκαταρκτικός ορισμός της αυτοοργάνωσης...18

Διαβάστε περισσότερα

Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης.

Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης. 1 Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης. Μέχρι τις αρχές του 20ου αιώνα υπήρχε μια αντίληψη για τη φύση των πραγμάτων βασισμένη στις αρχές που τέθηκαν από τον Νεύτωνα

Διαβάστε περισσότερα

Το παράδοξο του Albert Eistein

Το παράδοξο του Albert Eistein Το παράδοξο του Albert Eistein O Einstein Σαν παιδί ήταν αρκετά ήσυχο και μοναχικό. Σαν μαθητής ήταν καλός, ειδικά στα μαθηματικά, χωρίς όμως να ξεχωρίζει ιδιαίτερα. Η κακή του μνήμη και ο αργός τρόπος

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003 Λευκωσία, Κύπρος Τηλ: 22378101- Φαξ:22379122 cms@cms.org.cy, www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Η Κυπριακή Μαθηματική Εταιρεία

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 23 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΚΕΙΜΕΝΟ O εικοστός αιώνας δικαίως χαρακτηρίζεται

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΣΗΣΗ 5

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΣΗΣΗ 5 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΦΥΣΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΣΗΣΗ 5 Προσδιορισµός του ύψους του οραικού στρώµατος µε τη διάταξη lidar. Μπαλής

Διαβάστε περισσότερα

Τεύχος B - Διδακτικών Σημειώσεων

Τεύχος B - Διδακτικών Σημειώσεων Τεύχος B - Διδακτικών Σημειώσεων ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ Δημήτρης Δεληκαράογλου Αναπλ. Καθ., Σχολή Αγρονόμων και Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Επισκ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ΕΙΝΑΙ Η ΑΣΤΡΟΛΟΓΙΑ ΜΙΑ ΜΕΘΟΔΟΣ ΑΥΤΟΓΝΩΣΙΑΣ; 1

ΕΙΝΑΙ Η ΑΣΤΡΟΛΟΓΙΑ ΜΙΑ ΜΕΘΟΔΟΣ ΑΥΤΟΓΝΩΣΙΑΣ; 1 ΕΙΝΑΙ Η ΑΣΤΡΟΛΟΓΙΑ ΜΙΑ ΜΕΘΟΔΟΣ ΑΥΤΟΓΝΩΣΙΑΣ; 1 Στο σημείο αυτό του οδοιπορικού γνωριμίας με τις διάφορες μεθόδους αυτογνωσίας θα συναντήσουμε την Αστρολογία και θα μιλήσουμε για αυτή. Θα ερευνήσουμε δηλαδή

Διαβάστε περισσότερα

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ Ενότητα 2: Επαγωγική-περιγραφική στατιστική, παραµετρικές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟΣ ΠΟΛΙΤΙΣΜΟΣ ΕΛΠ22 ΤΡΙΤΗ ΕΡΓΑΣΙΑ ΠΡΟΤΥΠΗ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟΣ ΠΟΛΙΤΙΣΜΟΣ ΕΛΠ22 ΤΡΙΤΗ ΕΡΓΑΣΙΑ ΠΡΟΤΥΠΗ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟΣ ΠΟΛΙΤΙΣΜΟΣ ΕΛΠ22 ΤΡΙΤΗ ΕΡΓΑΣΙΑ ΠΡΟΤΥΠΗ ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ... 2 Εισαγωγή... 3 Οι αρχές του σύμπαντος κατά τον Αριστοτέλη... 3 Ο υποσελήνιος χώρος... 3 Ο χώρος

Διαβάστε περισσότερα

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games)

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games) Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Gaes) Το δίληµµα των φυλακισµένων, όπως ξέρουµε έχει µια και µοναδική ισορροπία η οποία είναι σε αυστηρά κυρίαρχες στρατηγικές. C N C -8, -8 0, -10 N -10,

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ)

ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ) ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ) Α1. ΣΥΝΤΟΜΗ ΠΕΡΙΓΡΑΦΗ ΦΥΣΙΚΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ Tο Πρόγραµµα Μεταπτυχιακών Σπουδών του Τµήµατος Μαθηµατικών του Πανεπιστηµίου Κρήτης είναι ένα από τα πρώτα οργανωµένα µεταπτυχιακά

Διαβάστε περισσότερα

ιδασκαλία της Ροµποτικής Επιστήµης στη ευτεροβάθµια Εκπαίδευση Εµπειρίες από άλλα εκπαιδευτικά συστήµατα και προσαρµογή στην Ελληνική πραγµατικότητα

ιδασκαλία της Ροµποτικής Επιστήµης στη ευτεροβάθµια Εκπαίδευση Εµπειρίες από άλλα εκπαιδευτικά συστήµατα και προσαρµογή στην Ελληνική πραγµατικότητα ιδασκαλία της Ροµποτικής Επιστήµης στη ευτεροβάθµια Εκπαίδευση Εµπειρίες από άλλα εκπαιδευτικά συστήµατα και προσαρµογή στην Ελληνική πραγµατικότητα Αντώνιος Τζες Αναπληρωτής Καθηγητής Τµήµατος Ηλεκτρολόγων

Διαβάστε περισσότερα

8 ο ΛΥΚΕΙΟΠΑΤΡΩΝ Όνοµαοµάδας : AVEC Ονόµαταµελών : ΑνδρικοπούλουΚωνσταντίνα, ΑβραµοπούλουΝικολέτα, ΜίντζαΕρµιόνη, Παπακωστοπούλου Βασιλική Όνοµα

8 ο ΛΥΚΕΙΟΠΑΤΡΩΝ Όνοµαοµάδας : AVEC Ονόµαταµελών : ΑνδρικοπούλουΚωνσταντίνα, ΑβραµοπούλουΝικολέτα, ΜίντζαΕρµιόνη, Παπακωστοπούλου Βασιλική Όνοµα 8 ο ΛΥΚΕΙΟΠΑΤΡΩΝ Όνοµαοµάδας : AVEC Ονόµαταµελών : ΑνδρικοπούλουΚωνσταντίνα, ΑβραµοπούλουΝικολέτα, ΜίντζαΕρµιόνη, Παπακωστοπούλου Βασιλική Όνοµα υπεύθυνου τµήµατος : Γλαρού Άννα ΣΤΗΝ ΑΡΧΑΙΑ ΑΙΓΥΠΤΟ ΣΤΗΝ

Διαβάστε περισσότερα

2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες 2.2.2 Ιστορική εξέλιξη τον µάνατζµεντ.

2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες 2.2.2 Ιστορική εξέλιξη τον µάνατζµεντ. 2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες Έχει παρατηρηθεί ότι δεν υπάρχει σαφής αντίληψη της σηµασίας του όρου "διοίκηση ή management επιχειρήσεων", ακόµη κι από άτοµα που

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Η ασφάλεια στον LHC Ο Μεγάλος Επιταχυντής Συγκρουόµενων εσµών Αδρονίων (Large Hadron Collider, LHC) είναι ικανός να επιτύχει ενέργειες που κανένας άλλος επιταχυντής έως σήµερα δεν έχει προσεγγίσει. Ωστόσο,

Διαβάστε περισσότερα

Δασική Γενετική Εισαγωγή: Βασικές έννοιες

Δασική Γενετική Εισαγωγή: Βασικές έννοιες Δασική Γενετική Εισαγωγή: Βασικές έννοιες Χειμερινό εξάμηνο 2014-2015 Γενετική Πειραματική επιστήμη της κληρονομικότητας Προέκυψε από την ανάγκη κατανόησης της κληρονόμησης οικονομικά σημαντικών χαρακτηριστικών

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. Γουργουλιάτος ΜΑΥΡΕΣ ΤΡΥΠΕΣ Η ΒΑΣΙΚΗ ΙΔΕΑ Αντικείμενα που εμποδίζουν την διάδοση φωτός από αυτά Πρωτοπροτάθηκε γύρω στα 1783 (John( John Michell) ως αντικείμενο

Διαβάστε περισσότερα

Κεφάλαιο τρίτο. Κεφάλαιο τρίτο

Κεφάλαιο τρίτο. Κεφάλαιο τρίτο Κεφάλαιο τρίτο Αυτό που ξέρουµε σαν αρρώστια είναι το τελικό στάδιο µιας βαθύτερης ανωµαλίας και είναι φανερό ότι για να εξασφαλίσουµε πλήρη επιτυχία στη θεραπεία, το ν' αντιµετωπίσουµε µόνο το τελικό

Διαβάστε περισσότερα

Μουσική και Μαθηματικά!!!

Μουσική και Μαθηματικά!!! Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,

Διαβάστε περισσότερα

Λουκάς Βλάχος Αν. Καθηγητής. http://www.physics.auth.gr vlahos@astro.auth.gr

Λουκάς Βλάχος Αν. Καθηγητής. http://www.physics.auth.gr vlahos@astro.auth.gr Γιατί να σπουδάσω Φυσική; Λουκάς Βλάχος Αν. Καθηγητής http://www.physics.auth.gr vlahos@astro.auth.gr Θέματα Εισαγωγή Η φυσική και οι άλλες επιστήμες Οι τομείς και οι κατευθύνσεις στο Τμήμα φυσικής Τα

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Έννοια του Συστήματος. 1.1 Τι είναι Σύστημα

Κεφάλαιο 1 ο. Έννοια του Συστήματος. 1.1 Τι είναι Σύστημα Κεφάλαιο 1 ο Έννοια του Συστήματος 1.1 Τι είναι Σύστημα Ο όρος «Σύστημα» παρότι είναι πολυχρησιμοποιημένος στη καθημερινή ζωή μας, εν τούτοις παραμένει αρκετά «νεφελώδης» και παρεξηγημένος. Στην πραγματικότητα,

Διαβάστε περισσότερα

ΙΣΤΟΡΙΕΣ ΑΓΝΩΣΤΩΝ - ΣΚΙΑΘΟΣ, 7-11 ΙΟΥΛΙΟΥ 2008 Εργαστήρι Λεσχών Ανάγνωσης Μαθηµατικής Λογοτεχνίας

ΙΣΤΟΡΙΕΣ ΑΓΝΩΣΤΩΝ - ΣΚΙΑΘΟΣ, 7-11 ΙΟΥΛΙΟΥ 2008 Εργαστήρι Λεσχών Ανάγνωσης Μαθηµατικής Λογοτεχνίας ΥΠΟΘΕΣΗ ΡΙΜΑΝ (Η ΕΜΜΟΝΗ ΜΕ ΤΟΥΣ ΠΡΩΤΟΥΣ ΑΡΙΘΜΟΥΣ) του John Derbyshire (Εκδόσεις Τραυλός) Η ΜΟΥΣΙΚΗ ΤΩΝ ΠΡΩΤΩΝ ΑΡΙΘΜΩΝ του Marcus du Sautoy (Εκδόσεις Τραυλός) Γενικά Υπόθεση Ρίµαν Όλες οι µη τετριµµένες

Διαβάστε περισσότερα

ΔΥΝΜΙΚΑ ΣΥΣΤΗΜΑΤΑ και ΕΦΑΡΜΟΓΕΣ με τη χρήση του Maple

ΔΥΝΜΙΚΑ ΣΥΣΤΗΜΑΤΑ και ΕΦΑΡΜΟΓΕΣ με τη χρήση του Maple ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ +- ΣΟΥΡΛΑΣ ΔΗΜΗΤΡΙΟΣ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΔΥΝΜΙΚΑ ΣΥΣΤΗΜΑΤΑ και ΕΦΑΡΜΟΓΕΣ με τη χρήση του Maple 3 3 3 4 5 x 3 ΠΑΤΡΑ Email: dsourlas@physics.upatras.gr Ιστοσελίδα Τμήματος

Διαβάστε περισσότερα

Ενότητα 1 Διάλεξη 1. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 1 Διάλεξη 1. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 1 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.1 ΕΙΣΑΓΩΓΗ Ασχολήθηκα 30 χρόνια με τη διδασκαλία των Μαθηματικών του Γυμνασίου, τόσο στην Μέση Εκπαίδευση όσο και σε Φροντιστήρια. Η μέθοδος που χρησιμοποιούσα για τη

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας µε απάντηση Φυσικής Γ Γυµνασίου (ταλαντώσεις)

Ερωτήσεις θεωρίας µε απάντηση Φυσικής Γ Γυµνασίου (ταλαντώσεις) Ερωτήσεις θεωρίας µε απάντηση Φυσικής Γ Γυµνασίου (ταλαντώσεις) Πότε µια κίνηση λέγεται περιοδική; Να γράψετε τρία παραδείγµατα. Μια κίνηση λέγεται περιοδική όταν επαναλαµβάνεται σε ίσα χρονικά διαστήµατα.

Διαβάστε περισσότερα

Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως και να ήταν.

Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως και να ήταν. Ένα όνειρο που ονειρεύεσαι μόνος είναι απλά ένα όνειρο. Ένα όνειρο που ονειρεύεσαι με άλλους μαζί είναι πραγματικότητα. John Lennon Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ Κατασκευή: Το μονόχορδο του Πυθαγόρα 2005-2006 Τόλιας Γιάννης Α1 Λ Υπεύθυνη Καθηγήτρια: Α. Τσαγκογέωργα Περιεχόμενα: Τίτλος Εργασίας Σκοπός Υπόθεση (Περιγραφή Κατασκευής) Ορισμός Μεταβλητών

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΚΟΣΜΟΛΟΓΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΧΕΙΜΩΝΑΣ 2004 Κ.Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ

ΚΟΣΜΟΛΟΓΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΧΕΙΜΩΝΑΣ 2004 Κ.Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ ΚΟΣΜΟΛΟΓΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΧΕΙΜΩΝΑΣ 2004 Κ.Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ Η Μεγάλη Έκρηξη Πριν από 10-15 δις χρόνια γεννήθηκε το Σύμπαν με μια εξαιρετικά θερμή και βίαια διαδικασία Το σύμπαν

Διαβάστε περισσότερα

1 http://didefth.gr/mathimata

1 http://didefth.gr/mathimata Πυρηνική Ενέργεια Οι ακτινοβολίες που προέρχονται από τα ραδιενεργά στοιχεία, όπως είναι το ουράνιο, έχουν µεγάλο ενεργειακό περιεχόµενο, µ' άλλα λόγια είναι ακτινοβολίες υψηλής ενέργειας. Για παράδειγµα,

Διαβάστε περισσότερα

Ο Φιλοκοσμικός Διαφωτισμός

Ο Φιλοκοσμικός Διαφωτισμός ΤΗΣ ΚΥΡΙΑΚΗΣ Ο ΔΙΑΛΟΓΟΣ ΓΙΑ ΤΟ ΒΙΒΛΙΟ ΤΟΥ RICHARD DAWKINS «ΤΗΕ GOD DELUSION» («Η ΠΕΡΙ ΘΕΟΥ ΑΥΤΑΠΑΤΗ») Ο Φιλοκοσμικός Διαφωτισμός ΔΗΜΟΣΙΕΥΣΗ: 08/07/2007 00:00 Του Π. Ν. ΠΑΡΑΣΚΕΥΟΠΟΥΛΟΥ Η ανθρωπότητα και

Διαβάστε περισσότερα

Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση

Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση Αριστοτέλης Μακρίδης Μαθηµατικός, Επιµορφωτής των Τ.Π.Ε Αποσπασµένος στην ενδοσχολική

Διαβάστε περισσότερα

Εκτίμηση μη-γραμμικών χαρακτηριστικών

Εκτίμηση μη-γραμμικών χαρακτηριστικών Εκτίμηση μη-γραμμικών χαρακτηριστικών Μη-γραμμικά χαρακτηριστικά ή αναλλοίωτα μέτρα Διάσταση. Ευκλείδια. Τοπολογική 3. Μορφοκλασματική (συσχέτισης, πληροφορίας, μέτρησης κουτιών, ) Εκθέτες Lypunov (μεγαλύτερος,

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Το Πυθαγόρειο θεώρημα: μία διάσημη μαθηματική σχέση στον εργαστηριακό πάγκο της Φυσικής Παναγιώτης Μουρούζης Το Πυθαγόρειο θεώρημα, το οποίο συνήθως περιγράφεται φορμαλιστικά από μία σχέση της μορφής 2

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία

ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία N. Μισυρλής (e-mail: nmis@di.uoa.gr) Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Parallel Scientific Computing Laboratory (PSCL)

Διαβάστε περισσότερα

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

ΕΠΙΣΗΜΟΝΙΚΗ ΘΕΩΡΙΑ. 1. Σι είναι επιστήμη 2. Η γέννηση της επιστημονικής γνώσης 3. Οριοθέτηση θεωριών αστικότητας

ΕΠΙΣΗΜΟΝΙΚΗ ΘΕΩΡΙΑ. 1. Σι είναι επιστήμη 2. Η γέννηση της επιστημονικής γνώσης 3. Οριοθέτηση θεωριών αστικότητας ΕΠΙΣΗΜΟΝΙΚΗ ΘΕΩΡΙΑ 1. Σι είναι επιστήμη 2. Η γέννηση της επιστημονικής γνώσης 3. Οριοθέτηση θεωριών αστικότητας 1. Μια διαδεδομένη αντίληψη περί επιστήμης Γνώση / Κατανόηση των φαινομένων του φυσικού κόσμου

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Φεβρουαρίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο

Διαβάστε περισσότερα

Εκροή ύλης από μαύρες τρύπες

Εκροή ύλης από μαύρες τρύπες Εκροή ύλης από μαύρες τρύπες Νίκος Κυλάφης Πανεπιστήµιο Κρήτης Η µελέτη του θέµατος ξεκίνησε ως διδακτορική διατριβή του Δηµήτρη Γιαννίου (Princeton) και συνεχίζεται. Ιωάννινα, 8-9-11 Κατ αρχάς, πώς ξέρομε

Διαβάστε περισσότερα

ΜηχανισμΟς ΑντικυθΗρων

ΜηχανισμΟς ΑντικυθΗρων Με δυο λόγια Ο Μηχανισμός των Αντικυθήρων ήταν ένας αναλογικός υπολογιστής εκπληκτικής τεχνολογίας. Κατασκευάστηκε πριν από 2000 χρόνια και χρησιμοποιείτο για τον ακριβή υπολογισμό της θέσης του Ηλίου,

Διαβάστε περισσότερα

Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις Η Φύση της Επιστήµης Ενότητες Κεφαλαίου 1 Μοντέλα Θεωρίες και Νόµοι Μετρήσεις και αβεβαιότητα (σφάλµατα); Σηµαντικά ψηφία Μονάδες, Πρότυπα, και το Διεθνές Σύστηµα

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Εναλλακτικές ιδέες των µαθητών

Εναλλακτικές ιδέες των µαθητών Εναλλακτικές ιδέες των µαθητών Αντωνίου Αντώνης, Φυσικός antoniou@sch.gr, http://users.att.sch.gr/antoniou Απόδοση στα ελληνικά της µελέτης του Richard P. Olenick, καθηγητή Φυσικής του University of Dallas.

Διαβάστε περισσότερα

Η μουσική των (Υπερ)Χορδών. Αναστάσιος Χρ. Πέτκου Παν. Κρήτης

Η μουσική των (Υπερ)Χορδών. Αναστάσιος Χρ. Πέτκου Παν. Κρήτης Η μουσική των (Υπερ)Χορδών Αναστάσιος Χρ. Πέτκου Παν. Κρήτης H σύγχρονη (αγοραία) αντίληψη για την δηµιουργία του Σύµπαντος (πιθανά εσφαλµένη..) E t Ενέργεια Χρόνος String Theory/M-Theory H Ιστορία της

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΣΤΡΟΝΟΜΙΑΣ & ΔΙΑΣΤΗΜΙΚΗΣ. Β' Τάξη Γενικού Λυκείου

ΣΤΟΙΧΕΙΑ ΑΣΤΡΟΝΟΜΙΑΣ & ΔΙΑΣΤΗΜΙΚΗΣ. Β' Τάξη Γενικού Λυκείου ΣΤΟΙΧΕΙΑ ΑΣΤΡΟΝΟΜΙΑΣ & ΔΙΑΣΤΗΜΙΚΗΣ Β' Τάξη Γενικού Λυκείου Ομάδα συγγραφής: Κων/νος Γαβρίλης, καθηγητής Μαθηματικών Β/θμιας Εκπαίδευσης. Μαργαρίτα Μεταξά, Δρ. Αστροφυσικής, καθηγήτρια Φυσικής του Τοσιτσείου-Αρσακείου

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Τεχνικό Άρθρο AN002 JAN-2006

Τεχνικό Άρθρο AN002 JAN-2006 Τεχνικό Άρθρο JAN-2006 ιαφορικοί Θερµοστάτες Η βασικότερη ενεργειακή πηγή των τελευταίων αιώνων, τα ορυκτά καύσιµα, βρίσκονται χρονικά πολύ κοντά στην οριστική τους εξάντληση. Ταυτόχρονα η αλόγιστη χρήση

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

ΠΩΛΗΣΕΙΣ ΩΣΤΕ ΣΗΜΑΣΙΑ ΣΤΗ ΨΥΧΟΛΟΓΙΑ. Του ρα Κώστα Γ. Κονή *

ΠΩΛΗΣΕΙΣ ΩΣΤΕ ΣΗΜΑΣΙΑ ΣΤΗ ΨΥΧΟΛΟΓΙΑ. Του ρα Κώστα Γ. Κονή * ΠΩΛΗΣΕΙΣ ΩΣΤΕ ΣΗΜΑΣΙΑ ΣΤΗ ΨΥΧΟΛΟΓΙΑ Του ρα Κώστα Γ. Κονή * Το θέµα των πωλήσεων ήταν και θα παραµείνει πάντοτε πρώτο στις προτεραιότητες κάθε επιχείρησης. Μάλλον, θα έπρεπε να ήταν το πρώτο θέµα πάντοτε

Διαβάστε περισσότερα

Προσομοίωση ΚΕΦΑΛΑΙΟ 7

Προσομοίωση ΚΕΦΑΛΑΙΟ 7 ΚΕΦΑΛΑΙΟ 7 Προσομοίωση 7.1 Συστήματα και πρότυπα συστημάτων 7.2 Η διαδικασία της προσομοίωσης 7.3 Ανάπτυξη προτύπων διακριτών γεγονότων 7.4 Τυχαίοι αριθμοί 7.5 Δείγματα από τυχαίες μεταβλητές 7.6 Προσομοίωση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΗΜΙΟ ΔΤΣΙΚΗ ΜΑΚΕΔΟΝΙΑ ΠΑΙΔΑΓΨΓΙΚΗ ΦΟΛΗ ΥΛΨΡΙΝΑ ΣΜΗΜΑ ΜΕΣΑΠΣΤΦΙΑΚΨΝ ΠΟΤΔΨΝ

ΠΑΝΕΠΙΣΗΜΙΟ ΔΤΣΙΚΗ ΜΑΚΕΔΟΝΙΑ ΠΑΙΔΑΓΨΓΙΚΗ ΦΟΛΗ ΥΛΨΡΙΝΑ ΣΜΗΜΑ ΜΕΣΑΠΣΤΦΙΑΚΨΝ ΠΟΤΔΨΝ ΠΑΝΕΠΙΣΗΜΙΟ ΔΤΣΙΚΗ ΜΑΚΕΔΟΝΙΑ ΠΑΙΔΑΓΨΓΙΚΗ ΦΟΛΗ ΥΛΨΡΙΝΑ ΣΜΗΜΑ ΜΕΣΑΠΣΤΦΙΑΚΨΝ ΠΟΤΔΨΝ ΔΙΠΛΨΜΑΣΙΚΗ ΕΡΓΑΙΑ ΣΗ ΑΝΑΣΑΙΑ ΚΑΡΑΚΨΣΑ ΓΝΨΡΙΜΙΑ ΜΕ ΣΑ ΥΡΑΚΣΑΛ ΠΡΟΣΑΗ ΔΙΔΑΚΑΛΙΑ ΣΟΤ ΣΗ ΔΕΤΣΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΤΗ ΕΠΙΒΛΕΠΟΝΣΕ

Διαβάστε περισσότερα

Μα τι είναι ποια αυτή. Επιχειρηµατικότητα; Η έννοια της Επιχειρηµατικότητας - Εισαγωγή. Επιχειρηµ ατικότητα & Περιβάλλον

Μα τι είναι ποια αυτή. Επιχειρηµατικότητα; Η έννοια της Επιχειρηµατικότητας - Εισαγωγή. Επιχειρηµ ατικότητα & Περιβάλλον Μα τι είναι ποια αυτή η Επιχειρηµατικότητα; Η έννοια της Επιχειρηµατικότητας - Εισαγωγή Η έννοια της επιχειρηµατικότητας είναι πολυδιάστατη και µπορεί να εµφανίζεται σε διάφορα πλαίσια (οικονοµικά ή µη)

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο. Η ιαχείριση Απαιτήσεων στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής

Ελληνικό Ανοικτό Πανεπιστήµιο. Η ιαχείριση Απαιτήσεων στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής 1 Ελληνικό Ανοικτό Πανεπιστήµιο Η ιαχείριση Απαιτήσεων στην Ενοποιηµένη ιαδικασία ρ. Πάνος Φιτσιλής Περιεχόµενα Τι είναι διαχείριση απαιτήσεων Ποια είναι η ροή των εργασιών στη φάση της καταγραφής των

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας ιδάσκων: Αναγνωστόπουλος Χρήστος Αρχές συµπίεσης δεδοµένων Ήδη συµπίεσης Συµπίεση εικόνων Αλγόριθµος JPEG Γιατί χρειαζόµαστε συµπίεση; Τα σηµερινά αποθηκευτικά µέσα αδυνατούν

Διαβάστε περισσότερα

Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS)

Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS) Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS) ρ. ΧΑΛΚΙΑΣ ΧΡΙΣΤΟΣ xalkias@hua.gr Χ. Χαλκιάς - Εισαγωγή στα GIS 1 Ορισµοί ΓΠΣ Ένα γεωγραφικό πληροφοριακό σύστηµα Geographic Information

Διαβάστε περισσότερα

Οι μεγάλες εξισώσεις....όχι μόνο σωστές αλλά και ωραίες...

Οι μεγάλες εξισώσεις....όχι μόνο σωστές αλλά και ωραίες... Οι μεγάλες εξισώσεις. {...όχι μόνο σωστές αλλά και ωραίες... Ερευνητική εργασία μαθητών της Β λυκείου. E = mc 2 Στοιχεία ταυτότητας: Ε: ενέργεια (joule) m: μάζα (kg) c: ταχύτητα του φωτός στο κενό (m/s)

Διαβάστε περισσότερα

ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ

ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Το ηλιακό μας σύστημα απαρτίζεται από τον ήλιο (κεντρικός αστέρας) τους 8 πλανήτες, (4 εσωτερικούς ή πετρώδεις: Ερμής, Αφροδίτη, Γη και Άρης, και 4 εξωτερικούς: Δίας,

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

Η Έρευνα στα Ελληνικά Πανεπιστήµια και η Ευρωπαϊκή Πραγµατικότητα

Η Έρευνα στα Ελληνικά Πανεπιστήµια και η Ευρωπαϊκή Πραγµατικότητα Η Έρευνα στα Ελληνικά Πανεπιστήµια και η Ευρωπαϊκή Πραγµατικότητα Ιωάννης Π. Γεροθανάσης Καθηγητής Πανεπιστηµίου Ιωαννίνων Πρώην Πρύτανης Πανεπιστηµίου Ιωαννίνων Μέλος της Α ΙΠ Η ανώτατη εκπαίδευση, η

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

e-learning στην Αρχαιοαστρονομία (Επίδραση αστρονομίας στους πολιτισμούς και Εκμάθηση ψηφιακών τεχνικών)

e-learning στην Αρχαιοαστρονομία (Επίδραση αστρονομίας στους πολιτισμούς και Εκμάθηση ψηφιακών τεχνικών) (σύντομα δημοσιοποιούνται τα νέα Πιστοποιημένα Προγράμματα δια βίου του Παν/μιου Αιγαίου στο https://e-epimorfosi.aegean.gr. Σας προωθούμε εκ των προτέρων ενημέρωση σχετικά με το πρόγραμμά μας) e-learning

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015 Επιτροπή προπτυχιακών σπουδών: Κ. Βασιλάκης Κ. Γιαννόπουλος

Διαβάστε περισσότερα