PREDMET:ODABRANA POGLAVLJA IZ HEMIJE za studente IV semestra rudarskog odseka Profesor dr Aleksandra Kostić-Pulek

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PREDMET:ODABRANA POGLAVLJA IZ HEMIJE za studente IV semestra rudarskog odseka Profesor dr Aleksandra Kostić-Pulek"

Transcript

1 PREDMET:DABRANA PGLAVLJA IZ HEMIJE za studente IV semestra rudarskog odseka Profesor dr Aleksandra KostićPulek Predavanje br.viii:elementi SPREDNIH PDGRUPA PERIDNG SISTEMA ELEMENATA (B GRUPAPRELAZNI METALI Sadržaj časa: 1.Najznačajnije osobine i najznačajnija jedinjenja nekih elemenata VIB grupe (Cr.Najznačajnije osobine i najznačajnija jedinjenja nekih elemenata VIIB grupe(mn.uvežbavanje gradiva za test broj III 1.Najznačajnije osobine i najznačajnija jedinjenja hroma (Cr Elementi VIB grupe periodnog sistema su hrom (Cr,molibden (Mo,wolfram(W i raderfordijum (Rf. a nalaženje hroma u prirodi Po mestu nalaženja hrom je litofilni elemenat i u litosferi je prisutan u sastavu različitih minerala.sadržaj hroma u litosferi je.10 % mas.njegov najznačajniji mineral je hromitfe.cr Pored njega hrom se javlja i u obliku minerala uvarovita i. Ca Cr (Si i krokita PbCr.Ima ga i u vodama u prirodi (morska voda sadrzi.10 % mas hroma i u zivim organizmima. bfizičke osobine hroma Hrom je metal srebrnastobele boje sa plavkastom nijansom koja se može polirati do visokog sjaja i sa prostorno centriranom kubnom kristalnom rešetkom.spada u teško topljive metale (T = C i ovako visoka temperatura topljena posledica je postojanja t veoma jake hemijske veze u njegovoj kristalnoj rešetki koja se ostvaruje preko velikog broja valentnih elektrona (selektrona iz poslednjeg i delektrona iz predposlednjeg nivoa.spada u teške metale (gustina 7.g/ velike tvrdoće. c hemijske osobine hroma Elektronska konfiguracija atoma hroma je: Cr 1s s p 6 s p 6 d 5 s 1 na pokazuje da hrom ima 6 valentnih elektrona (5 d i 1 selektron zbog čega je njegov maksimalan oksidacioni broj +6.Angažovanjem manjeg broja valentnih elektrona za ostvarivanje hemijske veze hrom gradi jedinjenja sa oksidacionim 1

2 brojevima +,+,+ i +5.Značajna jedinjenja hroma su sa oksidacionim brojem +,+ i +6 a najstabilnija jedinjenja su sa oksidacionim brojem +. Na sobnoj temperaturi hrom je dosta inertan što je posledica stvaranja kompaktne oksidne opne na njegovoj površini.zbog postojanja ove opne hrom je,na običnoj temperaturi,postojan na dejstvo i vode i vazduha.pri zagrevanju njegova reaktivnost raste i on reaguje sa mnogim supstancama.sa halogenim elementima daje halogenide raz ličitog sastava (CrF,CrCl,CrJ,CrCl itd..na povišenoj temperaturi reaguje sa kiseonikom dajući hrom(iiioksidcr koji je amfoteran i u vodi nerastvoran.indirektnim putem daje i druge okside:hrom(iioksid Cr koji spada u bazne i u vodi nerastvorne okside i hrom(vioksid Cr. koji spada u kisele i u vodi rastvorne okside.reakcijom soli hroma i baze dobijaju se hidroksidi hroma:hrom(iihidroksid Cr(H i koji je baznih i hrom (IIIhidroksid Cr(H koji je amfoternih karakteristika ( rastvara se u kiselinama i u bazama: Cr(H Cl CrCl Cr(H +NaH Na/Cr(H / Cr(H +NaH Na /Cr(H 6 / natrijumtetrahidroksohromat(iii natrijumheksaihidroksohromat(iii Pri alkalnom topljenju (reakcijom u čvrstoj fazi nastaju soli metahromaste kiseline metahromiti za koje je uobičajeno da se nazivaju hromiti ( ne metahromiti: Cr(H +NaH NaCr natrijumhromit. Na povišenoj temperaturi hrom reaguje sa:sumporom dajući sulfide,fosforom dajući fosfide,azotom dajući nitride,ugljenikom dajući karbide i nastala jedinjena su promenljivog sastava(cr P,CrP,CrN,Cr N,Cr C,CrS,Cr S itd.. Rastvara se polako,na običnoj temperaturi, u razblaženim rastvorima kiselina čiji anjoni nemaju oksidaciona svojstva : Cr Cl CrCl i Cr S CrS Brzina rastvaranja hroma u ovim kiselinama raste na povišenoj temperaturi.hrom se ne rastvara u azotnoj kiselini zbog stvaranja sloja kompaktnog i u vodi nerastvornog oksida na njegovoj površini.zbog toga se hrom koristi kao prevlaka na drugim metalima da bi se oni zaštitili od korozije a i da bi dobili dekorativni izgled (hromiranje. U svom najstabilnijem oksidacionom stanju,+,hrom postoji u obliku katjona soli kiseoničnih kiselina (Cr(N.9H,Cr (S.18H itd. i dvojnim solimastipsama opšte formule M S. Cr (S. H (M=Na,K,Rb,Cs,NH +.U vodenim rastvorima ovih soli hroma postoji hidratisani jon hroma Cr + koji je zelene ili ljubičaste boje u zavisnosti od broja molekula vode u nastalom hidratu. U ovom oksidacionom stanju

3 hrom može da bude u sastavu i anjona soli kiselina hroma,hromita ( npr NaCr i KCr. U oksidacionom stanju +6 hrom ulazi i u sastav kiselina hroma i njihovih soli.kiseline hroma sa ovim oksidacionim stanjem nastaju rastvaranjem kiselog oksida Cr u vodi i njihov se sastav moze prikazati opštom formulom H Cr n n+1 (n=1,, i. Najznačajnije kiseline hroma su: hromnah Cr u kojoj je n=1 (jaka dvoprotonska kiselina koja daje soli hromate i hidrogenhromate i dihromna H Cr (još jača dvoprotonska kiselina u kojoj je n= koja daje soli dihromate i 7 hidrogendihromate.nastajanje ovih kiselina se može prikazati jednačinama reakcija: Cr H Cr : Cr H Cr 7 Većina hromata je nerastvorna u vodi (izuzetak hromati alkalnih metala i zato ih ima u litosferi.u čvrstom stanju hromati su žute boje.vodeni rastvori rastvorljivih hromata su takodje žute boje i ova boja potiče od hromatnog jona Cr.Većina dihromata u čvrstom stanju a i vodeni rastvoru rastvornih dihromata,ima narandžastocrvenu boju koja potiče od dihromatnog jona Cr.Hromati u 7 kiseloj sredini prelaze u dihhromate a dihromati u baznoj sredini prelaze u hromate: Na Cr S Na Cr +Na S 7 Na Cr 7 +NaH Na Cr Hrom gradi kompleksna jedinjenja sa koordinacionim brojem+ i 6: /Cr(NH /Cl, /Cr(NH /Br, K /CrCl /,K /Cr(CN /, K/CrF /,K /CrF /, 6 6 /Cr(H /Cl,/Cr(NH /Cl,K /Cr(CN / itd Jedinjena hroma su veoma otrovna..najznačajnije osobine i najznačajnija jedinjenja mangana (Mn Elementi VIIB grupe periodnog sistema elemenata su:mangan (Mn,tehnecijum (Tc,renijum(Re i borijum(bh. a nalaženje mangana u prirodi Prema mestu nalaženja u prirodi mangan spada u litofilne i hidrofilne elemente.u litosferi je u sastavu različitih minerala prilično rasprostranjen ( 0,1% mas..najrasprostranjeniji su oksidni minerali mangana i to pre svih mineral piroluzit Mn a potom minerali kurnakit Mn i manganit Mn.H.Mangan se javlja i u sastavu: silikatnog minerala braunita Mn.MnSi,karbonatnog minerala rodohrozita MnC i drugih minerala..u morskoj vodi ga ima.10

4 mas.%.mangan ulazi u sastav živih organizama bfizičke osobine mangana Metal srebrnastobele boje.javlja se u obliku četiri alotropske modifikacije koje,na p at,postoje u različitim intervalima temperature i koje jedna u drugu prelaze na sledećim temperaturama :α Mn (prostorno centrirana kubna rešetka gustine 7,g/cm u β Mn ( takodje prostorno centrirana kubna rešetkagustine 7,9 g/cm na C, βmn u γ Mn (površinski centrirana kubna rešetkagustine 6,7 g/cm na temperaturi C, γ Mn u δmn ( prostorno centrirana kubna rešetkagustine 6,8 g/cm na temperaturi C.Spada u tvrde i teško topljive metale (T =15 0 C i visoka temperatura t topljenja posledica je jake hemijske veze u njihovoj kristalnoj rešetki koja se ostvaruje s elektronima spoljasnjeg i delektronima predposlednjeg enegetskog nivoa.po izgledu je sličan gvoždju ali je od njega tvrdji i krtiji. chemijske osobine mangana Elektronska konfiguracija atoma mangana je: Mn 1s s p 6 s p 6 d 5 s na pokazuje da mangan ima 7 valentnih elektrona ( s i 5 delektrona čijim angažovanjem postiže maksimalno oksidaciono stanje +7.Jonizacioni potencijali mangana,od IVII su:7,;15,6;,7;51,;7,;95, i 119,eV a njegov koeficijent elektronegativnosti je 1,5.Angažovanjem manjeg broja elektrona mangan postiže oksidaciona stanja +,+,+,+5 i +6.Stabilna jedinjenja mangana su sa oksidacionim stanjem +,+ i +7. Mangan je na sobnoj temperaturi zbog obrazovanja kompaktne oksidne opne na njegovoj površini dosta postojan.sa povećanjem temperature njegova reaktivnost raste.sa vodonikom ne gradi jedinjenja.sa halogenim elementima reaguje direktno i daje,u vodi dobro rastvorna,jonska jedinjenja halogenide MnX (izuzetak u vodi malo rastvoran MnF a indirektnim putem daje i MnF (mangan(iiifluorid i MnF (mangan(ivfluorid.mangan ne daje halogenide sa visim oksidacionim stanjem. Pri zagrevanju mangan reaguje sa kiseonikom i daje okside:mn mangan(ii oksid,mn mangan(iiioksid,mn mangan(ivoksid i Mn (mangan(vii 7 oksid.ksidima mangana sa porastom oksidacionog broja opada bazni a raste kiseli karakter: Mn i Mn su bazni, Mn je amfoterni a Mn je kiseli oksid.svi 7 osim zadnjeg su u vodi nerastvorni i u litosferi prisutni kao minerali. Mn je 7 anhidrid permanganove kiseline(hmn koja spada u jake,jednoprotonske kiseline,dobro rastvorne u vodi i u vodenom rastvoru postoji do koncentracije 0%.U slobodnom stanju ova kiselina nije dobijena. Hidroksidi mangana se dobijaju reakcijom izmedju njegovih soli i baza i to su :

5 Mn(H mangan(iihidroksid,mn(h i mangan(iiihidroksid i Mn(H mangan(ivhidroksid.prva dva hidroksida spadaju u bazne treci spada u amfoterne hidrokside. Mn(H Cl MnCl ; Mn(H +KH K Mn Mangan na povišenoj temperatur reaguje sa sumporom dajuci sulfid idisulfid (MnS,MnS,sa azotom dajući nitride (MnN,Mn N,Mn N,sa fosforom dajući fosfide(mnp,mnp,mn P,Mn P,sa ugljenikom dajući karbide (Mn C,Mn C,Mn C 5 7 Mangan može da reaguje sa vodenom parom i sa razblaženim kiselinama: Mn Mn(H ;MnCl MnCl + H ;Mn S MnS + H Rastvara se u koncentrovanoj sumpornoj kiselini pri zagrevanju :Mn+ H S konc MnS +S + H i u razblaženoj azotnoj kiselini: Mn+8HN razbl. Mn(N +N Mangan sa oksidacionim brojem+ gradi mnoge stabilne soli kiseoničnih kiselina koje su većinom dobro rastvorne u vodi i iz vodenog rastvora se izdvajaju u obliku kristalohidrata npr.mn(n.6h MnS.7H i dr.u vodenom rastvoru je Mn +, + jon hidratisan,/mn(h /, i ima bledo ružicastu boju.nerastvorne soli mangana sa 6 ovim oksidacionim brojem su karbonati i fosfati :MnC i Mn (P. Soli mangana sa oksidacionim brojem + su nepostojane. U oksidacionom stanju + mangan gradi soli kiseoničnih kiselina u kojima je katjon (to su nestabilna jedinjenjanpr.mn(s ili ulazi u sastav anjona solimanganita (npr.k Mn kalijummanganit,bamn barijummanganit. U oksidacionom stanju +5 mangan se nalazi u sastavu anjona solimanganata (npr.k Mn kalijummanganata(v.isti naziv imaju i soli mangana sa oksidacionim brojem+6 (npr.k Mn kalijummanganat(vi. Soli u kojima mangan ulazi u sastav anjona i ima oksidacioni broj +7 su permanganati i predstavljaju važna jedinjenja mangana,npr.kmn kalijumpermanganat.vodeni rastvori permanganata su ljubičasto obojeni i ljubičasta boja potiče od permanganatnog jona (Mn.Permanganati su jaka oksidaciona sredstva,posebno kalijumpermanganat.u zavisnosti od ph sredine u kojoj se reakcija odigrava produkti oksidacionog dejstva permanganata su različitog sastava:

6 +7 +6 u baznoj sredini se permanganat redukuje prema jednačini: Mn +e Mn +7 + u neutralnoj i slabo baznoj sredini u: Mn +e Mn +7 u kiseloj sredini: Mn +8H+5e Mn + + H Mangan gradi kompleksna jedinjenja sa oksidacionim brojevima:+,+,+ i +7.Kompleksna joni koji sadrže mangan sa oksidacionim brojem + su karakteristični za ovaj elemenat:/mnf /,/MnCl /,/MnBr /,/MnJ /,/Mn(CN /, /Mn(CNS 6 6 /,/MnCl /,/Mn(CN /,/MnF6 /,/MnCl /.Pored njih mangan gradi kompleksne jone u kojima ima i druge oksidacione brojeve:/mncl /,/Mn(CN /,/MnF /,,/MnCl / itd Pitanja 1.Napisati elektronsku konfiguraciju hroma i označiti koji elektroni su valentni elektroni.koja oksidaciona stanja ima hrom u svojim jedinjenjima i koje oksidaciono stanje je najstabilnije?.napisati formule i nazive oksida hroma i navesti kakve su kiselobazne karakteristike i rastvorljivost u vodi svakog od njih..napisati formule i nazive hidroksida hroma,navesti kakve su njihove osobine (amfoterni,bazni i rastvorljivost u vodi..napisati formule i nazive kiselina hroma i prikazati njihovu elektrolitišku disocijaciju. 5.Napisati formule kalijumhromata i kalijumdihromata I prikazati njihovu elektroliticku disocijaciju. 6.Na čemu je zasnovana upotreba hroma za zažtitu metala (hromiranjeod korozije? 7.Napisati nazive sledećih kompleksnih jedinjenja hroma: /Cr(NH /Cl, /Cr(NH /Br, K /CrCl /,K /Cr(CN /, K/CrF /,K /CrF /, /Cr(H /Cl Napisati elektronsku konfiguraciju atoma mangana i označiti koji elektroni su valentni elektroni.koja oksidaciona stanja ima mangan u svojim jedinjenjima?dati po jedan primer (formulu i naziv jedinjenja za svako oksidaciono stanje. 9.Napisati formule i nazive oksida mangana i navesti kakve su kiselobazne karakteristike i rastvorljivost u vodi svakog od njih. 10. Napisati formule i nazive hidroksida mangana i navesti kakve su njihove kiselobazne osobine. 11.Napisati formulu kalijumpermanganata i prikazati njegovu elektrolitičku disocijaciju.da li je ovo jedinjenje oksidaciono ili redukciono sredstvo? 1.Do kog oksidacionog stanja se mangan iz permanganatnog jona redukuje u :abaznoj,bneutralnoj i ckiseloj sredini? 1.Napisati nazive sledećih kompleksnih jona mangana:

7 /MnCl /,/MnBr /,/MnJ /,/Mn(CN /, /Mn(CNS / /,/Mn(C,/,/MnCl 6 5

PREDMET:ODABRANA POGLAVLJA IZ HEMIJE za studente IV semestra rudarskog odseka Profesor dr Aleksandra Kostić-Pulek

PREDMET:ODABRANA POGLAVLJA IZ HEMIJE za studente IV semestra rudarskog odseka Profesor dr Aleksandra Kostić-Pulek PREDMET:ODABRANA POGLAVLJA IZ HEMIJE za studente IV semestra rudarskog odseka Profesor dr Aleksandra Kostić-Pulek Predavanje br.ix:elementi SPOREDNIH PODGRUPA PERIODNOG SISTEMA ELEMENATA (B GRUPA-PRELAZNI

Διαβάστε περισσότερα

PREDMET:ODABRANA POGLAVLJA IZ HEMIJE za studente IV semestra rudarskog odseka Profesor dr Aleksandra Kostić-Pulek

PREDMET:ODABRANA POGLAVLJA IZ HEMIJE za studente IV semestra rudarskog odseka Profesor dr Aleksandra Kostić-Pulek PREDMET:DABRANA PGLAVLJA IZ HEMIJE za studente IV semestra rudarskog odseka Profesor dr Aleksandra Kostić-Pulek Predavanje br.ii:elementi GLAVNIH PDGRUPA PERIDNG SISTEMA ELEMENATA (A GRUPA (.0.007 Sadržaj

Διαβάστε περισσότερα

PREDMET:ODABRANA POGLAVLJA IZ HEMIJE za studente IV semestra rudarskog odseka Profesor dr Aleksandra Kostić-Pulek

PREDMET:ODABRANA POGLAVLJA IZ HEMIJE za studente IV semestra rudarskog odseka Profesor dr Aleksandra Kostić-Pulek PREDMET:DABRANA PGLAVLJA IZ HEMIJE za studente IV semestra rudarskog odseka Profesor dr Aleksandra Kostić-Pulek Predavanje br.v ELEMENTI GLAVNIH PDGRUPA PERIDNG SISTEMA ELEMENATA (A GRUPA) Sadržaj casa:

Διαβάστε περισσότερα

Hemija prelaznih metala sa koordinacionom hemijom

Hemija prelaznih metala sa koordinacionom hemijom Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju Katedra za neorgansku hemiju Hemija prelaznih metala sa koordinacionom hemijom Školska: 2016/2017. godina Doc. dr Nenad S. Krstić P_13_M3

Διαβάστε περισσότερα

13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA. Elektronska konfiguracija ns 2 np 1 B 4

13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA. Elektronska konfiguracija ns 2 np 1 B 4 13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA Bor redak element, najčešće u obliku minerala boraksa, Na 2 B 4 O 7 10H 2 O. Aluminijum najrasprostranjeniji metal u Zemljinoj kori (8,3 mas.%) i

Διαβάστε περισσότερα

ISPITNA PITANJA Opšta i neorganska hemija I KOLOKVIJUM. 5. Navesti osobine amfoternih oksida i napisati 3 primera amfoternih oksida.

ISPITNA PITANJA Opšta i neorganska hemija I KOLOKVIJUM. 5. Navesti osobine amfoternih oksida i napisati 3 primera amfoternih oksida. Dr Sanja Podunavac-Kuzmanović, redovni profesor tel: (+381) 21 / 485-3693 fax: (+381) 21 / 450-413 e-mail: sanya@uns.ac.rs web page: hemijatf.weebly.com ISPITNA PITANJA Opšta i neorganska hemija I KOLOKVIJUM

Διαβάστε περισσότερα

GRUPA HALOGENA. Halogeni oni koji lako grade soli (oznaka X) Rasprostranjenost im opada sa porastom Z

GRUPA HALOGENA. Halogeni oni koji lako grade soli (oznaka X) Rasprostranjenost im opada sa porastom Z Halogeni oni koji lako grade soli (oznaka X) Rasprostranjenost im opada sa porastom Z Zbog velike reaktivnosti ne nalaze se u elementarnom stanju F mineral fluorit CaF 2 Cl morskavodau obliku soli I jedini

Διαβάστε περισσότερα

III-b grupa (grupa skandijuma)

III-b grupa (grupa skandijuma) III-b grupa (grupa skandijuma) Simbol Ime Elektr. konfig. Atom. r nm Tt o C Tk o C I-energ. jon.-ev E o V d g/cm 3 Sc skandijum ( 18 Ar) 3d 1 4s 2 0,162 1539 2370 6,58-2,08 3,0 Y itrijum ( 36 Kr) 4d 1

Διαβάστε περισσότερα

HALOGENI ELEMENTI HALOGENI ELEMENTI. Elektronska konfiguracija ns 2 np 5

HALOGENI ELEMENTI HALOGENI ELEMENTI. Elektronska konfiguracija ns 2 np 5 17. grupa Periodnog sistema elemenata. Zajednički simbol X. Ne nalaze se u prirodi u elementarnom stanju (zbog velike reaktivnosti), već u obliku: F minerala fluorita (CaF 2 ) Cl minerala halita (NaCl)

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

MEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE

MEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE MEĐUMLEKULSKE SILE JN-DIPL VDNIČNE NE VEZE DIPL-DIPL JN-INDUKVANI DIPL DIPL-INDUKVANI INDUKVANI DIPL DISPERZNE SILE MEĐUMLEKULSKE SILE jake JNSKA VEZA (metal-nemetal) KVALENTNA VEZA (nemetal-nemetal) METALNA

Διαβάστε περισσότερα

čilska šalitra) Fosfor u litosferi u obliku fosfornih minerala: najvažniji iz grupe apatita Ca 5 šalitra, NaNO 3 ) 3 (PO 4

čilska šalitra) Fosfor u litosferi u obliku fosfornih minerala: najvažniji iz grupe apatita Ca 5 šalitra, NaNO 3 ) 3 (PO 4 15. GRUPA PERIDG SISTEMA 15. GRUPA PERIDG SISTEMA Azot najrasprostranjeniji element u atmosferi 78 vol.% atmosfere mala zastupljenost u litosferi (K 3 šalitra, a 3 čilska šalitra) Fosfor u litosferi u

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

3. Koliko g Fe može da se dobije iz 463,1 g rude gvoždja koja sadrži 50 % minerala magnetita (Fe 3 O 4 ) i 50 % jalovine?

3. Koliko g Fe može da se dobije iz 463,1 g rude gvoždja koja sadrži 50 % minerala magnetita (Fe 3 O 4 ) i 50 % jalovine? PRIJEMNI ISPIT IZ HEMIJE NA RUDARSKO-GEOLOŠKOM FAKULTETU UNIVERZITETA U BEOGRADU Katedra za hemiju; Prof. dr Slobodanka Marinković I) Oblasti 1. Jednostavna izračunavanja u hemiji (mol, molska masa, Avogadrov

Διαβάστε περισσότερα

Pri međusobnom spajanju atoma nastaje energetski stabilniji sistem. To se postiže:

Pri međusobnom spajanju atoma nastaje energetski stabilniji sistem. To se postiže: HEMIJSKE VEZE Pri međusobnom spajanju atoma nastaje energetski stabilniji sistem. To se postiže: - prelaskom atoma u pozitivno i negativno naelektrisane jone koji se međusobno privlače, jonska veza - sparivanjem

Διαβάστε περισσότερα

SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA

SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA SLABO RASTVORLJIVA JEDINJENJA PROIZVOD RASTVORLJIVOSTI

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa)

d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa) PRELAZNI ELEMENTI d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa) Prelazni elementi d-elementi Lantanoidi i aktinoidi II-b-grupa cinka U prelazne

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA III RAČUNSE VEŽBE RAVNOTEŽE U RASTVORIMA ISELINA I BAZA U izračunavanju karakterističnih veličina u kiselinsko-baznim sistemima mogu se slediti Arenijusova (Arrhenius, 1888) teorija elektrolitičke disocijacije

Διαβάστε περισσότερα

BANKA PITANJA IZ HEMIJE

BANKA PITANJA IZ HEMIJE BANKA PITANJA IZ HEMIJE NEORGANSKA HEMIJA PUFERI 1. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće acidoze. 2. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Hemija prelaznih metala sa koordinacionom hemijom

Hemija prelaznih metala sa koordinacionom hemijom Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju Katedra za neorgansku hemiju Hemija prelaznih metala sa koordinacionom hemijom Školska: 2016/2017. godina Doc. dr Nenad S. Krstić P_12_M2

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

HEMIJSKA RAVNOTEŽA U VODENIM RASTVORIMA ELEKTROLITA KISELINE, BAZE, SOLI

HEMIJSKA RAVNOTEŽA U VODENIM RASTVORIMA ELEKTROLITA KISELINE, BAZE, SOLI HEMIJSA RAVNOTEŽA U VODENIM RASTVORIMA ELETROLITA ISELINE, BAZE, SOLI Šta imaju zajedničko ove supstance? A ove? ELETROLITI ISELINE BAZE SOLI VODA AUTOJONIZACIJA VODE: H 2 O H + + OH - Provodnost elektrolita

Διαβάστε περισσότερα

REAKCIJE OKSIDO-REDUKCIJE (REDOKS REAKCIJE)

REAKCIJE OKSIDO-REDUKCIJE (REDOKS REAKCIJE) REAKCIJE OKSIDO-REDUKCIJE (REDOKS REAKCIJE) OKSIDACIJA - REAKCIJE SA KISEONIKOM i NASTANAK OKSIDA... Najpoznatije takve reakcije jesu reakcije SAGOREVANJA! 2 Ca(s) + O 2 (g) 2 CaO(s) 2 H 2 (g) + O 2 (g)

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Rastvori rastvaračem rastvorenom supstancom

Rastvori rastvaračem rastvorenom supstancom Rastvori Rastvor je homogen sistem sastavljen od najmanje dvije supstance-jedne koja je po pravilu u velikom višku i naziva se rastvaračem i one druge, koja se naziva rastvorenom supstancom. Rastvorene

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

1. razred gimnazije- opšti i prirodno-matematički smer STRUKTURA MOLEKULA HEMIJSKA VEZA

1. razred gimnazije- opšti i prirodno-matematički smer STRUKTURA MOLEKULA HEMIJSKA VEZA EMIJSKE VEZE 1 razred gimnazije- opšti i prirodno-matematički smer STRUKTURA MLEKULA Molekul je najsitnija čestica koja se sastoji od dva ili više istih atoma, a to su molekuli elemenata: Cl 2, 2, N 2,

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

OSNOVNA ŠKOLA HEMIJA

OSNOVNA ŠKOLA HEMIJA OSNOVNA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 8 2. 8 3. 6 4. 10 5. 10 6. 6 7. 10 8. 8 9. 8 10. 10 11. 8 12. 8 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

N u elementarnom stanju 78,4 vol% (75,5 mas.%) atmosfere. As, Sb, Bi malo zastupljeni u obliku sulfidnih minerala

N u elementarnom stanju 78,4 vol% (75,5 mas.%) atmosfere. As, Sb, Bi malo zastupljeni u obliku sulfidnih minerala GRUPA AZOTA GRUPA AZOTA Pniktogeni zagušljivci N u elementarnom stanju 78,4 vol% (75,5 mas.%) atmosfere P u obliku fosfornih minerala apatita Ca 5 (PO 4 ) 3 X (X = F,Cl, OH) As, Sb, Bi malo zastupljeni

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

PRAKTIKUM IZ HEMIJE ZA STUDENTE MEDICINE -Medicinska biohemija i hemija -

PRAKTIKUM IZ HEMIJE ZA STUDENTE MEDICINE -Medicinska biohemija i hemija - PRAKTIKUM IZ EMIJE ZA STUDENTE MEDICINE -Medicinska biohemija i hemija - Saradnik Kosović Milica Saradnik Bigović Miljan Demonstrator Roganović Milovan Sadržaj: Vježba br. 1. 4 Vježba br. 2. 9 Vježba br.

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

Ispitna pitanja iz medicinske hemije

Ispitna pitanja iz medicinske hemije Ispitna pitanja iz medicinske hemije Periodni sistem elemenata 1. Alkalni metali (1. grupa) u najvišem energetskom nivou imaju elektronsku konfiguraciju: a) s 2 p 1 b) s 2 c) s 1 d) s 1 p 1 e) s 2 p 3

Διαβάστε περισσότερα

HEMIJA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. školska 2012/2013. godina UPUTSTVO

HEMIJA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. školska 2012/2013. godina UPUTSTVO HEMIJA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole školska 2012/2013. godina UPUTSTVO Ne otvarajte test dok vam test-administrator ne kaže da možete početi sa radom. Dozvoljen pribor:

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

ALDEHIDI I KETONI. Jedinjenja sa karbonilnom funkcionalnom grupom

ALDEHIDI I KETONI. Jedinjenja sa karbonilnom funkcionalnom grupom ALDEHIDI I KETNI Jedinjenja sa karbonilnom funkcionalnom grupom I aldehidi i ketoni sadrže karbonilnu grupu C R C H R C karbonilna grupa aldehid keton R 1 Nomenklatura aldehida i ketona ALKANAL I ALKANN

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

Hemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze:

Hemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze: Hemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze: Jonska, Kovalentna i Metalna Luisovi simboli veoma zgodan

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Mesto održavanja amfiteatar. laboratorija 90a predavanja

Mesto održavanja amfiteatar. laboratorija 90a predavanja Naziv predmeta Medicinska hemija Odgovorni nastavnik prof. dr S. Borozan Fond časova 2+2 Ostali nastavnici mr M. Krstić Mesto održavanja Mesto održavanja amfiteatar laboratorija 90a predavanja vežbi Raspored

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

RASTVORLJIVOST LEKOVA

RASTVORLJIVOST LEKOVA FIZIČK-HEMIJSKA KARAKTERIZACIJA LEKVA RASTVRLJIVST LEKVA Rastvorljivost leka u GIT-u Portalna vena Krvna plazma Enterociti Aktivni transport Tableta Raspadanje tablete Pasivna difuzija Rastvaranje Lek

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

JONSKA VEZA (metal-nemetal) KOVALENTNA VEZA (nemetal-nemetal) METALNA VEZA (metal-metal) jake H N. prelazne VODONIČNA VEZA H F

JONSKA VEZA (metal-nemetal) KOVALENTNA VEZA (nemetal-nemetal) METALNA VEZA (metal-metal) jake H N. prelazne VODONIČNA VEZA H F HEMIJSKE VEZE HEMIJSKE VEZE I GRAĐA JEDINJENJA,, I deo Postoje tri osnovna tipa veza (primarne veze) i one imaju najveći uticaj na svojstva jedinjenja. Pored njih postoje i dopunske (sekundarne) veze između

Διαβάστε περισσότερα

ZBIRKA ZADATAKA ZA POLAGANJE KLASIFIKACIONOG ISPITA IZ HEMIJE

ZBIRKA ZADATAKA ZA POLAGANJE KLASIFIKACIONOG ISPITA IZ HEMIJE ZBIRKA ZADATAKA ZA POLAGANJE KLASIFIKACIONOG ISPITA IZ HEMIJE VISOKA TEHNIČKA ŠKOLA POŽAREVAC 1. Napiši formule kalaj(iv)-nitrita i gvožđe(iii)-sulfata. ----------------------------------------------------------------

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

Rastvori i osobine rastvora

Rastvori i osobine rastvora Rastvori i osobine rastvora U srpskom jeziku reč rasvor predstavlja homogenu tečnu smešu. U engleskom reč solution predstavlja više od toga smešu dva gasa, legure (homogene smeše dva metala)... Na ovom

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Si posle kiseonika najrasprostranjeniji SiO 2 i silikati

Si posle kiseonika najrasprostranjeniji SiO 2 i silikati GRUPA UGLJENIKA GRUPA UGLJENIKA Si posle kiseonika najrasprostranjeniji SiO 2 i silikati C na 17. mestu po rasprostranjenosti u litosferi jedan od osnovnih bioloških elemenata Ge retki minerali Pb, Sn

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA HEMIJSKA TERMODINAMIKA Bavi se energetskim promenama pri odigravanju hemijskih reakcija. TERMODINAMIČKE FUNKCIJE STANJA U unutrašnja energija H entalpija S entropija Ako su određene na standardnom pritisku

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI

I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI dr Ljiljana Vojinović-Ješić I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI ZAKON STALNIH MASENIH ODNOSA (I stehiometrijski zakon, Prust, 1799) Maseni odnos elemenata u datom jedinjenju je stalan, bez obzira na

Διαβάστε περισσότερα

n (glavni ) 1, 2, 3,.. veličina orbitale i njena energija E= -R(1/n 2 )

n (glavni ) 1, 2, 3,.. veličina orbitale i njena energija E= -R(1/n 2 ) Kvantni brojevi Jedna atomska orbitala je definisana sa tri kvantna broja n l m l Elektroni su rasporedjeni u nivoima i podnivoima n l definiše nivo definiše podnivo ukupni broj orbitala u podnivou: 2

Διαβάστε περισσότερα

površina metala se naelektriše negativno u odnosu na rastvor. Metal je jače redukciono sredstvo a njegovi joni slabije oksidaciono sredstvo.

površina metala se naelektriše negativno u odnosu na rastvor. Metal je jače redukciono sredstvo a njegovi joni slabije oksidaciono sredstvo. ELEKTROHEMIJA II GRANIČNA OBLAST DODIRA ELEKTRODA-ELEKTROLIT Uranjanjem metala u vodeni rastvor njegovih jona nastaje REDOKS SISTEM: M s = M z+ aq + ze Pri rastvaranju, joni sa površine metala prelaze

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

RASTVORI DISPERZNI SISTEMI OSOBINE PRAVIH RASTVORA ELEKTROLITI RAVNOTEŽE U RASTVORIMA ELEKTROLITA KOLOIDI

RASTVORI DISPERZNI SISTEMI OSOBINE PRAVIH RASTVORA ELEKTROLITI RAVNOTEŽE U RASTVORIMA ELEKTROLITA KOLOIDI RASTVORI DISPERZNI SISTEMI OSOBINE PRAVIH RASTVORA ELEKTROLITI RAVNOTEŽE U RASTVORIMA ELEKTROLITA KOLOIDI DISPERZNI SISTEMI Disperzija (lat.) raspršivanje, rasipanje Disperzni sistem je smeša u kojoj su

Διαβάστε περισσότερα

II RASTVORI. Borko Matijević

II RASTVORI. Borko Matijević Borko Matijević II RASTVORI Rastvori predstavljaju složene disperzne sisteme u kojima su fino usitnjene čestice jedne supstance ravnomerno raspoređene između čestica druge supstance. Supstanca koja se

Διαβάστε περισσότερα

G V O Ž Đ E (Fe) M A N G A N (Mn)

G V O Ž Đ E (Fe) M A N G A N (Mn) G V O Ž Đ E (Fe) M A N G A N (Mn) GVOŽĐE (Fe) i MANGAN (Mn) Prisutni su zajedno. U redukovanom obliku su dvovalentni i rastvoreni, a u oksidovanom nerastvorni (oksidacijom gvožđe prelazi u trovalentni

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

SREDNJA ŠKOLA HEMIJA

SREDNJA ŠKOLA HEMIJA SREDNJA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 6 2. 10 3. 12 4. 8 5. 6 6. 10 7. 8 8. 8 9. 4 10. 10 11. 8 12. 10 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti

Διαβάστε περισσότερα

BIOGENI ELEMENTI (BIOELEMENTI)

BIOGENI ELEMENTI (BIOELEMENTI) BIOGENI ELEMENTI (BIOELEMENTI) IAKO BIOMOLEKULI SAČINJAVANJU SVA ŽIVA BIĆA ONI SAMI SU NAČINJENI OD MALOG BROJA HEMIJSKIH ELEMENATA -BIOGENI ELEMENTI- C, H, O, N, P i S čine 99% mase ćelija-najvažniji

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

UKUPAN BROJ OSVOJENIH BODOVA

UKUPAN BROJ OSVOJENIH BODOVA ŠIFRA DRŽAVNO TAKMIČENJE VIII razred UKUPAN BROJ OSVOJENIH BODOVA Test pregledala/pregledao...... Podgorica,... 2008. godine UPUTSTVO TAKMIČARIMA Zadatak Bodovi br. 1. 10 2. 10 3. 10 4. 5 5. 10 6. 5 7.

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

PRAKTIKUM IZ HEMIJE ZA STUDENTE MEDICINE

PRAKTIKUM IZ HEMIJE ZA STUDENTE MEDICINE PRAKTIKUM IZ EMIJE ZA STUDENTE MEDICINE Saradnik Bigović Miljan Saradnik Kosović Milica Demonstrator Roganović Milovan Vježba 1 Pravljenje rastvora određene koncentracije Rastvor je homogen sistem sastavljen

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

PRIRUČNIK ZA PRIJEMNI ISPIT

PRIRUČNIK ZA PRIJEMNI ISPIT PRIRUČNIK ZA PRIJEMNI ISPIT 1 OPŠTA I NEORGANSKA HEMIJA Visoka škola strukovnih studija Aranđelovac PRIRUČNIK ZA POLAGANJE PRIJEMNOG ISPITA IZ HEMIJE ARANĐELOVAC, 2017. 2 PRIRUČNIK ZA PRIJEMNI ISPIT PREDGOVOR

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

POGLAVLJE FIZIČKO-HEMIJSKI, RADIOLOŠKI I MIKROBIOLOŠKI SASTAV PODZEMNIH VODA

POGLAVLJE FIZIČKO-HEMIJSKI, RADIOLOŠKI I MIKROBIOLOŠKI SASTAV PODZEMNIH VODA Osnovi hidrogeologije V POGLAVLJE FIZIČKO-HEMIJSKI, RADIOLOŠKI I MIKROBIOLOŠKI SASTAV PODZEMNIH VODA FIZIČKE OSOBINE PODZEMNIH VODA Voda je bezbojna, prozračna tečnost bez ukusa i mirisa, koja se sastoji

Διαβάστε περισσότερα

C kao nukleofil (Organometalni spojevi)

C kao nukleofil (Organometalni spojevi) C kao nukleofil (Organometalni spojevi) 1 Nastajanje nukleofilnih C atoma i njihova adicija na karbonilnu grupu Ukupan proces je jedan od najkorisnijih sintetskih postupaka za stvaranje C-C veze 2 Priroda

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα