ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές."

Transcript

1 ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. Α 1 Α 2 Α 3 Β 1 Β 2 Β 3 1, -1 0, 0-1, 0 0, 0 0, 6 10, -1 2, 0 10, -1-1, -1 Α 1 Α 2 Α 3 Β 1 Β 2 Β 3 2, 0 1, 1 4, 2 3, 4 1, 2 2, 3 1, 3 0, 2 3, 0 Ποια(ες) είναι η ισορροπία(ες) κατά Nash των παραπάνω παιγνίων; ΑΣΚΗΣΗ 2 Έστω δύο επιχειρήσεις, η µία ήδη λειτουργεί στον κλάδο (επιχείρηση 1) και η άλλη θέλει να εισέλθει στον κλάδο (επιχείρηση 2). Η επιχείρηση 1 σχεδιάζει να κατασκευάσει ένα καινούργιο εργοστάσιο. Τα αποτελέσµατα των αποφάσεων δείχνονται στην παρακάτω µήτρα. Είσοδος Όχι Κατασκευάσει 0, -1 2, 0 Όχι 2, 1 3, 0 Βρείτε τις ισορροπίες κατά Nash σε αµιγείς και σε µικτές στρατηγικές. ΑΣΚΗΣΗ 3 ύο εταιρίες αυτοκινήτων αποφασίζουν ταυτόχρονα να εισάγουν στην αγορά ένα νέο µοντέλο. Κάθε µια από τις εταιρίες σκέφτεται αν προσφέρει ή όχι ευκολίες πληρωµής στους πελάτες, κάτι που θα αύξανε το µερίδιο της αγοράς της αλλά συγχρόνως θα είχε κόστος για την εταιρία. Και οι δύο προτιµούν να µην προσφέρουν ευκολίες πληρωµής, αλλά κάθε µια φοβάται ότι η άλλη θα τις προσφέρει, και κατά συνέπεια η ίδια θα χάσει πελάτες. Ας υποθέσουµε ότι τα προσδοκώµενα κέρδη των εταιριών είναι τα ακόλουθα: αν και οι δυο προσφέρουν ευκολίες πληρωµής κάθε µια κερδίζει 400 εκατ. ; αν καµιά δεν τις προσφέρει κάθε µια κερδίζει 600 εκατ. ; αν η µια προσφέρει ευκολίες πληρωµής αλλά η άλλη όχι, η πρώτη κερδίζει 800 εκατ. και η δεύτερη µόνο 300 εκατ. Παραστήσατε το παίγνιο σε στρατηγική µορφή και υπολογίσατε την ισορροπία κατά Nash. ΑΣΚΗΣΗ 4 ύο άτοµα, ο Α και ο Β, θέλουν να µοιράσουν 1000 λίρες, Ανακοινώνουν ταυτόχρονα πόσο θέλει να κρατήσει κάθε ένας από τις 1000 λίρες, Έστω s A και s Β τα ποσά αυτά, 0 s A, s Β Αν 0 s A + s Β 1000, τότε κάθε ένας παίρνει αυτό που ζήτησε, στην αντίθετη περίπτωση δεν παίρνει κανείς τίποτα. Ποιες είναι οι ισορροπίες κατά Nash αυτού του παιγνίου; 1

2 ΑΣΚΗΣΗ 5 Υποθέσατε ότι έξι αδέλφια πρέπει να αποφασίσουν µεταξύ τους ποιος θα πάρει το αυτοκίνητο το Σαββατοκύριακο και στήνουν το εξής παίγνιο. Ταυτόχρονα γράφουν σε ένα χαρτί ένα αριθµό µεταξύ 0 και 10. Κατόπιν υπολογίζουν τον αριθµητικό µέσο αυτών των αριθµών και ο αδελφός που έχει γράψει τον αριθµό που είναι µικρότερος από το µέσο και είναι πλησιέστερος στον µέσο παίρνει το αυτοκίνητο. Σε περίπτωση ισοπαλίας, όλοι οι αδελφοί που έχουν προτείνει τον ίδιο αριθµό έχουν την ίδια πιθανότητα να πάρουν το αυτοκίνητο. Προσδιορίσατε τις ισορροπίες κατά Nash αυτού του παιγνίου, εξηγώντας µε λεπτοµέρειες πως τις βρήκατε. ΑΣΚΗΣΗ 6 ύο επιχειρήσεις που λειτουργούν στον ίδιο κλάδο και παράγουν προϊόντα ταυτόσηµα, πρέπει να αποφασίσουν ταυτόχρονα την ποσότητα που θα παράγουν για την παρούσα περίοδο. Γνωρίζουν ότι το κόστος παραγωγής τους είναι ίσο µε C(q i )=10+2q i, i=1, 2, και επίσης την κοινή καµπύλη ζήτησης του προϊόντος τους, P(q 1 + q 2 )=320-2(q 1 + q 2 ). (α) Ποιες είναι οι στρατηγικές κάθε επιχείρησης; Αν οι επιχειρήσεις µεγιστοποιούν τα κέρδη τους, ποια είναι τα αποτελέσµατα για κάθε ζευγάρι στρατηγικών; Ποιες είναι οι καµπύλες (βέλτιστης) αντίδρασης; (β) Ποια είναι η ισορροπία κατά Nash όταν οι επιχειρήσεις αποφασίζουν ταυτόχρονα τις ποσότητες παραγωγής τους; ΑΣΚΗΣΗ 7 ύο άτοµα, ο Α και ο Β, µοιράζονται ένα διαµέρισµα όπου καθένας έχει το δικό του δωµάτιο. Όσον αφορά τη διακόσµηση του διαµερίσµατος, κάθε ένας πρέπει να αποφασίσει µε ποιο τρόπο θα κατανείµει τους πίνακες ζωγραφικής που έχει στην κατοχή του. Πιο συγκεκριµένα, καθένας έχει δύο πίνακες και πρέπει να αποφασίσει πόσους να κρεµάσει στο δωµάτιό του και πόσους στο σαλόνι. Υποθέσατε ότι κάθε ένας παίρνει ξεχωριστά την απόφασή του, οι πίνακες τοποθετούνται ανάλογα και κατόπιν δεν µπορούν να ξεκρεµαστούν. Έστω x Α και x Β ο αριθµός των πινάκων που τα άτοµα Α και Β αποφασίζουν να κρεµάσουν στο δωµάτιό τους (οπότε, x s = 4 - x Α x Β είναι ο αριθµός των πινάκων που µένουν για το σαλόνι). Η συνάρτηση χρησιµότητας του Α είναι U A ( x A, x S ) = x A (1,5 + x S ) και του Β είναι U B ( x B, x S ) = x B (1,5 + x S ). (α) Ποιες είναι οι στρατηγικές καθενός από τα δύο άτοµα στο διαµέρισµα; (β) Παραστήσατε το παίγνιο σε µορφή µήτρας. (γ) Προσδιορίσατε τη µοναδική ισορροπία κατά Nash. Είναι το αποτέλεσµα αυτό καλό για το δύο άτοµα; ΑΣΚΗΣΗ 8 Ορισµένοι από τους φορολογούµενους αποφασίζουν κάθε χρόνο αν θα κάνουν δήλωση εισοδήµατος ή όχι. Το πλεονέκτηµα από τη µη δήλωση είναι, προφανώς ότι αν δεν εξεταστεί η περίπτωση τους δεν θα πληρώσουν κανένα φόρο. Ο κίνδυνος όµως που διατρέχουν είναι ότι αν ανακαλυφθούν, πέρα από τους φόρους, πρέπει να πληρώσουν επίσης και πρόστιµο. Ας εξετάσουµε την περίπτωση ενός συγκεκριµένου φορολογούµενου. Υποθέσατε ότι το αρχικό του εισόδηµα είναι R, I είναι οι φόροι που θα πληρώσει αν αποφασίσει να κάνει δήλωση, Μ είναι το πρόστιµο που θα πληρώσει επιπλέον από τους φόρους που του αντιστοιχούν αν ανακαλυφθεί, και C είναι το κόστος της Εφορίας να διερευνήσει την περίπτωση ενός φορολογούµενου (το 2

3 οποίο προφανώς πληρώνεται όποιο και αν είναι το αποτέλεσµα της έρευνας αυτής).ο φορολογούµενος ενδιαφέρεται να πετύχει το µεγαλύτερο δυνατό εισόδηµα και το κριτήριο της Εφορίας είναι να µεγιστοποιήσει τα καθαρά φορολογικά έσοδα (δηλ. έσοδα από φόρους και πρόστιµα µείον το κόστος της διερεύνησης). (α) Παραστήσατε το παίγνιο σε στρατηγική µορφή έτσι ώστε να περιγράφεται ακριβώς η σχέση µεταξύ της Εφορίας και του φορολογούµενου. (β) Υποθέτοντας ότι I+M C > I > I C > 0, έχει κανείς από τους παίκτες µια κυρίαρχη στρατηγική: είξατε αν το παίγνιο έχει µια ισορροπία κατά Nash σε αµιγείς στρατηγικές και εξηγήσατε της απάντησή σας σε οικονοµικούς όρους. (γ) Υποθέτοντας τώρα ότι I > 0 >I+M C > I C, απαντήσατε στην ερώτηση (β). ΑΣΚΗΣΗ 9 Θεωρήσατε ένα ολιγοπωλιακό κλάδο όπου τρεις επιχειρήσεις παράγουν ένα οµοιογενές αγαθό του οποίου η αντίστροφη καµπύλη ζήτησης δίνεται από p=120 (q 1 +q 2 +q 3 ), όπου q i παριστάνει την ποσότητα που παράγει η επιχείρηση ι= 1, 2, 3. Κάθε επιχείρηση παράγει µε µηδενικό κόστος. Οι επιχειρήσεις ανταγωνίζονται εκλέγοντας ταυτόχρονα την ποσότητά τους. (α) Ποια είναι η ισορροπία Cournot Nash στον κλάδο; (β) Ποια είναι τα κέρδη κάθε επιχείρησης στην ισορροπία; (γ) Έχουν κίνητρο δύο οποιεσδήποτε επιχειρήσεις να συγχωνευθούν και να δρουν ως ναι επιχείρηση οπότε φυσικά ο κλάδος θα µετατραπεί σε δυοπώλιο; ικαιολογήσατε την απάντησή σας. (δ) Τι θα συµβεί όταν ο αριθµός των επιχειρήσεων στον κλάδο τείνει στο άπειρο; ΑΣΚΗΣΗ 10 Στον κλάδο υπάρχουν δύο επιχειρήσεις που παράγουν ατελώς υποκατάστατα αγαθά. Οι καµπύλες ζήτησης των προϊόντων τους είναι q 1 = p 1 +p 2 και q 2 = p 2 +p 1. Οι δύο επιχειρήσεις έχουν την ίδια τεχνολογία που τους επιτρέπει να παράγουν τα αγαθά τους µε το ίδιο κόστος ανά µονάδα προϊόντος ίσο µε 2 (δεν υπάρχει σταθερό κόστος). Η στρατηγική µεταβλητή των επιχειρήσεων είναι η τιµή και οι επιχειρήσεις παίρνουν τις αποφάσεις τους ταυτόχρονα. Προσδιορίσατε την ισορροπία κατά Nash του παιγνίου. ΑΣΚΗΣΗ 11 Βρείτε την ισορροπία σε µεικτές στρατηγικές των ακόλουθων παιγνίων: ` R T 2, 1 0, 2 B 1, 2 3, 0 R T -2, -1 0, 0 B 0, 0-1, -2 3

4 ΑΣΚΗΣΗ 12 Το ακόλουθο διάγραµµα παριστά το δέντρο ενός παιγνίου τέλειας πληροφόρησης µεταξύ δύο παιχτών. r D e l R I W c M D II r a m W D I R l b M D II d r I l D (α) Προσδιορίσατε τα σύνολα πληροφόρησης κάθε παίχτη. (β) Ποιες είναι οι αµιγείς στρατηγικές κάθε παίχτη; Και ποιες είναι οι επιλογές κάθε παίχτη σε καθένα από τα σύνολα πληροφόρησής του; (γ) Ποιο είναι το αποτέλεσµα του συνδυασµού των στρατηγικών (rll, M); (δ) Προσδιορίσατε όλα τα δυνατά ζευγάρια στρατηγικών που οδηγούν το παίγνιο στην πορεία rrl ΑΣΚΗΣΗ 13 ίνεται το ακόλουθο παίγνιο σε αναλυτική µορφή : 10, 2 l H 0, 0 A -1, -1 h H 3, 5 (α) Προσδιορίσατε τις ισορροπίες κατά Nash του παιγνίου αυτού. (β) Παραστήσατε σε µορφή στρατηγική το παίγνιο. (γ) Είναι κάποια από τις ισορροπίες κατά Nash τέλεια ισορροπία υποπαιγνίων; (δ) Υποθέτοντας τώρα ότι ο παίχτης Β παρατηρεί την απόφαση του παίχτη Α πριν πάρει την απόφασή του, απαντήσατε στις τρεις προηγούµενες ερωτήσεις. 4

5 ΑΣΚΗΣΗ 14 ίνεται το ακόλουθο παίγνιο σε αναλυτική µορφή: I II U 2 1, 2 U 1 D 2 0, 3 U 2 2, 1 D 1 II D 2 0, 3 (α) Προσδιορίσατε ποιες είναι οι στρατηγικές κάθε παίχτη και βρείτε όλες τις τέλειες ισορροπίες κατά Nash υποπαιγνίων. (β) Παραστήσατε το παίγνιο σε στρατηγική µορφή και βρείτε όλες τις ισορροπίες κατά Nash. ΑΣΚΗΣΗ 15 Ας θεωρήσουµε το παίγνιο στο οποίο ο παίχτης Ι επιλέγει πρώτος µεταξύ 0 και 1. Κατόπιν επιλέγει η Τύχη µεταξύ 0 και 1 µε ίσες πιθανότητες. Τέλος ο παίχτης ΙΙ επιλέγει µεταξύ 0 και 1 µη γνωρίζοντας την επιλογή του παίχτη Ι αλλά γνωρίζοντας ποια ήταν η επιλογή της Τύχης. Αν το άθροισµα των τριών επιλογών είναι ίσο µε 1, ο παίχτης Ι πληρώνει τον παίχτη ΙΙ µια λίρα. Στην αντίθετη περίπτωση ο παίχτης ΙΙ πληρώνει τον παίχτη Ι µια λίρα. (α) Σχεδιάστε το δέντρο του παιγνίου. (β) είξατε ποια είναι τα σύνολα πληροφόρησης κάθε παίχτη. (γ) Ποιες είναι οι αµιγείς στρατηγικές κάθε παίχτη; Ποιες είναι οι επιλογές κάθε παίχτη σε καθένα από τα σύνολα πληροφόρησής του; (δ) Αν επιλέγονταν ο συνδυασµός των στρατηγικών: 0 για τον παίχτη Ι και (1, 0) για τον παίχτη ΙΙ, δηλ. [0 (1, 0)], σε ποιο τελικό κόµβο του δέντρου θα φτάναµε; και µε ποια πιθανότητα; ΑΣΚΗΣΗ 16 Σε ένα κλάδο υπάρχει µια καθιερωµένη επιχείρηση, ενώ µια νέα επιχείρηση σκέφτεται να εισέλθει στον κλάδο. Αν η τελευταία αποφασίσει να εισέλθει, η καθιερωµένη επιχείρηση έχει δύο επιλογές: να αποδεχτεί την είσοδο της νέας επιχείρησης χάνοντας έτσι ένα µέρος των πελατών της ή να διεξάγει πόλεµο τιµών στη νεοεισερχόµενη. Αν αποδεχτεί την είσοδο της αντιπάλου, τα κέρδη της καθιερωµένη επιχείρησης θα είναι 10 εκατ., ενώ αν διεξάγει πόλεµο τιµών θα έχει απώλειες 10 εκατ. Από την άλλη, η νεοεισερχόµενη θα κερδίσει 10 εκατ. Αν δεν δεχτεί τον πόλεµο τιµών, ενώ θα έχει απώλειες 20 εκατ. Στην αντίθετη περίπτωση. Τέλος, αν η αντίπαλος αποφασίσει να µην εισέλθει στον κλάδο, η καθιερωµένη επιχείρηση θα συνεχίσει να πετυχαίνει τα κέρδη του µονοπωλίου που είναι 30 εκατ. Σχεδιάστε την αναλυτική µορφή του παιγνίου. Προσδιορίσατε κατόπιν τη στρατηγική µορφή του και βρείτε τις ισορροπίες κατά Nash σε αµιγείς στρατηγικές. Ποιες απ αυτές είναι τέλειες ισορροπίες υποπαιγνίων; ΑΣΚΗΣΗ 17 Στον κλάδο της πληροφορικής υπάρχουν συνήθως ορισµένες εταιρίες που έχουν ηγετικό ρόλο και άλλες που αναµένουν τις πρώτες να πάρουν τις αποφάσεις τους και κατόπιν προσαρµόζουν κατάλληλα τις αποφάσεις τους. Ας υποθέσουµε ότι στον κλάδο η εταιρία ΙΤΜ παίζει το ρόλο του ηγέτη κατά Stackelberg και η εταιρία 5

6 MIGA είναι ακόλουθος κατά Stackelberg. Οι δύο επιχειρήσεις έχουν την ίδια τεχνολογία και το κόστος παραγωγής τους είναι c(q ι ) = cq ι, όπου c > 0. Η καµπύλη ζήτησης του προϊόντος είναι p(q) = 120 Q, (0 < Q < 120), όπου Q είναι η συνολική ποσότητα που προσφέρεται στην αγορά. Το παίγνιο µεταξύ των δύο εταιριών είναι το εξής: ΙΤΜ ανακοινώνει την ποσότητα του νέου προϊόντος που θα παράγει. Αφού παρατηρήσει αυτή την απόφαση, η MIGA αποφασίζει αν θα εισάγει το νέο προϊόν, και αν το εισάγει πόσο θα παράγει. Τα κέρδη της είναι µηδέν αν δεν το εισάγει. Αν το εισάγει τα κέρδη και των δύο εταιριών εξαρτώνται τόσο από την απόφαση της ΙΤΜ όσο και της MIGA. Παραστήσατε το παίγνιο σε αναλυτική µορφή. Ποιες είναι οι στρατηγικές κάθε εταιρίας; ποια είναι τα κέρδη τους σε κάθε ενδεχόµενο; Προσδιορίσατε την ισορροπία κατά Stackelberg του παιγνίου αυτού. Θα εισέλθει ή όχι η MIGA στον κλάδο; ΑΣΚΗΣΗ 18 Υποθέσατε ότι το παίγνιο είναι ακριβώς το ίδιο µε την άσκηση 17, εκτός του ότι το κόστος της MIGA είναι c(q ι ) = cq ι + K, όπου Κ παριστά το σταθερό κόστος (π.χ. το κόστος του να αποκτήσει την απαραίτητη τεχνολογία). Υπάρχει κάποια τιµή της παραµέτρου Κ, πάνω απ την οποία η MIGA δεν θα εισάγει το προϊόν στην αγορά στην ισορροπία του παιγνίου; ΑΣΚΗΣΗ 19 Στο ακόλουθο παίγνιο διαπραγµάτευσης, µια επιχείρηση (Ε) και ένα συνδικάτο (S) προσπαθούν να µοιράσουν µεταξύ τους τα κέρδη που δηµιουργούνται από την οικονοµική δραστηριότητά τους. Υποθέσατε ότι τα κέρδη αυτά είναι 20 εκατ. Η διαδικασία διαπραγµάτευσης περιλαµβάνει τρία στάδια προσφορών αντιπροσφορών. Η εταιρία κάνει την πρώτη προσφορά, κατόπιν το συνδικάτο κάνει µια αντιπροσφορά και τέλος κάνει µια νέα προσφορά η εταιρία. Σε κάθε στάδιο, αυτός που λαµβάνει την προσφορά έχει την δυνατότητα να την δεχτεί ή να την απορρίψει. Αν την δεχτεί, η διαπραγµάτευση παίρνει τέλος, ενώ αν την απορρίψει κάνει την αντιπροσφορά του. Αν δεν φτάσουν σε καµία συµφωνία µετά το τρίτο στάδιο και οι δύο κερδίζουν µηδέν. (α) Ποια είναι η πιθανή συµφωνία µεταξύ της εταιρίας και του συνδικάτου αν ο κοινός συντελεστής προεξόφλησης είναι δ = ¼; (β) Ποια είναι η πιθανή συµφωνία αν ο συντελεστής προεξόφλησης της εταιρίας είναι δ Ε = ¼ και του συνδικάτου δ S = ½; (γ) Συγκρίνατε τις παραπάνω συµφωνίες και σχολιάσατε αν και γιατί είναι λογικά τα παραπάνω αποτελέσµατα. (δ) Υποθέσατε τώρα ότι αλλάζει η διαδικασία διαπραγµάτευσης κατά τον εξής τρόπο: Είναι η ίδια όπως και τα προηγούµενα, αλλά τώρα εισάγεται η δυνατότητα ενός τέταρτου σταδίου (αν δεν επιτευχθεί καµία συµφωνία µέχρι και το τρίτο στάδιο), όπου παρέχεται η δυνατότητα στην εταιρία και στο συνδικάτο να απαιτήσουν ταυτόχρονα ένα µερίδιο των κερδών. Αν το άθροισµα των απαιτήσεων είναι µικρότερο ή ίσο από 20 εκατ., κάθε µέρος κερδίζει όσο ζήτησε. Στην αντίθετη περίπτωση, κανένας δεν λαµβάνει τίποτα. Αναλύσατε το παίγνιο όταν ο συντελεστής προεξόφλησης είναι ίσος µε 1. Τι αναµένεται να συµβεί σε αυτήν την περίπτωση; Ποια είναι η διαφορά µε την περίπτωση που δεν υπάρχει το τέταρτο στάδιο; 6

7 ΑΣΚΗΣΗ 20 Ας εξετάσουµε το ακόλουθο παίγνιο µεταξύ δύο παιχτών αθροίσµατος µηδέν (δηλ. το άθροισµα των κερδών των δύο παιχτών είναι µηδέν; όσο κερδίζει ο ένας χάνει ο άλλος) που έχει τρία στάδια: -στο πρώτο στάδιο, ο παίχτης Α εκλέγει a {-1, 2}. -στο δεύτερο στάδιο, η Τύχη εκλέγει b {1, -1}, µε αντίστοιχες πιθανότητες 1/3 και 2/3. -στο τρίτο στάδιο, ο παίχτης Β εκλέγει c {-1, 1} χωρίς να γνωρίζει την εκλογή της Τύχης, αλλά γνωρίζοντας την απόφαση του συµπαίχτη του. Τα κέρδη του παίχτη Α δίνονται από u(a,b)= (ac) b. Παραστήσατε το παίγνιο σε αναλυτική και σε στρατηγική µορφή. Βρείτε τις ισορροπίες κατά Nash στην στρατηγική µορφή του παιγνίου. ΑΣΚΗΣΗ 21 Υποθέσατε ότι δύο κατασκευαστικές εταιρίες, UNOSA και DOSSA, λαµβάνουν µέρος σε µια δηµοπρασία για την απόκτηση ενός ηλιακού συστήµατος. Για απλοποίηση ας υποθέσουµε ότι και οι δύο σχεδιάζουν τρεις δυνατές προσφορές, που θα τις καλέσουµε, υψηλή, µέση και χαµηλή. Το σύστηµα δίνεται στην εταιρία που θα κάνει την υψηλότερη προσφορά, και σε περίπτωση ισοπαλίας, θα δοθεί για ιστορικούς λόγους στην UNOSA. Τα προσδοκώµενα κέρδη της εταιρίας που έχει το ηλιακό σύστηµα εξαρτώνται προφανώς από την προσφορά που έκανε και είναι ίσα µε 10 αν η προσφορά είναι υψηλή, 30 αν είναι µέση και 40 αν είναι χαµηλή. Αν δεν κερδίσει την δηµοπρασία, τα κέρδη της εταιρίας είναι µηδέν. Υποθέσατε ότι κάθε εταιρία κάνει την προσφορά της µυστικά και τη στέλνει µέσα σε ένα σφραγισµένο φάκελο. (α) Προσδιορίσατε τη στρατηγική µορφή του παιγνίου. (β) Βρείτε την ισορροπία του παιγνίου απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές, δείχνοντας την ακριβή σειρά µε την οποία κάνετε την απαλοιφή. (γ) είξατε αν οι στρατηγικές που προσδιορίσατε στο (β) µια κατά Nash ισορροπία. (δ) Υπάρχει κάποιος άλλος συνδυασµός στρατηγικών που να οδηγεί σε καλύτερα αποτελέσµατα για τον νικητή της διαπραγµάτευσης; Είναι ισορροπία κατά Nash; (ε) είξατε αν η ισορροπία αυτή είναι αποτελεσµατική κατά Pareto ή όχι. Αν όχι, δείξατε ποιος συνδυασµός στρατηγικών θα οδηγούσε σε µια αποτελεσµατική κατανοµή των πόρων. (στ) Υποθέσατε τώρα ότι η εταιρία DOSSA έχει την δυνατότητα να µάθει αν η προσφορά που έκανε η αντίπαλός της είναι χαµηλή ή όχι, άλλα δεν µπορεί να έχει πληροφόρηση που να µπορεί να διακρίνει µεταξύ µέσης και υψηλής προσφοράς. Σχεδιάσατε την αναλυτική µορφή του παιγνίου. (ζ) Προσδιορίσατε πόσες στρατηγικές έχει τώρα κάθε µία από τις εταιρίες, εξηγώντας µε λεπτοµέρειες όλα τα απαιτούµενα βήµατα. (θ) Προσδιορίσατε αν οι συνδυασµοί στρατηγικών (Υψηλή, Υψηλή, Χαµηλή) και (Μέση, Μέση, Χαµηλή) αποτελούν µια επιχειρηµατική συµπεριφορά που δεν είναι πιστευτή. Είναι κανένας από τους δύο συνδυασµούς τέλεια ισορροπία κατά Nash υποπαιγνίων; 7

Α2 Β2 Γ2 2 Α1 1,0 5,-1-1,-2 9,-2 Β1 2,1-2,0 0,2 0,-1 Γ1 0,3 14,2 2,1 8,1 1 1,2 0,1 3,0-1,0

Α2 Β2 Γ2 2 Α1 1,0 5,-1-1,-2 9,-2 Β1 2,1-2,0 0,2 0,-1 Γ1 0,3 14,2 2,1 8,1 1 1,2 0,1 3,0-1,0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ιδάσκων: Ε. Πετράκης. Επαναληπτική Εξέταση: 15/09/99 Απαντήστε στα τρία από τα τέσσερα θέµατα. Όλα τα υποερωτήµατα βαθµολογούνται το ίδιο. 1. Θεωρήσατε ένα ολιγοπωλιακό κλάδο όπου τρεις

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10. Λύση. π/ P1 =0 => P1+P2+4=0 => 4P1=1004+P2 => P1= 1004+P2 = R1(P2) 4 P2= 1004+P1 = R2(P1) 4

ΑΣΚΗΣΗ 10. Λύση. π/ P1 =0 => P1+P2+4=0 => 4P1=1004+P2 => P1= 1004+P2 = R1(P2) 4 P2= 1004+P1 = R2(P1) 4 ΑΣΚΗΣΗ 10 Στον κλάδο υπάρχουν δύο επιχειρήσεις που παράγουν ατελώς υποκατάστατα αγαθά. Οι καµπύλες ζήτησης των προϊόντων τους είναι q 1 = 1000 2p1 +p2 και q 2 = 1000 2p2 +p1. Οι δύο επιχειρήσεις έχουν

Διαβάστε περισσότερα

3. Παίγνια Αλληλουχίας

3. Παίγνια Αλληλουχίας 3. Παίγνια Αλληλουχίας Τα παίγνια αλληλουχίας πραγµατεύονται περιπτώσεις όπου οι κινήσεις των παικτών διαδέχονται η µια την άλλη, σε αντίθεση µε τα παίγνια όπου οι αποφάσεις των παικτών γίνονται ταυτόχρονα

Διαβάστε περισσότερα

Κεφάλαιο 5 R (2, 3) R (3, 0)

Κεφάλαιο 5 R (2, 3) R (3, 0) Κεφάλαιο 5 Θα ξεκινήσουµε το κεφάλαιο αυτό βλέποντας ένα ακόµη παράδειγµα αναφορικά µε την ισορροπία που προκύπτει από την οπισθογενή επαγωγή (backwards induction) και την ισορροπία κατά Nash στην στρατηγική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΘΕΜΑ 1 ο (2.5) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Δευτέρα 3 Σεπτεμβρίου 2012 Διάρκεια εξέτασης: 3 ώρες (16:30-19:30)

Διαβάστε περισσότερα

Κεφάλαιο 2ο (α) Αµιγείς Στρατηγικές (β) Μεικτές Στρατηγικές (α) Αµιγείς Στρατηγικές. Επαναλαµβάνουµε:

Κεφάλαιο 2ο (α) Αµιγείς Στρατηγικές (β) Μεικτές Στρατηγικές (α) Αµιγείς Στρατηγικές. Επαναλαµβάνουµε: Κεφάλαιο 2 ο Μέχρι τώρα δώσαµε τα στοιχεία ενός παιγνίου σε µορφή δέντρου και σε µορφή µήτρας. Τώρα θα ορίσουµε τη στρατηγική στην αναλυτική µορφή του παιγνίου (η στρατηγική ορίζεται από κάθε στήλη ή γραµµή

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 28 Ολιγοπώλιο Ολιγοπώλιο Ένα μονοπώλιο είναι ένας κλάδος που αποτελείται από μία μόνο εταιρεία. Ένα δυοπώλιο είναι ένας κλάδος

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

10/3/17. Κεφάλαιο 28 Ολιγοπώλιο. Μικροοικονομική. Ολιγοπώλιο. Ολιγοπώλιο. Ανταγωνισµός ποσότητας. Μια σύγχρονη προσέγγιση

10/3/17. Κεφάλαιο 28 Ολιγοπώλιο. Μικροοικονομική. Ολιγοπώλιο. Ολιγοπώλιο. Ανταγωνισµός ποσότητας. Μια σύγχρονη προσέγγιση 0/3/7 HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 8 Ολιγοπώλιο Ολιγοπώλιο Ένα μονοπώλιο είναι ένας κλάδος που αποτελείται από μία μόνο εταιρεία. Ένα δυοπώλιο είναι ένας κλάδος

Διαβάστε περισσότερα

3 ΙΣΟΡΡΟΠΙΕΣ 3 ΙΣΟΡΡΟΠΙΕΣ

3 ΙΣΟΡΡΟΠΙΕΣ 3 ΙΣΟΡΡΟΠΙΕΣ Kεφάλαιο 11 Θα επαναλάβουµε αυτά που είχαµε πει την προηγούµενη φορά. Παραστατικά αν έχουµε το εξής παίγνιο όπου οι δύο παίχτες παίρνουν ταυτόχρονα τις αποφάσεις τους αφού αποφασίσει ο Ι, θα δούµε πόσα

Διαβάστε περισσότερα

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 )

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 ) Κεφάλαιο 7ο Μιλήσαµε στο προηγούµενο κεφάλαιο για το τι θα συµβεί αν οι επιχειρήσεις ανταγωνίζονται σε τιµές. Επιπλέον µιλήσαµε για το πως αποδεικνύεται το παράδοξο του Bertrand και καθώς επίσης και για

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Τρίτη 15 Ιανουαρίου 2008 ιάρκεια εξέτασης: 3 ώρες (13:00-16:00) ΘΕΜΑ 1 ο (2,5

Διαβάστε περισσότερα

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια.

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια. Kεφάλαιο 10 Θα δούµε ένα δύο παραδείγµατα να ορίσουµε/ µετρήσουµε τα υποπαίγνια και µετά θα λύσουµε και να βρούµε αυτό που λέγεται τέλεια κατά Nash ισορροπία. Εδώ θα δούµε ένα παίγνιο όπου έχουµε µια επιχείρηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 1 Φεβρουαρίου 26 ιάρκεια εξέτασης: 3 ώρες (15:-18:) ΘΕΜΑ 1 ο (2.5) Κάθε ένας

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

Κριτικές στο Υπόδειγμα Cournot

Κριτικές στο Υπόδειγμα Cournot Κριτικές στο Υπόδειγμα Cournot -To υπόδειγμα Cournot έχει υποστεί τρία είδη κριτικής: () Το υπόδειγμα Cournot υποθέτει ότι κάθε επιχείρηση μεγιστοποιεί μόνο τα δικά της κέρδη και, επομένως, δε λαμβάνει

Διαβάστε περισσότερα

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων Λήψη απόφασης σε πολυπρακτορικό περιβάλλον Θεωρία Παιγνίων Αβεβαιότητα παρουσία άλλου πράκτορα Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι

Διαβάστε περισσότερα

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια; HA. VAIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι οι

Διαβάστε περισσότερα

* τη µήτρα. Κεφάλαιο 1o

* τη µήτρα. Κεφάλαιο 1o Κεφάλαιο 1o Θεωρία Παιγνίων Η θεωρία παιγνίων εξετάζει καταστάσεις στις οποίες υπάρχει αλληλεπίδραση µεταξύ ενός µικρού αριθµού ατόµων. Άρα σε οποιαδήποτε περίπτωση, αν ο αριθµός των ατόµων που συµµετέχουν

Διαβάστε περισσότερα

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 2 η Διάλεξη Παίγνια ελλιπούς πληροφόρησης Πληροφοριακά σύνολα Κανονική μορφή παιγνίου Ισοδύναμες στρατηγικές Παίγνια συνεργασίας και μη συνεργασίας Πεπερασμένα και

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017 2η σειρά ασκήσεων Προθεσμία παράδοσης: 16 Ιουνίου 2017 Πρόβλημα 1. (18 μονάδες)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούμενα Μαθήματα: Παίχτες: είναι αυτοί που λαμβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει

Διαβάστε περισσότερα

Κεφάλαιο 8 ο Τ 3, 1-1, -1 Χ -1, -1 1, 3

Κεφάλαιο 8 ο Τ 3, 1-1, -1 Χ -1, -1 1, 3 Κεφάλαιο 8 ο Συνεχίζουµε µε τις µεικτές στρατηγικές. Θα δούµε τώρα ένα παράδειγµα στο οποίο υπάρχουνε ισορροπίες κατά Nash σε αµιγείς στρατηγικές αλλά πέρα από αυτό υπάρχει και µια ισορροπία κατά Nash

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι

Διαβάστε περισσότερα

Συνδυαστικά Παίγνια. ιαµόρφωση Παιγνίων. Θέµατα σε Πάιγνια Μηδενικού Αθροίσµατος

Συνδυαστικά Παίγνια. ιαµόρφωση Παιγνίων. Θέµατα σε Πάιγνια Μηδενικού Αθροίσµατος Συνδυαστικά Παίγνια 1. Σε ένα παιγνίδι 2 παικτών µηδενικού αθροίσµατος οι παίκτες αναγγέλουν εναλλάξ ένα αριθµό µεταξύ {2,3,4}. Ο παίκτης που κάνει το άθροισµα των αριθµών που έχουν αναγγελθεί να φθάσει

Διαβάστε περισσότερα

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία Κεφάλαιο 4 Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία κατά Nash είναι: (α) ένα διάνυσµα από στρατηγικές, έτσι ώστε δεδοµένων των υπολοίπων στρατηγικών, ο παίκτης

Διαβάστε περισσότερα

ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Κεφάλαιο 7 Ε. Σαρτζετάκης Μονοπωλιακός ανταγωνισμός Η μορφή αγοράς του μονοπωλιακού ανταγωνισμού περιέχει στοιχεία πλήρους ανταγωνισμού (ελεύθερη

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Συνέχεια από πριν.. Στο προηγούμενο μάθημα είδαμε ότι μπορούμε να επιλύσουμε παίγνια με την μέθοδο της απαλοιφής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9. Ολιγοπώλιο και αρχιτεκτονική των επιχειρήσεων

ΚΕΦΑΛΑΙΟ 9. Ολιγοπώλιο και αρχιτεκτονική των επιχειρήσεων ΚΕΦΑΛΑΙΟ 9 Ολιγοπώλιο και αρχιτεκτονική των επιχειρήσεων Ολιγοπώλιο Υπάρχουν ελάχιστοι πωλητές ενός προϊόντος Ο ανταγωνισµός δεν στηρίζεται µόνο στην τιµή Υπάρχουν εµπόδια εισόδου (στον κλάδο) υοπώλιο:

Διαβάστε περισσότερα

10/3/17. Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά. Μικροοικονομική. Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Πολιτικές διάκρισης τιµών

10/3/17. Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά. Μικροοικονομική. Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Πολιτικές διάκρισης τιµών /3/7 HL R. VRIN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Μέχρι τώρα, αντιμετωπίζουμε ένα μονοπώλιο ως μια εταιρεία η

Διαβάστε περισσότερα

Κυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη

Κυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη Θεωρία παιγνίων: Μεικτές στρατηγικές και Ισορροπία Nash Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 18 Μαρτίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Μεικτές στρατηγικές 18 Μαρτίου 2012 1 / 9 Κυριαρχία και μεικτές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 8 Σεπτεµβρίου 005 ιάρκεια εξέτασης: 3 ώρες (:00-4:00 ΘΕΜΑ ο (.5 Το παράδοξο

Διαβάστε περισσότερα

Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1

Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1 Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1 Βασική ιάκριση: Προϊόντα κάθετα διαφοροποιηµένα (κοινός δείκτης ποιότητας) Προϊόντα οριζόντια διαφοροποιηµένα (δεν υπάρχει κοινός δείκτης ποιότητας) Προϊόντα Χώρος

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Μέχρι τώρα, αντιμετωπίζουμε ένα μονοπώλιο ως μια εταιρεία η οποία

Διαβάστε περισσότερα

Αποτροπή Εισόδου: Το Υπόδειγμα των Spence-Dixit

Αποτροπή Εισόδου: Το Υπόδειγμα των Spence-Dixit Αποτροπή Εισόδου: Το Υπόδειγμα των pence-dixit pence, Michael 977, Entry, apacity, Investment and Oligopolisting Pricing Dixit, Avinash 979, A Model of Duopoly uggesting a Theory of Entry Barriers - Στο

Διαβάστε περισσότερα

Μικροοικονομική Ι. Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών

Μικροοικονομική Ι. Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Μικροοικονομική Ι Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

Διάλεξη 8. Ολιγοπώλιο VA 27

Διάλεξη 8. Ολιγοπώλιο VA 27 Διάλεξη 8 Ολιγοπώλιο VA 27 Ολιγοπώλιο Ένα μονοπώλιο είναι μια αγορά που αποτελείται από μια και μόνο επιχείρηση. Ένα δυοπώλιο είναι μια αγορά που αποτελείται από δυο επιχειρήσεις. Ένα ολιγοπώλιο είναι

Διαβάστε περισσότερα

Ολιγοπωλιακή Ισορροπία

Ολιγοπωλιακή Ισορροπία Ολιγοπωλιακή Ισορροπία - Χρησιμοποιούμε τις βασικές αρχές της θεωρίας παιγνίων για να εξετάσουμε τη στρατηγική αλληλεπίδραση των επιχειρήσεων σε ατελώς ανταγωνιστικές αγορές, εστιάζοντας την προσοχή μας

Διαβάστε περισσότερα

B 1 A 1 B 2 A 2. t 1. t 3 w. t 2 A 3 B 3. t 4. t 5

B 1 A 1 B 2 A 2. t 1. t 3 w. t 2 A 3 B 3. t 4. t 5 Κεφάλαιο 3 Δυναμικά παίγνια 3.1 Εισαγωγή Μέχρι στιγμής έχουμε αναλύσει παίγνια στα οποία όλοι οι παίκτες επιλέγουν τις στρατηγικές τους ταυτόχρονα. Αυτή η υπόθεση όμως δεν είναι πάντα κατάλληλη. Σε πολλές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

1 ου πακέτου. Βαθµός πακέτου

1 ου πακέτου. Βαθµός πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

Τόμος Γ - Δημόσια Οικονομική

Τόμος Γ - Δημόσια Οικονομική Τόμος Γ - Δημόσια Οικονομική 1. Η καμπύλη δυνατοτήτων χρησιμότητας δύο καταναλωτών, του Α και του Β, δίνεται από τη σχέση 2U A + U B = 250, όπου U A είναι η χρησιμότητα του καταναλωτή Α, και U B είναι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΟΛΙΓΟΠΩΛΙΟ. Ολιγοπώλιο Κλωνάρης Στάθης

ΟΛΙΓΟΠΩΛΙΟ. Ολιγοπώλιο Κλωνάρης Στάθης ΟΛΙΓΟΠΩΛΙΟ Ονομάζεται η δομή της αγοράς που χαρακτηρίζεται από την ύπαρξη σχετικά μικρού αριθμού επιχειρήσεων αλλά μεγάλες σε μέγεθος σχετικά με την αγορά που εξυπηρετούν. Οι ολιγοπωλιακές επιχειρήσεις

Διαβάστε περισσότερα

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games)

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games) Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Gaes) Το δίληµµα των φυλακισµένων, όπως ξέρουµε έχει µια και µοναδική ισορροπία η οποία είναι σε αυστηρά κυρίαρχες στρατηγικές. C N C -8, -8 0, -10 N -10,

Διαβάστε περισσότερα

Τέλειος ανταγωνισμός είναι μια ακραία συμπεριφορά της αγοράς, όπου πολλές εταιρίες ανταγωνίζονται με τις παρακάτω προϋποθέσεις :

Τέλειος ανταγωνισμός είναι μια ακραία συμπεριφορά της αγοράς, όπου πολλές εταιρίες ανταγωνίζονται με τις παρακάτω προϋποθέσεις : Κεφάλαιο 1. ΤΕΛΕΙΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ Εισαγωγή Τέλειος ανταγωνισμός είναι μια ακραία συμπεριφορά της αγοράς, όπου πολλές εταιρίες ανταγωνίζονται με τις παρακάτω προϋποθέσεις : α) Υπάρχουν πολλές εταιρίες οι

Διαβάστε περισσότερα

Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης

Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης Συνθήκες για αποτελεσματικότητα κατά areto Συνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα

Διαβάστε περισσότερα

3. Ανταγωνισμός ως προς τις Τιμές: Το Υπόδειγμα Bertrand

3. Ανταγωνισμός ως προς τις Τιμές: Το Υπόδειγμα Bertrand 3. Ανταγωνισμός ως προς τις Τιμές: Το Υπόδειγμα ertrand - To υπόδειγμα Cournot υποθέτει ότι κάθε επιχείρηση επιλέγει την παραγόμενη ποσότητα προϊόντος, ενώ στην πραγματικότητα οι επιχειρήσεις ανταγωνίζονται

Διαβάστε περισσότερα

Έστω ότι έχουµε 2 µάρκες υπολογιστών: A (Apricot), B (Banana) [ ιαρκή Αγαθά].

Έστω ότι έχουµε 2 µάρκες υπολογιστών: A (Apricot), B (Banana) [ ιαρκή Αγαθά]. 2.2. ΥΟΠΩΛΙΟ ΙΑΦΟΡΕΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΜΕ ΕΤΕΡΟΓΕΝΕΙΣ ΚΑΤΑΝΑΛΩΤΕΣ Έστω ότι έχουµε 2 µάρκες υπολογιστών: (pricot), (anana) [ ιαρκή Αγαθά]. Υποθέτουµε µηδενικό κόστος παραγωγής και P, P, οι τιµές για το Α, αντίστοιχα.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑΣ ΟΙΚΟΝΟΜΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑΣ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑΣ ΟΙΚΟΝΟΜΙΚΗΣ 1. Η καμπύλη δυνατοτήτων χρησιμότητας δύο καταναλωτών, του Α και του Β, δίνεται από τη σχέση U A + U B = 100, όπου U A είναι η χρησιμότητα του καταναλωτή Α,

Διαβάστε περισσότερα

Κεφ. 9 Ανάλυση αποφάσεων

Κεφ. 9 Ανάλυση αποφάσεων Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις

Διαβάστε περισσότερα

Βιομηχανική Οργάνωση ΙΙ: Θεωρίες Κρατικής Παρέμβασης & Ανταγωνισμού

Βιομηχανική Οργάνωση ΙΙ: Θεωρίες Κρατικής Παρέμβασης & Ανταγωνισμού Βιομηχανική Οργάνωση ΙΙ: Θεωρίες Κρατικής Παρέμβασης & Ανταγωνισμού Ενότητα 1: Νικόλαος Χαριτάκης Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Περιεχόμενα Ορισμοί Ισορροπία Nash

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση ΙΙ

Μικροοικονομική Ανάλυση ΙΙ Κατ επιλογήν υποχρεωτικό, 3 ώρες εβδομαδιαίως, Θεωρία, Διδάσκον: Περιλαμβάνει: 1. Θεωρία Βιομηχανικής Οργάνωσης 2. Θεωρία Γενικής Ισορροπίας 1 Ορισμοί και βασικές έννοιες Βιομηχανικής Οργάνωσης Ασχολείται

Διαβάστε περισσότερα

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

Πακέτο Επιχειρησιακή Έρευνα #02 ============================================================== Πακέτο Επιχειρησιακή Έρευνα #0 www.maths.gr www.facebook.com/maths.gr Tηλ.: 69790 e-mail: maths@maths.gr Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ==============================================================

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος υποδο?ών?εταφράζεταισε?ίαγενικότερηεξοικονό?ησηπαραγωγικώνπόρωνγιατηκοινωνία. τεχνικέςυποδο?ές,όπωςείναιαυτοκινητόδρο?οι,γέφυρεςκ.λ.π.ηκατασκευήτέτοιων Μιααπ τιςβασικέςλειτουργίεςτουκράτουςείναιοεφοδιασ?όςτηςκοινωνίας?εβασικές

Διαβάστε περισσότερα

Βασικές Αρχές της Θεωρίας Παιγνίων

Βασικές Αρχές της Θεωρίας Παιγνίων Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση

Διαβάστε περισσότερα

Μοντέλα των Cournotκαι Bertrand

Μοντέλα των Cournotκαι Bertrand Μοντέλα των Cournotκαι Bertrand Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τι θα πούμε Θα εξετάσουμε αναλυτικά το μοντέλο Cournot

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑ 1. Στην περίπτωση των εξωτερικών επιβαρύνσεων στην παραγωγή, η επιβολή ενός φόρου ανά µονάδα προϊόντος ίσου µε το µέγεθος της οριακής εξωτερικής επιβάρυνσης µπορεί να οδηγήσει:

Διαβάστε περισσότερα

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 3 η Διάλεξη-Περιεχόμενα (1/2) Σημείο ή ζεύγος ισορροπίας κατά Nash Λύση ακολουθιακής κυριαρχίας και σημεία ισορροπίας Nash Αλγοριθμική εύρεση σημείων ισορροπίας

Διαβάστε περισσότερα

(γ) Τις μορφές στρατηγικής αλληλεπίδρασης που αναπτύσσονται

(γ) Τις μορφές στρατηγικής αλληλεπίδρασης που αναπτύσσονται Βασικές Έννοιες Οικονομικών των Επιχειρήσεων - Τα οικονομικά των επιχειρήσεων μελετούν: (α) Τον τρόπο με τον οποίο λαμβάνουν τις αποφάσεις τους οι επιχειρήσεις. (β) Τις μορφές στρατηγικής αλληλεπίδρασης

Διαβάστε περισσότερα

Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός.

Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός. Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης υνθήκες για αποτελεσματικότητα κατά areto υνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα

Διαβάστε περισσότερα

4.1 Ζήτηση για Ασφάλιση. Πλήρη κάλυψη.

4.1 Ζήτηση για Ασφάλιση. Πλήρη κάλυψη. 4. Ζήτηση για Ασφάλιση. Πλήρη κάλυψη. Η αγορά ασφαλιστικών συµφωνιών είναι µία ιδιαίτερη περίπτωση αγοράς δικαιωµάτων. Αντικείµενο της αγοράς αυτής είναι να δώσει την ευκαιρία µεταβίβασης εισοδήµατος από

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Εξεταστική περίοδος Φεβρουαρίου Η εξέταση αποτελείται από

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2015-2016 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Συμπληρωματικές Ασκήσεις (Διαλέξεις 10-13) Ερώτηση 1.

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

Μικροοικονομία ΙΙ: Μονοπωλιακός ανταγωνισμός

Μικροοικονομία ΙΙ: Μονοπωλιακός ανταγωνισμός Μικροοικονομία ΙΙ: Μονοπωλιακός ανταγωνισμός Ρεβέκκα Χριστοπούλου Εαρινό εξάμηνο 2017 Πανεπιστήμιο Μακεδονίας Διαφοροποίηση προϊόντων Μέχρι τώρα περιγράψαμε: τον πλήρη ανταγωνισμό ως μια αγορά με πολλούς

Διαβάστε περισσότερα

ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ

ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ Κεφάλαιο 7 Οικονοµικά της ευηµερίας! Τα οικονοµικά της ευηµερίας εξετάζουν τους τρόπους µε τους οποίους η κατανοµή των πόρων επηρεάζει την ευηµερία

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 (θεωρία παιγνίων) Οι δύο μεγαλύτερες τράπεζες μιας χώρας, Α και Β, εκτιμούν ότι μια άλλη τράπεζα, η Γ, θα κλείσει στο προσεχές διάστημα και πρόκειται να προχωρήσουν σε διαφημιστικές εκστρατείες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Ολιγοπώλιο. Εισαγωγή στην Οικονομική Επιστήμη Ι. Αρ. Διάλεξης: 11

Ολιγοπώλιο. Εισαγωγή στην Οικονομική Επιστήμη Ι. Αρ. Διάλεξης: 11 Ολιγοπώλιο Εισαγωγή στην Οικονομική Επιστήμη Ι Αρ. Διάλεξης: 11 Μορφές Αγορών μεταξύ Μονοπωλίου και Τέλειου Ανταγωνισμού Ο Ατελής Ανταγωνισμός αναφέρεται στην διάρθρωση της αγοράς εκείνης η οποία βρίσκεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2015-2016 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Εξεταστική περίοδος Σεπτεμβρίου Η

Διαβάστε περισσότερα

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν

Διαβάστε περισσότερα

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ 1 ΚΦΑΛΑΙΟ 6 ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ Οι καµπύλες ζήτησης και προσφοράς είναι αναγκαίες για να προσδιορίσουν την τιµή στην αγορά. Η εξοµοίωσή τους καθορίζει την τιµή και τη ποσότητα ισορροπίας,

Διαβάστε περισσότερα

Π 0,0 1,2 Κ 4,3 2,3 Π 2,0 5,3 9,10 Κ 4,4 7,2 6,0. (βʹ) 2 < 4q q > 1 2

Π 0,0 1,2 Κ 4,3 2,3 Π 2,0 5,3 9,10 Κ 4,4 7,2 6,0. (βʹ) 2 < 4q q > 1 2 ΜΕΡΟΣ 1 Με κόκκινο σας δίνω τις σωστές απαντήσεις και τη συλλογιστική πίσω από την επιλογή της συγκεκριμένης απάντησης. Με μπλε χρώμα εξηγώ γιατί η συγκεκριμένη απάντηση είναι λάθος. 1. Από το θεώρημα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Εξέταση Φεβρουαρίου 2012 / ιάρκεια: 2 ώρες ιδάσκοντες: Μ. Αθανασίου, Γ.

Διαβάστε περισσότερα

δ 2 s Το είναι η προσφορά από τον παίχτη ΙΙ στον παίχτη Ι. Παίρνει ο Ι y

δ 2 s Το είναι η προσφορά από τον παίχτη ΙΙ στον παίχτη Ι. Παίρνει ο Ι y Κεφάλαιο 1 Το τελευταίο που κάναµε ήταν µια ιαπραγµάτευση στην οποία υπάρχουν ύο παίκτες, κάνει ο ένας µια προσφορά, ο άλλος τη έχεται ή όχι. Αν εν την εχτεί κάνει αντιπροσφορά την οποία ο πρώτο παίχτης

Διαβάστε περισσότερα

ηµόσια Οικονοµική Βασίλης Ράπανος, Γεωργία Καπλάνογλου µόνο Τµήµα Ι.

ηµόσια Οικονοµική Βασίλης Ράπανος, Γεωργία Καπλάνογλου µόνο Τµήµα Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2013-2014 Τµήµα Οικονοµικών Επιστηµών Εξεταστική περίοδος Απριλίου Εξέταση στο µάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Ράπανος, Γεωργία Καπλάνογλου Η εξέταση αποτελείται

Διαβάστε περισσότερα

Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού

Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού Οµοιογενή Προϊόντα Ισορροπία Courot-Nash Έστω δυοπώλιο µε συνάρτηση ζήτησης: ( ) a b a, b > 0 () Βέβαια ισχύει ότι: + () Ακόµα υποθέτουµε ότι η τεχνολογία παραγωγής

Διαβάστε περισσότερα

Οικονομίες κλίμακας, ατελής ανταγωνισμός και διεθνές εμπόριο 6-1

Οικονομίες κλίμακας, ατελής ανταγωνισμός και διεθνές εμπόριο 6-1 Οικονομίες κλίμακας, ατελής ανταγωνισμός και διεθνές εμπόριο 6-1 Επισκόπηση Τύποι οικονομιών κλίμακας Τύποι ατελούς ανταγωνισμού Ολιγοπώλιο και μονοπώλιο Μονοπωλιακός ανταγωνισμός Μονοπωλιακός ανταγωνισμός

Διαβάστε περισσότερα

A 2 B 2 Γ 2. u 1 (A 1, A 2 ) = 3 > 1 = u 1 (B 1, A 2 ) u 1 (A 1, Γ 2 ) = 1 > 0 = u 1 (B 1, Γ 2 ) A 2 B 2

A 2 B 2 Γ 2. u 1 (A 1, A 2 ) = 3 > 1 = u 1 (B 1, A 2 ) u 1 (A 1, Γ 2 ) = 1 > 0 = u 1 (B 1, Γ 2 ) A 2 B 2 Κεφάλαιο 2 Στατικά παίγνια με πλήρη πληροφόρηση 2.1 Εισαγωγή Η πιο απλή, αλλά και θεμελιώδης, κατηγορία παιγνίων είναι αυτή των στατικών παιγνίων με πλήρη πληροφόρηση. Στα παίγνια αυτά οι συμμετέχοντες

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Διάλεξη 10. Γενική Ισορροπία VA 30

Διάλεξη 10. Γενική Ισορροπία VA 30 Διάλεξη 10 Γενική Ισορροπία V 30 1 Μερική & Γενική Ισορροπία Μέχρι τώρα εξετάζαμε γενικά την αγορά ενός αγαθού μεμονωμένα. Το πώς δηλαδή η προσφορά και η ζήτηση επηρεάζονται από την τιμή του συγκεκριμένου

Διαβάστε περισσότερα

H 2 = H 1 H 1 H 3 = H 2 H 1 = H 1 H 1 H 1

H 2 = H 1 H 1 H 3 = H 2 H 1 = H 1 H 1 H 1 Κεφάλαιο 4 Επαναλαμβανόμενα παίγνια 4.1 Εισαγωγή Πολλά οικονομικά, ή και άλλα, φαινόμενα επαναλαμβάνονται στον χρόνο. Για παράδειγμα, οι επιχειρήσεις σε μία αγορά ανταγωνίζονται μεταξύ τους σε πολλές χρονικές

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι...

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι... ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xv 1 Εισαγωγή 1 1.1 Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο........ 1 1.2 Μερικά Ιστορικά Στοιχεία..................... 3 1.3 Ενα Παράδοξο Παιχνίδι...................... 4 Μέρος

Διαβάστε περισσότερα

Philip McCann Αστική και περιφερειακή οικονομική. 2 η έκδοση. Chapter 1

Philip McCann Αστική και περιφερειακή οικονομική. 2 η έκδοση. Chapter 1 Philip McCann Αστική και περιφερειακή οικονομική 2 η έκδοση Chapter 1 Κεφάλαιο 1 Χωροθέτηση δραστηριοτήτων Περιεχόμενα διάλεξης Υπόδειγμα για τη χωροθέτηση της παραγωγής Weber και Moses Ανάλυση της περιοχής

Διαβάστε περισσότερα

Εκτεταμένα Παίγνια (Extensive Games)

Εκτεταμένα Παίγνια (Extensive Games) Εκτεταμένα Παίγνια (Extensive Games) Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταμένα Παίγνια Τα στρατηγικά παίγνια δεν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΦΟΙΤΗΤΙΚΟ ΔΙΔΑΣΚΑΛΕΙΟ Facebook: Didaskaleio Foititiko

ΦΟΙΤΗΤΙΚΟ ΔΙΔΑΣΚΑΛΕΙΟ  Facebook: Didaskaleio Foititiko Άσκηση 1. Να λυθούν οι εξισώσεις i) -x -5 = -3 ii) 3x +1 = 5/ x 7 iii) x [ π. i)x= -1 ii) x=1/ iii) x=/3 ] Άσκηση. Να λυθούν τα συστήματα x 7y 11 x y i) ii) x y 4 4x 3y 1 [Απ. i) x=,y= -1, ii) x=1/,y=1

Διαβάστε περισσότερα

31/05/2017. Κεφάλαιο 32 Ανταλλαγή. Μικροοικονομική. Ανταλλαγή. Ανταλλαγή. Πλάτος = A B. Μια σύγχρονη προσέγγιση

31/05/2017. Κεφάλαιο 32 Ανταλλαγή. Μικροοικονομική. Ανταλλαγή. Ανταλλαγή. Πλάτος = A B. Μια σύγχρονη προσέγγιση 31/05/017 HL R. VRIN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 3 Ανταλλαγή Ανταλλαγή Δύο καταναλωτές, και. Τα αποθέματα των αγαθών τους 1 και είναι w = ( w1, w ) και w = ( w, w ). 1 π.χ.

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH»

ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH» ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH»

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Υπεύθυνος μαθήματος Καθηγητής Μιχαήλ Ζουμπουλάκης

ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Υπεύθυνος μαθήματος Καθηγητής Μιχαήλ Ζουμπουλάκης 1 ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Υπεύθυνος μαθήματος Καθηγητής Μιχαήλ Ζουμπουλάκης Μικροοικονομική ανάλυση 2 Η μέθοδος της «αφαίρεσης» και η μελέτη της οικονομικής συμπεριφοράς Τα άτομα ενεργούν σκόπιμα επιδιώκοντας

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενα Μαθήµατα: Παίχτες: είναι αυτοί που λαµβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει

Διαβάστε περισσότερα