ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ"

Transcript

1 ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος

2 2 Πράκτορες βασισμένοι στη γνώση Βάση γνώσης (knowledge base): Σύνολο προτάσεων (sentences) Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αμετάβλητο» μέρος της ΒΓ Βασικές εργασίες: Tell, Ask Δηλωτική / Διαδικαστική προσέγγιση

3 Ο κόσμος του Wumpus (1/2) 3

4 Ο κόσμος του Wumpus (2/2) Μέτρο απόδοσης: για χρυσό για wumpus, γούβα -1 για κάθε βήμα -10 για βέλος Περιβάλλον: Πιθανότητα 20% για γούβα Μηχανισμοί δράσης Μετακίνηση Στροφή 90 ο Αρπαγή Εξακόντιση Αντιλήψεις [Δυσοσμία, Αύρα, Λάμψη, Γδούπος, Κραυγή] 4

5 Παράδειγμα (1/2) 7-5

6 Παράδειγμα (2/2) 7-6

7 Λογική Logic

8 8 Γλώσσες Σύνταξη, καλά σχηματισμένες προτάσεις x+y=2, xy2+= Σημασιολογία λογικής Αλήθεια πρότασης Δυνατοί κόσμοι Μοντέλα Μοντέλο πρότασης Η πρόταση είναι αληθής στο μοντέλο Λογική κάλυψη (entailment) α β x + y = 4 4 = x + y Ανεξάρτητη από τον τρόπο συμπερασμού

9 9 Έλεγχος μοντέλων Έστω ότι οι «μεταβλητές» μας αφορούν την ύπαρξη γούβας στα τετράγωνα [1,2], [2,2] και [3,1] α 1 = Δεν υπάρχει γούβα στο [1,2]. KB α 1 α 2 = Δεν υπάρχει γούβα στο [2,2]. KB α 2

10 10 Αλγόριθμοι συμπερασμού KB i α : Ο αλγόριθμος i παράγει την πρόταση α από την KB Χαρακτηριστικά αλγορίθμων: Ορθός (sound), διατηρεί την αλήθεια (truth preserving) Πλήρης (complete) Θεμελίωση: Σύνδεση των αντικειμένων/σχέσεων του πραγματικού κόσμου με μεταβλητές/σχέσεις της βάσης γνώσης. Αισθητηριακή εμπειρία, μάθηση

11 Προτασιακή λογική Propositional logic

12 Σύνταξη Ατομικές προτάσεις Προτασιακά σύμβολα: P, Q, R, W 1,3, Γ 3,1, Αληθές, Ψευδές Λογικά συνδετικά Άρνηση, W 1,3 Λεκτικά (literals), Θετικό λεκτικό: W 1,3, Αρνητικό λεκτικό:, W 1,3 Σύζευξη, W 1,3 Γ 3,1 Συζευκτέοι Διάζευξη, (W 1,3 Γ 3,1 ) W 2,2 Διαζευκτέοι Συνεπαγωγή, (W 1,3 Γ 3,1 ) W 2,2 προϋπόθεση ή προηγούμενο, συμπέρασμα ή επακόλουθο κανόνες, προτάσεις εάν-τότε Ισοδυναμία, W 1,3 W 2,2 Προτεραιότητα:,,,, 12

13 Σημασιολογία Μοντέλο (στην προτασιακή λογική): Καθορίζει την τιμή αληθείας κάθε προτασιακού συμβόλου. Πίνακας αληθείας P Q P P Q P Q P Q P Q Ψευδές Ψευδές Αληθές Ψευδές Ψευδές Αληθές Αληθές Ψευδές Αληθές Αληθές Ψευδές Αληθές Αληθές Ψευδές Αληθές Ψευδές Ψευδές Ψευδές Αληθές Ψευδές Ψευδές Αληθές Αληθές Ψευδές Αληθές Αληθές Αληθές Αληθές 7-13

14 14 Μια απλή βάση γνώσης Θα ασχοληθούμε μόνο με τις γούβες: R 1 : Γ 1,1 R 2 : Α 1,1 (Γ 1,2 Γ 2,1 ). R 3 : Α 2,1 (Γ 1,1 Γ 2,2 Γ 3,1 ). R 4 : Α 1,1 R 5 : Α 2,1 Βάση γνώσης: Σύζευξη προτάσεων KB R 1 R 2 R 3 R 4 R 5

15 15 Συμπερασμός με απαρίθμηση Θέλουμε να απαντάμε σε ερωτήσεις της μορφής: KB α 7 μεταβλητές: Α 1,1, Α 2,1, Γ 1,1, Γ 1,2, Γ 2,1, Γ 2,2 και Γ 3,1 2 7 =128 δυνατά μοντέλα Η ΚΒ είναι αληθής σε 3 από αυτά. KB Γ 1,2 KB Γ 2,2 KB Γ 2,2 Χρονική πολυπλοκότητα: Ο(2 n ) Χωρική πολυπλοκότητα: Ο(n) όπου n το πλήθος των προτασιακών συμβόλων Κάθε γνωστός αλγόριθμος συμπερασμού για την προτασιακή λογική έχει μια πολυπλοκότητα χειρότερης περίπτωσης που είναι εκθετική ως προς το μέγεθος της εισόδου.

16 16 Λογική ισοδυναμία (α β) (β α) αντιμεταθετικότητα του (α β) (β α) αντιμεταθετικότητα του ((α β) γ) (α (β γ)) προσεταιριστικότητα του ((α β) γ) (α (β γ)) προσεταιριστικότητα του ( α) α απαλοιφή διπλής άρνησης (α β) ( β α) αντιθετοαντιστροφή (α β) ( α β) απαλοιφή συνεπαγωγής (α β) ((α β) (β α) απαλοιφή αμφίδρομης υποθετικής πρότασης (α β) ( α β) νόμος De Morgan (α β) ( α β) νόμος De Morgan (α (β γ)) ((α β) (a γ)) επιμεριστικότητα του ως προς το (α (β γ)) ((α β) (a γ)) επιμεριστικότητα του ως προς το

17 17 Έγκυρες και Ικανοποιήσιμες προτάσεις Έγκυρες προτάσεις: Είναι αληθείς σε όλα τα μοντέλα Ικανοποιήσιμες προτάσεις: Είναι αληθείς σε τουλάχιστον ένα μοντέλο. Η πρόταση α είναι αληθής στο μοντέλο m Το m ικανοποιεί την α To m είναι ένα μοντέλο της α Προβλήματα ικανοποίησης περιορισμών Η α είναι έγκυρη εάν και μόνο αν η α δεν είναι ικανοποιήσιμη. Απαγωγή σε άτοπο: α β εάν και μόνο εάν η πρόταση (α β) είναι μη ικανοποιήσιμη.

18 Πρότυπα συλλογιστικής στην προτασιακή λογική

19 19 Κανόνες συμπερασμού, Modus ponens («τρόπος του θέτειν») Απαλοιφή του ΚΑΙ ( ) ( ) ( ) ( ) Όλες οι λογικές ισοδυναμίες, π.χ.

20 20 Παράδειγμα (1/3) Θα αποδείξουμε το Γ 1,2 : R 1 : Γ 1,1 R 2 : Α 1,1 (Γ 1,2 Γ 2,1 ) R 3 : Α 2,1 (Γ 1,1 Γ 2,2 Γ 3,1 ) R 4 : Α 1,1 R 5 : Α 2,1 R 6 : (Α 1,1 (Γ 1,2 Γ 2,1 )) ((Γ 1,2 Γ 2,1 ) Α 1,1 ) R 7 : ((Γ 1,2 Γ 2,1 ) Α 1,1 ) R 8 : ( Α 1,1 (Γ 1,2 Γ 2,1 )) R 9 : (Γ 1,2 Γ 2,1 ) R 10 : Γ 1,2 Γ 2,1

21 21 Αποδείξεις Διαδικασία αναζήτησης Προς τα εμπρός Προς τα πίσω Μονοτονικότητα εάν KB α τότε KB β α

22 22 Παράδειγμα (2/3) Από τις προτάσεις: R 1 : Γ 1,1 R 2 : Α 1,1 (Γ 1,2 Γ 2,1 ) R 3 : Α 2,1 (Γ 1,1 Γ 2,2 Γ 3,1 ) R 4 : Α 1,1 R 5 : Α 2,1 R 6 : (Α 1,1 (Γ 1,2 Γ 2,1 )) ((Γ 1,2 Γ 2,1 ) Α 1,1 ) R 7 : ((Γ 1,2 Γ 2,1 ) Α 1,1 ) R 8 : ( Α 1,1 (Γ 1,2 Γ 2,1 )) R 9 : (Γ 1,2 Γ 2,1 ) R 10 : Γ 1,2 Γ 2,1 και πηγαίνοντας από το [2,1] στο [1,1] και μετά στο [1,2], όπου υπάρχει δυσοσμία αλλά όχι αύρα, προκύπτουν

23 23 Παράδειγμα (3/3) (συνέχεια ) R 11 : Α 1,2 R 12 : Α 1,2 (Γ 1,1 Γ 2,2 Γ 1,3 ) Εφαρμόζοντας αντιθετοαντιστροφή παίρνουμε: R 13 : Γ 2,2 R 14 : Γ 1,3 Από τις R 3 και R 5 παίρνουμε: R 15 : Γ 1,1 Γ 2,2 Γ 3,1 Από την R 15 και την R 13 παίρνουμε: R 16 : Γ 1,1 Γ 3,1 Τέλος από την R 16 και την R 1 παίρνουμε: R 17 : Γ 3,1

24 Ανάλυση (resolution) Μοναδιαία ανάλυση (unit resolution) Πλήρης ανάλυση Διαζευκτική πρόταση, συμπληρωματικά λεκτικά Παράδειγμα: 24 k i i k l l l l m l l , n j j k i i n k m m m m l l l l m m l l , 2,2 3,1 2,2 1,1 3,1,1 1, Γ Γ Γ Γ Γ Γ l i = m l i = m j

25 25 Πληρότητα Οποιοσδήποτε πλήρης αλγόριθμος αναζήτησης που εφαρμόζει μόνο τον κανόνα της ανάλυσης μπορεί να συνάγει οποιοδήποτε συμπέρασμα που καλύπτεται λογικά από οποιαδήποτε βάση γνώσης της προτασιακής λογικής. Με δεδομένο το Α δεν μπορεί να «αποδείξει» το Α Β. Μπορεί όμως να απαντήσει εάν το Α Β είναι αληθές ή ψευδές. Πληρότητα διάψευσης

26 26 Συζευκτική κανονική μορφή (conjunctive normal form, CNF) Κάθε πρόταση της προτασιακής λογικής είναι λογικά ισοδύναμη με μια σύζευξη διαζεύξεων λεκτικών. k-cnf: Ακριβώς k λεκτικά ανά πρόταση. Διαδικασία μετατροπής σε CNF (παράδειγμα για R 2 ): R 2 : Α 1,1 (Γ 1,2 Γ 2,1 ) (Α 1,1 (Γ 1,2 Γ 2,1 )) ((Γ 1,2 Γ 2,1 ) Α 1,1 ) ( Α 1,1 Γ 1,2 Γ 2,1 ) ( (Γ 1,2 Γ 2,1 ) Α 1,1 ) ( Α 1,1 Γ 1,2 Γ 2,1 ) (( Γ 1,2 Γ 2,1 ) Α 1,1 ) ( Α 1,1 Γ 1,2 Γ 2,1 ) ( Γ 1,2 Α 1,1 ) ( Γ 2,1 Α 1,1 )

27 27 Αλγόριθμος ανάλυσης Για να αποδείξουμε το KB α, αποδεικνύουμε ότι η (KB α) είναι μη ικανοποιήσιμη: Εισάγουμε στην KB την α. Μετατρέπουμε την (KB α) σε μορφή CNF. Εφαρμόζουμε τον κανόνα της ανάλυσης σε οποιοδήποτε ζεύγος προτάσεων όπου μπορεί να εφαρμοστεί. Εάν καταλήξουμε σε άτοπο, η πρόταση α καλύπτεται από την KB. Ειδάλλως δεν καλύπτεται

28 28 Παράδειγμα Έστω οι δύο προτάσεις R 2 και R 4 : KB = R 2 R 4 = (Α 1,1 (Γ 1,2 Γ 2,1 )) Α 1,1 Θέλουμε να αποδείξουμε την Γ 1,2. Μετατρέπουμε την (KB Γ 1,2 ) σε CNF και εφαρμόζουμε την ανάλυση:

29 29 Προτάσεις Horn Διαζευκτικές προτάσεις με το πολύ ένα θετικό λεκτικό: Θ 1,1 Αύρα Α 1,1 Λογικός προγραμματισμός, Prolog Οριστικές προτάσεις: Διαζεύξεις με ακριβώς ένα θετικό λεκτικό. Γράφονται και ως «κανόνες»: Θ 1,1 Αύρα Α 1,1 Κεφαλή (head) κανόνα: Θ 1,1 Αύρα Σώμα (body) κανόνα: Α 1,1 Γεγονότα (facts): Μόνο ένα θετικό λεκτικό. Περιορισμοί ακεραιότητας (integrity constraints): Μόνο αρνητικά λεκτικά. W 1,1 W 1,2

30 30 Συμπερασμός με προτάσεις Horn Προς τα εμπρός αλυσίδα εκτέλεσης Καθοδηγούμενη από τα δεδομένα Προς τα πίσω αλυσίδα εκτέλεσης Καθοδηγούμενη από τους στόχους Γραμμικός χρόνος ως προς το μέγεθος της βάσης γνώσης Γράφημα AND-OR P Q L M P B L M A P L A B L A B

31 Αποδοτικός Προτασιακός Συμπερασμός

32 32 Αλγόριθμος DPLL Davis, Putman, Logemann, Loveland (1962) Πλήρης αναζήτηση με υπαναχώρηση Αναδρομική, πρώτα σε βάθος, απαρίθμηση των δυνατών μοντέλων. Βελτιώσεις Πρόωρος τερματισμός: Μπορούμε να συμπεράνουμε για την αλήθεια ή το ψεύδος μιας πρότασης, χωρίς να έχουμε τις τιμές όλων των μεταβλητών. (A B) (A C) Αμιγή σύμβολα: Εμφανίζονται με το ίδιο πρόσημο σε όλες τις προτάσεις. (A B) ( B C) (C A) Μοναδιαίες διαζευκτικές προτάσεις: Όλα τα λεκτικά εκτός από ένα είναι Ψευδή.

33 33 Αλγόριθμοι τοπικής αναζήτησης Αναρρίχηση λόφων, Προσομοιωμένη ανόπτηση, Ευρετική συνάρτηση: Πλήθος διαζευκτικών προτάσεων που δεν ικανοποιούνται. Αλγόριθμος WalkSat: Επιλογή τυχαίας διαζευκτικής πρότασης Επιλογή συμβόλου για αλλαγή τιμής: Επιλογή τυχαίου συμβόλου, με πιθανότητα p Επιλογή συμβόλου που βελτιστοποιεί την ευρετική συνάρτηση, με πιθανότητα 1-p.

34 34 Δύσκολα προβλήματα ικανοποιησιμότητας Πρόβλημα 3-CNF: ( D B C) (B A C) (C B E) (E D B) (B E C) πλήθος συμβόλων: n = 5 πλήθος προτάσεων: m = 5 Κρίσιμο σημείο: μ/ν = 4,3

35 Πράκτορες βασισμένοι στην προτασιακή λογική

36 36 Εύρεση γουβών και wumpus με προτασιακή λογική Αύρα, Δυσοσμία: Για κάθε τετράγωνο [x,y] πρέπει να υπάρχουν προτάσεις της μορφής: Α x,y (Γ x,y+1 Γ x,y 1 Γ x+1,y Γ x 1,y ) Δ x,y (W x,y+1 W x,y 1 W x+1,y W x 1,y ) Υπάρχει τουλάχιστον ένα Wumpus: W1,1 W1,2 W 4,3 W 4,4 Υπάρχει το πολύ ένα Wumpus: ( W 1,1 W 1,2 ) ( W 1,1 W 1,3 ) ( W 4,3 W 4,4 ) Αποδείξιμα ασφαλή τετράγωνα: η ( Γ i,j W i,j ) καλύπτεται. Πιθανόν ασφαλή τετράγωνα: η (Γ i,j W i,j ) δεν καλύπτεται.

37 37 Θέση, προσανατολισμός, ενέργειες Δεν μπορούν να χρησιμοποιηθούν προτάσεις της μορφής: Θ 1,1 Βλέπει_δεξιά Εμπρός Θ 2,1 Ξεχωριστά σύμβολα για κάθε χρονική στιγμή: Θ 1 1,1 Βλέπει_δεξιά 1 Εμπρός 1 Θ 2 2,1 Βλέπει_δεξιά 1 Στροφή_αριστερά 1 Βλέπει_επάνω 2 Γενικότερα, για κάθε χρονική στιγμή t θα πρέπει να υπάρχει πρόταση: Θ t x,y Βλέπει_δεξιά t Εμπρός t Θ t+1 x+1,y

38 38 Πράκτορες βασισμένοι σε κύκλωμα (1/3) Λάμψη t Αρπαγή t Ζωντανό t Κραυγή t Ζωντανό t 1

39 Υπολογισμός τιμής Θ 39 Πράκτορες βασισμένοι σε κύκλωμα (2/3)

40 40 Πράκτορες βασισμένοι σε κύκλωμα (3/3) Προβλήματα με προτάσεις που δεν είναι εξαρχής γνωστές π.χ. Α 4,4 Προτάσεις γνώσης: K(Α 4,4 ) και K( Α 4,4 ) Τοπικότητα: Τοπική αλληλοεξάρτηση μεταβλητών Ακυκλικότητα: Υποχρεωτική για «κατασκευαστικούς» λόγους.

41 41 Παρατηρήσεις Σύγκριση προτασιακής λογικής και υλοποίησης με κύκλωμα: Συνοπτικότητα: Και οι δύο δεν κλιμακώνονται καλά. Αποδοτικότητα: Γραμμική για τον πράκτορα σε κύκλωμα, εκθετική (στη χειρότερη περίπτωση) για τον προτασιακό. Πληρότητα: Ο πράκτορας σε κύκλωμα δεν είναι πλήρης. Η επίτευξη πληρότητας απαιτεί εκθετική αύξηση του μεγέθους του κυκλώματος. Ευκολία σχεδίασης (για τους λογικούς πράκτορες μόνο )

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Λογικοί Πράκτορες Προτασιακή Λογική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς

Διαβάστε περισσότερα

Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax

Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax ΠΛΗ 405 Τεχνητή Νοηµοσύνη Προτασιακή Λογική Propositional Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 5: Αναπαράσταση Γνώσης με Λογική

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 5: Αναπαράσταση Γνώσης με Λογική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 5: Αναπαράσταση Γνώσης με Λογική Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης µε Λογική. Προτασιακή Λογική

Αναπαράσταση Γνώσης µε Λογική. Προτασιακή Λογική Αναπαράσταση Γνώσης µε Λογική Προτασιακή Λογική 1 Αναπαράσταση Γνώσης µε Λογική n Πράκτορες Βασισµένοι στη Γνώση (Knowledge-based agents) n Ένα παράδειγµα: Wumpus world n Γενικά για Λογική n Προτασιακή

Διαβάστε περισσότερα

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης Λογική Προτασιακή Λογική Λογική Πρώτης Τάξης Λογική (Logic) Αναλογίες διαδικασίας επίλυσης προβλημάτων υπολογισμού και προβλημάτων νοημοσύνης: Πρόβλημα υπολογισμού 1. Επινόηση του αλγορίθμου 2. Επιλογή

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές ναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης ναπαράσταση γνώσης

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση

Διαβάστε περισσότερα

Κανονικές μορφές - Ορισμοί

Κανονικές μορφές - Ορισμοί HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:

Διαβάστε περισσότερα

Υπολογιστική Λογική και Λογικός Προγραμματισμός

Υπολογιστική Λογική και Λογικός Προγραμματισμός ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υπολογιστική Λογική και Λογικός Προγραμματισμός Ενότητα 2: Λογική: Εισαγωγή, Προτασιακή Λογική. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗΝ ΛΟΓΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΥ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗΝ ΛΟΓΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΥ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗΝ ΛΟΓΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΥ μπλ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΚΑΙ ΣΥΜΠΕΡΑΣΜΟΣ ΜΙΧΑΛΗΣ

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πεπερασµένα χρονικά περιθώρια ανά κίνηση. απευθείας αξιολόγηση σε ενδιάµεσους κόµβους

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πεπερασµένα χρονικά περιθώρια ανά κίνηση. απευθείας αξιολόγηση σε ενδιάµεσους κόµβους ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Λογικοί Πράκτορες Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Περιορισµοί χρόνου πεπερασµένα χρονικά περιθώρια ανά κίνηση

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 1

Λύσεις Σειράς Ασκήσεων 1 Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες

Διαβάστε περισσότερα

Μηχανισμός Εξαγωγής Συμπερασμάτων

Μηχανισμός Εξαγωγής Συμπερασμάτων Μηχανισμός Εξαγωγής Συμπερασμάτων Μηχανισμός Εξαγωγής Συμπερασμάτων Ο βασικός μηχανισμός εξαγωγής συμπερασμάτων στην κατηγορηματική λογική είναι η απόδειξη. Υπάρχει ένα πλήθος κανόνων συμπερασμού. Αυτοί

Διαβάστε περισσότερα

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

Προτασιακός Λογισμός (HR Κεφάλαιο 1) Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική

Διαβάστε περισσότερα

Λογικός Προγραμματισμός

Λογικός Προγραμματισμός Λογικός Προγραμματισμός Αναπαράσταση γνώσης: Λογικό Σύστημα. Μηχανισμός επεξεργασίας γνώσης: εξαγωγή συμπεράσματος. Υπολογισμός: Απόδειξη θεωρήματος (το συμπέρασμα ενδιαφέροντος) από αξιώματα (γνώση).

Διαβάστε περισσότερα

Ευχαριστίες. Τέλος θα ήθελα να ευχαριστήσω όλους όσους ήταν δίπλα μου όλα αυτά τα χρόνια και με βοήθησαν να πραγματοποιήσω τους στόχους μου.

Ευχαριστίες. Τέλος θα ήθελα να ευχαριστήσω όλους όσους ήταν δίπλα μου όλα αυτά τα χρόνια και με βοήθησαν να πραγματοποιήσω τους στόχους μου. Ευχαριστίες Θα ήθελα να ευχαριστήσω τον καθηγητή μου, Δρ Γιάννη Δημόπουλο, ο οποίος ήταν ο επιβλέπον καθηγητής της διπλωματικής αυτής εργασίας και με βοήθησε ώστε να ολοκληρωθεί με επιτυχία. Επίσης θα

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

9.1 Προτασιακή Λογική

9.1 Προτασιακή Λογική ΚΕΦΑΛΑΙΟ 9 9 Λογική Η λογική παρέχει έναν τρόπο για την αποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης και προσφέρει µια σηµαντική και εύχρηστη µεθοδολογία για την αναπαράσταση και

Διαβάστε περισσότερα

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Λογική Αποσαφήνιση και τυποποίηση της διαδικασίας της ανθρώπινης σκέψης Η μαθηματική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 1ο μέρος σημειώσεων: Προτασιακός Λογισμός Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ ΧΛΤΖΙΝ ΠΥΛΟΣ ΒΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ 1. ύο προτάσεις που έχουν την ίδια σηµασία λέγονται ταυτόσηµες. 2. Μια αποφαντική πρόταση χαρακτηρίζεται αληθής όταν περιγράφει µια πραγµατική κατάσταση του κόσµου µας.

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 9η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τεχνητή Νοημοσύνη Ι Ενότητα 7:Προτασιακή Λογική Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Προτασιακή Λογική Σκοποί ενότητας 2 Περιεχόμενα ενότητας Προτασιακή

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 11 ης διάλεξης

Ασκήσεις μελέτης της 11 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2015 16 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 11 ης διάλεξης 11.1 (α) Μετατρέψτε σε κανονική συζευκτική μορφή (CNF)

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πράκτορες βασισµένοι σε προτασιακή λογική. πράκτορες βασισµένοι σε κύκλωµα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πράκτορες βασισµένοι σε προτασιακή λογική. πράκτορες βασισµένοι σε κύκλωµα ΠΛΗ 405 Τεχνητή Νοηµοσύνη Λογική Πρώτης Τάξης First-Order Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Συστηµατική αναζήτηση DPLL Το ική αναζήτηση WalkSat Λογικοί

Διαβάστε περισσότερα

HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6

HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6 HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,

Διαβάστε περισσότερα

Λογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση

Λογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Λογική Δημήτρης Πλεξουσάκης Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης a. Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

Κεφάλαιο 9. Λογική. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

Κεφάλαιο 9. Λογική. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Κεφάλαιο 9 Λογική Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Λογική Aποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης. Η µαθηµατική

Διαβάστε περισσότερα

Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική

Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική Σύνοψη Το κεφάλαιο αυτό χωρίζεται σε δύο ενότητες. Στην πρώτη ενότητα επιχειρείται μια ιστορική αναδρομή στη λογική και τον λογικό προγραμματισμό,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει

Διαβάστε περισσότερα

Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF

Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 3/3/2016 Κατερίνα Δημητράκη

Διαβάστε περισσότερα

Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος.

Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Γνώση Η γνώση είναι διαφορετική από τα δεδομένα Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Η γνώση για κάποιο

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και

Διαβάστε περισσότερα

Υπολογισμός στο Λογικό Προγραμματισμό. Πώς υπολογίζεται η έξοδος ενός Λογικού Προγράμματος;

Υπολογισμός στο Λογικό Προγραμματισμό. Πώς υπολογίζεται η έξοδος ενός Λογικού Προγράμματος; Υπολογισμός στο Λογικό Προγραμματισμό Πώς υπολογίζεται η έξοδος ενός Λογικού Προγράμματος; Herbrand Universe H L Είναι τα δεδομένα που μεταχειρίζεται ένα Λογικό Πρόγραμμα, προκειμένου να απαντήσει μια

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29

Διαβάστε περισσότερα

Μαθηματική Λογική και Απόδειξη

Μαθηματική Λογική και Απόδειξη Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Διπλωματική Εργασία Αλγόριθμοι Εύρεσης Φυσικών Αποδείξεων Βουδούρης Αλέξανδρος Ανδρέας Α.Μ. 4417 voudouris@ceid.upatras.gr Eπιβλέπων Καθηγητής Σταύρος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα

ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα Λέξεις Κλειδιά Μαθηματική Λογική, Προτασιακή Λογική, Κατηγορηματική Λογική, Προτάσεις Horn, Λογικά Προγράμματα Περίληψη Το κεφάλαιο

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Βασικά Στοιχεία Λογικής 2 Η Πριγκίπισσα και το Κάστρο Αν ρώταγα ένα μέλος της φυλής που δεν ανήκεις για το ποιον δρόμο πρέπει να πάρω για το κάστρο τι θα μου έλεγε; Μία πριγκίπισσα

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις (Μαθηματική)

Διαβάστε περισσότερα

Εξελιγµένες Τεχνικές Σχεδιασµού

Εξελιγµένες Τεχνικές Σχεδιασµού Κεφάλαιο 16 Εξελιγµένες Τεχνικές Σχεδιασµού Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Σχεδιασµός Βασισµένος σε Γράφους Γράφος σχεδιασµού (1/2) Ο

Διαβάστε περισσότερα

! όπου το σύµβολο έχει την έννοια της παραγωγής, δηλαδή το αριστερό µέρος ισχύει ενώ το δεξιό µέρος συµπεραίνεται και προστίθεται στη βάση γνώσης.

! όπου το σύµβολο έχει την έννοια της παραγωγής, δηλαδή το αριστερό µέρος ισχύει ενώ το δεξιό µέρος συµπεραίνεται και προστίθεται στη βάση γνώσης. Αποδείξεις (1/2)! Χρησιµοποιούµε τις συνεπαγωγές της βάσης γνώσης για να βγάλουµε νέα συµπεράσµατα. Για παράδειγµα:! Από τις προτάσεις:! Ακαι Α Β! µπορούµε να βγάλουµε το συµπέρασµα (τεχνική modus ponens

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 12: Συμπερασμός στη λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 12: Συμπερασμός στη λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Συμπερασμός στη λογική πρώτης τάξης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory

επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory Μετατροπέας Αναλογικού Σήµατος σε Ψηφιακό Ο δειγματολήπτης (S/H) παίρνει δείγματα του στιγμιαίου εύρους ενός σήματος και διατηρεί την τάση που αντιστοιχεί σταθερή, τροφοδοτώντας έναν κβαντιστή, μέχρι την

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Λογική πρώτης τάξης. Παραδοχές

Λογική πρώτης τάξης. Παραδοχές Λογική πρώτης τάξης First-Order Logic Παραδοχές Οντολογικές δεσµεύσεις λογικής πρώτης τάξης: Αντικείµενα Σχέσεις Μοναδιαίες σχέσεις (Ιδιότητες) Συναρτήσεις Ένα συν δύο ίσον τρία Ο κακός Βασιλιάς Ιωάννης

Διαβάστε περισσότερα

Ask seic Majhmatik c Logik c 2

Ask seic Majhmatik c Logik c 2 Ask seic Majhmatik c Logik c 2 1. Να δειχτεί με πίνακες αλήθειας ότι οι παρακάτω προτάσεις είναι λογικά ισοδύναμες. (αʹ) (A B) και A B. (βʹ) A (B C) και (A B) (A C). (γʹ) A B και B A. (δʹ) A B και B A.

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της

Διαβάστε περισσότερα

ΗΥ Λογική. Διδάσκων: Δημήτρης Πλεξουσάκης Καθηγητής

ΗΥ Λογική. Διδάσκων: Δημήτρης Πλεξουσάκης Καθηγητής ΗΥ 180 - Λογική Διδάσκων: Καθηγητής E-mail: dp@csd.uoc.gr Ώρες διδασκαλίας: Δευτέρα, Τετάρτη 4-6 μμ, Αμφ. Β Ώρες φροντιστηρίου: Πέμπτη 4-6 μμ, Αμφ. Β Ώρες γραφείου: Δευτέρα, Τετάρτη 2-4 μμ, Κ.307 Web site:

Διαβάστε περισσότερα

Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής

Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες

Διαβάστε περισσότερα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Λογική Σχεδίαση Ψηφιακών Συστημάτων Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδική Λογική Η δυαδική λογική ασχολείται με μεταβλητές

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σύγχρονοι Αλγόριθµοι Σχεδιασµού Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Σχεδιασµός το πρόβληµα του σχεδιασµού γλώσσα αναπαράστασης

Διαβάστε περισσότερα

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 1 η Εργασία: Γενική Εικόνα Πολύ καλή εικόνα με εξαιρετική βαθμολογία

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Ενότητα 1: Εισαγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

Prˆktorec Basismènoi sth Gn sh

Prˆktorec Basismènoi sth Gn sh Prˆktorec Basismènoi sth Gn sh Βασικές έννοιες Γλώσσες αναπαράστασης γνώσης βασισμένες στη Λογική Προτασιακή λογική Prˆktorec Basismènoi sth Gn sh Ο σχεδιασμός ενός πράκτορα βασισμένου στη γνώση (knowledge-based

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Πέμπτη, 30 Οκτωβρίου 2014 Διάρκεια : 10:30 12.00 Διδάσκουσα : Άννα Φιλίππου ΠΡΟΤΥΠΕΣ ΛΥΣΕΙΣ Οδηγίες:

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές ΙΙ

Ηλεκτρονικοί Υπολογιστές ΙΙ Ηλεκτρονικοί Υπολογιστές ΙΙ Ενότητα 3: Eφαρμογές Άλγεβρας Boole Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Πληρότητα της μεθόδου επίλυσης

Πληρότητα της μεθόδου επίλυσης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον

Διαβάστε περισσότερα

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 1 η Εργασία: Γενική Εικόνα Ικανοποιητική εικόνα (μ.ο.: 7.09). Πολλά

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες

Διαβάστε περισσότερα

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Θέματα Εξετάσεων Εξεταστικής Σεπτεμβρίου στο μάθημα «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΔΙΔΑΣΚΩΝ: Δρ. Ηλ. Μηχ. & Τ.Υ. Αριστομένης Θανόπουλος Ημερομηνία: 12 / 2 / 2015

Διαβάστε περισσότερα

Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική. Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης

Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική. Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης Γλωσσική επιμέλεια και επιμέλεια διαδραστικού υλικού: Αλέξανδρος Χορταράς Copyright ΣΕΑΒ,

Διαβάστε περισσότερα

Προτάσεις. Εισαγωγή στις βασικές έννοιες των Μαθηματικών. Ποιες είναι προτάσεις; Προτάσεις 6/11/ ο Μάθημα Μαθηματική Λογική (επανάληψη)

Προτάσεις. Εισαγωγή στις βασικές έννοιες των Μαθηματικών. Ποιες είναι προτάσεις; Προτάσεις 6/11/ ο Μάθημα Μαθηματική Λογική (επανάληψη) Εισαγωγή στις βασικές έννοιες των Μαθηματικών 5 ο Μάθημα Μαθηματική Λογική (επανάληψη) Προτάσεις Η πρόταση είναι μια γλωσσική ενότητα, η οποία εκφράζει κάποιο νόημα. Παραδείγματα: Η Μαρία σχεδιάζει ένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Λύσεις Άσκηση 1 [30 μονάδες] Να αποδείξετε τα πιο κάτω λογικά επακόλουθα χρησιμοποιώντας τα συστήματα

Διαβάστε περισσότερα

Ατοµική ιπλωµατική Εργασία ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΙ ΠΡΟΤΑΣΙΑΚΩΝ ΕΠΙΛΥΤΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΡΑΣΗΣ. Ελένη Προξένου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Ατοµική ιπλωµατική Εργασία ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΙ ΠΡΟΤΑΣΙΑΚΩΝ ΕΠΙΛΥΤΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΡΑΣΗΣ. Ελένη Προξένου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Ατοµική ιπλωµατική Εργασία ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΙ ΠΡΟΤΑΣΙΑΚΩΝ ΕΠΙΛΥΤΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΡΑΣΗΣ Ελένη Προξένου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Μάιος 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο.

Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο. Όταν γράφουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Φυλλάδιο 1: Προτασιακή Λογική ΟΚΤΩΒΡΙΟΣ 2006 1. Ικανοποιησιμότητα Αποφασίστε αν οι παρακάτω προτάσεις είναι ταυτολογίες, ικανοποιήσιμες ή μη-ικανοποιήσιμες

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 11: Βασικές έννοιες ψηφιακής λογικής Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Γιατί χρησιμοποιούμε

Διαβάστε περισσότερα

NP-complete problems. IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH. NP-complete problems 1 / 30

NP-complete problems. IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH. NP-complete problems 1 / 30 NP-complete problems IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH Καλογερόπουλος Παναγιώτης (ΜΠΛΑ) NP-complete problems 1 / 30 Independent Set is NP-complete Ορισμός. Εστω

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Εκφράσεις και Λίγες Εντολές Οι εκφράσεις της C Τελεστές Απλές και σύνθετες εντολές Εντολές ελέγχου (επιλογής) Εισαγωγή σε

Διαβάστε περισσότερα

Αναπαράσταση γνώσης και συλλογιστική

Αναπαράσταση γνώσης και συλλογιστική εφάλαιο 1 Αναπαράσταση γνώσης και συλλογιστική 1.1 Tυπική αναπαράσταση γνώσης ι φορμαλισμοί τυπικής αναπαράστασης γνώσης και συλλογιστικής χαρακτηρίζονται από τρία βασικά στοιχεία: τη σύνταξη (syntax),

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 4ο μέρος σημειώσεων: Ακολουθίες Επίλυσης, Επίλυση για όρους Horn, Λογικός Προγραμματισμός Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το

Διαβάστε περισσότερα

Chapter 7, 8 : Time, Space Complexity

Chapter 7, 8 : Time, Space Complexity CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 12 December 2008 1 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να

Διαβάστε περισσότερα