Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα"

Transcript

1 Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

2 Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση: μέτρηση αντικειμένων με ορισμένες ιδιότητες Για τη λύση πολλών διαφορετικών ειδών προβλημάτων πρέπει να μετράμε αντικείμενα Καθορισμός πολυπλοκότητας αλγορίθμων Προσδιορισμός του αν υπάρχουν αρκετοί τηλεφωνικοί αριθμοί ή διευθύνσεις Internet για την ικανοποίηση της ζήτησης Υπολογισμός πιθανοτήτων γεγονότων Εκτίμηση των διαφορετικών passwords σε σύστημα υπολογιστών Διαφορετικές κατατάξεις τερματισμού δρομέων σε αγώνα δρόμου

3 Βασικές τεχνικές απαρίθμησης Ο κανόνας γινομένου Έστω ότι μία διαδικασία μπορεί να διασπαστεί σε ακολουθία δύο εργασιών. Αν υπάρχουν n 1 τρόποι να γίνει ηπρώτηεργασίακαιn 2 τρόποι να γίνει η δεύτερη εργασία μετά την εκτέλεση της πρώτης εργασίας, τότε υπάρχουν n 1 n 2 τρόποι εκτέλεσης της διαδικασίας Ο κανόνας αθροίσματος Αν μια εργασία μπορεί να εκτελεστεί με n 1 τρόπους και μια δεύτερη εργασία με n 2 τρόπους και αν αυτές οι εργασίες δεν μπορούν να εκτελεστούν ταυτόχρονα, τότε υπάρχουν n 1 +n 2 τρόποι εκτέλεσης μιας από τις εργασίες αυτές

4 Κανόνας γινομένου 3 επιλογές 2 επιλογές Συνολικά: 3 x 2 = 6 επιλογές ντυσίματος

5 Κανόνας γινομένου: παράδειγμα 1 Τα καθίσματα σε ένα αμφιθέατρο πρόκειται να ονομαστούν με ένα γράμμα του λατινικού αλφαβήτου που θα ακολουθείται από έναν θετικό ακέραιο όχι μεγαλύτερο από το 100. Ποιο είναι το μεγαλύτερο πλήθος καθισμάτων που μπορούν να ονομαστούν με διαφορετικό τρόπο; Γράμμα Θετικός ακέραιος εκδοχές 100 εκδοχές Συνολικά: 26 * 100 = 2600 εκδοχές

6 Κανόνας γινομένου: παράδειγμα 2 Πόσεςδιαφορετικέςακολουθίεςbit με μήκος 7; Θέση 7 Θέση 6 Θέση 5 Θέση 4 Θέση 3 Θέση 2 Θέση 1 2 εκδοχές Συνολικά: 2*2*2*2*2*2*2 = 2 7 = 128 εκδοχές

7 Κανόνας γινομένου: παράδειγμα 3 Πόσες διαφορετικές πινακίδες αυτοκινήτων υπάρχουν αν κάθε πινακίδα περιέχει 3 (λατινικά) γράμματα ακολουθούμενα από 3 ψηφία (και δεν υπάρχουν απαγορευμένες ακολουθίες γραμμάτων); Γράμματα Αριθμοί 26 εκδοχές 10 εκδοχές Συνολικά: 26*26*26*10*10*10 = 26 3 *10 3 = εκδοχές

8 Κανόνας γινομένου: παράδειγμα 4 Πόσες συναρτήσεις υπάρχουν από σύνολο με m στοιχεία σε σύνολο με n στοιχεία; Πεδίο ορισμού με m στοιχεία Σύνολο τιμών με n στοιχεία Συνάρτηση: Σε κάθε ένα από τα στοιχεία του «πράσινου» συνόλου, πρέπει να αντιστοιχηθεί 1 στοιχείο του «πορτοκαλί» συνόλου Για κάθε ένα από τα m στοιχεία του «πράσινου» συνόλου υπάρχουν n πιθανές εικόνες Συνολικά: n*n* *n (m φορές) = n m εκδοχές

9 Κανόνας γινομένου: παράδειγμα 4* Πόσες συναρτήσεις υπάρχουν από σύνολο με 3 στοιχεία σε σύνολο με 5 στοιχεία; Πεδίο ορισμού με 3 στοιχεία Σύνολο τιμών με 5 στοιχεία Συνάρτηση: Σε κάθε ένα από τα στοιχεία του «πράσινου» συνόλου, πρέπει να αντιστοιχηθεί 1 στοιχείο του «πορτοκαλί» συνόλου Για κάθε ένα από τα 3 στοιχεία του «πράσινου» συνόλου υπάρχουν 5 πιθανές εικόνες Συνολικά: 5*5*5 = 5 3 = 125 εκδοχές

10 Κανόνας γινομένου: παράδειγμα 5 Πόσες συναρτήσεις ένα προς ένα υπάρχουν από σύνολο με m στοιχεία σε σύνολο με n στοιχεία; Πεδίο ορισμού με m στοιχεία Σύνολο τιμών με n στοιχεία Συνάρτηση ένα-προς-ένα: Σε κάθε ένα από τα στοιχεία του «πράσινου» συνόλου, πρέπει να αντιστοιχηθεί 1 μοναδικό στοιχείο του «πορτοκαλί» συνόλου Αν τα στοιχεία του «πράσινου» συνόλου > στοιχεία του «πορτοκαλί» συνόλου δε μπορεί να οριστεί συνάρτηση ένα-προς-ένα από το «πράσινο» στο «πορτοκαλί» σύνολο Διαφορετικά, γιατοπρώτοαπόταm στοιχεία υπάρχουν n εκδοχές, για το δεύτερο από τα m στοιχεία υπάρχουν n-1 εκδοχές,, για το m-στό στοιχείο υπάρχουν n-m+1 εκδοχές Συνολικά: n*(n-1)*(n-2) *(n-m+1) εκδοχές

11 Κανόνας γινομένου: παράδειγμα 5* Πόσες συναρτήσεις ένα προς ένα υπάρχουν από σύνολο με 3 στοιχεία σε σύνολο με 5 στοιχεία; Πεδίο ορισμού με 3 στοιχεία Σύνολο τιμών με 5 στοιχεία Συνάρτηση ένα-προς-ένα: Σε κάθε ένα από τα στοιχεία του «πράσινου» συνόλου, πρέπει να αντιστοιχηθεί 1 μοναδικό στοιχείο του «πορτοκαλί» συνόλου Tα στοιχεία του «πράσινου» συνόλου < στοιχεία του «πορτοκαλί» συνόλου μπορεί να οριστεί συνάρτηση ένα-προς-ένα από το «πράσινο» στο «πορτοκαλί» σύνολο Για το πρώτο από τα 3 στοιχεία υπάρχουν 5 εκδοχές, για το δεύτερο από τα 3 στοιχεία υπάρχουν 4 εκδοχές, γιατοτρίτοαπότα3 στοιχεία υπάρχουν 3 εκδοχές Συνολικά: 5*4*3 = 60 εκδοχές

12 Κανόνας γινομένου: παράδειγμα 6 Υποθέστε ότι η μορφή των τηλεφωνικών αριθμών καθορίζεται από ένα σχέδιο αριθμοδότησης. Ο τηλεφωνικός αριθμός αποτελείται από 10 ψηφία που χωρίζονται σε: Κωδικό Περιοχής με 3 ψηφία Κωδικό Κομβικού Τηλεφωνικού Κέντρου με 3 ψηφία Αριθμό Τερματικού Τηλεφωνικού Κέντρου με 4 ψηφία Επιπλέον, υπάρχουν οι εξής περιορισμοί: Χ: συμβολίζει ψηφίο που μπορεί να πάρει οποιαδήποτε από τις τιμές 0 έως 9 Ν: συμβολίζει ψηφίο που μπορεί να πάρει οποιαδήποτε από τις τιμές 2 έως 9 Υ: συμβολίζει ψηφίο που μπορεί να είναι 0 ή 1 Εξετάζουμε 2 σχέδια αριθμοδότησης Σχέδιο 1: Οι τηλεφωνικοί αριθμοί έχουν τη μορφή ΝΥΧ ΝΝΧ ΧΧΧΧ Σχέδιο 2: Οι τηλεφωνικοί αριθμοί έχουν τη μορφή ΝΧΧ ΝΧΧ ΧΧΧΧ Πόσοιτηλεφωνικοίαριθμοίείναιδυνατοίμεκάθεσχέδιο; Σχέδιο 1: ΝΥΧ ΝΝΧ ΧΧΧΧ : 8*2*10*8*8*10*10*10*10*10 = 160*640* = Σχέδιο 2: ΝΧΧ ΝΧΧ ΧΧΧΧ : 8*10*10*8*10*10*10*10*10*10 = 800*800* =

13 Κανόνας γινομένου: παράδειγμα 7 Με χρήση του κανόνα γινομένου, δείξτε ότι το πλήθος διαφορετικών υποσυνόλων πεπερασμένου συνόλου S είναι 2 S αυθαίρετο υποσύνολο συνόλου S Σύνολο S Για κάθε στοιχείο του S υπάρχουν 2 εκδοχές: Να περιλαμβάνεται ή να μην περιλαμβάνεται σε κάθε υποσύνολο που φτιάχνουμε Συνολικά: 2*2* *2 ( S φορές) = 2 S εκδοχές

14 Κανόνας γινομένου: παράδειγμα 8 Υπάρχουν n γλυκά σε μια σακούλα, έξι από τα γλυκά είναι πορτοκαλί και τα υπόλοιπα είναι κίτρινα. Η Χάνα πήρε ένα γλυκό από τη σακούλα και το έφαγε, μετά πήρε ένα ακόμα γλυκό. Η πιθανότητα η Χάνα να έφαγε δυο πορτοκαλί γλυκά είναι 1/3. Αποδείξτε το n² n 90=0. 1/3 = 6/n * 5/(n 1) 1/3 = 30 / n(n 1) n(n 1)/3 = 30 n(n 1) = 90 n² n = 90 n² n 90 = 0

15 Κανόνας αθροίσματος 3 επιλογές 2 επιλογές Συνολικά: = 5 επιλογές ρούχου

16 Κανόνας αθροίσματος: παράδειγμα 1 Υποθέστε ότι επιλέγεται είτε ένα μέλος ΔΕΠ είτε ένας τελειόφοιτος φοιτητής ενός Τμήματος για να εκπροσωπηθεί το Τμήμα σε Επιτροπή. Πόσες επιλογές υπάρχουν για τον εκπρόσωπο αυτόν όταν υπάρχουν 37 μέλη ΔΕΠ και 83 τελειόφοιτοι φοιτητές στο Τμήμα; Image source: k nevrok.dra.sch.gr,

17 Κανόνας αθροίσματος: παράδειγμα 2 Υποθέστε ότι πρέπει να επιλέξετε ένα project από ένας από 3 διαθέσιμους καταλόγους, Α, Β και Γ, καθένας από τους οποίους περιέχει 23, 15 και 19 εργασίες, αντίστοιχα. Από πόσες εργασίες μπορείτε να επιλέξετε συνολικά; 23 εργασίες 15 εργασίες 19 εργασίες Συνολικά: = 57 εκδοχές Image source:

18 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 1 Σε μία βιβλιοθήκη, οι διαθέσιμες αίθουσες λαμβάνουν ετικέτες που είναι συμβολοσειρές με έναν ή δύο αλφαριθμητικούς χαρακτήρες Αλφαριθμητικοί χαρακτήρες: τα 26 γράμματα του λατινικού αλφαβήτου (κεφαλαία και μικρά θεωρούνται ίδια) και τα 10 ψηφία Κάθε συμβολοσειρά ετικέτας πρέπει να ξεκινάει με γράμμα Κάθε συμβολοσειρά ετικέτας για τις αίθουσες πρέπει να είναι διαφορετική από 5 συγκεκριμένες ετικέτες των 2 χαρακτήρων που έχουν αποδοθεί σε γραφεία διοίκησης Πόσες διαφορετικές ετικέτες υπάρχουν διαθέσιμες; 26 * 36 = 936 διαφορετικές εκδοχές 26 διαφορετικές εκδοχές 5 ετικέτες είναι δεσμευμένες Συνολικά: = 957 εκδοχές

19 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 2 Κάθε χρήστης ενός υπολογιστικού συστήματος έχει ένα password με μήκος από 6 έως 8 χαρακτήρες όπου κάθε χαρακτήρας είναι κεφαλαίο γράμμα του λατινικού αλφαβήτου ή ψηφίο καιπρέπειναπεριέχειτουλάχιστον1 ψηφίο Πόσα δυνατά passwords υπάρχουν; πρέπει να περιέχει τουλάχιστον 1 ψηφίο αποκλείονται λέξεις που έχουν μόνο γράμματα passwords με 6 χαρακτήρες: 36*36*36*36*36*36=36 6 passwords με 6 χαρακτήρες που περιέχουν μόνο γράμματα: 26*26*26*26*26*26=26 6 passwords με 6 χαρακτήρες που περιέχουν τουλάχιστον 1 ψηφίο: Κατ αναλογία: passwords με 7 που περιέχουν τουλάχιστον 1 ψηφίο: passwords με 8 που περιέχουν τουλάχιστον 1 ψηφίο: Συνολικά: = εκδοχές

20 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 3 Πόσοιακέραιοιυπάρχουνμεταξύτου100 και του 199 οι οποίοι έχουν διαφορετικά ψηφία; Πόσοι από αυτούς τους ακεραίους είναι περιττοί; Οι ζητούμενοι αριθμοί αποτελούνται από 3 θέσεις στις οποίες το πρώτο ψηφίο είναι 1 και τα άλλα 2 προκύπτουν από τις διατάξεις 2 ψηφίων από τα 9 διαθέσιμα (δε συμπεριλαμβάνουμε το ψηφίο 1 που έχει ήδη χρησιμοποιηθεί): P(9,2)=9*8=72 Οι περιττοί αριθμοί θα καταλήγουν σε 3,5,7,9 (αφού έχουν διαφορετικά ψηφία και το 1 αποκλείεται) Για κάθε μία από αυτές τις επιλογές υπάρχουν 8 επιλογές για το μεσαίο ψηφίο Επομένως, συνολικά υπάρχουν 4*8=32 περιττοί ακέραιοι με διαφορετικά ψηφία μεταξύ 100 και 199

21 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 4 Πόσους περιττούς ακέραιους μπορούμε να σχηματίσουμε με τα ψηφία 1,2,3,4,5 οι οποίοι έχουν 4 ψηφία και τα ψηφία αυτά είναι διαφορετικά μεταξύ τους; Οι ζητούμενοι 4 ψήφιοι ακέραιοι πρέπει να έχουν 1 ή 3 ή 5 στη δεξιότερη θέση 4 ψήφιοι με 1 στη δεξιότερη θέση: 4*3*2=24 4 ψήφιοι με 3 στη δεξιότερη θέση: 4*3*2=24 4 ψήφιοι με 5 στη δεξιότερη θέση: 4*3*2=24 Επομένως, συνολικά 3*24=72 αριθμοί

22 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 5 Πόσοι πενταψήφιοι ακέραιοι υπάρχουν οι οποίοι να είναι μεγαλύτεροι του και να έχουν ταυτόχρονα τις εξής ιδιότητες: (α) τα ψηφία τους να είναι διαφορετικά και (β) να μην περιέχουν να ψηφία 0 και 9; Αριθμοί που ξεκινάμε από 53 και ακολουθούν 3 ψηφία που δεν μπορούν να είναι 0 και 9, ούτε 5 και 3 και πρέπει να είναι και διαφορετικά μεταξύ τους: 6*5*4=120 Αριθμοί που ξεκινάνε από 5 και ακολουθούν 4 ψηφία που δεν μπορούν να είναι 0 και 9, ούτε 5, πρέπει να είναι και διαφορετικά μεταξύ τους και τα ψηφία της αριστερότερης θέσης πρέπει να είναι μεγαλύτερα του 3: 4*6*5*4=480 5 ψήφιοι αριθμοί που στην αριστερότερη θέση έχουν ψηφίο μεγαλύτερο του 5 και όχι 0 ή 9, στην επόμενη θέση όχι ό,τι στην προηγούμενη ούτε 0 ή 9, στην επόμενη θέση όχι ό,τι στις στις δύο προηγούμενες ούτε 0 ή 9, κ.ο.κ.: 3*7*6*5*4=2520 Επομένως, συνολικά =3120 αριθμοί

23 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 6 Τα γράμματα Α,Β,Γ,Δ χρησιμοποιούνται για να σχηματιστούν λέξεις μήκους 3. (α) Πόσες λέξεις περιέχουν το γράμμα Α επιτρεπομένων επαναλήψεων; (β) Πόσες λέξεις αρχίζουν με Α επιτρεπομένων επαναλήψεων; (α) Όλες οι πιθανές λέξεις με 3 γράμματα από τα Α,Β,Γ,Δ είναι4 3. Αυτές που δεν περιέχουν κανένα Α είναι 3 3. Επομένως, οι ζητούμενες προκύπτουν από τη διαφορά τους: =64 27=37 λέξεις (β) Το αριστερότερο γράμμα είναι Α. Οπότε ζητάμε λέξεις 2 γραμμάτων που σχηματίζονται από τα 4 δοσμένα γράμματα: 4 2 =16 λέξεις

24 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 7 Πόσοι τετραψήφιοι αριθμοί του δεκαδικού συστήματος δεν έχουν δύο ψηφία ίδια; Για να είναι τετραψήφιος κάποιος αριθμός δεν πρέπει να έχει 0 στην αριστερότερη θέση, στην οποία μπορεί να βρίσκεται ένα από τα εναπομείναντα 9 ψηφία (1,,9) Άρα, το πλήθος των ζητούμενων αριθμών είναι: 9*9*8*7=4.536

25 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 8 Πόσες είναι οι λέξεις της μορφής ww R μήκους 10 με κεφαλαία γράμματα του ελληνικού αλφαβήτου χωρίς τόνους; Τα πέντε πρώτα γράμματα (w) καθορίζουν και τα πέντε επόμενα (w R : w reversed) Επομένως, ασχολούμαστε μόνο με τα πέντε πρώτα γράμματα και υπολογίζουμε με πόσους διαφορετικούς τρόπους μπορώ να συνθέσω πεντάδες Η επιλογή του κάθε γράμματος είναι ανεξάρτητη και καθένα μπορείναπάρει 24 διαφορετικές τιμές. Άρα, συνολικά μπορούμε να φτιάξουμε 24*24*24*24*24=24 5 διαφορετικές λέξεις των πέντε γραμμάτων (κανόνας γινομένου) Τόσες είναι και οι ζητούμενες λέξεις αφού τα πέντε πρώτα γράμματα καθορίζουν και τα πέντε επόμενα

26 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 9 Έχουμε 24 αριθμημένες (διαφορετικές) πράσινες μπάλες και 24 αριθμημένες κόκκινες μπάλες. Με πόσους διαφορετικούς τρόπους μπορούμε να διαλέξουμε μία πράσινη και μία κόκκινη μπάλα; Πράσινη μπάλα μπορούμε να διαλέξουμε με 24 τρόπους Κόκκινη μπάλα μπορούμε να διαλέξουμε με 24 τρόπους Για να συμβαίνουν και τα δύο μαζί υπάρχουν 24*24=576 διαφορετικοί τρόποι (κανόνας γινομένου)

27 Αρχή Εγκλεισμού Αποκλεισμού Όταν δύο εργασίες μπορούν να γίνουν ταυτόχρονα, ΔΕ μπορούμε να χρησιμοποιούμε τον κανόνα αθροίσματος για να απαριθμούμε τους τρόπους εκτέλεσης μιας από τις 2 εργασίες Πόσες συμβολοσειρές bit με μήκος 8 είτε αρχίζουν από 1 είτε τελειώνουν σε 00; Ενδιαφέρομαι για 8 bit συμβολοσειρές που αρχίζουν με 1: 2 7 που τελειώνουν σε 00: 2 6 που αρχίζουν με 1 και τελειώνουν σε 00: 2 5 ΠΡΟΣΕΧΩ ΝΑ ΜΗ ΔΙΠΛΟΜΕΤΡΑΩ Αυτές τις έχω μετρήσει 2 φορές από μία σε καθεμία από τις προηγούμενες κατηγορίες πρέπει να απομακρύνω τη μία φορά Συνολικά, οι ζητούμενες συμβολοσειρές είναι: = =160

28 Ασκήσεις (Ι) 18*325= =

29 Ασκήσεις (ΙΙ) έξι 6*7= =

30 Ασκήσεις (ΙΙΙ) 5*10 2 =500 3*9= =

31 Ασκήσεις (ΙV) (26-5) 8 21*20*19*18*17*16*15*14 5*26 7 5*8* *25*24*23*22*21*20*

32 έξι Ασκήσεις (V)

33 Ασκήσεις (VI) έξι a) 5! + 5! = 240

34 Ασκήσεις (VII) έξι b) Όλες οι δυνατές τοποθετήσεις 6 ατόμων: 6! Τοποθετήσεις στις οποίες γαμπρός και νύφη κάθονται δίπλα: 240 Η απάντηση είναι το αποτέλεσμα της αφαίρεσης: 6!-240=480

35 Ασκήσεις (VIII) έξι Καμία τοποθέτηση c) 1 εκδοχή για νύφη * 4! για τους υπόλοιπους 2 εκδοχές για νύφη * 4! για τους υπόλοιπους 3 εκδοχές για νύφη * 4! για τους υπόλοιπους εκδοχές 4 εκδοχές για νύφη * 4! για τους υπόλοιπους 5 εκδοχές για νύφη * 4! για τους υπόλοιπους

36 Αρχή Περιστεριώνα: ιδέα Αν υπάρχουν περισσότερα περιστέρια (k+1) από φωλιές (k), τότε υπάρχει τουλάχιστον μία φωλιά με τουλάχιστον δύο περιστέρια Αν k+1 ή περισσότερα αντικείμενα τοποθετηθούν σε k κουτιά, τότε τουλάχιστον ένα κουτί θα περιέχει τουλάχιστον δύο αντικείμενα Ονομάζεται και Αρχή του Dirichlet (19 ος αιώνας) Image source:

37 Αρχή Περιστεριώνα: διατύπωση f όχι ένα-προς-ένα

38 Παράδειγμα 1 Σε οποιαδήποτε ομάδα με 367 ανθρώπους υπάρχουν τουλάχιστον 2 που έχουν γεννηθεί την ίδια μέρα οι 367 άνθρωποι f οι 366 δυνατές ημέρες γέννησης όχι ένα-προς-ένα

39 Παράδειγμα 2 Σε οποιαδήποτε ομάδα 27 λέξεων στα αγγλικά υπάρχουν τουλάχιστον 2 που αρχίζουν με το ίδιο γράμμα οι 27 αγγλικές λέξεις f τα 26 γράμματα του αγγλικού αλφαβήτου όχι ένα-προς-ένα

40 Παράδειγμα 3 Πόσοι φοιτητές θα πρέπει να υπάρχουν σε μία τάξη για να εξασφαλιστεί ότι τουλάχιστον 2 θα πάρουν τον ίδιο βαθμό στην τελική εξέταση, αν η βαθμολογία είναι από 0 έως 100; Χρειαζόμαστε τουλάχιστον 101+1=102 φοιτητές f οι 101 δυνατές βαθμολογίες όχι ένα-προς-ένα

41 Γενικευμένη Αρχή του Περιστεριώνα Αν Ν αντικείμενα τοποθετηθούν σε k κουτιά, τότε θα υπάρχει τουλάχιστον ένα κουτί που θα περιέχει τουλάχιστον αντικείμενα N k Ο συμβολισμός διαβάζεται «άνω ακέραιο μέρος» Σημαίνει ότι στρογγυλοποιώ έναν δεκαδικό αριθμό στον αμέσως μεγαλύτερό του ακέραιο Π.χ., άνω ακέραιο μέρος του 3,17 είναι το ο 4 άνω ακέραιο μέρος του 7,27 είναι το ο 8 Ισχύει άνω ακέραιο μέρος x x+1 Παράδειγμα: Μεταξύ 100 ατόμων υπάρχουν τουλάχιστον άνω ακέραιο μέρος του 100/12 = άνω ακέραιο μέρος του 8,39333 = 9 που γεννήθηκαν τον ίδιο μήνα

42 Γενικευμένη Αρχή του Περιστεριώνα: παράδειγμα 1 Ποιο είναι το ελάχιστο πλήθος φοιτητών που χρειάζεται να βρίσκονται στο μάθημα για να είναι σίγουρο ότι τουλάχιστον 6 από αυτούς θα λάβουν την ίδια βαθμολογία, αν υπάρχουν 5 δυνατές βαθμολογίες, οι Α, Β, C, D, F; Ουσιαστικά μας ζητείταιτο ελάχιστο πλήθος αντικειμένων, Ν, που πρέπει να τοποθετήσουμε σε 5 κουτιά ώστε τουλάχιστον 1 κουτί να περιέχει τουλάχιστον 6 αντικείμενα άνω ακέραιο μέρος Ν/5 Ν/5+1 6 Ν 25 Αν έχουμε 25 φοιτητές μπορεί ανά 5 να λάβουν μία από τις 5 δυνατές βαθμολογίες οπότε δεν εξασφαλίζεται το ζητούμενο Αν όμως έχουμε 26 φοιτητές τότε ισχύει ότι τουλάχιστον 6 από αυτούς θα λάβουν την ίδια βαθμολογία ΔΗΛ., μετά την επιλογή του 25 ου φοιτητή δεν υπάρχει τρόπος να αποφύγουμε 6 φοιτητέςμείδιαβαθμολογία

43 Γενικευμένη Αρχή του Περιστεριώνα: παράδειγμα 2 Πόσα χαρτιά πρέπει να επιλέξουμε από μια τράπουλα με 52 χαρτιά για να εξασφαλιστεί ότι θα επιλέξουμε 3 χαρτιά το ίδιου «χρώματος»; Ουσιαστικά μας ζητείται το ελάχιστο πλήθος αντικειμένων, Ν, που πρέπει να τοποθετήσουμε σε 4 κουτιά (τα χρώματα) ώστε τουλάχιστον 1 κουτί να περιέχει τουλάχιστον 3 αντικείμενα άνω ακέραιο μέρος Ν/4 Ν/4+1 3 Ν 8 Αν έχουμε 8 χαρτιά μπορεί ανά 2 να έχουν το ίδιο «χρώμα» οπότε δεν εξασφαλίζεται το ζητούμενο Αν όμως έχουμε 9 χαρτιά τότε ισχύει ότι τουλάχιστον 3 από αυτούς θα έχουν το ίδιο «χρώμα» ΔΗΛ., μετά την επιλογή του 8 ου χαρτιού δεν υπάρχει τρόπος να αποφύγουμε 3 χαρτιάτουίδιου «χρώματος»

44 Γενικευμένη Αρχή του Περιστεριώνα: παράδειγμα 3 Πόσα χαρτιά πρέπει να επιλέξουμε από μια τράπουλα με 52 χαρτιά για να εξασφαλιστεί ότι θα επιλέξουμε τουλάχιστον 3 «κούπες»; Μπορεί να είμαστε τόσο «άτυχοι» και να διαλέξουμε όλα τα υπόλοιπα χαρτιά πριν «πετύχουμε κούπα» Πόσαείναιταυπόλοιπαχαρτιά; 39 Άρα, αν επιλέξουμε τουλάχιστον 39+3=42 χαρτιά, σίγουρα θα έχουμε επιλέξει και 3 «κούπες»

45 Γενικευμένη Αρχή του Περιστεριώνα: παράδειγμα 4 Υποθέστε ότι σε μια ομάδα 6 ατόμων, κάθε ζεύγος ατόμων αποτελείται από 2 φίλους ή από 2 εχθρούς. Τότε, στηνομάδα υπάρχουνείτε 3 φίλοι μεταξύ τους είτε 3 εχθροί μεταξύ τους. Έστω Α αυθαίρετο από τα 6 άτομα Από τα υπόλοιπα 5 άτομα, υπάρχουν 3 ή περισσότερα που είναι φίλοι του Α, ή 3 ή περισσότερα που είναι εχθροί του Α ΓΙΑΤΙ; Τα 5 αντικείμενα (άτομα) τοποθετούνται σε 2 κουτιά (φίλοι / εχθροί του Α) τουλάχιστον 1 κουτί περιέχει τουλάχιστον άνω ακέραιο μέρος 5/2 = 3 αντικείμενα Αν το σύνολο με τα τουλάχιστον 3 αντικείμενα είναι φίλοι του Α Και τουλάχιστον 2 από αυτούς είναι φίλοι μεταξύ τους ΟΚ Αλλιώς, όλοι (3) είναι εχθροί μεταξύ τους ΟΚ Αν το σύνολο με τα τουλάχιστον 3 αντικείμενα είναι εχθροί του Α Και τουλάχιστον 2 από αυτούς είναι εχθροί μεταξύ τους ΟΚ Αλλιώς, όλοι (3) είναι φίλοι μεταξύ τους ΟΚ

46 ΟαριθμόςτουRamsey Συμβολίζεται με R(m,n) m,nθετικοί ακέραιοι μεγαλύτεροι ή ίσοι του 2 Συμβολίζει το ελάχιστο πλήθος ατόμων σε συγκέντρωση έτσι ώστε να υπάρχουν ή m φίλοι μεταξύ τους ή n εχθροί μεταξύ τους Με την υπόθεση ότι κάθε ζεύγος ατόμων στη συγκέντρωση είναι φίλοι ή εχθροί Image source: math.info

47 Ασκήσεις (Ι) 1. Σε οποιοδήποτε σύνολο 6 μαθημάτων, θα πρέπει να υπάρχουν 2 που πραγματοποιούνται την ίδια μέρα (δε γίνονται μαθήματα Σαββατοκύριακα) 3. Ένα συρτάρι περιέχει 12 καφέ και 12 μαύρες κάλτσες και κάποιος διαλέγει τυχαία κάλτσες στο σκοτάδι Πόσες κάλτσες πρέπει να πάρει για να έχει σίγουρα ζευγάρι του ίδιου χρώματος; 3 Πόσες τουλάχιστον κάλτσες πρέπει να πάρει για να έχει σίγουρα 2 μαύρες κάλτσες; 12+2=14 5. Σε οποιαδήποτε ομάδα 5 ακεραίων (όχι απαραίτητα διαδοχικών) υπάρχουν 2 μετοίδιουπόλοιποότανδιαιρούνταιμε4 9. Ποιο είναι το ελάχιστο πλήθος ατόμων (καθένα τους προέρχεται από τις 28 χώρες της ΕΕ) που φοιτούν σε πανεπιστήμιο για να εξασφαλιστεί ότι υπάρχουν τουλάχιστον 100 από την ίδια χώρα μέλος; άνω ακέραιο μέρος Ν/28=100 Ν 2773

48 Ασκήσεις (ΙΙ) 19. Υποθέστε ότι σε τάξη 25 φοιτητών κάθε άτομο είναι στο 3, στο 2, ή στο 1 έτος. Αποδείξτε ότι: στο μάθημα υπάρχουν τουλάχιστον 9 τριτοετείς, τουλάχιστον 9 δευτεροετείς, ή τουλάχιστον 9 πρωτοετείς φοιτητές Τοποθετώ 25 αντικείμενα (φοιτητές) σε 3 κουτιά (μαθήματα) οπότε τουλάχιστον 1 κουτί έχει τουλάχιστον άνω ακέραιο μέρος 25/3=9 αντικείμενα στο μάθημα υπάρχουν τουλάχιστον 3 τριτοετείς, τουλάχιστον 19 δευτεροετείς, ή τουλάχιστον 5 πρωτοετείς φοιτητές Αν δεν ισχύει η δήλωση, πρέπει να έχουμε το πολύ 2 τριτοετείς και το πολύ 18 δευτεροετείς και το πολύ 4 πρωτοετείς φοιτητές, δηλ., συνολικά το πολύ =24 φοιτητές Άτοπο!

49 Ασκήσεις (ΙΙΙ) 35. Υποθέστε ότι έχουμε 100 υπολογιστές και 20 εκτυπωτές. Ποιο είναι το ελάχιστο πλήθος καλωδίων που χρειάζονται για να υπάρχει απευθείας σύνδεση 20 υπολογιστών σε διαφορετικούς εκτυπωτές; 1620 καλώδια είναι αρκετά. ΓΙΑΤΙ; Δίνουμε ετικέτες στους υπολογιστές: Υ1, Υ2, Υ100 Δίνουμε ετικέτες στους εκτυπωτές: Ε1, Ε2, Ε20 20 καλώδια για να συνδέσουμε τον υπολογιστή Υ1 με τον εκτυπωτή Ε1, τον υπολογιστή Υ2 με τον εκτυπωτή Ε2, τον υπολογιστή Υ20 με τον εκτυπωτή Υ20 Τους υπόλοιπους 80 υπολογιστές τους συνδέουμε με όλους τους εκτυπωτές, δηλ., άλλα 80*20=1600 καλώδια Μπορούμε να κάνουμε το ίδιο με λιγότερα από 1620 καλώδια; Ας δούμε αν μπορούμε με =1619 καλώδια Τοποθετούμε 1619 αντικείμενα σε 20 κουτιά Κάθεκουτίλαμβάνεικατάμέσοόρο 80,95 < 81 καλώδια Υπάρχει εκτυπωτής που συνδέεται με λιγότερους από 81 υπολογιστές δηλ., συνδέεται με 80 ή λιγότερους εκτυπωτές υπάρχουν 20 υπολογιστές που δε συνδέονται στον εκτυπωτή αυτόν Αν αυτοί οι 20 υπολογιστές χρειαστεί να τυπώσουν ταυτόχρονα αυτό ΔΕΝ είναι εφικτό αφού συνδέονται μόνο σε 19 εκτυπωτές

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: μεταθέσεις και συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Συνδυαστική

Διακριτά Μαθηματικά Συνδυαστική Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 7 Αυγούστου 2012 Η είναι ένα κομμάτι των Μαθηματικών που επικεντρώνεται στη "μέτρηση" του πλήθους των αντικειμένων ενός συνόλου. Η ασχολείται

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr Διακριτά Μαθηματικά Εύη Παπαϊωάννου papaioan@ceid.upatras.gr papaioan@upatras.gr https://www.ceid.upatras.gr/webpages/faculty/papaioan/dchmnt/2014-2015/dm/index.html Πότε και πού; Παρασκευή, 15.00 18.00,

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Το κύριο αντικείμενο της Συνδυαστικής Οι τεχνικές υπολογισμού του πλήθους των στοιχείων πεπερασμένων συνόλων ή υποσυνό-

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις διάγραμμα. f : A B, : g B C και h: C D που ορίζονται στο παρακάτω Υπολογίστε την συνάρτηση h

Διαβάστε περισσότερα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα HY118- ιακριτά Μαθηµατικά Τρίτη, 21/04/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/21/2015

Διαβάστε περισσότερα

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ ΜΕΡΟΣ Α 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ 69 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ Πείραμα τύχης- Δειγματικός χώρος Ένα πείραμα το οποίο όσες φορές και αν το επαναλάβουμε, δεν μπορούμε να προβλέψουμε το αποτέλεσμα

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 3.2 : Απαρίθμηση Συνδυαστική (ΙΙ). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I ΟΔΗΓΙΕΣ Να μην αντιγράψετε τα θέματα στην κόλα σας. Να γράψετε το ονοματεπώνυμό σας και τον αριθμό μητρώου σας (ΑΜ) στα θέματα και σε κάθε κόλα που θα χρησιμοποιήσετε. Τα θέματα

Διαβάστε περισσότερα

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ 7/10/010 ΑΡΧΗ ΤΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΝ ένα αντιείμενο A1 μπορεί να επιλεγεί με k1 αι ένα αντιείμενο A μπορεί να επιλεγεί με k αι η ελογή του ενός απολείει την ταυτόχρονη ελογή του άλλου, ΤΟΤΕ ένα οποιοδήποτε

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις 1 ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ 1 Συνδυαστική ανάλυση Η συνδυαστική ανάλυση είναι οι διάφοροι μέθοδοι και τύποι που χρησιμοποιούνται στη λύση προβλημάτων εκτίμησης του πλήθους των στοιχείων ενός πεπερασμένου συνόλου

Διαβάστε περισσότερα

Μαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Α'Γυμνασίου Μαρίνος Παπαδόπουλος ΚΕΦΑΛΑΙΟ 1: ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. ιάταξη φυσικών αριθµών 2. Στρογγυλοποίηση 3. Πρόσθεση-Αφαίρεση-Πολλαπλασιασµός 4. υνάµεις 5. Ευκλείδεια ιαίρεση 6. ιαιρετότητα-μκ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Μοντελοποίηση Υπολογισμού Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Προβλήματα - Υπολογιστές Δεδομένου ενός προβλήματος υπάρχουν 2 σημαντικά ερωτήματα: Μπορεί να επιλυθεί με χρήση υπολογιστή;

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Οργανωτικά Ζητήματα Επικοινωνία: Επίλυση αποριών, οδηγίες,..., και λοιπά

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Πάνω στον πίνακα έχουµε γραµµένο το γινόµενο 1 2 3 4 595. ύο παίκτες Α και Β παίζουν το εξής παιχνίδι. Ο ένας µετά τον άλλο, διαγράφουν από έναν παράγοντα του γινοµένου αρχίζοντας από τον παίκτη Α. Νικητής

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

2 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C

2 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2015-2016 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 20 ΟΚΤ 2015

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 8: Πιθανότητες ΙΙ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ ΑΣΚΗΣΕΙΣ Ακολουθίας Η δοµή Ακολουθίας είναι η πιο απλή δοµή του δοµηµένου προγραµµατισµού. Η κάθε εντολή ακολουθεί κάποια άλλη. Οι εντολές εκτελούνται ακριβώς µε τη σειρά όπως θα δοθούν στον αλγόριθµο

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888

Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888 ΕΡΩΤΗΣΕΙΣ 1. Να αναφέρετε μερικά από τα ιδιαίτερα χαρακτηριστικά της Pascal. 2. Ποιο είναι το αλφάβητο της Pascal; 3. Ποια είναι τα ονόματα-ταυτότητες και σε τι χρησιμεύουν; 4. Σε τι χρησιμεύει το συντακτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Οδηγός των νέων δελτίων

Οδηγός των νέων δελτίων Οδηγός των νέων δελτίων 4-7 Νέα εποχή Η ΟΠΑΠ Α.Ε. στο πλαίσιο της δυναμικής της ανάπτυξης, προχωρά στην αναμόρφωση και ανανέωση των παιχνιδιών της. Με ακόμη πιο λειτουργικό σχεδιασμό, μοντέρνα εμφάνιση

Διαβάστε περισσότερα

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ Συχνότητα Σχετική συχνότητα Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται va φορές,τότε va ο αριθμός va λέγεται συχνότητα του ενδεχομένου

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

Σήματα τροχαίας. 1. Τα παρακάτω είναι σήματα της τροχαίας. Ποια αναγνωρίζετε; Προσπαθήστε να ΚΕΙΜΕΝΟ 1

Σήματα τροχαίας. 1. Τα παρακάτω είναι σήματα της τροχαίας. Ποια αναγνωρίζετε; Προσπαθήστε να ΚΕΙΜΕΝΟ 1 ΚΕΙΜΕΝΟ 1 Σήματα τροχαίας 1. Τα παρακάτω είναι σήματα της τροχαίας. Ποια αναγνωρίζετε; Προσπαθήστε να βρείτε τι σημαίνουν τα χρώματα: το κόκκινο, το πράσινο, το μπλε, το κίτρινο. Συζητήστε στην τάξη για

Διαβάστε περισσότερα

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55 ΑΝΑ ΡΟΜΗ- ΑΣΚΗΣΕΙΣ Μια µέθοδος είναι αναδροµική όταν καλεί τον εαυτό της και έχει µια συνθήκη τερµατισµού π.χ. το παραγοντικό ενός αριθµού Ν, µπορεί να καλεί το παραγοντικό του αριθµού Ν-1 το παραγοντικό

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ). Υπενθυμίσεις Παραδείγματα Ασκήσεις Μελέτη 31 Οκτωβρίου 2014 Πιθανότητες και Στατιστική Διάλεξη 7 Ασκήσεις ΙΙ Δεσμευμένη πιθανότητα, Συνδυαστικά επιχειρήματα Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Σύνολο χαρακτήρων της Pascal Για

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Ακολουθιακή ομή

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Ακολουθιακή ομή ΑΔ.1 Να αναπτυχθεί αλγόριθμος που θα διαβάζει την ημερομηνία γέννησης (ημέρα, μήνας, χρόνος) καθώς και την τρέχουσα ημερομηνία,και θα υπολογίζει την ηλικία του. Για να λύσουμε την άσκηση θα υπολογίσουμε

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ 4ο Λύκειο Περιστερίου Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν ααννάά εεννόόττηητταα ΑΛΓΕΒΡΑ

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Επανάληψης 1 1. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός.

ΑΣΚΗΣΕΙΣ Επανάληψης 1 1. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. ΑΣΚΗΣΕΙΣ Επανάληψης 1 1. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Να βρεθεί ποιος ήταν ο μεγαλύτερος αριθμός από αυτούς που δόθηκαν.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1.1 Απαρίθμηση και καταγραφή 1.2 Η αρχή του αθροίσματος 1.3 Η πολλαπλασιαστική αρχή 1.4 Άλλοι κανόνες απαρίθμησης 1.5 Πιθανότητες σε πεπερασμένους δειγματικούς χώρους 1.6 Γενικές

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 Τμήμα θεωρίας: Α.Μ. 8, 9 Κάθε Πέμπτη, 11πμ-2μμ, ΑΜΦ23. Διδάσκων: Ντίνος Φερεντίνος Γραφείο 118 email: kpf3@cornell.edu Μάθημα: Θεωρία + προαιρετικό

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι :

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι : ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 010 Χρόνος: 60 λεπτά Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Η τιμή της αριθμητικής παράστασης Α = 010 009 + 008 007 + 006 005 +...+ 4 3 + 1 είναι

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

6η Δραστηριότητα. Ναυμαχία Αλγόριθμοι αναζήτησης. Περίληψη. Αντιστοιχία με το σχολικό πρόγραμμα * Ικανότητες. Ηλικία. Υλικά

6η Δραστηριότητα. Ναυμαχία Αλγόριθμοι αναζήτησης. Περίληψη. Αντιστοιχία με το σχολικό πρόγραμμα * Ικανότητες. Ηλικία. Υλικά 6η Δραστηριότητα Ναυμαχία Αλγόριθμοι αναζήτησης Περίληψη Συχνά ζητάμε από τους υπολογιστές να ψάξουν πληροφορίες στο εσωτερικό μεγάλων αρχείων δεδομένων. Για να το καταφέρουν, απαιτούνται ταχείες και αποτελεσματικές

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μαθηματική Επαγωγή ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις: ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ Στέλιιος Μιιχαήλογλου-Δημήτρης Πατσιιμάς Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν

Διαβάστε περισσότερα

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός

Διαβάστε περισσότερα

Μέση τιμή - Διάμεσος

Μέση τιμή - Διάμεσος Μέσ τιμή - Διάμεσος Ονομάζεται μέσ τιμή μιας μεταβλτής x και συμβολίζεται x το πλίκο του αθροίσματος όλων των τιμών τς μεταβλτής δια του πλήθους τους. Δλαδή: Όταν έχουμε ένα δείγμα μεγέθους ν με τιμές

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. 8. * Αν Ω είναι ο δειγµατικός χώρος ενός πειράµατος τύχης,

ΠΙΘΑΝΟΤΗΤΕΣ. 8. * Αν Ω είναι ο δειγµατικός χώρος ενός πειράµατος τύχης, 3ο Κεφάλαιο ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν Ω είναι δειγµατικός χώρος ενός πειράµατος τύχης, τότε Ρ (Ω) = 1. 2. * Αν Α είναι ενδεχόµενο ενός πειράµατος τύχης τότε, 0 Ρ (Α) 1. 3. *

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές

Διαβάστε περισσότερα

ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑ Ρ Μ Α ΜΑΤΙ Τ ΣΜΟΣ

ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑ Ρ Μ Α ΜΑΤΙ Τ ΣΜΟΣ Τμήμα Εφαρμοσμένης Πληροφορικής ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εξάμηνο Α' Φύλλο Ασκήσεων 3 ΔΟΜΕΣ ΕΠAΝΑΛΗΨΗΣ Διδάσκοντες: Μάγια Σατρατζέμη, Αλέξανδρος Χατζηγεωργίου, Ηλίας Σακελλαρίου, Στέλιος Ξυνόγαλος

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο Α. Να αναπτύξετε τις παρακάτω ερωτήσεις: 1. Τι καλείται βρόγχος; 2. Σε ποιες κατηγορίες διακρίνονται τα προβλήματα ανάλογα με

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 4ο Συνδυασμοί 2 2.3 ΣΥΝΔΥΑΣΜΟΙ Έστω Χ= {x 1, x 2,..., x ν } ένα πεπερασμένο σύνολο με ν στοιχεία x 1, x 2,...,

Διαβάστε περισσότερα

Σημείωση:Αν οι συντελεστές είναι 0,9 και 0,4 αντικαθιστουν τους 1,4 και 0,7.

Σημείωση:Αν οι συντελεστές είναι 0,9 και 0,4 αντικαθιστουν τους 1,4 και 0,7. Ο τρόπος υπολογισμού των μορίων 1. Ο υπολογισμός του συνολικού αριθμού μορίων κάθε υποψηφίου για εισαγωγή στις Σχολές, τα Τμήματα και τις Εισαγωγικές Κατευθύνσεις Τμημάτων που είναι ενταγμένα σε Επιστημονικά

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ασκήσεις σχολικού βιβλίου σελίδας 9-3 A Oμάδας.i) Να βρείτε το ν-οστό όρο της αριθμητικής προόδου 7, 0, 3,... = + (ν ) ω = 7 + (ν ) 3 = 7 + 3ν 3 = 3ν + 4.ii) Να βρείτε το ν-οστό όρο

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα