Εισαγωγή στο Γραμμικό Προγραμματισμό

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στο Γραμμικό Προγραμματισμό"

Transcript

1 Τμήμα Μηχανικών Πληροφορικής ΤΕ Εισαγωγή στο Γραμμικό Προγραμματισμό Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 15/10/2016 1

2 Παραδείγματα Που στοχεύει ο Γραμμικός Προγραμματισμός; O Γραμμικός Προγραμματισμός (Linear Programming) στοχεύει στην αποδοτική διαχείριση των διαθέσιμων πόρων έτσι ώστε να επιτευχθεί το πλέον θετικό αποτέλεσμα για την επιχείρηση ή τον οργανισμό Αυτό μπορεί να σημαίνει αύξηση κέρδους, μείωση κόστους, βελτίωση ποιότητας προϊόντων και υπηρεσιών κ.λπ. Καθορισμός ποσοτήτων παραγωγής προϊόντων μιας βιομηχανίας επιζητείται το μέγιστο κέρδος Καθορισμός προγράμματος διανομής προϊόντων σε πελάτες με χρήση των μεταφορικών μέσων της επιχείρησης στόχος μπορεί να είναι η ελαχιστοποίηση του κόστους μεταφοράς Κατανομή διαφημιστικής δαπάνης σε διάφορα μέσα (τηλεόραση, ραδιόφωνο, περιοδικά, internet κ.α.) επιζητείται η μέγιστη απόδοση της διαφήμισης Κατανομή κεφαλαίου σε εναλλακτικές επενδύσεις στόχοι μπορεί να είναι το μέγιστο κέρδος ή η ελαχιστοποίηση του επενδυτικού ρίσκου 2

3 Παράδειγμα 1: ένα πρόβλημα παραγωγής Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει τραπέζια και καρέκλες. Τόσο τα τραπέζια όσο και οι καρέκλες απαιτούν εργασία στα τρία τμήματα της επιχείρησης: το ξυλουργείο, το βαφείο και το στιλβωτήριο. Ειδικότερα, η κατασκευή ενός τραπεζιού απαιτεί 8 ώρες στο ξυλουργείο, 4 ώρες στο βαφείο και 4 ώρες στο στιλβωτήριο. Αντίστοιχα η κατασκευή κάθε καρέκλας απαιτεί 8 στο ξυλουργείο, 2 στο βαφείο και 3 στο στιλβωτήριο. Οι διαθέσιμες ώρες εργασίας για την επόμενη περίοδο παραγωγής είναι 960 στο ξυλουργείο, 400 στο βαφείο και 420 στο στιλβωτήριο. Το κέρδος της επιχείρησης από την πώληση κάθε τραπεζιού είναι 140 ευρώ ενώ για κάθε καρέκλα το κέρδος είναι 100 ευρώ. Ποια θα πρέπει να είναι η παραγωγή σε τραπέζια και καρέκλες για την επόμενη περίοδο; 3

4 Βήματα κατάστρωσης μοντέλου Γραμμικού Προγραμματισμού Προσδιορισμός μεταβλητών απόφασης Προσδιορισμός αντικειμενικής συνάρτησης Προσδιορισμός περιορισμών 4

5 Οι μεταβλητές απόφασης Οι μεταβλητές απόφασης είναι μεγέθη που ο λήπτης αποφάσεων είναι σε θέση να προσδιορίσει Πρακτικοί κανόνες για τον εντοπισμό των μεταβλητών απόφασης: Το αποτέλεσμα μπορεί να υπολογιστεί γνωρίζοντας τις τιμές των μεταβλητών απόφασης Αντιπροσωπεύουν μεγέθη τις τιμές των οποίων μπορεί να προσδιορίσει ο λήπτης αποφάσεων Για το πρόβλημα της ΕΠΙΠΛΟΞΥΛ οι μεταβλητές απόφασης είναι ο αριθμός από τα τραπέζια x1 και ο αριθμός από καρέκλες x2 5

6 Η αντικειμενική συνάρτηση Η αντικειμενική συνάρτηση είναι η σχέση που συνδέει τις μεταβλητές του προβλήματος με το αποτέλεσμα για το οποίο επιζητούμε τη βελτιστοποίηση για το πρόβλημα της ΕΠΙΠΛΟΞΥΛ η αντικειμενική συνάρτηση είναι 140x x2 6

7 Οι περιορισμοί Οι περιορισμοί αποτυπώνουν τους περιορισμούς πόρων που υπάρχουν στο πρόβλημα Οι περιορισμοί καταγράφονται με την μορφή ανισοτήτων ή ισοτήτων Ένας πρακτικός κανόνας είναι ότι θα πρέπει να μπορούμε να περιγράψουμε λεκτικά τι αντιπροσωπεύει το αριστερό και τι το δεξί μέρος της κάθε ανισότητας Για το πρόβλημα της ΕΠΙΠΛΟΞΥΛ οι περιορισμοί είναι τρεις: Περιορισμός Ξυλουργείου 8x1 + 8x2 960 Περιορισμός Βαφείου 4x1 + 2x2 400 Περιορισμός Στιλβωτηρίου 4x1 + 3x

8 Μαθηματικό μοντέλο προβλήματος παραγωγής x1: αριθμός από τραπέζια που θα παραχθούν x2: αριθμός από καρέκλες που θα παραχθούν Περιορισμός ξυλουργείου Περιορισμός βαφείου Περιορισμός στιλβωτηρίου 8

9 Ανάλυση ευαισθησίας Ένα σημαντικό πλεονέκτημα του Γραμμικού Προγραμματισμού είναι ότι μπορεί να υποστηρίξει τη διαδικασία λήψης αποφάσεων παρέχοντας επιπλέον πληροφορίες για την οικονομική ανάλυση του προβλήματος (ανάλυση ευαισθησίας) Εφόσον το πρόβλημα έχει λυθεί η ανάλυση ευαισθησίας μπορεί να δώσει απαντήσεις σε ερωτήσεις της μορφής: Πως θα επηρεαστεί η λύση αν μεταβληθεί ο αριθμός των διαθέσιμων ωρών στο ξυλουργείο, στο βαφείο ή στο στιλβωτήριο; 9

10 Γραμμικές σχέσεις Μια σχέση ανάμεσα σε δύο μεγέθη είναι γραμμική όταν μια αλλαγή σε ένα μέγεθος προκαλεί ανάλογη αλλαγή στο άλλο μέγεθος Για παράδειγμα η σχέση y = 3x + 2 είναι γραμμική καθώς αύξηση 1 μονάδας στο x προκαλεί πάντα αύξηση 3 μονάδων στο y άσχετα με την αρχική τιμή του x Μια γραμμική σχέση όταν απεικονίζεται γραφικά είναι μια ευθεία γραμμή Μια γραμμική σχέση αναπαρίσταται μαθηματικά ως y = mx + b όπου το m ονομάζεται κλίση (slope) και το b σημείο τομής (intercept) κλίση= Δy Δx σημείο τομής 10

11 Προϋποθέσεις εφαρμογής Γραμμικού Προγραμματισμού Οι προϋποθέσεις που πρέπει να ισχύουν για να διατυπωθεί ένα πρόβλημα Γραμμικού Προγραμματισμού είναι: Γραμμικότητα (αναλογικότητα, προσθετικότητα) Διαιρετότητα Βεβαιότητα 11

12 Γραμμικότητα (linearity) Όλες οι συναρτήσεις του προβλήματος πρέπει να είναι γραμμικές ως προς τις άγνωστες μεταβλητές Σε κάποιες περιπτώσεις μπορεί να μην ισχύει απόλυτα η προϋπόθεση της γραμμικότητας αλλά οι γραμμικές συναρτήσεις να αποτελούν μια αρκετά καλή προσέγγιση της πραγματικότητας Αναλογικότητα (proportionality): η χρήση των πόρων και το κέρδος είναι ποσά ανάλογα με τις ποσότητες των μεταβλητών Προσθετικότητα (additivity): το κέρδος από τις επιμέρους μεταβλητές πρέπει να είναι ίσο με το άθροισμα των επί μέρους κερδών f(x 1, x 2,, x n ) = f(x 1 ) + f(x 2 ) + + f(x n ) 12

13 Διαιρετότητα (divisibility) Κάθε μεταβλητή θα πρέπει να είναι συνεχής και κατά συνέπεια άπειρα διαιρετή Άρα οι δραστηριότητες που αναπαρίστανται από τις μεταβλητές θα πρέπει να μπορούν να λαμβάνουν και δεκαδικές τιμές Αν δεν ισχύει η προϋπόθεση της διαιρετότητας τότε: είτε αγνοείται η υπόθεση της διαιρετότητας και οι τιμές στρογγυλοποιούνται στην κοντινότερη ακέραια μονάδα είτε χρησιμοποιούνται τεχνικές ακέραιου προγραμματισμού 13

14 Βεβαιότητα (deterministic property) Κάθε παράμετρος του προβλήματος θα πρέπει να είναι γνωστή με απόλυτη βεβαιότητα Αν κάποιες από τις παραμέτρους είναι τυχαίες μεταβλητές τότε το πρόβλημα λέγεται ότι είναι πρόβλημα στοχαστικού προγραμματισμού (stochastic programming) και οι μεταβλητές του θεωρούνται ότι ακολουθούν κάποιες κατανομές πιθανοτήτων 14

15 Παράδειγμα 2: ένα πρόβλημα δίαιτας Μια δίαιτα καθορίζει ότι θα πρέπει να παρέχονται ημερήσια τουλάχιστον 300 θερμίδες, 36 μονάδες βιταμίνης Α και 90 μονάδες βιταμίνης C. Ένα ποτήρι του διαιτητικού ροφήματος Χ παρέχει 60 θερμίδες, 12 μονάδες βιταμίνης Α και 10 μονάδες βιταμίνης C και έχει κόστος 0,12 ευρώ. Ένα ποτήρι του διαιτητικού ροφήματος Y παρέχει 60 θερμίδες, 6 μονάδες βιταμίνης Α και 30 μονάδες βιταμίνης C και έχει κόστος 0,15 ευρώ. Πόσα ποτήρια από το κάθε ρόφημα θα πρέπει να καταναλωθούν έτσι ώστε με τον οικονομικότερο τρόπο να καλυφθούν οι ημερήσιες ανάγκες; 15

16 Μαθηματικό μοντέλο προβλήματος δίαιτας x: αριθμός από ποτήρια ροφήματος X y: αριθμός από ποτήρια ροφήματος Y Περιορισμός ελάχιστων θερμίδων Περιορισμός βιταμίνης Α Περιορισμός βιταμίνης C 16

17 Παράδειγμα 3: ένα ακόμα πρόβλημα παραγωγής (πρόβλημα Reddy Mikks) Η επιχείρηση Reddy Mikks κατασκευάζει δύο τύπους βαφής: βαφή για εξωτερικό χώρο και βαφή για εσωτερικό χώρο. Το κέρδος ανά τόνο για τη βαφή εξωτερικού χώρου (ΒΕΞΧ) είναι 5000 ενώ για τη βαφή εσωτερικού χώρου (ΒΕΣΧ) είναι Για να παραχθεί η κάθε βαφή θα πρέπει να αναμειχθούν οι 2 πρώτες ύλες Μ1 και Μ2 ως εξής: 6 τόνοι του Μ1 και 1 τόνος του Μ2 για την παραγωγή 1 τόνου της ΒΕΞΧ 4 τόνοι του Μ1 και 2 τόνοι του Μ2 για την παραγωγή 1 τόνου της ΒΕΣΧ Η ημερήσια διαθεσιμότητα των πρώτων υλών M1 και M2 περιορίζεται σε 24 και 6 τόνους αντίστοιχα. Η ημερήσια παραγωγή ΒΕΣΧ δεν θα πρέπει να ξεπερνά την παραγωγή ΒΕΞΧ για περισσότερο από 1 τόνο. Η ημερήσια παραγωγή ΒΕΣΧ θα πρέπει να είναι το πολύ 2 τόνοι. Η επιχείρηση θέλει να καθορίσει το πλάνο παραγωγής που θα της δώσει το μέγιστο ημερήσιο κέρδος. 17

18 Μαθηματικό μοντέλο x1: παραγωγή σε τόνους της βαφής εξωτερικού χώρου ΒΕΞΧ x2: παραγωγή σε τόνους της βαφής εσωτερικού χώρου ΒΕΣΧ 18

19 Μερικές προσθήκες στο μοντέλο του παραδείγματος 3 Πως θα αλλάξει το μοντέλο εάν προστεθούν οι ακόλουθοι επιπλέον περιορισμοί: 1. Η παραγωγή ΒΕΣΧ θα πρέπει να ξεπερνά τη παραγωγή ΒΕΞΧ τουλάχιστον 1 τόνο 2. Η ημερήσια διαθεσιμότητα της πρώτης ύλης M2 είναι τουλάχιστον 5 τόνοι και το πολύ 8 τόνοι 3. Η παραγωγή ΒΕΣΧ δεν μπορεί να είναι λιγότερη από την παραγωγή ΒΕΞΧ 4. Η συνολική ποσότητα ΒΕΞΧ και ΒΕΣΧ πρέπει να ισούται με 15 τόνους 5. Το ποσοστό της ΒΕΞΧ σε σχέση με τη συνολικά παραγόμενη ποσότητα βαφής δεν θα πρέπει να ξεπερνά το 50% Θα πρέπει να προστεθούν οι περιορισμοί: 1. x2 x1 + 1 x1 x x1 + 2x2 5 και x1 + 2x x2 x1 x1 x x1 + x2 = x1 x1 + x x1 0.5x2 0 x1 x2 0 ή απευθείας x1 <= x2 x1 x2 0 19

20 Παράδειγμα 4: ένα πρόβλημα μεταφοράς Μια επιχείρηση έχει 3 εργοστάσια A,B,C σε δεδομένες θέσεις με παραγωγή για ένα συγκεκριμένο προϊόν 100, 120 και 120 τόνους την ημέρα. Θα πρέπει να τροφοδοτεί κάθε ημέρα 5 αποθήκες D,E,F,G,H με ποσότητες 40,50,70,90 και 90 τόνους αντίστοιχα. Το κόστος μεταφοράς ενός τόνου από ένα εργοστάσιο σε μια αποθήκη δίνεται στο διπλανό πίνακα Ζητείται να προσδιοριστεί ο πλέον οικονομικός τρόπος έτσι ώστε να καλυφθεί η ζήτηση κάθε αποθήκης D E F G H A B C

21 Μαθηματικό μοντέλο του προβλήματος μεταφοράς Μεταβλητές που δείχνουν την ποσότητα που μεταφέρεται από κάθε εργοστάσιο προς κάθε αποθήκη Η ποσότητα που μεταφέρεται από κάθε εργοστάσιο θα πρέπει να είναι ίση με αυτή που παράγεται Ποσότητα που μεταφέρεται από το εργοστάσιο 3 στην αποθήκη 1 Η ποσότητα που μεταφέρεται προς κάθε αποθήκη θα πρέπει να είναι ίση με αυτή που ζητείται από την αποθήκη 21

22 CPLEX LP format To CPLEX LP format είναι ένας τρόπος περιγραφής ενός προβλήματος γραμμικού προγραμματισμού που προσομοιάζει στον τρόπο με τον οποίο γράφεται ένα μοντέλο γραμμικού προγραμματισμού αλγεβρικά στο χαρτί Maximize obj: 5 x1 + 4 x2 Subject To c1: 6 x1 + 4 x2 <= 24 c2: x1 + 2 x2 <= 6 c3: -x1 + x2 <= 1 Bounds x2 <= 2 End 22

23 GUSEK (GLPK Under Scite Extended Kit) GUSEK provide an open source LP/MILP IDE for Win32, packing a custom version of the SciTE editor linked to the GLPK standalone solver Περιγραφή του προβλήματος Reddy Mikks σε CPLEX lp format 23

24 LPSolve IDE The LPSolve IDE is a Windows interface to the lpsolve API. All functionality of lpsolve can be accessed via a graphical application To LPSolve IDE υποστηρίζει πολλά format περιγραφής προβλημάτων γραμμικού και ακέραιου προγραμματισμού όπως το CPLEX lp format, το LPSolve lp format και άλλα ( Περιγραφή του προβλήματος Reddy Mikks σε LPSolve lp format 24

25 IBM ILOG CPLEX Optimizer Εφόσον έχει εγκατασταθεί το IBM ILOG OPL Studio, από τη γραμμή εντολών μπορούν να δοθούν οι εντολές που φορτώνουν ένα πρόβλημα σε CPLEX lp format, το επιλύουν και εμφανίζουν τα αποτελέσματα 25

26 IBM ILOG OPL Studio To IBM ILOG OPL Studio είναι ένα επαγγελματικό περιβάλλον ανάπτυξης μοντέλων για προβλήματα βελτιστοποίησης Χρησιμοποιεί τη γλώσσα μοντελοποίησης OPL 26

27 Java + Apache Commons Math3 27

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 τελευταία ενημέρωση: 21/10/2016 1 Γραφική μέθοδος

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Παράδειγμα ΕΠΙΠΛΟΞΥΛ Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει δύο βασικά προϊόντα: τραπέζια και καρέκλες υψηλής ποιότητας. Η διαδικασία παραγωγής και για τα δύο προϊόντα περιλαμβάνει την

Διαβάστε περισσότερα

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου Η μέθοδος Simplex Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 17 Η μέθοδος Simplex Simplex Είναι μια καθορισμένη σειρά επαναλαμβανόμενων υπολογισμών μέσω των οποίων ξεκινώντας από ένα αρχικό

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πόρος Προϊόν 1 Προϊόν 2 Διαθέσιμη ποσότητα πόρου Απαιτούμενη ποσότητα πόρου ανά μονάδα προϊόντος. Γάλα (λίτρα)

Πόρος Προϊόν 1 Προϊόν 2 Διαθέσιμη ποσότητα πόρου Απαιτούμενη ποσότητα πόρου ανά μονάδα προϊόντος. Γάλα (λίτρα) 1 ο Ερώτημα Έστω μια βιομηχανική επιχείρηση γαλακτοκομικών προϊόντων. Στην προσπάθειά της να διεισδύσει ακόμα περισσότερο στην αγορά γιαουρτιού παράγει μεταξύ άλλων δύο νέα προϊόντα σε οικογενειακή συσκευασία,

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 1: Γραµµικός προγραµµατισµός(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com http://vasilis-ismyrlis.webnode.gr/

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014 ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος.

Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Τι είναι Επιχειρησιακή Έρευνα (Operations Research); Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Το σύνολο των τεχνικών (μαθηματικά μοντέλα) οι οποίες δημιουργούν μια ποσοτική

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Μοντέλα Διανομής και Δικτύων

Μοντέλα Διανομής και Δικτύων Μοντέλα Διανομής και Δικτύων 10-03-2017 2 Πρόβλημα μεταφοράς (1) Τα προβλήματα μεταφοράς ανακύπτουν συχνά σε περιπτώσεις σχεδιασμού διανομής αγαθών και υπηρεσιών από τα σημεία προσφοράς προς τα σημεία

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Μαθηματικό Πρότυπο, Κανονική Μορφή, Τυποποιημένη Μορφή Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Παράδειγμα προβλήματος ελαχιστοποίησης Μια κατασκευαστική εταιρία κατασκευάζει εξοχικές κατοικίες κοντά σε γνωστά θέρετρα της Εύβοιας Η

Διαβάστε περισσότερα

2.4 Μια Πρώτη Προσέγγιση στην Ανάλυση Ευαισθησίας

2.4 Μια Πρώτη Προσέγγιση στην Ανάλυση Ευαισθησίας 2. Βασικές Έννοιες Γραμμικού Προγραμματισμού 69 2.4 Μια Πρώτη Προσέγγιση στην Ανάλυση Ευαισθησίας Ένα μοντέλο γραμμικού προγραμματισμού πρέπει να λαμβάνει υπόψη το δυναμικό περιβάλλον των συνεχών αλλαγών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31 Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Μάρτιος 2014 Δρ. Δημήτρης

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2014-2015 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2014 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού

Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #1: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Η μέθοδος Simplex Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος Simplex είναι μια

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #: Εφαρμογές του Γραμμικού Προγραμματισμού Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Fermat, 1638, Newton Euler, Lagrange, 1807

Fermat, 1638, Newton Euler, Lagrange, 1807 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 4: Εισαγωγή στο Γραμμικό Προγραμματισμό (4 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ολοκληρωμένη μαθηματική τεχνική βελτιστοποίησης Ευρύτατο φάσμα εφαρμογών Εισαγωγή ακέραιων/λογικών/βοηθητικών μεταβλητών Δυνατότητα γραμμικοποίησης με 0-1 μεταβλητές

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize

Διαβάστε περισσότερα

Ενδιαφερόμαστε να μεγιστοποιήσουμε το συνολικό κέρδος της εταιρείας που ανέρχεται σε: z = 3x 1 + 5x 2 (εκατοντάδες χιλιάδες χ.μ.)

Ενδιαφερόμαστε να μεγιστοποιήσουμε το συνολικό κέρδος της εταιρείας που ανέρχεται σε: z = 3x 1 + 5x 2 (εκατοντάδες χιλιάδες χ.μ.) Μια εταιρεία χημικών προϊόντων παρασκευάζει μεταξύ των άλλων και δύο διαλύματα, ΔΛ, ΔΛ2. Η γραμμή παραγωγής διαχωρίζεται χοντρικά σε δύο στάδια, αυτό της μίξης κι εκείνο του καθαρισμού. Μια σχετική μελέτη

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΑΓΙΟΥ ΝΙΚΟΛΑΟΥ ΤΜΗΜΑ Επιχειρηµατικού Σχεδιασµού και Πληροφοριακών Συστηµάτων Μάθηµα ΕΠΙΧΕΙΡΗΣΙΑΚΗΕΡΕΥΝΑ Παρουσιάσεις-Σηµειώσεις Γραµµικός Προγραµµατισµός

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μια μαθηματική τεχνική Ευρύτατο φάσμα εφαρμογών Προβλήματα με γραμμικότητα ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΑΓΩΓΗ Ο Γραμμικός Προγραμματισμός επιλύει, κάτω από ορισμένες προϋποθέσεις,

Διαβάστε περισσότερα

Ανάλυση ευαισθησίας. Άσκηση 3 Δίνεται ο παρακάτω τελικός πίνακας Simplex. Επιχειρησιακή Έρευνα Γκόγκος Χρήστος

Ανάλυση ευαισθησίας. Άσκηση 3 Δίνεται ο παρακάτω τελικός πίνακας Simplex. Επιχειρησιακή Έρευνα Γκόγκος Χρήστος Τμήμα Μηχανικών Πληροφορικής ΤΕ Ακαδημαϊκό έτος 2016-2017 Άρτα Επιχειρησιακή Έρευνα Γκόγκος Χρήστος Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων ΣΕΤ ΑΣΚΗΣΕΩΝ 3 Ανάλυση

Διαβάστε περισσότερα

Αλγοριθµική Επιχειρησιακή Ερευνα. Χειµερινό Εξάµηνο 2013-2014. Ασκήσεις. 1. Ενα διυλιστήριο µπορεί να επεξεργαστεί τρία είδη ακατέργαστου πετρελαίου :

Αλγοριθµική Επιχειρησιακή Ερευνα. Χειµερινό Εξάµηνο 2013-2014. Ασκήσεις. 1. Ενα διυλιστήριο µπορεί να επεξεργαστεί τρία είδη ακατέργαστου πετρελαίου : Αλγοριθµική Επιχειρησιακή Ερευνα Χειµερινό Εξάµηνο 2013-2014 Ασκήσεις 1. Ενα διυλιστήριο µπορεί να επεξεργαστεί τρία είδη ακατέργαστου πετρελαίου : - το πρώτο προερχόµενο από την Αφρική, το οποίο ονοµάζεται

Διαβάστε περισσότερα

Πόρος Προϊόν 1 Προϊόν 2 Διαθέσιμη ποσότητα πόρου Απαιτούμενη ποσότητα πόρου ανά μονάδα προϊόντος. Γάλα (λίτρα)

Πόρος Προϊόν 1 Προϊόν 2 Διαθέσιμη ποσότητα πόρου Απαιτούμενη ποσότητα πόρου ανά μονάδα προϊόντος. Γάλα (λίτρα) 1 ο Ερώτημα Έστω μια βιομηχανική επιχείρηση γαλακτοκομικών προϊόντων. Στην προσπάθειά της να διεισδύσει ακόμα περισσότερο στην αγορά γιαουρτιού παράγει μεταξύ άλλων δύο νέα προϊόντα σε οικογενειακή συσκευασία,

Διαβάστε περισσότερα

Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ.

Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ. 1. 0 γραμμικός προγραμματισμός μπορεί να εφαρμοστεί στη διαχείριση αγροτικής παραγωγής για τη βέλτιστη κατανομή πόρων όπως., με τρόπο που να οδηγεί στη μεγιστοποίηση των κερδών. Α) διαθέσιμης προς καλλιέργειας

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Δεσμευτικοί περιορισμοί Πρόβλημα Βιομηχανική επιχείρηση γαλακτοκομικών προϊόντων Συνολικό μοντέλο Maximize z = 150x 1 + 200x 2 (αντικειμενική

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Ανάλυση ευαισθησίας. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

Τμήμα Μηχανικών Πληροφορικής ΤΕ Ανάλυση ευαισθησίας. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ανάλυση ευαισθησίας Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Παράδειγμα TOYCO Η επιχείρηση TOYCO χρησιμοποιεί τρεις διαδικασίες

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100)

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Μεταπτυχιακό Πρόγραμμα Σπουδών Διοίκηση και Διαχείριση Έργων και Προγραμμάτων Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Μέρος ΙΙ Τεχνικές Μαθηματικού Προγραμματισμού Μαθηματικά Μοντέλα Εισαγωγή Μεθοδολογία

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 6: Εφαρμογές Γραμμικού Προγραμματισμού (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. ΜΑΘΗΜΑ2 ο ΕΠΙΧΕΙΡΗΣΙΑΚΗΣΕΡΕΥΝΑΣΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ Π.Γ.Π

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. ΜΑΘΗΜΑ2 ο ΕΠΙΧΕΙΡΗΣΙΑΚΗΣΕΡΕΥΝΑΣΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ Π.Γ.Π ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ2 ο ΕΠΙΧΕΙΡΗΣΙΑΚΗΣΕΡΕΥΝΑΣΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014-ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ Π.Γ.Π ΒασικέςΈννοιεςΠ.Γ.Π (1) Ας θεωρήσουμε μια υποθετική οικονομία που παράγει ( 1,

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 3: Εισαγωγή στο Γραμμικό Προγραμματισμό (3 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες)

maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες) Ένας κοσμηματοπώλης, κατασκευάζει μπρασελέ και κολιέ αναμειγνύοντας ασήμι με κάποιο άλλο μέταλλο. Το μοντέλο π.γ.π. που ανέπτυξε για την εύρεση της εβδομαδιαίας παραγωγής (x 1 μπρασελέ και x 2 κολιέ) η

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 2014

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 2014 ΠΑΝΕΠΙΣΤΗΜΙΟΥΠΟΛΗ - ΡΙΟ 00 ΠΑΤΡΑ UNIVERSITY CAMPUS-RIO 00 PATRAS, GR ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 0 ΘΕΜΑ ( Μονάδες ) Στο παρακάτω πρόβληµα γ.π c max = + s. t + - + + + 0 +,,

Διαβάστε περισσότερα

Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

PANEPISTHMIO AIGAIOU GRAMMIKOS PROGRAMMATISMOS

PANEPISTHMIO AIGAIOU GRAMMIKOS PROGRAMMATISMOS PANEPISTHMIO AIGAIOU SQOLH JETIKWN EPISTHMWN TMHMA MAJHMATIKWN Shmei seic gia to mˆjhma GRAMMIKOS PROGRAMMATISMOS Jeodìshc Dhmhtrˆkoc E-mail: dimitheo@aegean.gr DhmiourgÐa kai epimèleia tou hlektronikoô

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 6: Κατηγοριοποίηση Λογισμικού Βελτιστοποίησης, Χρήση Standard Excel Solver Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: Εισαγωγή Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 3 η /2017 Γραμμικός προγραμματισμός Είναι μια μεθοδολογία

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 9: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (1o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ .5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων

Διαβάστε περισσότερα

Αποφάσεων Marketing. Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών. ΔΠΜΣ Οικονομική & Διοίκηση Τηλεπικοινωνιακών Δικτύων

Αποφάσεων Marketing. Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών. ΔΠΜΣ Οικονομική & Διοίκηση Τηλεπικοινωνιακών Δικτύων ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Αποφάσεων Marketing ΔΠΜΣ Οικονομική & Διοίκηση Τηλεπικοινωνιακών Δικτύων Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών Αθήνα, 2007 Η

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά

Επιχειρησιακά Μαθηματικά Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση

Διαβάστε περισσότερα

Case 07: Στρατηγική Χρηματοοικονομικής Δομής ΣΕΝΑΡΙΟ (1)

Case 07: Στρατηγική Χρηματοοικονομικής Δομής ΣΕΝΑΡΙΟ (1) Case 07: Στρατηγική Χρηματοοικονομικής Δομής ΣΕΝΑΡΙΟ (1) Οι στρατηγικές χρηματοοικονομικής δομής αναφέρονται στην επιλογή των μέσων χρηματοδότησης επενδυτικών προγραμμάτων, λειτουργιών της παραγωγής και

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Πρόβλημα Μεταφοράς Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς Μαθηματική Διατύπωση Εύρεση Αρχικής Λύσης Προσδιορισμός Βέλτιστης Λύσης

Διαβάστε περισσότερα

The Product Mix Problem

The Product Mix Problem Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας 1 The Product Mix Problem Τα προβλήματα αυτά αναφέρονται σε συστήματα τα οποία εκμεταλλευόμενα τους περιορισμένους πόρους που έχουν στη διάθεσή του, παράγουν

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 3: Ανάλυση ευαισθησίας ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com http://vasilis-ismyrlis.webnode.gr/

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή, ο

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 3

Asset & Liability Management Διάλεξη 3 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 3 Cash-flow matching Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #6: Στοχαστικός Γραμμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (2 ο Φυλλάδιο)

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (2 ο Φυλλάδιο) ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (2 ο Φυλλάδιο) ΙΩΑΝΝΗΣ ΝΤΖΟΥΦΡΑΣ Παραδείγματα 3 5 : Προβλήματα μεταφοράς (transportation problems)... 3 Παράδειγματα 3-5: Linear Programming

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (άσκηση για το εργαστήριο)

Επιχειρησιακή έρευνα (άσκηση για το εργαστήριο) Επιχειρησιακή έρευνα (άσκηση για το εργαστήριο) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (13-01-2015) Μια επιχείρηση πρόκειται να εκμεταλλευτεί μια έκταση 50 στρεμμάτων προκειμένου

Διαβάστε περισσότερα

ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ

ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 6-11-2016 ΚΑΘ/ΤΗΣ ΣΦΥΡΗΣ ΠΑΝΑΓΙΩΤΗΣ ΒΑΘΜΟΣ: /100, /20 ΟΜΑΔΑ Α Στις προτάσεις Α1 μέχρι και Α5 να γράψετε στο τετράδιο σας τον αριθμό της καθεμίας

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή,

Διαβάστε περισσότερα

Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1)

Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Η βιομηχανική επιχείρηση «ΑΤΛΑΣ Α.Ε.» δραστηριοποιείται στο χώρο του φυσικού αερίου και ειδικότερα στις συσκευές οικιακής χρήσης. Πρόκειται να εισάγει

Διαβάστε περισσότερα