ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΠΟΛΙΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ. Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΠΟΛΙΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ. Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης"

Transcript

1 ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΠΟΛΙΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης Νίκος Θεοχαράκης & Λευτέρης Τσερκέζης 2009

2

3 Σημείωση Τα κείμενα που ακολουθούν αποτελούν την βάση των πανεπιστημιακών παραδόσεων του υπογράφοντος στο μάθημα της Θεωρίας της Οικονομικής Μεγέθυνσης στο Τμήμα Οικονομικών Επιστημών του Αθήνησι. Πρέπει να διαβαστούν, για τις εξετάσεις του μαθήματος, σε συνδυασμό με το διδακτικό εγχειρίδιο του Hywell G. Jones Εισαγωγή στις σύγχρονες θεωρίες οικονομικής μεγέθυνσης (Αθήνα: Κριτική, 1993) που διανέμεται από το Πανεπιστήμιο Αθηνών στις φοιτήτριες και φοιτητές του Τμήματος. Οι σημειώσεις δεν περιλαμβάνουν την ανάλυση της τεχνικής προόδου που υπάρχει στο εγχειρίδιο και είναι στην εξεταστέα ύλη. Οι πρώτες δύο διαλέξεις αποτελούν ουσιαστικά επεξεργασία της διδακτικής παρουσίασης με ηλεκτρονικό τρόπο και ως εκ τούτου είναι ελλειπτικές. Η τρίτη διάλεξη για το υπόδειγμα Harrod αποτελεί κωδικοποίηση του αντίστοιχου κεφαλαίου του Hywell Jones και αποτελούν μια σύνοψη και aide-mémoire. Το υπόδειγμα Solow αναλύεται πιο διεξοδικά σε αυτές τις σημειώσεις από ό,τι στο εγχειρίδιο. Αντίθετα το υπόδειγμα Ramsey-Cass-Koopmans, τα υποδείγματα ενδογενούς μεγέθυνσης και το υπόδειγμα του von Neumann δεν περιλαμβάνονται στο εγχειρίδιο. Ο Λευτέρης Τσερκέζης, διδακτορικός φοιτητής του Τμήματός μας έγραψε το τελευταίο κεφάλαιο για την σύγκλιση. Πρέπει να τονίσω ότι οι σημειώσεις αυτές σε μεγάλο μέρος τους δεν είναι πρωτότυπες. Βασίζονται κυρίως σε ξενόγλωσσα εγχειρίδια που απευθύνονται σε προχωρημένους προπτυχιακούς ή μεταπτυχιακούς φοιτητές και, φυσικά, στα πρωτότυπα άρθρα που αναλύονται. Όπου έχει γίνει αυτό αναφέρεται διαρρήδην και σαφώς μέσα στο κείμενο. Προσπάθησα όμως να κάνω τις σημειώσεις πιο αναλυτικές με επεξηγήσεις, ώστε να γίνουν προσιτές σε προπτυχιακούς φοιτητές χωρίς να απαιτείται εξειδικευμένη γνώση. Το κεφάλαιο που έγραψε ο Λευτέρης Τσερκέζης είναι όμως πρωτότυπο. Αυτές οι σημειώσεις μπορεί να διανεμηθούν δωρεάν και ελεύθερα μόνο για εκπαιδευτική χρήση και σε δημόσια εκπαιδευτικά ιδρύματα όπου η εκπαίδευση είναι δωρεάν. Είναι ανηρτημένες στην ιστοσελίδα του μαθήματος στον δικτυακό τόπο του Τμήματος Απαγορεύεται η διανομή τους με οικονομικό αντίτιμο. Αθήνα, Ιούνιος 2009, Νίκος Θεοχαράκης

4

5 Πίνακας περιεχομένων 1η Διάλεξη: Τα μαθηματικά της μεγέθυνσης... σ. 1 2η Διάλεξη: Sylized facs... σ. 15 3η Διάλεξη: Το υπόδειγμα Harrod... σ. 35 4η Διάλεξη: Το νεοκλασικό υπόδειγμα οικονομικής μεγέθυνσης του Rober Solow... σ. 41 5η Διάλεξη: Το νεοκλασικό υπόδειγμα οικονομικής μεγέθυνσης των Ramsey-Cass-Koopmans... σ. 53 6η Διάλεξη: Ενδογενής μεγέθυνση... σ. 69 7η Διάλεξη: Το υπόδειγμα οικονομικής μεγέθυνσης του von Neumann... σ. 85 8η Διάλεξη: Σύγκλιση... σ. 97

6

7 ΠΡΩΤΗ ΔΙΑΛΕΞΗ Τα μαθηματικά της μεγέθυνσης 1. Διαχρονική μεταβολή και ρυθμοί μεγέθυνσης (growh raes) Η οικονομική μεγέθυνση προϋποθέτει ότι τα οικονομικά μεγέθη (μεταβλητές, αγγλ. variables) μεταβάλλονται στον χρόνο. Άρα οι οικονομικές μεταβλητές που μας απασχολούν είναι χρονικές μεταβλητές και εκφράζονται αναλυτικά με χρονικές συναρτήσεις. Παραδείγματα οικονομικών μεταβλητών: ΑΕΠ, απόθεμα κεφαλαίου, επενδύσεις, εργατικό δυναμικό. Χρονικές μεταβλητές Διακρίνονται σε: Διακριτές μεταβλητές (Discree variables) Συνεχείς μεταβλητές (Coninuous variables) Διακριτές μεταβλητές Το μέγεθος μετράται σε συγκεκριμένες στιγμές του χρόνου (π.χ., στην αρχή ή το τέλος ενός μήνα, τριμήνου ή έτους) ή αναφέρεται σε ένα συγκεκριμένο χρονικό διάστημα (μήνας, τρίμηνο ή έτος) Στην πρώτη περίπτωση αναφερόμαστε σε απόθεμα (π.χ., απόθεμα κεφαλαίου, αριθμός ανέργων), ενώ στην δεύτερη περίπτωση αναφερόμαστε σε ροή (π.χ., ΑΕΠ, επενδύσεις). Στην περίπτωση της διακριτής μεταβλητής ο χρόνος λαμβάνει τιμές από τους φυσικούς αριθμούς =0,1,2,3,..,n Η χρονική στιγμή (ή διάστημα) = 0 ορίζεται αυθαίρετα και αποτελεί την αρχή της χρονολογικής σειράς. Οι χρονικές στιγμές (ή οι αρχές των χρονικών διαστημάτων) =0, =1, =2,, =n απέχουν χρονικά εξίσου μεταξύ τους κατά ένα διάστημα που αποτελεί την μονάδα μέτρησης του χρόνου. Την διακριτή μεταβλητή μπορούμε να την συμβολίσουμε χρησιμοποιώντας ως υπο-δείκτη την χρονική στιγμή ή διάστημα: y 0, y 1, y 2 y y n Εναλλακτικά μπορούμε να ορίσουμε ως 0 την αρχική στιγμή και οι υπόλοιπες να ορισθούν ως 0 +1, 0 +2,, 0 +n: y, y, y,, y o o+ 1 o+ 2 o+ n Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 1

8 Διακριτή μεταβλητή y=f() y = , (Χρόνος) Συνεχείς μεταβλητές Η χρονική μεταβλητή y ορίζεται συναρτήσει του χρόνου και συμβολίζεται ως y=f(). Στην περίπτωση της συνεχούς μεταβλητής ο χρόνος λαμβάνει τιμές από το συνεχές φάσμα των θετικών πραγματικών αριθμών και μπορεί να ορισθεί και για ενδιάμεσες χρονικές στιγμές. Συνεπώς η χρονική συνάρτηση y=f() είναι συνεχής (τουλάχιστον για ορισμένα χρονικά διαστήματα). Όπως και στην περίπτωση των διακριτών μεταβλητών η χρονική στιγμή =0 ορίζεται αυθαίρετα. Συνεχής μεταβλητή y=f() y = , (Χρόνος) Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 2

9 Μεταβολή & ταχύτητα μεταβολής Στις χρονικές μεταβλητές μας ενδιαφέρει η μεταβολή τους στον χρόνο καθώς και η ταχύτητα μεταβολής. Αν στο χρονικό διάστημα Δ η μεταβλητή y μεταβληθεί κατά Δy τότε η «μέση ταχύτητα», ή η μέση τάση μεταβολής της y που ορίζεται ως Δy/Δ μας δείχνει την απόλυτη μεταβολή του μεγέθους y στο χρονικό διάστημα Δ. Το πρόβλημα με τον ορισμό αυτό είναι ότι εξαρτάται από τις μονάδες μέτρησης της μεταβλητής y. Θα είναι δηλ., διαφορετικό αν η y είναι εκφρασμένη σε, ή σε χιλιάδες ή σε $. Σχετική ή ποσοστιαία μεταβολή Για τον λόγο αυτό εστιάζουμε στην σχετική ή ποσοστιαία μεταβολή του y: Διαιρούμε δηλ., την απόλυτη μεταβολή Δy (αρνητική ή θετική) με το μέγεθος της μεταβλητής y: Δy/y Στην περίπτωση αυτή οι μονάδες ακυρώνονται: Δy/y=100(χιλ. )/1.000(χιλ. ) = / =10% Ποσοστιαίος ρυθμός μεγέθυνσης Ορίζουμε τον ποσοστιαίο ρυθμό μεγέθυνσης της μεταβλητής y, g y ως: g y = 1 Δy y Δ Συχνά, επειδή λαμβάνουμε το Δ να είναι ίσο με την μονάδα μέτρησης του χρόνου, δηλ., Δ =1, ο παραπάνω ορισμός ισοδυναμεί με τον g y =Δy/y Ποσοστιαίος ρυθμός μεγέθυνσης στις διακριτές μεταβλητές Στις διακριτές μεταβλητές η απόλυτη μεταβολή ορίζεται ως: Δ y = y y + 1 Άρα ο ποσοστιαίος ρυθμός μεγέθυνσης είναι g y, y y y y = = = y Δ y Δ y 1 Δy Παρατηρείστε επίσης ότι Εφόσον στις διακριτές μεταβλητές Δ=(+1)-=1 Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 3

10 y y g = y + g = y ( 1 ) + 1 y, y, + 1 y Παράδειγμα: Έστω η μεταβλητή y η οποία έχει την αρχική τιμή y 0 =120 και στις επόμενες 5 περιόδους έχει τις τιμές 126, 138, 161, 182 και 200 αντίστοιχα. Υπολογίστε τους αντίστοιχους ρυθμούς μεγέθυνσης. Υπολογισμός ρυθμών μεγέθυνσης διακριτών μεταβλητών (1) (2) (3) (4) y Δy g y, ,00% ,52% ,67% ,04% ,89% Παρατηρείστε επίσης ότι ( 1+ y ) = ( 1+ y ) = = ( 1+ y )( 1+ y ) ( 1+ y ) = = ( 1+ y )( 1+ y )( 1+ y ) ( 1+ y ) = = ( 1+ y )( 1+ y )( 1+ y )( 1+ y ) ( 1+ y ) = = ( 1+ y )( 1+ y )( 1+ y )( 1+ y )( 1+ y ) y g y 0,0 1 y g y y g g 1,1 2 0,0,1 y g y y g g g 2,2 3 0,0,1,2 y g y y g g g g 3,3 4 0,0,1,2,3 y g y y g g g g g 4,4 5 0,0,1,2,3,4 Ερωτάται: Ποιος είναι ο μέσος ρυθμός μεγέθυνσης, δηλ., ο ρυθμός εκείνος που αν ήταν σταθερός σε όλες τις περιόδους θα μας έδινε την τελική τιμή; Δηλ., ποιος θα ήταν ο g y για τον οποίον θα ίσχυε y 0 (1+ g y ) n =y n Λύνοντας τον παραπάνω τύπο ως προς g y έχουμε: Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 4

11 n y n y0 ( 1+ gy) = yn gy = 1 y0 Στο παράδειγμά μας έχουμε: 1 n 1 1 n 5 y n 200 g y = 1 = 1 10,76% y0 120 Παρατηρείστε ότι ο μέσος ρυθμός μεγέθυνσης είναι διαφορετικός από τον μέσο όρο των ρυθμών μεγέθυνσης, δηλ., g y 1 n n 1 y g n y, 5+9,52+16,67+13,04+9,89 = 1 = 10,82% y 0 = 0 n 5 Ρυθμός μεγέθυνσης στις συνεχείς μεταβλητές Στις συνεχείς μεταβλητές αντικαθιστούμε το πηλίκο Δy/y με την πρώτη παράγωγο της συνάρτησης y=f(). Θυμηθείτε ότι η πρώτη παράγωγος μιας συνάρτησης y=f() ορίζεται ως: dy f ( +Δ) f ( ) f () = = lim d Δ 0 Δ Εν προκειμένω δεν μιλάμε για μέση τάση μεταβολής όπως στις διακριτές μεταβλητές αλλά για στιγμιαία τάση μεταβολής σε μια δεδομένη χρονική στιγμή, η οποία δίδεται από την πρώτη παράγωγο dy/d Ο (στιγμιαίος) ρυθμός μεγέθυνσης προκύπτει αντίστοιχα διαιρώντας την στιγμιαία τάση μεταβολής με το μέγεθος της μεταβλητής στην συγκεκριμένη χρονική στιγμή. Δηλ., f ( ) 1 dy g y = = f y d () Συνήθως συμβολίζουμε την πρώτη παράγωγο ως προς τον χρόνο με μία τελεία πάνω από την μεταβλητή. Έτσι έχουμε: dy y = = f () d Ο οποίος διαβάζεται «y τελεία» (y do) Αντίστοιχα ο ρυθμός μεγέθυνσης ορίζεται ως: y g ˆ y = = y y Ο οποίος διαβάζεται «y σκεπή» (y ha) Άρα οι εξής συμβολισμοί είναι ισοδύναμοι: g y ( ) () y 1 dy f = = yˆ = = y y d f Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 5

12 2. Λογαριθμικές και εκθετικές συναρτήσεις Θυμηθείτε τους ορισμούς: Ο φυσικός λογάριθμος ενός θετικού αριθμού y ο οποίος συμβολίζεται με log e (y), ή απλούστερα με ln(y), είναι ο αριθμός εκείνος z ο οποίος αν χρησιμοποιηθεί ως εκθέτης του υπερβατικού αριθμού e= 2, μας δίνει τον αριθμό y. Δηλ., ισχύει ότι z z = ln ( y) y = e Άρα η y=y(z)=e z =exp(z) αποτελεί μια εκθετική συνάρτηση ως προς z Η συνάρτηση αυτή αποτελεί μια ειδική περίπτωση ενός γενικότερου τύπου εκθετικών συναρτήσεων της μορφής ( z) y = Ae φ Της οποίας η πρώτη παράγωγος δίνεται από τον τύπο dy φ( z) φ( z) = ( ) = φ dz ( ) Ae Ae z Στην περίπτωση της y(z)=e z η πρώτη παράγωγος είναι dy z z = ( e ) = e dz Δηλ., η ίδια η συνάρτηση. Είναι προφανές ότι όλες οι παράγωγοι (δευτέρα, τρίτη, κλπ.) είναι ίδιες με την αρχική συνάρτηση. Εφόσον y(0)=e 0 =1 και e z >0, δηλ., η συνάρτηση, η πρώτη και η δεύτερη παράγωγος είναι θετικές προκύπτει και η γραφική μορφή της συνάρτησης Γραφική παράσταση εκθετικής συνάρτησης y y = e z 1 z + Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 6

13 Οικονομική σημασία του e Έστω ένα ποσό Α το οποίο τοκίζεται με ετήσιο επιτόκιο r. Μετά από ένα έτος το ποσό αυτό θα είναι: Α(1+r) Μετά από έτη θα είναι: Α(1+r) Έστω τώρα ότι η τράπεζα ανατοκίζει το ποσό κάθε τρίμηνο, δηλ., 4 φορές το χρόνο. Μετά από ένα χρόνο το ποσό θα είναι: Α(1+r/4) 4 Μετά από έτη θα είναι :Α(1+r/4) 4 Γενικότερα αν η τράπεζα ανατοκίζει n φορές το χρόνο Μετά από ένα χρόνο το ποσό θα είναι: Α(1+r/n) n Μετά από έτη θα είναι Α (1+r/ n) n Τι σημασία έχει πόσες φορές ανατοκίζεται το κεφάλαιο; Ας δούμε τι σημαίνει αυτό για Α=1 και r=100% n (1+1/ n) n ,25 4 2, , , , , , Όταν οι φορές που ανατοκίζεται 1 με επιτόκιο 100% τείνουν στο άπειρο, δηλ., όταν έχουμε συνεχή ανατοκισμό (coninuous compounding), το ποσό αυτό μετά από ένα χρόνο θα τείνει στο e το οποίο είναι ίσο με 2, Πιο αυστηρά, το e ορίζεται ως: e lim 1+ n 1 n n Μπορεί να αποδειχθεί ότι όταν το επιτόκιο είναι σταθερό και ίσο με r, ένα ποσό 1 με συνεχή ανατοκισμό γίνεται μετά από έτη ίσο με e r Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 7

14 Απόδειξη Πρώτα αποδεικνύουμε για =1: Ζητούμε το όριο της ακολουθίας Όταν το n τείνει στο άπειρο Έστω m=n/r. Συνεπώς r 1+ n n Μετά αποδεικνύουμε για κάθε : Θυμηθείτε ότι γενικά ισχύει: Συνεπώς r = 1+ = 1+ n m m n m r 1 lim 1+ = lim 1+ n n m m n mr m 1 = lim 1+ m m r = e r r ( lim xm) = lim ( xm) m m m r r r n r r lim 1+ = lim 1+ n n n n = lim 1+ m r ( e ) = = e r r n n n Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 8

15 Άρα ένα ποσό Α συνεχώς ανατοκιζόμενο με ετήσιο επιτόκιο r θα είναι μετά από έτη ίσο με Αe r Τον τύπο αυτό μπορούμε να τον χρησιμοποιήσουμε για αναγωγή σε παρούσα αξία: Αν έχουμε συνεχή ανατοκισμό με σταθερό επιτόκιο r ποια είναι η παρούσα αξία ενός ποσού Β την χρονική στιγμή ; Η παρούσα αξία είναι ίση με Βe -r Ο παραπάνω τύπος είναι ανάλογος με τον τύπο της αναγωγής σε παρούσα αξία χωρίς ανατοκισμό: B (1 + r) Έστω μια συνεχής οικονομική μεταβλητή y() από την χρονική στιγμή 0 έως την χρονική στιγμή Τ. Ποια είναι η παρούσα αξία αυτής της μεταβλητής για όλο αυτό το διάστημα; Η απάντηση δίνεται από τον τύπο T r PV y e d = 0 Ο παραπάνω τύπος είναι ανάλογος με τον τύπο της αναγωγής σε παρούσα αξία μιας χρηματικής ροής χωρίς ανατοκισμό: PV = T = () y 0 (1 + r) Γενικότερα, μια μεταβλητή y() που μεγεθύνεται συνεχώς με σταθερό ετήσιο ρυθμό μεγέθυνσης ίσο με g και η οποία έχει αρχική τιμή y(0)= y 0 στην χρονική στιγμή θα είναι ίση με: y()= y 0 e g Όπου g y = = y yˆ Η μορφή αυτή μας επιτρέπει να μελετήσουμε καλύτερα μια χρονική συνάρτηση και μας διευκολύνει στους υπολογισμούς μας Παράδειγμα: Ερωτάται σε πόσα χρόνια θα διπλασιασθεί το ΑΕΠ (y) μιας οικονομίας αν έχει ένα σταθερό ρυθμό μεγέθυνσης ίσο με g; Απάντηση: Αν το ΑΕΠ διπλασιάσθηκε σε έτη από την αρχική περίοδο, θα ισχύει ότι y()= y 0 e g =2y 0 Άρα e g =2 Λογαριθμίζοντας και τα δύο σκέλη προκύπτει ότι Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 9

16 g ln 2 ln ( e ) = ln 2 g = ln 2 = g Δεδομένου ότι ln2 0,693 για ένα ρυθμό μεγέθυνσης 10% η οικονομία θα διπλασιασθεί σε =0,693/0,1 δηλ., σε περίπου 7 έτη. Από την συνάρτηση y(z)=e z προκύπτει και ένας άλλος τρόπος να μετρηθεί ο ρυθμός μεγέθυνσης Παρατηρείστε ότι y( ) = exp( z( ) ) dy dy dz z dz z dz dz = = ( e ) = e = y d dz d d d d dz 1 dy = = g y d y d Ή με τον συμβολισμό που υιοθετήσαμε yˆ z ( ) = = = = z y yz e z e z yz y z = = y Εφόσον z=ln(y) προκύπτει ότι dln y y z = yˆ d = y = Δηλ., η πρώτη παράγωγος του λογαριθμικού μετασχηματισμού της μεταβλητής y μας δίνει τον ρυθμό μεγέθυνσης της Αυτό σημαίνει ότι μπορούμε να αντιληφθούμε παρατηρώντας την γραφική παράσταση του λογαριθμικού μετασχηματισμού μιας μεταβλητής τι συμβαίνει στον ρυθμό μεγέθυνσης Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 10

17 Κανονική μορφή Ελλάδα: Real GDP per capia Alan Heson, Rober Summers and Beina Aen, Penn World Table Version 6.2, Cener for Inernaional Comparisons of Producion, Income and Prices a he Universiy of Pennsylvania, Sepember έτος Λογαριθμικός μετασχηματισμός Ελλάδα: Real GDP per capia έτος Αν ένα μέγεθος μεταβάλλεται με σταθερό εκθετικό ρυθμό η γραφική παράσταση του λογαρίθμου του θα είναι ευθύγραμμα. Στο διάγραμμα όπου εμφανίζεται το κατά κεφαλή ΑΕΠ της Ελλάδας λογαριθμικά στον κάθετο άξονα, είναι εμφανές ότι από την δεκαετία του 1980 η κλίση είναι μικρότερη γεγονός που αντανακλά και τον χαμηλό- Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 11

18 τερο μικρό μεγέθυνσης. Κάτι τέτοιο δεν είναι εύκολα παρατηρήσιμο στην γραφική παράσταση με το κανονικό μέγεθος Γενικά ισχύει ότι Αν z=xy, τότε lnz=lnx +lny Αν z=x/y, τότε lnz=lnx lny Αν z=x β, τότε lnz=βlnx Αν y=f(x)=lnx, τότε dy/dx=1/x Αν y=lnx(), τότε dy dy dx 1 x = = x = = xˆ d dx d x x Λογαριθμίζοντας και παραγωγίζοντας ως προς Αν z=xy, τότε lnz=lnx +lny, και συνεπώς dlnz/d=dlnx/d +dlny/d ή ẑ = xˆ+ yˆ Αν z=x/y, τότε lnz=lnx lny, άρα ẑ = xˆ yˆ ẑ = β xˆ Αν z=x β, τότε lnz=βlnx άρα Παράδειγμα: Συνάρτηση Cobb-Douglas Λογαριθμίζοντας έχουμε () = () a () 1 Y AK L a () = + ( ) + ( ) ( ) lny ln A aln K 1 a ln L Στη συνέχεια παραγωγίζοντας έχουμε ( ) ( ) ( ) dlny dln K dln L = a + ( 1 a) d d d Y K L = a + ( 1 a) Yˆ = akˆ + ( 1 a) Lˆ Y K L Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 12

19 Λόγοι (raios) και ρυθμοί μεγέθυνσης (growh raes) Αν ο λόγος z δύο μεταβλητών x και y είναι σταθερός, τότε ο ρυθμός μεγέθυνσης των δύο μεταβλητών είναι ο ίδιος Απόδειξη: x z = zˆ = xˆ yˆ y Αν ο λόγος είναι σταθερός δεν μεταβάλλεται, άρα: z z = 0 = zˆ = 0= xˆ yˆ xˆ = yˆ z Παράδειγμα: Αν το κατά κεφαλή ΑΕΠ παραμένει αμετάβλητο, το ΑΕΠ θα πρέπει να μεγεθύνεται με τον ίδιο ρυθμό που μεγεθύνεται και ο πληθυσμός. Σχέση μεταξύ ποσοστιαίου ρ.μ. και εκθετικής μεγέθυνσης Ο ποσοστιαίος ρυθμός μεγέθυνσης ορίζεται ως [y(+1)-y()]/y() Στην εκθετική μεγέθυνση έχουμε y(+1)=y()e g Άρα ( 1) ( ) y() ( ) ( ) y() g y + y e y y g = = e 1 Γνωρίζουμε ότι η προσέγγιση κατά Taylor του e x για μικρά x είναι e x x+1 Άρα ( + 1) y( ) y() y ( ) g = e 1 g+ 1 1= g Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 13

20 Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 14

21 ΔΕΥΤΕΡΗ ΔΙΑΛΕΞΗ Sylized facs Η παρούσα διάλεξη έχει προκύψει από την διδακτική παρουσίαση με ηλεκτρονικό τρόπο και αποσκοπεί στο να δείξει γραφικά τα τυποποιημένα δεδομένα μεταξύ διαφορετικών χωρών στην μεταπολεμική περίοδο. Με την έννοια αυτή δεν αποτελεί ενοποιημένο κείμενο. Με τον αγγλικό όρο sylized facs, που θα μπορούσε να αποδοθεί ως «τυποποιημένα δεδομένα», εννοούμε απλουστευμένες παρουσιάσεις εμπειρικών ευρημάτων που έχουν επιβεβαιωθεί τόσο συχνά ώστε να μπορεί να θεωρηθούν ως προφανείς εμπειρικές αλήθειες. Ο όρος χρησιμοποιήθηκε για πρώτη φορά το 1958 από τον Ούγγρο οικονομολόγο Nicholas Kaldor, καθηγητή στο πανεπιστήμιο του Cambridge. Οι θεωρίες και τα υποδείγματα της οικονομικής μεγέθυνσης θα πρέπει να μπορούν να εξηγήσουν αυτά τα θεωρούμενα ως αληθή εμπειρικά ευρήματα.. Nicholas Kaldor, Ποια είναι λοιπόν τα sylized facs στην οικονομική μεγέθυνση; SF#1 Υπάρχει τεράστια διαφορά στο κατά κεφαλήν εισόδημα στις διάφορες εθνικές οικονομίες. SF#2 Οι ρυθμοί οικονομικής μεγέθυνσης διαφέρουν σημαντικά μεταξύ των χωρών. SF#3 Οι ρυθμοί οικονομικής μεγέθυνσης γενικά δεν είναι σταθεροί στον χρόνο. SF#4 Η σχετική θέση μιας χώρας στην παγκόσμια κατανομή των κατά κεφαλήν εισοδημάτων δεν είναι σταθερή. SF#5 Στις ΗΠΑ τον τελευταίο αιώνα: 1. Η πραγματική απόδοση του κεφαλαίου δεν έχει ανοδική ή πτωτική τάση 2. Τα σχετικά εισοδήματα εργασίας και κεφαλαίου παραμένουν σταθερά 3. Ο μέσος ρυθμός μεγέθυνσης του κατά κεφαλήν προϊόντος υπήρξε θετικός και σχετικά σταθερός Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 15

22 Ας ξεκινήσουμε λοιπόν περιγράφοντας τα τυποποιημένα δεδομένα. Το πρώτο τ.δ. (SF#1) είναι ότι υπάρχει τεράστια διαφορά στο κατά κεφαλήν εισόδημα στις διάφορες εθνικές οικονομίες. Στις επόμενες δύο εικόνες παρουσιάζονται δύο «τυπικά νοικοκυριά» με όλα τα υπάρχοντά τους. Το πρώτο είναι ινδικό και το δεύτερο αγγλικό. Η διαφορά στο επίπεδο των υλικών αγαθών είναι εμφανής. Πηγή: David N. Weil: Economic Growh, Addison-Wesley, Η σύγκριση μεταξύ του ΑΕΠ των διαφόρων εθνικών οικονομιών γίνεται με βάση την θεωρία της ισοτιμίας της αγοραστικής δύναμης (purchasing-power pariy). Μετράμε δηλ., όχι το ΑΕΠ σε δολάρια ή ευρώ κάνοντας την μετατροπή από το εθνικό νόμισμα με την τρέχουσα (ή άλλη) ισοτιμία αλλά σε όρους αγοραστικής δύναμης σε δολάρια ΗΠΑ. Παρόλο που δεν θα την αναπτύξουμε εδώ, η βασική ιδέα της θεωρίας είναι ότι Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 16

23 δεν μπορεί οι συγκρίσεις μεταξύ χωρών να βασίζονται στην και να μεταβάλλονται με την ισοτιμία των εθνικών νομισμάτων. Επίσης οι τιμές των διαφορετικών αγαθών και υπηρεσιών διαφέρουν ως προς το ύψος τους για αγαθά και υπηρεσίες που δεν υπόκεινται στην εξίσωση του διεθνούς εμπορίου. Έτσι, ενώ μια τηλεοπτική συσκευή κοστίζει το ίδιο στις περισσότερες χώρες, ένα κούρεμα κοστίζει διαφορετικά στην Ινδία και στις ΗΠΑ. Έτσι οι νομισματικές ισοτιμίες πρέπει να προσαρμοσθούν με τρόπο ώστε ένα «καλάθι» από αγαθά και υπηρεσίες να έχει το ίδιο κόστος σε όποια χώρα και αν αγορασθεί. Οι Διεθνείς Πίνακες από το Κέντρο Διεθνών Συγκρίσεων του Πανεπιστημίου της Πενσυλβανίας στις ΗΠΑ (hp://pw.econ.upenn.edu/) είναι από τις πλέον χρησιμοποιούμενες βάσεις δεδομένων για διεθνείς οικονομικές συγκρίσεις. Μία κωμική αλλά ενδιαφέρουσα εφαρμογή της αρχής της ισοτιμίας της αγοραστικής δύναμης είναι το Economis's Big Mac index που συντάσσει το περιοδικό The Economis και δείχνει πόσο κοστίζει ένα χάμπουργκερ Big Mac στις διαφορετικές πόλεις του κόσμου. Πηγή: The Economis, 12/1/2006 Επίσης συχνά μετράμε το ΑΕΠ ανά εργάτη και όχι κατά κεφαλή. Οι λόγοι για αυτό είναι κυρίως ότι: Το κατά κεφαλή ΑΕΠ αναφέρεται στην ευημερία ενώ ανά εργάτη στην παραγωγικότητα Άτομα που δεν αναφέρονται ως εργαζόμενοι μπορεί να εργάζονται στην οικιακή οικονομία ή στην παραοικονομία Ας σημειωθεί πάντως ότι το ΑΕΠ κατά κεφαλή αποτελεί μόνο ένα δείκτη ευημερίας (π.χ., παιδική θνησιμότητα, ή το προσδόκιμο αποτελούν άλλα μέτρα ευημερίας) Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 17

24 Οι παρακάτω χάρτες δείχνουν την διαφορά σε ΑΕΠ κατά κεφαλή με βάση την αγοραστική δύναμη. Πηγή: Διεθνής Τράπεζα. Ένας άλλος τρόπος να αντιληφθούμε τις διαφορές του ΑΕΠ κατά κεφαλή είναι να δούμε γραφικά το ΑΕΠ κατά κεφαλή κατατάσσοντας τις χώρες κατά αύξον ΑΕΠ κ.κ. Πηγή: Heson e al., Penn World Tables (2006) και επεξεργασία ΝΘ. Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 18

25 ΑΕΠ κατά κεφαλή Alan Heson, Rober Summers and Beina Aen, Penn World Table Version 6.2, Cener for Inernaional Comparisons of Producion, Income and Prices a he Universiy of Pennsylvania, Sepember ΑΕΠ κατά κεφαλή LBR SLE MDG TZA UGA RWA STP COM GHA BGD VNM VUT BIH FSM MAR PER SLV CHN DZA UKR DOM TUN BWA URY PLW LVA MYS ANT GRC BHS SVN PRI KWT SGP IRL AUS USA Χώρα Τα ίδια στοιχεία γίνονται ακόμα πιο παραστατικά αν τα επεξεργασθούμε υπολογίζοντας τον πληθυσμό κάθε χώρας και τα βάλουμε σε μια καμπύλη Lorenz που αποτελεί και ένα τρόπο μέτρησης της ανισότητας. Έτσι μπορούμε να δούμε τι ποσοστό του παγκόσμιου εισοδήματος έχει τι ποσοστό του παγκόσμιου πληθυσμού. Φαίνεται, π.χ., ότι τα 2/3 του πληθυσμού έχουν πολύ λιγότερο από το 1/3 του παγκόσμιου ΑΕΠ, ενώ το 47% του πληθυσμού έχει λιγότερο από το 17% του παγκόσμιου ΑΕΠ. Καμπύλη Lorenz % USA 90% 80% 70% Alan Heson, Rober Summers and Beina Aen, Penn World Table Version 6.2, Cener for Inernaional Comparisons of Producion, Income and Prices a he Universiy of Pennsylvania, Sepember NOR 60% % ΑΕΠ 50% GRC 40% 30% CHN 20% IDN IND 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% % Πληθυσμού Πιο παραστατικά το επόμενο γράφημα δείχνει το ΑΕΠ κ.κ. σε σχετικούς όρους (με το παγκόσμιο ΑΕΠ κ.κ.=100) και το σωρευτικό ποσοστό του παγκόσμιου πληθυσμού που απολαμβάνει το συγκεκριμένο ΑΕΠ. Φαίνεται ότι τα ¾ του πληθυσμού έχουν Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 19

26 μικρότερο ΑΕΠ κ.κ. από τον μέσο όρο). Πηγή: IBRD/World Bank, 2005 Inernaional Comparison Program, Ο επόμενος πίνακας δείχνει σωρευτικά το ποσοστό του πληθυσμού της γης σε σχέση με το ΑΕΠ των ΗΠΑ ανά εργαζόμενο. Παρατηρείστε ότι το 60% του πληθυσμού έχει λιγότερο από το 20% του ΑΕΠ των ΗΠΑ ανά εργαζόμενο. Πηγή: Charles I Jones, Inroducion o Economic Growh, 2η εκδ., W.W. Noron, 2002 Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 20

27 Μια άλλη παρουσίαση της ανισότητας είναι μέσω της «παρέλασης», μιας ιδέας του Jan Pen από το Οι κάτοικοι του πλανήτη παρελαύνουν κατά «ύψος» του ΑΕΠ κ.κ., οι πιο «κοντοί» πρώτοι. Είναι όπως το προ-προηγούμενο διάγραμμα με πραγματικά όμως στοιχεία. Πηγή: David N. Weil: Economic Growh, Addison- Wesley,2005. Ο παρακάτω πίνακας δείχνει διάφορες χώρες και δίπλα τον πληθυσμού τους και την σχέση του ΑΕΠ ανά εργαζόμενο σε σχέση με αυτό των ΗΠΑ, το 1960 και το Πηγή: Durlauf e al., Growh Economerics, Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 21

28 Το παρακάτω διάγραμμα κάνει ότι και ο προηγούμενος πίνακας για όλες τις χώρες και δείχνει την κατανομή του ΑΕΠ ανά εργαζόμενο σε σχέση με το ΑΕΠ ανά εργαζόμενο των ΗΠΑ το Παρατηρείστε ότι ακόμα και το 2000 οι περισσότερες χώρες (διακεκομμένη γραμμή) είναι σε χειρότερη μοίρα από ό,τι οι ΗΠΑ το (Ίδια πηγή). Ας δούμε τώρα το δεύτερο τυποποιημένο δεδομένο δηλ., ότι SF#2 Οι ρυθμοί οικονομικής μεγέθυνσης διαφέρουν σημαντικά μεταξύ των χωρών. Το επόμενο διάγραμμα (ίδια πηγή) δείχνει την κατανομή των μέσων ρυθμών μεγέθυνσης των εθνικών οικονομιών σε δύο εικοσαετίες: και Παρατηρείστε πόσο διαφέρουν μεταξύ τους και ότι οι ρυθμοί μεγέθυνσης ήταν πολύ καλύτεροι την πρώτη εικοσαετία από την δεύτερη. Παρατηρείστε επίσης πόσες οικονομίες είχαν αρνητικό ρυθμό μεγέθυνσης την δεύτερη εικοσαετία. Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 22

29 Το επόμενο διάγραμμα (από το βιβλίο του Charles Jones, ο,π.) δείχνει το ΑΕΠ κατά κεφαλή και ανά εργαζόμενο το ποσοστό συμμετοχής στο εργατικό δυναμικό (με το οποίο γίνεται η μετατροπή μεταξύ των δύο προηγουμένων μεγεθών (πως;)), τον μέσο ρυθμό μεγέθυνσης από το 1960 έως το 1997 και τα χρόνια που θα χρειασθεί κάθε οικονομία να διπλασιάσει το σχετικό μέγεθος της. (Θυμηθείτε πως το υπολογίζουμε από την προηγούμενη διάλεξη). Ο Jones χωρίζει τις χώρες σε «πλούσιες», «φτωχές», «οικονομικά θαύματα» και «οικονομικές καταστροφές». Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 23

30 Ο επόμενος πίνακας αποτελεί επεξεργασία δική μου από το Penn World Table 6.2 και δείχνει ΑΕΠ κ.κ. (2003), μέσο ρυθμό μεγέθυνσης και πληθυσμό. ΑΕΠ / Μέσος ρ.μ. Πληθυσμός Χώρα κεφαλή (χιλ.) Λουξεμβούργο ,16% 453 ΗΠΑ ,34% Νορβηγία ,02% Χονγκ-Κονγκ ,05% Σιγκαπούρη ,41% Αγγλία ,18% Γαλλία ,59% Ισπανία ,41% Ν. Κορέα ,96% Ελλάδα ,14% Βενεζουέλα ,06% Τουρκία ,16% Κίνα ,75% Ινδία ,85% Ζιμπάμπουε ,14% Μαλί ,93% Τσαντ 884-0,59% Μαδαγασκάρη 759-1,19% Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 24

31 Οι επόμενοι τρεις πίνακες από τους Durlauf e al., δείχνουν τρία σενάρια: (1) 15 «οικονομικά θαύματα» ( ), (2) 15 «οικονομικές καταστροφές» ( ) και (3) «καταρρεύσεις του ΑΕΠ κ.κ.» μέσα σε τρία χρόνια. Στο Τσαντ μάλιστα το το ΑΕΠ κ.κ. έπεσε στο μισό! Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 25

32 Ας δούμε τώρα το τρίτο τυποποιημένο δεδομένο: SF#3. Οι ρυθμοί οικονομικής μεγέθυνσης γενικά δεν είναι σταθεροί στον χρόνο Στο σύνολο της παγκόσμιας οικονομίας οι ρυθμοί μεγέθυνσης ήταν σχεδόν μηδενικοί για το μεγαλύτερο μέρος στην ιστορία αλλά αυξήθηκαν δραματικά στον 20ο αιώνα. Το παρακάτω διάγραμμα από τον Jones που επεξεργάζεται στοιχεία κυρίως από τον Angus Maddison, δείχνει το πώς εξελίχθηκε η παγκόσμια οικονομία σε ρυθμούς μεγέθυνσης από το 1500 και μετά. Στον κάθετο άξονα είναι ΑΕΠ κ.κ. σε δολάρια ΗΠΑ 1985 σε λογαριθμική μορφή. Παρατηρείστε ότι παρόλο που είμαστε σε λογαριθμικό μετασχηματισμό η καμπύλη έχει εκθετική μορφή και ότι στο μεγαλύτερο μέρος της η ανθρωπότητα είχε ρυθμούς μεγέθυνσης πολύ κάτω του 1%. Φυσικά τα στοιχεία αυτά πρέπει να αντιμετωπίζονται με εξαιρετική επιφύλαξη. Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 26

33 Στις επιμέρους χώρες οι ρυθμοί μεγέθυνσης επίσης μεταβάλλονται στον χρόνο. Ξαναδείχνουμε ένα προηγούμενο διάγραμμα από τους Durlauf e al. όπου φαίνεται ότι οι ρυθμοί μεγέθυνσης ήταν πολύ μεγαλύτεροι την εικοσαετία από την εικοσαετία Τα επόμενα διαγράμματα από τους Durlauf e al. δείχνουν τα περί σύγκλισης. Σύμφωνα με τη λογική της σύγκλισης (convergence) θα έπρεπε όσο πιο χαμηλά ξεκινάς τόσο πιο γρήγορα να μεγεθύνεσαι ώστε να φτάσεις τους πιο ανεπτυγμένους. Τα διαγράμματα δείχνουν ως σημεία τις διεθνείς βραχυγραφίες των χωρών (π.χ., GRC για την Ελλάδα) και συγκρίνουν στον κάθετο άξονα το σχετικό ΑΕΠ ανά εργαζόμενο σε σχέση με τις ΗΠΑ (1960 στα δύο πρώτα διαγράμματα και 1980 στο τρίτο) και τον μέσο ρυθμό μεγέθυνσης στον κάθετο άξονα. Τα διαγράμματα αφορούν την τεσσαρακονταετία και τις εικοσαετίες και Αν ίσχυε η σύγκλιση θα έπρεπε τα σημεία να βρίσκονται πάνω σε μια ευθεία με αρνητική κλίση. Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 27

34 Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 28

35 Στην πραγματικότητα, και όπως προκύπτει από το SF#3 οι ρυθμοί μεγέθυνσης διαφέρουν στον χρόνο. Αν υπήρχε σχέση μεταξύ των ρυθμών μεγέθυνσης στον χρόνο θα έπρεπε στο επόμενο διάγραμμα (πάλι από τους Durlauf e al.) να έχουμε όλα τα σημεία πάνω στην ευθεία των 45 μοιρών. Το διάγραμμα δείχνει στον οριζόντιο άξονα τον μέσο ρυθμό μεγέθυνσης το και στον κάθετο τον μέσο ρυθμό μεγέθυνσης το Παρατηρείστε όμως ότι τα σημεία βρίσκονται σε ένα σύννεφο και όχι πάνω στην ευθεία. Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 29

36 Οι επόμενοι πίνακες από την ίδια πηγή συσχετίζουν ρυθμούς μεγέθυνσης διαφόρων χώρων μεταξύ εικοσαετιών και δείχνουν ο πρώτος που βρίσκονται οι διάφορες χώρες στα κελιά ενός πίνακα που έχει ρυθμούς μεγέθυνσης στις δύο εικοσαετίες και ο δεύτερος συντελεστές συσχέτισης μεταξύ ρυθμών μεγέθυνσης στις τέσσερις δεκαετίες από το 1960 έως το 2000 για ολόκληρο το δείγμα και την λέσχη των πλουσίων. Παρατηρείστε ότι για όλο το δείγμα ο συντελεστής συσχέτισης είναι εξαιρετικά χαμηλός. Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 30

37 Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 31

38 Η διαφορά που υπάρχει ανάμεσα στους ρυθμούς μεγέθυνσης μαζί με το γεγονός ότι οι ρυθμοί μεγέθυνσης μεταβάλλονται οδηγούν στο τέταρτο τυποποιημένο δεδομένο: SF#4 Η σχετική θέση μιας χώρας στην παγκόσμια κατανομή των κατά κεφαλήν εισοδημάτων δεν είναι σταθερή. Το παρακάτω διάγραμμα (Durlauf e al.) δείχνει σε λογαριθμική κλίμακα τα σχετικά (ως προς τις ΗΠΑ) ΑΕΠ ανά εργαζόμενο το 1960 και το Μία διατήρηση της σχετικής θέσης θα σήμαινε ότι οι χώρες θα ήταν συγκεντρωμένες γύρω από την ευθεία των 45. Αυτό όμως συμβαίνει μόνο εν μέρει. Τέλος το πέμπτο τυποποιημένο δεδομένο αφορά την οικονομία των ΗΠΑ. Συγκεκριμένα: SF#5 Στις ΗΠΑ τον τελευταίο αιώνα. 1. Η πραγματική απόδοση του κεφαλαίου δεν έχει ανοδική ή πτωτική τάση 2. Τα σχετικά εισοδήματα εργασίας και κεφαλαίου παραμένουν σταθερά 3. Ο μέσος ρυθμός μεγέθυνσης του κατά κεφαλήν προϊόντος υπήρξε θετικός και σχετικά σταθερός Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 32

39 Το τελευταίο δεδομένο φαίνεται από το επόμενο διάγραμμα (πηγή: Jones) όπου δείχνει το κατά κεφαλή ΑΕΠ των ΗΠΑ από το 1860 μέχρι το 2000 σε δολάρια του 1990 σε λογαριθμική κλίμακα. Ο σχεδιασμός σε λογαριθμική κλίμακα μας επιτρέπει να δούμε ότι γενικά με εξαίρεση την περίοδο από το κραχ του 1929 μέχρι την μεταπολεμική άνθιση μπορούμε να εφαρμόσουμε επιτυχώς μία ευθεία στην χρονολογική σειρά που δείχνει την τάση της μεγέθυνσης του κατά κεφαλή ΑΕΠ. Η ύπαρξη της ευθείας δείχνει ότι ο ρυθμός μεγέθυνσης είναι σταθερός. Βιβλιογραφία 2005 Inernaional Comparison Program: Tables of final resuls (2008), Washingon D.C.: Inernaional Bank for Reconsrucion and Developmen/ The World Bank. Διαθέσιμο στην ηλεκτρονική διεύθυνση hp://sieresources.worldbank.org/icpint/resources/icp_final-resuls.pdf DURLAUF, Seven N., Paul A. JOHNSON & Jonahan R.W. TEMPLE (2005), Growh Economerics, στο Philippe Aghion & Seven N. Durlauf (επιμ.): Handbook of Economic Growh, τόμος Α. Amserdam: Norh-Holland, Elsevier. HESTON, Alan, Rober SUMMERS & Beina ATEN (2006), Penn World Table Version 6.2, Cener for Inernaional Comparisons of Producion, Income and Prices a he Universiy of Pennsylvania, Sepember. Διαθέσιμο στην ηλεκτρονική διεύθυνση hp://pw.econ.upenn.edu/php_sie/pw_index.php JONES, Charles I. (2002), Inroducion o Economic Growh, 2η εκδ., New York: W.W. Noron. WEIL, David N. (2005): Economic Growh, Boson, Mass. & London: Addison- Wesley. Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 33

40 Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 34

41 ΤΡΙΤΗ ΔΙΑΛΕΞΗ Το υπόδειγμα Harrod 1 Sir Roy F. Harrod, R. F. Harrod 1939 "An Essay in Dynamic Theory", Economic Journal, τ. 49, σσ Towards a Dynamic Economics: Some recen developmens of economic heory and heir applicaion o policy, London: Macmillan Economic Dynamics, London: Macmillan. R. F. Harrod, "An Essay in Dynamic Theory", Economic Journal, 1939 «Η σημασία αυτού που ακολουθεί δεν πρέπει να κριθεί αποκλειστικά από την ισχύ ή την ευχέρεια των συγκεκριμένων εξισώσεων που προτείνονται. Αφορά κάτι ευρύτερο: μία μέθοδο σκέψης, έναν τρόπο προσέγγισης ορισμένων προβλημάτων. Είναι αναγκαίο να σκεφτούμε δυναμικά». 2 1 Το παρόν δεν αποτελεί διάλεξη, αλλά μια αποδελτίωση του σχετικού κεφαλαίου για διδακτική παρουσίαση του εγχειριδίου του Hywell Jones. Διαβάστε προσεκτικά το σχετικό κεφάλαιο και χρησιμοποιείστε τις σημειώσεις αυτές ως ανακεφαλαίωση. 2 The significance of wha follows should no be judged solely by reference o he validiy or convenience of he paricular equaions se forh. I involves somehing wider: a mehod of hinking, a way of approach o cerain problems. I is necessary o hink dynamically Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 35

42 Υπόδειγμα Harrod Τρεις βασικές υποθέσεις 1. Το επίπεδο του εισοδήματος μιας κοινότητας είναι ο σημαντικότερος προσδιοριστικός παράγοντας της προσφοράς για αποταμίευση 2. Ο ρυθμός αύξησης του εισοδήματος σημαντικός παράγοντας της ζήτησης για αποταμίευση 3. Ζήτηση ίση με προσφορά Άρα το υπόδειγμα Harrod είναι ένα συναθροιστικό υπόδειγμα πολλαπλασιαστή επιταχυντή Συγκεκριμένες Υποθέσεις 1. Αποταμίευση S απλή αναλογική συνάρτηση του εισοδήματος Y S=sY όπου s=μέση και οριακή ροπή προς αποταμίευση 2. Το εργατικό δυναμικό L μεγεθύνεται με σταθερό εξωγενή ρυθμό n LL = n άρα μη μαλθουσιανή ανάπτυξη 3. Δεν υπάρχει τεχνολογική πρόοδος και απόσβεση αποθέματος κεφαλαίου 4. Οι ποσότητες κεφαλαίου K και εργασίας L που απαιτούνται για μια δεδομένη ροη προϊόντος Y δίνονται μονοσήμαντα K L Y = min, v u Εργασία L Αν όλη η εργασία είναι πλήρως απασχολημένη, τότε οποίο και αν είναι το απόθεμα κεφαλαίου K, το μέγιστο επίπεδο προϊόντος είναι L/u Άρα max Y L = = n Y L Κεφάλαιο Κ Ο λόγος κεφαλαίου-προϊόντος v είναι ο λόγος αποθέματος κεφαλαίου προς τη ροή του προϊόντος ή του εισοδήματος K=vY Ισχύει και για προσαυξήσεις ΔK=vΔY K = vy Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 36

43 Ο μέσος λόγος κεφαλαίου-προϊόντος v ισούται με τον οριακό λόγο κεφαλαίου-προϊόντος K ΔK K = = = v Y ΔY Y Δύο ορισμοί του λόγου κεφαλαίου-προϊόντος v Ορισμός (i): Πραγματική προσαύξηση του αποθέματος κεφαλαίου διαιρεμένη με την πραγματική προσαύξηση του προϊόντος. Μετρηθείς ή ex pos ( v ) Ορισμός (ii): Προσαύξηση του αποθέματος κεφαλαίου συνδεδεμένη με την προσαύξηση του προϊόντος που απαιτείται από τους επιχειρηματίες ώστε να θεωρούν ότι επένδυσαν την σωστή ποσότητα ex ane ( v r ) Εφόσον η απόσβεση είναι μηδενική συνεπάγεται ότι I = K I = vy Εφόσον I=S και S=sY προκύπτει ότι vy = sy Και συνεπώς Y Y s = v Θεμελιώδης εξίσωση Ολοκληρώνοντας έχουμε s s lny() = d Z v = v + Υψώνοντας στο e έχουμε s s Y() = exp + Z = exp( Z) exp = v v s = Y( 0exp ) v Ο ρυθμός μεγέθυνσης πρέπει να ισούται με τον λόγο της ροπής προς αποταμίευση προς τον λόγο κεφαλαίου-προϊόντος Y s = Y v Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 37

44 Αντίστοιχα K I = K = S = sy = s v s K = K v K s Y = = K v Y s K() = K( 0exp ) v Η θεμελιώδης εξίσωση ως ταυτότητα Από την θεμελιώδη εξίσωση Y = s Y v Προκύπτει ότι Y v s Y = Ανακαλώντας τον ορισμό (i) του v: K I v = = Y Y Η θεμελιώδης εξίσωση γίνεται Y Y v= I = s= S Y Y Y Y Συμβολίζουμε με G A τον πραγματικό ρυθμό μεγέθυνσης του εθνικού εισοδήματος και έχουμε G A s/v Η θεμελιώδης εξίσωση ορίζουσα τροχιά ισόρροπης μεγέθυνσης Y Y s = v r Από τον ορισμό (ii) Συμβολίζουμε με G W τον warraned (συστημικό ή επιθυμητό) ρυθμό μεγέθυνσης του εθνικού εισοδήματος και έχουμε G W s/v r Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 38

45 Το πρώτο πρόβλημα Harrod L GA = n L G = G = n A W G A s = = n v r Χρυσός Αιώνας Σταθερή μεγέθυνση με πλήρη απασχόληση είναι δυνατή αλλά δεν είναι πιθανή Πρόβλημα ευσταθείας Gv= s= G v G G A W r A W vr = v Αν ο πραγματικός ρ.μ. υπερβαίνει τον επιθυμητό τότε οι επιχειρηματίες θα καταλάβουν ότι η αύξηση του Κ είναι μικρότερη από αυτή που επιθυμούν Αν G A >G W τότε I Ορίζω ως προσδοκώμενο εισόδημα την περίοδο : E Y E E Y Y 1 Προσδοκώμενο ρυθμό μεγέθυνσης: G = E Y Y Y 1 Και πραγματικό ρυθμό μεγέθυνσης: G = Y Ο πολλαπλασιαστής καθορίζει Y E Και ο επιταχυντής I = vy ( Y 1) Από όπου προκύπτει 1 = I s Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 39

46 v E Y = ( Y Y 1) s E Y v Y Y 1 v = E E = G Y s Y s E G 1 G = 1 E G E s v Δηλ., αν G > s v G > G E E G = s v G = G E E G < s v G < G E E Δεύτερο πρόβλημα Harrod Οι αποκλίσεις του πραγματικού ρυθμού μεγέθυνσης από τον επιθυμητό όχι μόνο δεν διορθώνονται αλλά είναι και σωρευτικές Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 40

47 ΤETAΡΤΗ ΔΙΑΛΕΞΗ Το νεοκλασικό υπόδειγμα οικονομικής μεγέθυνσης του Rober Solow 3 Το υπόδειγμα οικονομικής μεγέθυνσης του Solow (Solow growh model) αποτελεί ουσιαστικά την αφετηρία της νεοκλασικής θεωρίας της μεγέθυνσης. Βασίζεται στο άρθρο του Rober Solow που δημοσιεύθηκε το 1956 στο Quarerly Journal of Economics το οικονομικό περιοδικό του πανεπιστημίου του Harvard. 4 Την ίδια χρονιά δημοσιεύθηκε ένα παρεμφερές άρθρο του Trevor Swan στο επιστημονικό περιοδικό Economic Record. 5 Για τον λόγον αυτό συχνά θα συναντήσετε την αναφορά στο υπόδειγμα Solow-Swan. Το υπόδειγμα όπως το παρουσιάζουμε εδώ είναι «πλήρες» με την έννοια ότι ενσωματώνει και την τεχνική πρόοδο και την απόσβεση του κεφαλαίου. Συνήθως οι περισσότερες παρουσιάσεις ξεκινούν με την απλούστευση ότι η απόσβεση είναι μηδενική και η τεχνική πρόοδος ανύπαρκτη και στην συνέχεια εισά- 3 Οι σημειώσεις αυτές βασίστηκαν στο βιβλίο του David Romer, Advanced Macroeconomics, McGraw-Hill, 2001, 2 η έκδοση, το οποίο πρόσφατα κυκλοφόρησε και στα ελληνικά. 4 Rober M. Solow (1956): A Conribuion o he Theory of Economic Growh, Quarerly Journal of Economics, τόμος 70, Φεβρουάριος, σσ Trevor W. Swan, (1956): Economic Growh and Capial Accumulaion, Economic Record, τόμος 32, Νοέμβριος, σσ Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 41

48 γουν αυτές τις έννοιες στο υπόδειγμα. Φυσικά θέτοντας τις αντίστοιχες παραμέτρους ίσες με το μηδέν καταλήγουμε στα ίδια συμπεράσματα με τα πιο απλά υποδείγματα. Μεταβλητές Ας ξεκινήσουμε εισάγοντας τις μεταβλητές μας: Υ = Προϊόν (Oupu) Κ= Κεφάλαιο (Capial). Τόσο το προϊόν όσο και το απόθεμα κεφαλαίου εκφράζονται με τις ίδιες μονάδες. Ουσιαστικά πρόκειται για το ίδιο προϊόν. Το προϊόν που παράγεται μπορεί είτε να καταναλωθεί είτε να επενδυθεί. Για τον λόγο αυτό τα υποδείγματα αυτά ονομάζονται υποδείγματα «σίτου» (corn models) γιατί το σιτάρι μπορεί είτε να το σπείρεις είτε να το καταναλώσεις. 6 L = Εργασία (Labour). Η μεταβλητή αυτή μπορεί να είναι αριθμός απασχολουμένων ή συνολικές ώρες εργασίας στην οικονομία. Δεδομένου ότι αποτελεί μεταβλητή που εισέρχεται στην συνάρτηση παραγωγής το μέγεθος αυτό είναι διαφορετικό από τον πληθυσμό και συνδέεται με την παραγωγικότητα της οικονομίας. Για τον λόγο αυτό, σε εμπειρικές διερευνήσεις του υποδείγματος Solow χρησιμοποιούμε ΑΕΠ ανά εργάτη και όχι ΑΕΠ κατά κεφαλή. Πάντως ενώ είναι εύλογο να υποθέσουμε ότι ο πληθυσμός μιας χώρας αυξάνεται με εξωγενή δεδομένο ρυθμό, είναι πιο δύσκολο να κάνουμε την ίδια υπόθεση για το εργατικό δυναμικό. Εδώ υποθέτουμε ότι το εργατικό δυναμικό αυξάνεται σταθερά και εξωγενώς και ότι δεν υπάρχει ανεργία. Υποθέτουμε επίσης ότι όλες οι μονάδες έχουν το ίδιο επίπεδο ειδίκευσης. A = Γνώση ή Αποδοτικότητα της εργασίας ( Knowledge or effeciveness of labor ) Ουσιαστικά περιλαμβάνει κάθε είδους τεχνογνωσία, εκπαίδευση, οργάνωση, θεσμούς ή και ιδεολογία που επηρεάζει την παραγωγικότητα της απλής εργασίας. Θα αναφερθούμε εκτενέστερα στην έννοια της τεχνικής προόδου σε άλλη διάλεξη. Εδώ θεωρείστε την έννοια ως δεδομένη. = χρόνος (ime) Συνάρτηση παραγωγής (σ.π.) (Producion funcion) Ο Solow εισήγαγε την έννοια της συνάρτησης παραγωγής στην οποία μπορείς να υποκαταστήσεις κεφάλαιο σε εργασία. Έτσι ο λόγος κεφαλαίου-προϊόντος που είναι σταθερός και εξωγενώς δεδομένος στο υπόδειγμα Harrod-Domar εδώ είναι μεταβλητός και προσδιορίζεται ενδογενώς στο υπόδειγμα. Ουσιαστικά ο Solow ήθελε να δείξει ότι η υπόθεση του σταθερού λόγου κεφαλαίου-προϊόντος ευθύνεται για τα συμπεράσματα στα οποία οδηγεί το υπόδειγμα Harrod-Domar. 7 Η συνάρτηση παραγωγής που εισάγει ο Solow είναι της μορφής 6 Η αγγλική λέξη corn στο Αμερικανικό και Αυστραλέζικο ιδίωμα σημαίνει «αραβόσιτος». Στα βρετανικά αγγλικά σημαίνει το κύριο δημητριακό μιας περιοχής. Έτσι στην Αγγλία μπορεί να είναι σιτάρι (whea) και στην Σκωτία βρώμη (oas). Το πρώτο corn model διατυπώθηκε από τον David Ricardo το Η υπόθεση του ενός αγαθού έχει υποστεί κριτική και για τον λόγο αυτό το αγαθό αυτό έχει αποκληθεί ειρωνικά «πηλός», «πλαστελίνη» ή και «εκτόπλασμα». 7 Ο Solow και άλλοι υπέθεσαν ότι ο Harrod εργάζεται με μια συνάρτηση παραγωγής τύπου Leon- K L ief, δηλ. μια σ.π. του τύπου Y = min, v u. Ο ίδιος ο Harrod όμως δεν το δέχεται αυτό και θεωρεί ότι κάτι τέτοιο δεν είναι απαραίτητο για να υπάρχει σταθερός λόγος κεφαλαίου-προϊόντος. Βλ. την συζήτηση στο εγχειρίδιο του Hywell Jones. Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 42

49 Παρατηρείστε ότι : () ( (), () ( )) Y = F K A L (1) 1. Ο χρόνος εισέρχεται στην σ.π. έμμεσα μέσω των K, A, L. Η σ.π. δεν είναι της μορφής F(K, L, A, ) 2. Οι A και L εισέρχονται πολλαπλασιαστικά ως AL 8 (AL= αποδοτική εργασία (effecive labour)) 3. Το προϊόν και το κεφάλαιο είναι το ίδιο αγαθό, το οποίο και καταναλώνεται και επενδύεται. Έχουμε δηλαδή ένα υπόδειγμα σίτου. Παραδοχές του υποδείγματος A. Συνάρτηση παραγωγής. Η συνάρτηση παραγωγής είναι ομαλώς συμπεριφερόμενη (well-behaved) και πληροί τους εξής όρους. Α1. Σταθερές αποδόσεις κλίμακος (consan reurns o scale) 9 ως προς Κ και AL, δηλ., FcKcAL (, ) = cfkal (, ) c 0 (2) Η εξίσωση (2) μας επιτρέπει να εργαστούμε με την εντατική μορφή (inensive form) της σ.π. Θέτοντας c=1/al στην (2) προκύπτει K 1 F,1 = F K, AL AL AL ( ) (3) όπου K/AL είναι κεφάλαιο ανά μονάδα αποδοτικής εργασίας. 8 Η τεχνολογική πρόοδος η οποία εισέρχεται κατ αυτόν τον τρόπο αποκαλείται αυξητική της εργασίας (labor augmening) ή ουδέτερη κατά Harrod (Harrod-neural). Τυπικά, ουδέτερη κατά Harrod ονομάζεται η πρόοδος εκείνη που τα σχετικά μερίδια των εισροών K FK L FL παραμένουν αμετάβλητα για δεδομένο λόγο κεφαλαίου-προϊόντος.. Το αποτέλεσμα ότι η συγκεκριμένη μορφή σ.π. είναι ουδέτερη κατά Harrod οφείλεται στην Joan Robinson και στον Hirofumi Uzawa. Αντίθετα, ουδέτερη κατά Hicks (Hicks-neural) ονομάζεται η πρόοδος εκείνη που o λόγος των οριακών προϊόντων των εισροών παραμένει αμετάβλητος για δεδομένο λόγο κεφαλαίου-προϊόντος. Βλ. το σχετικό κεφάλαιο στο εγχειρίδιο του Hywell Jones. Στο υπόδειγμα Solow η υπόθεση για labor-augmening πρόοδο είναι απαραίτητη για το αποτέλεσμα της σταθερής ισορροπίας, εκτός αν η σ.π. είναι Cobb-Douglas οπότε μπορεί να ερμηνευθεί εν μέρει και ως capial-augmening (βλέπε Rober J. Barro & Xavier Sala-i-Marin (1995): Economic Growh. McGraw-Hill, New York., σ. 54) 9 Η υπόθεση αυτή μπορεί να ερμηνευθεί ως εξής: (α) η οικονομία είναι αρκετά μεγάλη ώστε έχουν εξαντληθεί τα οφέλη της εξειδίκευσης, αποτελείται, π.χ., από πολλές επιχειρήσεις οι οποίες αν και μικρές σε σχέση με την συνολική οικονομία είναι αρκετά μεγάλες ώστε να έχουν εξαντλήσει τα οφέλη της κλίμακας παραγωγής και (β) οι μόνοι συντελεστές παραγωγής που είναι σημαντικοί είναι αυτοί που είναι μέσα στην σ.π. Δεν υπάρχει, π.χ., εξάρτηση από την γη έτσι ώστε ένας τριπλασιασμός του κεφαλαίου και της εργασίας να περιορίσει την αποδοτικότητά τους. Πάντως η υπόθεση των σταθερών αποδόσεων κλίμακας βρίσκεται στην καρδιά της νεοκλασικής θεωρίας. Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 43

50 Ορίζοντας k = K/AL, y = Y/AL και f(k) = F(k,1) μπορούμε να ξαναγράψουμε την εξίσωση (3) ως y = f( k) (4) Α2. Η εντατική μορφή ικανοποιεί τις συνθήκες f(0) = 0, f ( k) > 0, f ( k) < 0 Α3. Επίσης η f(k) εκπληρώνει και τις συνθήκες Inada 10 (Inada condiions) ότι δηλαδή k 0 ( ) ( ) lim f k =, lim f k = 0 (5) k Σημείωση: Κλασσικό παράδειγμα συνάρτησης που ικανοποιεί τις παραπάνω προϋποθέσεις είναι η συνάρτηση Cobb-Douglas: α F K, AL = K AL α, 0< α < 1 (6) ( ) ( ) 1 Είναι εύκολο να αποδειχτεί ότι στην συνάρτηση Cobb-Douglas f ( k) α ( ) ( ) α ( AL) ( AL) = k α (7) Απόδειξη: α 1 α 1 α α 1 α α 1 α Y K AL K AL K AL Y = K ( AL) y = = = = k 1 α = AL AL AL AL Μία τυπική σ.π. που πληροί τους παραπάνω όρους θα έχει την εξής γραφική μορφή 11 α f(k) k Β. Οι αρχικές τιμές 12 των K, L και Α, K(0), L(0) και A(0) θεωρούνται δεδομένες, ενώ δεχόμαστε ότι η εργασία και η γνώση αυξάνουν με σταθερό ρυθμό L () = n (8) L () 10 Kenichi Inada, (1964): Some Srucural Characerisics of Turnpike Theorems, Review of Economic Sudies, τόμος, 31 Ιανουάριος, σσ Το παραπάνω διάγραμμα κατασκευάστηκε με βάση μια συνάρτηση Cobb-Douglas με a=1/3 12 Όταν δηλαδή =0. Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 44

51 () () A A = g Που σημαίνει ότι αν L(0), A(0) είναι οι τιμές στην χρονική περίοδο 0, οι τιμές στην n g στιγμή θα είναι L () = L(0) e, A () = A(0) e. Οι εκθετικές αυτές συναρτήσεις έχουν την παρακάτω γραφική μορφή. (9) x Γ. Το προϊόν διαιρείται σε κατανάλωση και επένδυση. Το ποσοστό που αφιερώνεται σε επένδυση (αποταμίευση) s, (0<s<1) είναι εξωγενώς δεδομένο και σταθερό. 13 Μια μονάδα προϊόντος που δαπανάται σε επένδυση δίνει μια μονάδα νέου κεφαλαίου. Το υπάρχον κεφάλαιο υπόκειται σε φυσική απόσβεση με ρυθμό δ. Αρα: () = ( ) δ ( ) K sy K (10) Δ. Το άθροισμα των n, g και δ είναι θετικό. Οι s, n, g και δ αποτελούν τις εξωγενώς δεδομένες παραμέτρους του υποδείγματος. Με τις παραδοχές αυτές περνάμε στην ανάλυση του υποδείγματος. Δυναμική ανάλυση του υποδείγματος Το υπόδειγμα Solow εστιάζει την προσοχή του στην συμπεριφορά της μεταβλητής k δηλ., του κεφαλαίου ανά μονάδα αποτελεσματικής εργασίας. Εξετάζουμε την συμπεριφορά της πρώτης παραγώγου του k ως προς τον χρόνο: ( ) ( + ) K K AL K AL AL K K L K A k = d d = = (11) 14 AL AL AL L AL A ( AL) 2 Από τον ορισμό του k, τις εξισώσεις (8), (9) και (10) προκύπτει ότι 13 Ο Solow θεωρούσε ότι ένα πραγματικά νεοκλασικό υπόδειγμα πρέπει να έχει ενδογενώς προσδιοριζόμενο ποσοστό αποταμίευσης. Διατήρησε όμως την υπόθεση του σταθερού ποσοστού αποταμίευσης για να μην αποστεί από το υπόδειγμα Harrod. 14 Η εξίσωση αυτή προκύπτει αυτόματα από τον ορισμό του k=k/al, παραγωγίζοντας ως προς, και χρησιμοποιώντας τον κανόνα παραγώγισης ότι ( ) ( ) ( )- ( ) ( ) ( ) f x ( ) f x g x g hx = h x = x f x 2 gx ( ) gx ( ) Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 45

52 sy K Y K Y k δ = kn kg = s δ kn kg = s kδ kn kg (12) AL AL AL AL και από το γεγονός ότι f(k)=y/al προκύπτει η θεμελιώδης εξίσωση του υποδείγματος Solow k ( ) = sf( k ( ))-( n+ g+δ ) k ( ) (13) Ο πρώτος όρος του δεξιού μέρους της εξίσωσης sf ( k( )) είναι η πραγματική επένδυση (acual invesmen) ανά μονάδα αποδοτικής εργασίας. Ο δεύτερος όρος είναι η επένδυση νεκρού σημείου ή επένδυση αναπλήρωσης (breakeven invesmen) η επένδυση δηλαδή που απαιτείται για να παραμείνει το k στο παρόν επίπεδο 15 Οταν η πραγματική επένδυση είναι μεγαλύτερη από την επένδυση αναπλήρωσης τότε το k αυξάνει, αλλιώς μειώνεται. Αυτό φαίνεται στο παρακάτω διάγραμμα. Επένδυση ανά μονάδα αποδοτικής εργασίας dk/d k* f(k) (n+g+δ)k sf(k) k Μπορούμε να συνοψίσουμε την παραπάνω σχέση με ένα διάγραμμα φάσεως (phase diagram) που δείχνει την μεταβολή της επένδυσης (dk/d) σε σχέση με το επίπεδο του κεφαλαίου (και τα δύο μεγέθη ανά μονάδα αποδοτικής εργασίας). 15 δ για να αναπληρώσει την απόσβεση, n+g για να αυξήσει το κεφάλαιο Κ κατά το ποσοστό που αυξάνεται η αποδοτική εργασία, εφόσον το k είναι ο λόγος K/AL. Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 46

53 dk/d k* k Για οποιοδήποτε επίπεδο κεφαλαίου ανά μονάδα αποδοτικής εργασίας μικρότερο του k*, εκεί δηλ., όπου sf(k*)=(n+g+δ)k*, η οικονομία αυξάνει τις επενδύσεις της μέχρι να επιτευχθεί αυτό το επίπεδο, ενώ για επίπεδα μεγαλύτερα του k* οι επενδύσεις μειώνονται μέχρις ότου το k φθάσει στο επίπεδο ισορροπίας. Δεδομένου ότι το σημείο ισορροπίας της οικονομίας είναι το σημείο όπου το κεφάλαιο ανά μονάδα αποδοτικής εργασίας παραμένει σταθερό, το ερώτημα είναι πώς εξελίσσονται τα υπόλοιπα μεγέθη στο σημείο ισορροπίας. Η εργασία και η γνώση, εξ υποθέσεως αυξάνονται με ρυθμούς n και g αντίστοιχα. Το κεφαλαιακό απόθεμα Κ, εφόσον είναι εξ ορισμού ίσο προς ALk και ο ρυθμός αύξησης του k είναι μηδενικός (όταν k=k*), αυξάνεται με ρυθμό g+n, 16 δηλαδή K K = n+ g. Δεδομένου ότι το κεφάλαιο και η αποδοτική εργασία αυξάνονται με τον ίδιο ρυθμό από την υπόθεση των σταθερών αποδόσεων κλίμακας προκύπτει ότι και το προϊόν Υ αυξάνεται με ρυθμό n+g. Τέλος το κεφάλαιο ανά μονάδα εργασίας (K/L) και το προϊόν ανά μονάδα εργασίας (Y/L) αυξάνονται με ρυθμό g. Αρα, στο υπόδειγμα Solow ανεξάρτητα από ποιο σημείο ξεκινά η οικονομία, τελικά συγκλίνει σε μία οδό ισόρροπης μεγέθυνσης (balanced growh pah) όπου τα κύρια μεγέθη μεγεθύνονται με τον ίδιο σταθερό ρυθμό. Η επίπτωση της αύξησης στο ποσοστό αποταμίευσης Μια αύξηση του s οδηγεί στην αύξηση του k* ισορροπίας. Αυτό είναι προφανές και από το παρακάτω διάγραμμα, όπου μια αύξηση του s σε s 1,οδηγεί σε ένα κεφάλαιο ισορροπίας ανά μονάδα αποδοτικής εργασίας k 1 * 16 Εάν w = xyz, και xx = a, y y= bzz, = c ww = a+ b+ c Νίκος Θεοχαράκης, Σημειώσεις στη Θεωρία της Οικονομικής Μεγέθυνσης, ΕΚΠΑ, 2009 σ. 47

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών. Θεωρία Οικονομικής Μεγέθυνσης. Νίκος Θεοχαράκης Μάρτιος 2013

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών. Θεωρία Οικονομικής Μεγέθυνσης. Νίκος Θεοχαράκης Μάρτιος 2013 Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Θεωρία Οικονομικής Μεγέθυνσης Νίκος Θεοχαράκης Μάρτιος 2013 Stylized facts Με τον αγγλικό όρο stylized facts, που θα μπορούσε να αποδοθεί ως «τυποποιημένα δεδομένα»,

Διαβάστε περισσότερα

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ 1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ Το διάγραμμα κυκλικής ροής της οικονομίας (κεφ. 3, σελ. 100 Mankiw) Εισόδημα Υ Ιδιωτική αποταμίευση S Αγορά συντελεστών Αγορά χρήματος Πληρωμές συντελεστών

Διαβάστε περισσότερα

ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΠΟΛΙΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ

ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΠΟΛΙΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΠΟΛΙΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ Μακροοικονομικά της Ανάπτυξης [Θεωρία Οικονομικής Μεγέθυνσης] Νίκος Θεοχαράκης Σημειώσεις στην έννοια

Διαβάστε περισσότερα

Κεφάλαιο 1 Αποταµιεύσεις, Επενδύσεις και Οικονοµική Μεγέθυνση

Κεφάλαιο 1 Αποταµιεύσεις, Επενδύσεις και Οικονοµική Μεγέθυνση Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2014 Κεφάλαιο 1 Αποταµιεύσεις, Επενδύσεις και Οικονοµική Μεγέθυνση Στο κεφάλαιο αυτό πραγµατευόµαστε την σχέση µεταξύ αποταµιεύσεων, επενδύσεων, συσσώρευσης

Διαβάστε περισσότερα

ΕΜΠΕΙΡΙΚΟΙ ΕΛΕΓΧΟΙ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ

ΕΜΠΕΙΡΙΚΟΙ ΕΛΕΓΧΟΙ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Kεφάλαιο 4 ΕΜΠΕΙΡΙΚΟΙ ΕΛΕΓΧΟΙ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Εισαγωγή Οι λόγοι για τους οποίους το νεοκλασικό υπόδειγμα εξωγενούς τεχνολογικής προόδου έγινε τόσο δημοφιλές στην οικονομική θεωρία είναι, πρώτον,

Διαβάστε περισσότερα

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN 3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HESHER-OHIN Υπάρχουν δύο συντελεστές παραγωγής, το κεφάλαιο και η εργασία τους οποίους χρησιμοποιεί η επιχείρηση για να παράγει προϊόν Y μέσω μιας συνάρτησης παραγωγής

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΚΑΠΟΙΟΙ ΒΑΣΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΚΑΙ ΕΝΝΟΙΕΣ Ν = {1,2,3,...} το σύνολο των φυσικών αριθμών Ζ = {0, ±1, ±2, ±3,..

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ. Θεωρία και Πολιτική

ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ. Θεωρία και Πολιτική ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ Θεωρία και Πολιτική Παντελής Καλαϊτζιδάκης Σαράντης Καλυβίτης ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΚΕΦΑΛΑΙΟ 1 Εισαγωγή στην οικονομική μεγέθυνση Ορισμός της οικονομικής μεγέθυνσης 15 Μια σύντομη

Διαβάστε περισσότερα

Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα

Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα -Σκοπός: Εξήγηση Διακυμάνσεων του Πραγματικού ΑΕΠ - Δυνητικό Προϊόν: Το προϊόν που θα μπορούσε

Διαβάστε περισσότερα

ευρώ, πχ 1,40 δολάρια ανά ένα ευρώ. Όταν το Ε αυξάνεται τότε το ευρώ

ευρώ, πχ 1,40 δολάρια ανά ένα ευρώ. Όταν το Ε αυξάνεται τότε το ευρώ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Θεωρία Ισοζυγίου Πληρωμών και Διεθνές Νομισματικό Σύστημα Ν. Κωστελέτου (Σημειώσεις 4 ου -5 ου μαθήματος, κεφ. 14, 15 «Διεθνής Οικονομική» των P.Krugman,

Διαβάστε περισσότερα

Ας δούµε τώρα πως το εν λόγω υπόδειγµα µεταχειρίζεται τη συσσώρευση κεφαλαίου.

Ας δούµε τώρα πως το εν λόγω υπόδειγµα µεταχειρίζεται τη συσσώρευση κεφαλαίου. Το υπόδειγµα οικονοµικής µεγέθυνσης του Solow σχεδιάστηκε προκειµένου να δείξει πως η µεγέθυνση του κεφαλαίου, του εργατικού δυναµικού αλλά και οι µεταβολές στην τεχνολογία αλληλεπιδρούν σε µια οικονοµία,

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx

Διαβάστε περισσότερα

ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ

ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ ΑΘΗΝΑ ΙΑΝΟΥΑΡΙΟΣ 2014 ΕΠΙΜΕΛΕΙΑ - ΣΥΝΤΑΞΗ ΠΑΝΤΕΛΗΣ ΝΙΚΟΣ 1 ΜAΚΡΟΟΙΚΟΝΟΜΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΑΕΠ ΑΠΟ ΤΗΝ ΠΛΕΥΡΑ ΤΗΣ ΤΕΛΙΚΗΣ ΔΑΠΑΝΗΣ Y = C + I + G + ( X M) Y

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Οικονομικών Επιστημών ΠΜΣ Ειδίκευσης στην Οικονομική Επιστήμη

Πανεπιστήμιο Πατρών Τμήμα Οικονομικών Επιστημών ΠΜΣ Ειδίκευσης στην Οικονομική Επιστήμη Πανεπιστήμιο Πατρών Τμήμα Οικονομικών Επιστημών ΠΜΣ Ειδίκευσης στην Οικονομική Επιστήμη ΠΡΟΣΔΙΟΡΙΣΤΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΤΗΣ ΜΕΓΕΘΥΝΣΗΣ ΚΑΙ ΣΥΓΚΛΙΣΗΣ ΣΤΗΝ ΕΕ ΚΑΙ ΣΤΟΝ ΟΟΣΑ ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΣΙΝΟΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Εξειδικευμένοι Συντελεστές Παραγωγής και Διανομή του Εισοδήματος. Το Υπόδειγμα των Jones και Samuelson

Εξειδικευμένοι Συντελεστές Παραγωγής και Διανομή του Εισοδήματος. Το Υπόδειγμα των Jones και Samuelson Εξειδικευμένοι Συντελεστές Παραγωγής και Διανομή του Εισοδήματος Το Υπόδειγμα των Jones και Samuelson Διεθνές Εμπόριο και Διανομή του Εισοδήματος Υπάρχουν δύο βασικοί λόγοι για τους οποίους το διεθνές

Διαβάστε περισσότερα

Οικονομική Πολιτική Ι: Σταθερές Συναλλαγματικές Ισοτιμίες χωρίς Κίνηση Κεφαλαίου

Οικονομική Πολιτική Ι: Σταθερές Συναλλαγματικές Ισοτιμίες χωρίς Κίνηση Κεφαλαίου Κεφάλαιο 6 Οικονομική Πολιτική Ι: Σταθερές Συναλλαγματικές Ισοτιμίες χωρίς Κίνηση Κεφαλαίου 6.1 Σύνοψη Στο έκτο κεφάλαιο του συγγράμματος ξεκινάει η ανάλυση της μακροοικονομικής πολιτικής. Περιγράφονται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (Economics of education)

ΟΙΚΟΝΟΜΙΚΑ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (Economics of education) ΟΡΙΣΜΟΣ Η οικονομική αντιμετώπιση των φαινομένων που απασχολούν την παιδαγωγική-εκπαιδευτική διαδικασία ΟΙΚΟΝΟΜΙΚΑ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (Economcs of educaton) ΜΙΑ ΠΟΣΟΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Αθανάσιος Κατσής Τμήμα

Διαβάστε περισσότερα

Ερώτηση Α.1 (α) (β) www.arnos.gr info@arnos.co.gr

Ερώτηση Α.1 (α) (β) www.arnos.gr info@arnos.co.gr Ερώτηση Α.1 Σε μια κλειστή οικονομία οι αγορές αγαθών και χρήματος βρίσκονται σε ταυτόχρονη ισορροπία (υπόδειγμα IS-LM). Να περιγράψετε και να δείξετε διαγραμματικά το πώς θα επηρεάσει την ισορροπία των

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Εισοδήματος και Απασχόλησης Determination of Income and Employment

Εισοδήματος και Απασχόλησης Determination of Income and Employment ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ Προσδιορισμός Εισοδήματος και Απασχόλησης Determination of Income and Employment 1. Κεϋνσιανή θεωρία - Υπόδειγμα. Keynesian Model 1 Βασικές αρχές: Το μέγεθος του Εθνικού εισοδήματος (παραγόμενου

Διαβάστε περισσότερα

www.onlineclassroom.gr ΜΕΡΟΣ Β Ερωτήσεις πολλαπλών επιλογών

www.onlineclassroom.gr ΜΕΡΟΣ Β Ερωτήσεις πολλαπλών επιλογών ΜΕΡΟΣ Β Ερωτήσεις πολλαπλών επιλογών Β.1 Διαπράττουμε το σφάλμα της σύνθεσης όταν θεωρούμε ότι: α. αυτό που ισχύει για ένα άτομο ισχύει μερικές φορές και για το σύνολο β. αυτό που ισχύει για ένα άτομο

Διαβάστε περισσότερα

Συναλλαγματικές ισοτιμίες και επιτόκια

Συναλλαγματικές ισοτιμίες και επιτόκια Κεφάλαιο 2 Συναλλαγματικές ισοτιμίες και επιτόκια 2.1 Σύνοψη Στο δεύτερο κεφάλαιο του συγγράμματος περιγράφεται αρχικά η συνθήκη της καλυμμένης ισοδυναμίας επιτοκίων και ο τρόπος με τον οποίο μπορεί ένας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ Μάθημα 8 Προσδιορισμός τιμών και ποσοτική θεωρία Προσδιορισμός τιμών Προσδιορισμός τιμών! Ως τώρα δεν εξετάσαμε πως διαμορφώνεται το γενικό επίπεδο τιμών και πως μεταβάλλεται

Διαβάστε περισσότερα

είναι η καµπύλη συνολικής ζήτησης εργασίας από τις επιχειρήσεις και η καµπύλη S

είναι η καµπύλη συνολικής ζήτησης εργασίας από τις επιχειρήσεις και η καµπύλη S 3 Ασκήσεις πολλαπλής επιλογής στην 5 η ενότητα: Αµοιβές των ΠΣ διανοµή εισοδήµατος βασικά µακροοικονοµικά µεγέθη θεωρία κατανάλωσης και επένδυσης ισορροπία εισοδήµατος. Ο πραγµατικός µισθός των εργαζοµένων

Διαβάστε περισσότερα

Οικονομικό Πρόβλημα &

Οικονομικό Πρόβλημα & Οικονομικό Πρόβλημα & Οικονομική Επιστήμη Ανεπάρκεια Σπανιότητα Οικονομική επιστήμη Πως κατανέμονται οι διαθέσιμοι πόροι για την ικανοποίηση των αναγκών Περιορισμένοι Εργασία Κεφάλαιο Απεριόριστες Πρώτες

Διαβάστε περισσότερα

ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15

ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15 ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15 ΕΝΟΤΗΤΑ Νο. 1 ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ : ΣΤΟΧΟΙ, ΜΕΘΟΔΟΛΟΓΙΑ, ΒΑΣΙΚΑ ΔΕΔΟΜΕΝΑ & ΜΕΤΡΗΣΗ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Ποσοτική Εκτίμηση του Μέγιστου Εφικτού Λόγου Μη Εργαζομένων προς Εργαζόμενους στην Ελληνική Οικονομία

Ποσοτική Εκτίμηση του Μέγιστου Εφικτού Λόγου Μη Εργαζομένων προς Εργαζόμενους στην Ελληνική Οικονομία Ποσοτική Εκτίμηση του Μέγιστου Εφικτού Λόγου Μη Εργαζομένων προς Εργαζόμενους στην Ελληνική Οικονομία Θεόδωρος Μαριόλης * 1. Εισαγωγή Ο λεγόμενος Λόγος Οικονομικής Εξάρτησης (Economic Dependency Ratio),

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15

ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15 ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15 ΕΝΟΤΗΤΑ Νο. 1 ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ : ΣΤΟΧΟΙ, ΜΕΘΟΔΟΛΟΓΙΑ, ΒΑΣΙΚΑ ΔΕΔΟΜΕΝΑ & ΜΕΤΡΗΣΗ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ Κεφάλαιο 1 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ Ορισμός της οικονομικής μεγέθυνσης Το κύριο αντικείμενο της μακροοικονομικής είναι το συνολικό εισόδημα και ο καθορισμός του. Το εισόδημα αποτελεί το κύριο

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Το Υπόδειγμα IS-LM. (1) ΗΚαμπύληIS (Ισορροπία στην Αγορά Αγαθών)

Το Υπόδειγμα IS-LM. (1) ΗΚαμπύληIS (Ισορροπία στην Αγορά Αγαθών) Το Υπόδειγμα IS-LM Νομισματική και Δημοσιονομική Πολιτική σε Κλειστή Οικονομία - Ταυτόχρονη Ανάλυση Μεταβολών της Ισορροπίας στην Αγορά Αγαθών και στην Αγορά Χρήματος => Υπόδειγμα IS-LM (1) ΗΚαμπύληIS

Διαβάστε περισσότερα

4.1 Ζήτηση εργασίας στο βραχυχρόνιο διάστημα - Ανταγωνιστικές αγορές

4.1 Ζήτηση εργασίας στο βραχυχρόνιο διάστημα - Ανταγωνιστικές αγορές 4. ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ (ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ). ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Η ζήτηση εργασίας στο σύνολο της οικονομίας ορίζεται ως ο αριθμός εργαζομένων που οι επιχειρήσεις επιθυμούν να απασχολούν

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ 100 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ ΠΡΟΣ ΕΠΙΛΥΣΗ Vol. 1 ΑΘΗΝΑ ΜΑΪΟΣ 2013 ΕΠΙΜΕΛΕΙΑ - ΣΥΝΤΑΞΗ 1 ΤΟΜΟΣ 1 ΜIΚΡΟΟΙΚΟΝΟΜΙΑ ΘΕΩΡΙΑ ΚΑΤΑΝΑΛΩΤΗ 1) Εάν ο οριακός λόγος υποκατάστασης

Διαβάστε περισσότερα

Πάντειο Πανεπιστήμιο. Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics. Lecture 1: Trading in a Ricardian Model

Πάντειο Πανεπιστήμιο. Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics. Lecture 1: Trading in a Ricardian Model Πάντειο Πανεπιστήμιο Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics Lecture 1: Trading in a Ricardian Model Το Ρικαρδιανό υπόδειγμα με ένα συντελεστή (συνέχεια) 1. Ο μόνος σημαντικός

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

(1 ) (1 ) S ) 1,0816 ΘΕΜΑ 1 Ο

(1 ) (1 ) S ) 1,0816 ΘΕΜΑ 1 Ο ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΗ ΕΡΓΑΣΙΑ Α ΤΟΜΟΥ ΘΕΜΑ 1 Ο Α. Για τον υπολογισμό της τρέχουσας συναλλαγματικής ισοτιμίας του ( /$ ) θα πρέπει να χρησιμοποιήσουμε τη σχέση ισοδυναμίας των επιτοκίων. Οπότε: Για

Διαβάστε περισσότερα

ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Y = C + I + G + NX. απάνες Κατανάλωσης από τα νοικοκυριά

ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Y = C + I + G + NX. απάνες Κατανάλωσης από τα νοικοκυριά ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Συνολική Ζήτηση για εγχώριο προϊόν (ΑΕΠ/GDP) απαρτίζεται από Y = C + I + G + NX απάνες Κατανάλωσης από τα νοικοκυριά Επενδυτικές απάνες από τα νοικοκυριά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΤΙ ΕΙΝΑΙ ΟΙΚΟΝΟΜΙΚΗ;

ΚΕΦΑΛΑΙΟ 1 ΤΙ ΕΙΝΑΙ ΟΙΚΟΝΟΜΙΚΗ; ΚΕΦΑΛΑΙΟ 1 ΤΙ ΕΙΝΑΙ ΟΙΚΟΝΟΜΙΚΗ; Οικονοµική είναι η µελέτη του τρόπου µε τον οποίο οι άνθρωποι επιλέγουν να κατανείµουν τους σπάνιους πόρους τους. Λόγω της σπανιότητας δεν είναι δυνατόν να εκπληρωθούν όλες

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ 2008

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ 2008 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α.1 µέχρι και Α.5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Το συνολικό προϊόν παίρνει την μέγιστη τιμή

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ ΝΟΕΜΒΡΙΟΥ 5 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο A. Να δώσετε τον ορισμό της συνέχειας μιας συνάρτησης στο πεδίο ορισμού της. ( Μονάδες)

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΕΚΤΟ ΕΚΤΟ ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ-ΙΣΟΡΡΟΠΙΑ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2011-2012 ΕΠΙΧ Μικροοικονοµική

Διαβάστε περισσότερα

Η Μεγάλη Μεγάλη Ύφεση Ύφεση

Η Μεγάλη Μεγάλη Ύφεση Ύφεση Η Μεγάλη Ύφεση παρακίνησε πολλούς οικονοµολόγους να να αναρωτηθούν σχετικά µε µε την την εγκυρότητα της της Κλασικής Οικονοµικής Θεωρίας. Τότε Τότε δηµιουργήθηκε η πεποίθηση ότι ότι ένα ένα καινούριο υπόδειγµα

Διαβάστε περισσότερα

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ 1. Εισαγωγή Όπως έχουμε τονίσει, η κατανόηση του τρόπου με τον οποίο προσδιορίζεται η τιμή ενός αγαθού απαιτεί κατανόηση των δύο δυνάμεων της αγοράς, δηλαδή της ζήτησης

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Συναθροιστική ζήτηση και προσφορά

Συναθροιστική ζήτηση και προσφορά Συναθροιστική ζήτηση και Κεφάλαιο 31 Εισαγωγή στην Μακροοικονομική Τμήμα Λογιστικής και Χρηματοοικονομικής Πανεπιστήμιο Μακεδονίας. Βραχυχρόνιες οικονομικές διακυμάνσεις Η οικονομική δραστηριότητα παρουσιάζει

Διαβάστε περισσότερα

ΟΙ ΜΕΘΟΔΟΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΛΥΣΗΣ Χ. ΑΠ. ΛΑΔΙΑΣ

ΟΙ ΜΕΘΟΔΟΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΛΥΣΗΣ Χ. ΑΠ. ΛΑΔΙΑΣ ΟΙ ΜΕΘΟΔΟΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΛΥΣΗΣ Χ. ΑΠ. ΛΑΔΙΑΣ ΔΙΑΣΠΟΡΑ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΕΣ ΑΝΙΣΟΤΗΤΕΣ Τα μέτρα διασποράς χρησιμεύουν για τη μέτρηση των περιφερειακών ανισοτήτων. Τα περιφερειακά χαρακτηριστικά που χρησιμοποιούνται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές-μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές-μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2013-14 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές-μαθηματικά

Διαβάστε περισσότερα

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

Η άσκηση αναπαράγεται ταυτόχρονα στον πίνακα ανάλογα με όσο έχουν γράψει και αναφέρουν οι φοιτητές.

Η άσκηση αναπαράγεται ταυτόχρονα στον πίνακα ανάλογα με όσο έχουν γράψει και αναφέρουν οι φοιτητές. 1 2 Η άσκηση αναπαράγεται ταυτόχρονα στον πίνακα ανάλογα με όσο έχουν γράψει και αναφέρουν οι φοιτητές. Στόχος: Να αποδείξουν οι φοιτητές από μόνοι τους πόσες πολλές έννοιες βρίσκονται στην τομή των δύο

Διαβάστε περισσότερα

Κεφάλαιο 5. Αποταμίευση και επένδυση σε μια ανοικτή οικονομία

Κεφάλαιο 5. Αποταμίευση και επένδυση σε μια ανοικτή οικονομία Κεφάλαιο 5 Αποταμίευση και επένδυση σε μια ανοικτή οικονομία Περίγραμμα κεφαλαίου Ισοζύγιο Πληρωμών Ισορροπία της αγοράς αγαθών σε μια ανοικτή οικονομία Αποταμίευση και επένδυση σε μια μικρή ανοικτή οικονομία

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Ανάλυση

Εισαγωγή στην Οικονομική Ανάλυση Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Εισαγωγή στην Οικονομική Ανάλυση Διάλεξη 12 Νίκος Θεοχαράκης Δεκέμβριος 2014 Μέτρηση κόστους ζωής Το κόστος ζωής σε νομισματικές μονάδες μπορεί να αυξάνεται ενίοτε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ Κεφάλαιο 2o (συνέχεια) b) Υπολογισμός των βασικών Μακροοικονομικών μεγεθών Συνολικό εισόδημα και συνολική δαπάνη! Για μια οικονομία συνολικά, το εισόδημα πρέπει να είναι ίσο

Διαβάστε περισσότερα

Οικονομικά για Μη Οικονομολόγους Ενότητα 7: Εισαγωγή στην Μακροοικονομική Θεωρία

Οικονομικά για Μη Οικονομολόγους Ενότητα 7: Εισαγωγή στην Μακροοικονομική Θεωρία Οικονομικά για Μη Οικονομολόγους Ενότητα 7: Καθηγητής: Κώστας Τσεκούρας Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών Σκοποί ενότητας Στην παρούσα ενότητα παρουσιάζονται και αναλύονται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

Η οικονοµία στην Μακροχρόνια Περίοδο Τι είναι το κλασσικό υπόδειγµα;

Η οικονοµία στην Μακροχρόνια Περίοδο Τι είναι το κλασσικό υπόδειγµα; Η οικονοµία στην Μακροχρόνια Περίοδο Τι είναι το κλασσικό υπόδειγµα; Είναι ένα αρκετά απλό αλλά συνάµα θεωρητικά ισχυρό υπόδειγµα δοµηµένο γύρω από αγοραστές και πωλητές οι οποίοι επιδιώκουν τους δικούς

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος»

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Σωτήρης Τσαντίλας (PhD, MSc), Μαθηματικός Αστροφυσικός Σύντομη περιγραφή: Χρησιμοποιώντας δεδομένα από το διαστημικό τηλεσκόπιο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΗΜΙΟ ΜΑΚΕΔΟΝΙΑ ΣΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΗΜΩΝ

ΠΑΝΕΠΙΣΗΜΙΟ ΜΑΚΕΔΟΝΙΑ ΣΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΗΜΩΝ ΠΑΝΕΠΙΣΗΜΙΟ ΜΑΚΕΔΟΝΙΑ ΣΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΗΜΩΝ Καθηγητής Γιάννης Μουρμούρας ΘΕΩΡΙΑ ΚΑΙ ΠΟΛΙΣΙΚΗ ΣΗ ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΤΝΗ Σημειώσεις μαθήματος Νοέμβριος 2012 1 Περιεχόμενα 1.Εισαγώγη... 3 1.1 Ορισμός...

Διαβάστε περισσότερα

Εάν το ποσοστό υποχρεωτικών καταθέσεων είναι 25% και υπάρξει μια αρχική κατάθεση όψεως 2.000 σε μια εμπορική Τράπεζα, τότε η μέγιστη ρευστότητα που μπορεί να δημιουργηθεί από αυτή την κατάθεση είναι: Α.

Διαβάστε περισσότερα

Συναθροιστική Zήτηση στην Aνοικτή Οικονομία

Συναθροιστική Zήτηση στην Aνοικτή Οικονομία Κεφάλαιο 9 Συναθροιστική Zήτηση στην Aνοικτή Οικονομία 9.1 Σύνοψη Στο ένατο κεφάλαιο του συγγράμματος παρουσιάζεται η διαδικασία από την οποία προκύπτει η συναθροιστική ζήτηση (AD) σε μια ανοικτή οικονομία.

Διαβάστε περισσότερα

4. Τιμές και συναλλαγματική ισοτιμία μακροχρόνια

4. Τιμές και συναλλαγματική ισοτιμία μακροχρόνια 4. Τιμές και συναλλαγματική ισοτιμία μακροχρόνια 1. Ο νόμος της μιας τιμής και η ισοδυναμία των αγοραστικών δυνάμεων (ΙΑΔ) 2. Η νομισματική προσέγγιση της συναλλαγματικής ισοτιμίας 3. Ερμηνεύοντας τα εμπειρικά

Διαβάστε περισσότερα

Εισαγωγή στη Διεθνή Μακροοικονομική. Ισοζύγιο Πληρωμών, Συναλλαγματικές Ισοτιμίες, Διεθνείς Χρηματαγορές και το Διεθνές Νομισματικό Σύστημα

Εισαγωγή στη Διεθνή Μακροοικονομική. Ισοζύγιο Πληρωμών, Συναλλαγματικές Ισοτιμίες, Διεθνείς Χρηματαγορές και το Διεθνές Νομισματικό Σύστημα Εισαγωγή στη Διεθνή Μακροοικονομική Ισοζύγιο Πληρωμών, Συναλλαγματικές Ισοτιμίες, Διεθνείς Χρηματαγορές και το Διεθνές Νομισματικό Σύστημα 1 Αντικείµενο Διεθνούς Μακροοικονοµικής Η διεθνής µακροοικονοµική

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Η ελαστικότητα ζήτησης για το αγαθό "Κ" είναι ίση με 2. Αυτό σημαίνει

Διαβάστε περισσότερα

Δρ. Αικατερίνη Γριμάνη Αρχές Οικονομικής ΙΙ

Δρ. Αικατερίνη Γριμάνη Αρχές Οικονομικής ΙΙ Δρ. Αικατερίνη Γριμάνη Αρχές Οικονομικής ΙΙ Μέτρηση οικονομικής επιτυχίας Ακαθάριστο Εγχώριο Προϊόν (ΑΕΠ): μετρά συγχρόνως (α) το συνολικό εισόδημα που έχει αποκτηθεί από την παραγωγή του μέσα στην οικονομία

Διαβάστε περισσότερα

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή 2013 [Πρόλογος] ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή Μάθημα Εαρινού Εξάμηνου 2012-2013 Μ.Επ. ΟΕ0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Μαρί-Νοέλ Ντυκέν, Επ. Καθηγητρία

Διαβάστε περισσότερα

Σχετικά Επίπεδα Τιμών και Συναλλαγματικές Ισοτιμίες. Μακροχρόνιοι Προσδιοριστικοί Παράγοντες των Συναλλαγματικών Ισοτιμιών

Σχετικά Επίπεδα Τιμών και Συναλλαγματικές Ισοτιμίες. Μακροχρόνιοι Προσδιοριστικοί Παράγοντες των Συναλλαγματικών Ισοτιμιών Σχετικά Επίπεδα Τιμών και Συναλλαγματικές Ισοτιμίες Μακροχρόνιοι Προσδιοριστικοί Παράγοντες των Συναλλαγματικών Ισοτιμιών 1 Ισοτιµία Δολαρίου Στερλίνας, 1870-2011 $6.00$$ $5.00$$ $4.00$$ $3.00$$ $2.00$$

Διαβάστε περισσότερα

10. Η επιδίωξη της μέγιστης χρησιμότητας αποτελεί βασικό χαρακτηριστικό της συμπεριφοράς του καταναλωτή στη ζήτηση αγαθών.

10. Η επιδίωξη της μέγιστης χρησιμότητας αποτελεί βασικό χαρακτηριστικό της συμπεριφοράς του καταναλωτή στη ζήτηση αγαθών. ΚΕΦΑΛΑΙΟ 2 : Η ΖΗΤΗΣΗ Να σημειώσετε το σωστό ή το λάθος στο τέλος των προτάσεων: 1. Όταν η ζήτηση ενός αγαθού είναι ελαστική, η συνολική δαπάνη των καταναλωτών για το αγαθό αυτό μειώνεται καθώς αυξάνεται

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

5. Tο προϊόν και η συναλλαγματική ισοτιμία βραχυχρόνια

5. Tο προϊόν και η συναλλαγματική ισοτιμία βραχυχρόνια 5. Tο προϊόν και η συναλλαγματική ισοτιμία βραχυχρόνια 1. Οι προσδιοριστικοί παράγοντες της συνολικής ζήτησης 2. H βραχυχρόνια ισορροπία στην αγορά προϊόντος 3. Η βραχυχρόνια ισορροπία στην αγορά περιουσιακών

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος: 2011-2012

Ακαδημαϊκό Έτος: 2011-2012 ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Ακαδημαϊκό Έτος: 2011-2012 Εξάμηνο: 5 ο Τύπος μαθήματος: Υποχρεωτικό Διδάσκοντες: Συναντήσεις: Παρασκευή, 16.00 18.00 (αιθ. 103) Κλαίρη Οικονοµίδου

Διαβάστε περισσότερα

ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15

ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15 ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15 ΕΝΟΤΗΤΑ Νο. 2 ΠΡΟΣΔΙΟΡΙΣΤΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΤΗΣ ΣΥΝΟΛΙΚΗΣ ΣΥΝΑΘΡΟΙΣΤΙΚΗΣ ΖΗΤΗΣΗΣ & ΒΡΑΧΥΧΡΟΝΙΑ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΙΣΟΡΡΟΠΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΕΒΔΟΜΟ ΘΕΩΡΙΑΣ-ΜΗ ΓΡΑΜΜΙΚΕΣ ΜΟΡΦΕΣ ΟΙΚΟΝΟΜΕΤΡΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2008-2009

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΝΕΕΣ ΑΡΧΕΣ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΝΕΕΣ ΑΡΧΕΣ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΝΕΕΣ ΑΡΧΕΣ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΜΠΕΙΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ ΠΑΡΑΓΩΓΗΣ - ΟΙΚΟΝΟΜΙΚΗΣ

Διαβάστε περισσότερα

6. Το Υπόδειγμα των Επικαλυπτόμενων Γενεών: Ανταλλαγή I

6. Το Υπόδειγμα των Επικαλυπτόμενων Γενεών: Ανταλλαγή I 6. Το Υπόδειγμα τν Επικαλυπτόμενν Γενεών: Ανταλλαγή I 6.. Ερτήσεις Σχολιάστε την εγκυρότητα τν παρακάτ προτάσεν. Αν πιστεύετε ότι μια πρόταση είναι σστή κάτ από ορισμένες προϋποθέσεις τότε να αναφέρετε

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ 1. Αξιολόγηση των µακροοικονοµικών επιπτώσεων του ΚΠΣ III

ΠΑΡΑΡΤΗΜΑ 1. Αξιολόγηση των µακροοικονοµικών επιπτώσεων του ΚΠΣ III ΠΑΡΑΡΤΗΜΑΤΑ 152 ΠΑΡΑΡΤΗΜΑ 1 Αξιολόγηση των µακροοικονοµικών επιπτώσεων του ΚΠΣ III Η εκ των προτέρων αξιολόγηση των µακροοικονοµικών επιπτώσεων του 3 ου ΚΠΣ µπορεί να πραγµατοποιηθεί µε τρόπους οι οποίοι

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

Περιφερειακή Ανάπτυξη

Περιφερειακή Ανάπτυξη ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Περιφερειακή Ανάπτυξη Διάλεξη 2: Οικονομική Ανάπτυξη και Οικονομική Μεγέθυνση (κεφάλαιο 1, Πολύζος Σεραφείμ) Δρ. Βασιλείου Έφη Τμήμα Οργάνωση και Διοίκηση Επιχειρήσεων Άδειες

Διαβάστε περισσότερα