Προσομοίωση: Η σκέψη ως αναζήτηση της πορείας προς τη λύση Επαγωγική συλλογιστική: Η σκέψη ως έλεγχος υποθέσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προσομοίωση: Η σκέψη ως αναζήτηση της πορείας προς τη λύση Επαγωγική συλλογιστική: Η σκέψη ως έλεγχος υποθέσεων"

Transcript

1 3 Γνωστική Ψυχολογία ΙΙ (ΨΧ 05) Προσομοίωση: Η σκέψη ως αναζήτηση της πορείας προς τη λύση Επαγωγική συλλογιστική: Η σκέψη ως έλεγχος υποθέσεων Προσομοίωση Οι υπολογιστές μπορούν να λύσουν προβλήματα συλλογιστικής, όπως έχουμε αναφέρει ήδη Η προϋπόθεση είναι τα προβλήματα που τους δίνουμε να είναι επαρκώς προσδιορισμένα Προβλήματα ΚΙΝΗΣΕΩΝ (MOVE) Για τον προγραμματισμό του υπολογιστή χρειαζόμαστε λεκτικά πρωτόκολλα ανθρώπων που έλυσαν τα σχετικά προβλήματα Έτσι φτάσαμε στο 1997, οπότε ο Deep Blue υπολογιστής της ΙΒΜ, εφοδιασμένος με πρόγραμμα για σκάκι και με ταχύτητα διακοσίων εκατομμυρίων κινήσεων στο δευτερόλεπτο, νίκησε σε παιχνίδι έξι αγώνων τον μεγαλύτερο σκακιστή της εποχής μας Γκάρι Κασπάροβ με σκορ 3,5 προς 2,5 2 1

2 Υπολογιστής εναντίον ανθρώπου (?) Χωρίς να πολυλέγεται, αυτό που συνήθως καταλαβαίνει ο μη ειδικός διαβάζοντας τη νίκη του υπολογιστή είναι ότι η μηχανή σκέφτεται,, και σκέφτεται καλύτερα από τον καλύτερο άνθρωπο (?) Μια τέτοια αντίληψη απλά απέχει έτη φωτός από την αλήθεια Γιατί κανένας δεν εντυπωσιάζεται από μια αριθμομηχανή χειρός των 3 που κάνει πολλαπλασιασμούς και διαιρέσεις σε κλάσμα του δευτερολέπτου, απείρως πιο γρήγορα από τον πιο γρήγορο άνθρωπο; Σε τι διαφέρει ο υπολογιστής που παίζει σκάκι από την αριθμομηχανή; 3 Υπολογιστής εναντίον ανθρώπου (?) Η επόμενη λογική ερώτηση είναι αν οι επόμενες γενιές των υπολογιστών, εξελισσόμενες, θα μπορούν να αναπτύξουν «σκέψη» γενικώς και πέρα από τους στενούς ορίζοντες μιας σκακιέρας. Εδώ τα πράγματα είναι αμφίβολα. Υπάρχουν οι οπαδοί της σχολής της τεχνητής νοημοσύνης (Artificial Intelligence, ΑΙ) που υποστηρίζουν ότι όλα είναι θέμα εξέλιξης και οι επόμενες γενιές υπολογιστών θα πλησιάσουν και κάποτε θα καταφέρουν να σκέφτονται σαν άνθρωποι. Υπάρχει και η αντίθετη σχολή, του μαθηματικού Roger Penrose, ο οποίος στηριζόμενος σε μια σειρά μαθηματικά δεδομένα και παρατηρήσεις πάνω στη φυσιολογία του εγκεφάλου, υποστηρίζει ότι η σκέψη είναι κβαντομηχανικό φαινόμενο και άρα δεν μαθηματικοποιείται έτσι ώστε να μπορεί ποτέ να κατασκευαστεί σκεπτόμενη μηχανή. Η θεωρία του Penrose στηρίζεται στα μαθηματικά, στη φυσική και στη βιολογία, χωρίς ίχνος θρησκευτικών ή πολιτικών δοξασιών, και βάζει ένα πολύ σημαντικό ερώτημα στο οποίο η επιστήμη δεν έχει ακόμη τις απαντήσεις. 2

3 Newell & Simon, 1972 DONALD +GERALD ROBERT Αντικαταστήστε κάθε γράμμα με έναν αριθμό λαμβάνοντας υπόψη ότι το D= 5 και κάθε αριθμητικό ψηφίο από το 0 ως το 9 αντιστοιχεί σε ένα μόνο γράμμα Newell & Simon, ONAL5 +GERAL5 ROBERT Αυτό γνωρίζουμε Άρα Τ = 0 3

4 Newell & Simon, Ορισμός της σκέψης (Simon, 1978, 1979) Ο λύτης (το σύστημα επεξεργασίας πληροφοριών) εφαρμόζει «χειρισμούς» (operators) στα προβλήματα Ο χειρισμός είναι μια κίνηση που θεωρείται ότι θα μας φέρει πιο κοντά στην επίλυση. Το πρόβλημα (problem state) παρουσιάζεται σε μια αρχική κατάσταση και αναζητείται η κατάσταση-στόχος. Η λύση προβλήματος συμβαίνει όταν ο λύτης μεταφράζει το πρόβλημα σε μια εσωτερική αναπαράσταση και αναζητεί το μονοπάτι που οδηγεί από την αρχική κατάσταση στο στόχο 4

5 Υπάρχουν «σκεπτόμενες» μηχανές; Τεχνητή Νοημοσύνη Turing (1950) Can Machines Think? Τεστ Turing Η «επανάσταση» της Κυβερνητικής (Wainer, 1948) και η Θεωρία Επεξεργασίας Πληροφοριών Βρόχοι ανατροφοδότησης και Ομοιοστασία Ιεραρχική δομή GPS Ο Γενικός Λύτης Προβλημάτων (Ernst & Newell, 1969) Εισαγωγή (περιγραφή ή του προβλήματος) Μετάφραση Εσωτερική αναπαράσταση του προβλήματος Τεχνικές επίλυσης του προβλήματος Αναπαράσταση της λύσης Υπολογιστική Θεωρία των Newell & Simon (1972) Σύμφωνα με τους Newell & Simon: it is possible to produce systematic computer simulations of human problem solving Ο Χώρος Προβλήματος (Problem space) περιλαμβάνει: 1) το αρχικό στάδιο, 2)το τελικό στάδιο στόχο, και 3) τους πιθανούς νοητικούς τελεστές (π.χ., κινήσεις) Ευρετικές στρατηγικές (heuristics) - Λύσεις: Ανάλυση Μέσων-Στόχων (Μeans-ends analysis) α. Επισημαίνει τη διαφορά ανάμεσα στην παρούσα κατάσταση (current state) του προβλήματος και στην τελική κατάσταση (goal state) β. ιαμόρφωση ενδιάμεσου στόχου ο οποίος μειώνει την απόσταση μεταξύ της παρούσας και της τελικής κατάστασης γ. Επιλογή νοητικού τελεστή για την πραγματοποίηση του ενδιάμεσου στόχου Η στρατηγική Hill Climbing: Αλλάζει την παρούσα κατάσταση μέσα στο πρόβλημα με σκοπό την προσέγγιση του στόχου. Ενδείκνυται σε περιπτώσεις όπου ο λύτης δεν έχει ξεκάθαρη εικόνα της δομής του προβλήματος 5

6 Το πρόβλημα των Πύργων του Ανόι Από το αρχικό στο τελικό στάδιο μέσω νοητικών τελεστών Οι νοητικοί τελεστές δημιουργούν την αλλαγή από τη μία γνωστική θέση στην άλλη Ανάλυση Μέσων-Στόχων / ημιουργία υποστόχου που θα μειώσει τη διαφορά ανάμεσα στην τωρινή κατάσταση και την κατάσταση-στόχο στόχο Επιλογή νοητικού τελεστή που θα επιτρέψει την επιτυχία του στόχου. Χώρος προβλήματος 6

7 Το πρόβλημα των ιεραποστόλων και των κανίβαλων (Thomas) Οι συμμετέχοντες θέτουν 3-4 υποστόχους / παύση μεταξύ υποστόχων Από τη στρατηγική της εξισορρόπησης (ίδιος αριθμός ιεραπόστολων και κανίβαλων) (balancing strategy) στην Ανάλυση Μέσων-Στόχων (μεταφορά περισσότερων ανθρώπων στην όχθη-στόχο) (Μeans-Ends Analysis) και στην Ευρετική του Αντι-βρόχου (αποφυγή επιστροφής σε προηγούμενη κίνηση) (Αnti-looping heuristic) O G.P.S. το έλυσε σχετικά εύκολα (11 κινήσεις) σε αντίθεση με τους συμμετέχοντες (~30 κινήσεις) Εκτίμηση + Προσέγγιση για επαρκώς δομημένα προβλήματα + Έλεγχος κινήσεων μεταξύ αρχικής και τελικής κατάστασης + Άμεση παρατήρηση των λαθών των υποκειμένων (how & when) + Χρήση ευρετικών στρατηγικών λόγω περιορισμένης ικανότητας της μνήμης εργασίας παρά αλγόριθμων - Σχεδιασμός μελλοντικών κινήσεων: κατώτερος στο G.P.S. σε σχέση με τον άνθρωπο - Μερικώς δομημένα προβλήματα (ill-defined problems) στην καθημερινή ζωή - Εφαρμογή προσέγγισης σε προβλήματα που απαιτούν σειριακή διαδικασία. Ίσως όχι η κατάλληλη μέθοδος για προβλήματα με ενόραση - ε δόθηκε η απαραίτητη έμφαση στις ατομικές διαφορές (Ηandley et al. (2002): ατομικές διαφορές στη χωρική μνήμη εργασίας - μεταβλητή για το πρόβλημα των Πύργων του Ανόι ενώ όχι δεδομένα για τη λεκτική μνήμη εργασίας 7

8 Ετεραρχικά μοντέλα Ο Γενικός Λύτης Προβλημάτων ήταν ιεραρχικός και μονοδιάστατος ένας κεντρικός επεξεργαστής έδινε την εντολή εκκίνησης για τις διάφορες διεργασίες Τα πιο σύγχρονα μοντέλα είναι ετεραρχικά (ο έλεγχος μπορεί να κατανεμηθεί σε όλο το σύστημα (Hayes-Roth, 1979) αίμονες λήψης αποφάσεων υπεύθυνοι για τον ετεραρχικό έλεγχο (Selfridge, 1959) Επαγωγική συλλογιστική: Η σκέψη ως έλεγχος υποθέσεων 16 8

9 Συλλογιστική Στη γνωστική ψυχολογία ο όρος «συλλογιστική» χρησιμοποιείται με δύο τρόπους: Οι διαδικασίες συναγωγής συμπερασμάτων Συναγωγή συμπερασμάτων με βάση τη λογική και μόνο ιάκριση σε δύο βασικούς τύπους συλλογιστικής: Επαγωγή ή επαγωγικός συλλογισμός (συναγωγή γενικών κανόνων από επιμέρους παρατηρήσεις) Παραγωγή ή παραγωγικός συλλογισμός (συναγωγή επιμέρους περιπτώσεων από γενικούς κανόνες) Οι επαγωγικοί συλλογισμοί καταλήγουν σε συμπεράσματα που δεν είναι λογικά αναγκαία. Οι παραγωγικοί συλλογισμοί καταλήγουν σε λογικά αναγκαία συμπεράσματα. Οι πραγματολογικοί συμπερασμοί οδηγούν σε εύλογα όχι όμως και λογικά έγκυρα συμπεράσματα Κύρια θέματα στην έρευνα της συλλογιστικής Ποιος είναι ο μηχανισμός που υπόκειται της λύσης προβλημάτων συλλογιστικής; Εφαρμογή λογικών κανόνων ή ικανοτήτων και η χρήση πινάκων αληθείας; Χρήση νοερών μοντέλων ή η ύπαρξη κάποιου είδους «φυσικής λογικής» που χρησιμοποιεί συλλογιστικά σχήματα που πηγάζουν από τη χρήση της γλώσσας στην καθημερινή ζωή; Γενίκευση από τη χρήση συμπερασματικών σχημάτων που εφαρμόζουν οι άνθρωποι σε συγκεκριμένα πραγματολογικά πλαίσια, όπως η διατύπωση απειλής ή η διατύπωση όρων προκειμένου να επιτραπεί μια πράξη; Ποια είναι τα συνήθη σφάλματα συλλογιστικής και πού οφείλονται; Ποια είναι η επίδραση του περιεχομένου των προτάσεων και των συμφραζομένων ή πλαισίου αναφοράς στη συναγωγή συμπερασμάτων; 9

10 Τα θεμέλια της επαγωγής Αρχικά, κάποιος ενδιαφέρεται για κάτι: Χ Το Χ έχει ορισμένα χαρακτηριστικά: α, β, γ, ν Μετά, θυμάται ή παρατηρεί ή ανακαλύπτει ότι το Υ έχει και αυτό τα ίδια χαρακτηριστικά: α, β, γ, ν Το Υ έχει και ένα επιπλέον χαρακτηριστικό: π Αυτόματα, προκύπτει ένας συλλογισμός: Άρα, το Χ έχει και αυτό το χαρακτηριστικό π Αυτό υόε είναι προφανώς ένα έαμη λογικά ααγαοσυμ αναγκαίο συμπέρασμα, αλλά είναι ό,τι έχουμε ως εκείνη τη στιγμή Είναι το συμπέρασμα πιθανότερο να είναι αληθές παρά ψευδές; Αυτό είναι εξαιρετικά σημαντικό Επαγωγή Η επαγωγική συλλογιστική μελετάται κυρίως μέσα από πειράματα απόκτησης εννοιών ή κατηγοριοποίησης ίνεται η ακόλουθη σειρά αριθμών (Wason, 1960): 2, 4, 6 Ποιος είναι ο κανόνας που διέπει το σχηματισμό αυτής της σειράς; ιαψευσιμότητα 10

11 Προβλήματα επαγωγικής συλλογιστικής ???? ?????? ??????6 2 1 Προβλήματα επαγωγικής συλλογιστικής ???????????????? Κανόνας? Αύξηση κατά πέντε ΛΑΘΟΣ!!! Ποιος είναι ο σωστός κανόνας; Οποιοσδήποτε μεγαλύτερος αριθμός Ο επόμενος αριθμός θα μπορούσε να είναι το 87 ή το 62 ή το Γιατί κανένας δεν ανακαλύπτει το σωστό κανόνα; 11

12 Η προκατάληψη της επιβεβαίωσης Ψάχνουμε μόνο για την πληροφορία που επιβεβαιώνει την υπόθεσή μας Παράδειγμα: σε μια εφημερίδα επιλέγουμε να διαβάσουμε τα άρθρα αυτών των δημοσιογράφων με των οποίων τις απόψεις συμφωνούμε Η περίπτωση «Ιωάννου» Στην αστυνομία φτάνει ένας φάκελος με το όνομα «Ιωάννου» στο κάλυμμα Πρόκειται για μια περίπτωση ενός ατόμου ύψους 1,85 μ., βάρους 125 κιλών, με 12 τατουάζ, που πρόσφατα κέρδισε ένα πρωτάθλημα πάλης. Αιτία σύλληψης: επιτέθηκε και τραυμάτισε έναν άνδρα με μια αλυσίδα Πρόκειται για άνδρα ή γυναίκα; Για μέλος συμμορίας μηχανόβιων ή για ιερέα; Πώς φτάσατε στην απόφασή σας; 12

13 Αντιπροσωπευτικότητα Οι αποφάσεις μας εξαρτώνται από το βαθμό στον οποίο ένα γεγονός ταιριάζει με ένα «πρωτότυπο» Αυτό μπορεί να είναι καλό (να οδηγήσει σε μια επιτυχή συναγωγή συμπεράσματος), αλλά συχνά οδηγεί σε σφάλματα Πολλοί είναι αυτοί που βασίζονται παραπάνω από ό,τι χρειάζεται στην αντιπροσωπευτικότητα Συλλογισμοί που βασίζονται στη συχνότητα Tversky & Kahneman (1974): Σκεφτείτε το γράμμα κ. Είναι πιθανότερο να βρείτε το κ στην πρώτη θέση μιας λέξης ή στην τρίτη; Ευρετική της διαθεσιμότητας 13

14 Συλλογισμοί που βασίζονται στην πιθανότητα Έχετε ένα νόμισμα και το «στρίβετε» 6 φορές στον αέρα. Ποια από τις δύο σειρές είναι πιθανότερο να προκύψουν; Κ (κεφάλι) Γ (γράμματα) ΚΚΚΚΚΚ ή ΚΓΓΚΚΓ???? Συλλογισμοί που βασίζονται στην πιθανότητα Tversky & Kahneman (1983): Η Μαρία είναι 31 ετών, ανύπαντρη, εξωστρεφής και πολύ έξυπνη. Έχει πτυχίο φιλοσοφίας. Ως φοιτήτρια ήταν πολύ ευαισθητοποιημένη σε θέματα διακρίσεων και κοινωνικής δικαιοσύνης και συμμετείχε σε διαδηλώσεις κατά της χρήσης πυρηνικών. Βασισμένοι σε αυτές τις πληροφορίες, ποια από τις δύο συνθήκες που ακολουθούν θεωρείτε ότι είναι πιθανότερη; Η Μαρία είναι ταμίας σε τράπεζα. Η Μαρία είναι ταμίας σε τράπεζα και συμμετέχει στο φεμινιστικό κίνημα. Πλάνη συνδυασμού (conjunction fallacy) 14

15 Στην επόμενη διάλεξη: Παραγωγική συλλογιστική: Η σκέψη ως συναγωγή λογικών συμπερασμάτων 15

ΕΠΙΣΗΜΟΝΙΚΗ ΘΕΩΡΙΑ. 1. Σι είναι επιστήμη 2. Η γέννηση της επιστημονικής γνώσης 3. Οριοθέτηση θεωριών αστικότητας

ΕΠΙΣΗΜΟΝΙΚΗ ΘΕΩΡΙΑ. 1. Σι είναι επιστήμη 2. Η γέννηση της επιστημονικής γνώσης 3. Οριοθέτηση θεωριών αστικότητας ΕΠΙΣΗΜΟΝΙΚΗ ΘΕΩΡΙΑ 1. Σι είναι επιστήμη 2. Η γέννηση της επιστημονικής γνώσης 3. Οριοθέτηση θεωριών αστικότητας 1. Μια διαδεδομένη αντίληψη περί επιστήμης Γνώση / Κατανόηση των φαινομένων του φυσικού κόσμου

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Αξιολόγηση Εκτελεστικών Λειτουργιών

Αξιολόγηση Εκτελεστικών Λειτουργιών Αξιολόγηση Εκτελεστικών Λειτουργιών Εισαγωγή: οκιμασίες Εκτελεστικών Λειτουργιών και η Συμβολή τους στην Επαγγελματική σας Επιλογή Η σημασία της αξιολόγησης των γνωστικών δεξιοτήτων Οι γνωστικές ικανότητες

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο Α. Να αναπτύξετε τις παρακάτω ερωτήσεις: 1. Τι καλείται βρόγχος; 2. Σε ποιες κατηγορίες διακρίνονται τα προβλήματα ανάλογα με

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μαθησιακές δυσκολίες ΙΙ Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μάρτιος 2010 Προηγούμενη διάλεξη Μαθησιακές δυσκολίες Σε όλες

Διαβάστε περισσότερα

Εισαγωγή. Τι είναι η Τεχνητή Νοηµοσύνη (1/2)

Εισαγωγή. Τι είναι η Τεχνητή Νοηµοσύνη (1/2) Εισαγωγή Τι είναι η Τεχνητή Νοηµοσύνη (1/2) ιάφορες προσεγγίσεις Συστήµατα που σκέπτονται σαν τον άνθρωπο Συστήµατα που σκέπτονται ορθολογικά Συστήµατα που ενεργούν σαν τον άνθρωπο Συστήµατα που ενεργούν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2005-6) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 Στόχος Η εργασία επικεντρώνεται σε θέματα προγραμματισμού για Τεχνητή Νοημοσύνη και σε πρακτικά θέματα εξάσκησης σε Κατηγορηματική Λογική. Θέμα 1: Απλές Αναζητήσεις

Διαβάστε περισσότερα

Να φύγει ο Ευκλείδης;

Να φύγει ο Ευκλείδης; Να φύγει ο Ευκλείδης; Σωτήρης Ζωιτσάκος Βαρβάκειο Λύκειο Μαθηματικά στα ΠΠΛ Αθήνα 2014 Εισαγωγικά Dieudonné: «Να φύγει ο Ευκλείδης». Douglas Quadling: «Ο Ευκλείδης έχει φύγει, αλλά στο κενό που άφησε πίσω

Διαβάστε περισσότερα

Αρχές Φιλοσοφίας Β Λυκείου Τράπεζα Θεμάτων: 2 ο κεφάλαιο «Κατανοώντας τα πράγματα»

Αρχές Φιλοσοφίας Β Λυκείου Τράπεζα Θεμάτων: 2 ο κεφάλαιο «Κατανοώντας τα πράγματα» Αρχές Φιλοσοφίας Β Λυκείου Τράπεζα Θεμάτων: 2 ο κεφάλαιο «Κατανοώντας τα πράγματα» Α] Ασκήσεις κλειστού τύπου (Σωστό Λάθος) Για τον Πλάτωνα οι καθολικές έννοιες, τα «καθόλου», δεν είναι πράγματα ξεχωριστά

Διαβάστε περισσότερα

Διδάσκων:Μ.Χατζόπουλος, Παραδόσεις:Τρίτη 4-6, Τετάρτη 1-3; (Αμφιθέατρο Α15) Πληροφορίες στην ιστοσελίδα του μαθήματος http://www.di.uoa.

Διδάσκων:Μ.Χατζόπουλος, Παραδόσεις:Τρίτη 4-6, Τετάρτη 1-3; (Αμφιθέατρο Α15) Πληροφορίες στην ιστοσελίδα του μαθήματος http://www.di.uoa. Πληροφορική 1 Διδάσκων:Μ.Χατζόπουλος, Παραδόσεις:Τρίτη 4-6, Τετάρτη 1-3; (Αμφιθέατρο Α15) Πληροφορίες στην ιστοσελίδα του μαθήματος http://www.di.uoa.gr/~organosi/ 2 Η δομή του μαθήματος Εισαγωγή στην

Διαβάστε περισσότερα

Το πρόβλημα στα Μαθηματικά

Το πρόβλημα στα Μαθηματικά Το πρόβλημα στα Μαθηματικά από το ΣΔΕ Γιαννιτσών Δημήτρης Πολυτίδης (Μαθηματικός) Στα Μαθηματικά το πρόβλημα θα πρέπει να είναι μια κατάσταση η επίλυση της οποίας, από το μαθητή, δεν είναι αυτόματη και

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ»

ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» - Κρυπτογραφία είναι - Κρυπτανάλυση είναι - Με τον όρο κλειδί. - Κρυπτολογία = Κρυπτογραφία + Κρυπτανάλυση - Οι επιστήµες αυτές είχαν

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ: ΥΠΟΛΟΓΙΣΤΕΣ & ΤΕΧΝΟΛΟΓΙΕΣ ΔΙΑΔΙΚΤΥΟΥ

ΠΛΗΡΟΦΟΡΙΚΗ: ΥΠΟΛΟΓΙΣΤΕΣ & ΤΕΧΝΟΛΟΓΙΕΣ ΔΙΑΔΙΚΤΥΟΥ ΠΛΗΡΟΦΟΡΙΚΗ: ΥΠΟΛΟΓΙΣΤΕΣ & ΤΕΧΝΟΛΟΓΙΕΣ ΔΙΑΔΙΚΤΥΟΥ kv@hua.gr Στόχος Μαθήματος Εισαγωγή σε Βασικούς Όρους Πληροφορικής και Τηλεματικής. Εφαρμογές Τηλεματικής. Αναφορά στις κοινωνικές επιπτώσεις των Υπολογιστών.

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΣ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΗ Η Ρομποτική είναι ο κλάδος της επιστήμης που κατασκευάζει και μελετά μηχανές που μπορούν να αντικαταστήσουν τον άνθρωπο στην εκτέλεση μιας εργασίας. Tι είναι το ΡΟΜΠΟΤ

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 1.1. Υλικό και Λογισμικό.. 1 1.2 Αρχιτεκτονική Υπολογιστών.. 3 1.3 Δομή, Οργάνωση και Λειτουργία Υπολογιστών 6

ΠΕΡΙΕΧΟΜΕΝΑ. 1.1. Υλικό και Λογισμικό.. 1 1.2 Αρχιτεκτονική Υπολογιστών.. 3 1.3 Δομή, Οργάνωση και Λειτουργία Υπολογιστών 6 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή στην Δομή, Οργάνωση, Λειτουργία και Αξιολόγηση Υπολογιστών 1.1. Υλικό και Λογισμικό.. 1 1.2 Αρχιτεκτονική Υπολογιστών.. 3 1.3 Δομή, Οργάνωση και Λειτουργία Υπολογιστών 6 1.3.1 Δομή

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ Γνωστικό αντικείμενο Επίπεδο ΦΥΣΙΚΗ Α Λυκείου Ταυτότητα Στόχος Περιγραφή Προτεινόμενο ή υλοποιημένο Λογισμικό Λέξεις κλειδιά Δημιουργοί α) Γνώσεις για τον κόσμο: Οι δυνάμεις εμφανίζονται

Διαβάστε περισσότερα

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 6 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 6.1 Τι ονοµάζουµε πρόγραµµα υπολογιστή; Ένα πρόγραµµα

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Διαβάστε περισσότερα

Άσκηση Διδακτικής του Μαθήµατος των Θρησκευτικών. Γ Οµάδα

Άσκηση Διδακτικής του Μαθήµατος των Θρησκευτικών. Γ Οµάδα Άσκηση Διδακτικής του Μαθήµατος των Θρησκευτικών Γ Οµάδα Διδάσκων: Αθ. Στογιαννίδης Λέκτορας 11ο Μάθηµα Διερεύνηση Προϋποθέσεων Διδασκαλίας - Α : Η θεωρία του Jean Piaget για τη νοητική ανάπτυξη του ανθρώπου

Διαβάστε περισσότερα

1 η εξεταστική περίοδος από 20/10/2013 έως 17/11/2013. γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ

1 η εξεταστική περίοδος από 20/10/2013 έως 17/11/2013. γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ Τάξη: Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: ΒΛΙΣΙΔΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Α Α1. Να αναφέρετε τους λόγους για τους οποίους

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που

Διαβάστε περισσότερα

Υλοποίηση ενός προγραμματιστικού κελύφους εργασίας

Υλοποίηση ενός προγραμματιστικού κελύφους εργασίας Τ.Ε.Ι ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ & ΔΙΟΙΚΗΣΗΣ Υλοποίηση ενός προγραμματιστικού κελύφους εργασίας Πτυχιακή εργασία του φοιτητή Γιαννακίδη Αποστόλη Επιβλέπων καθηγητής Τσούλος

Διαβάστε περισσότερα

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Κεφάλαιο 6ο Εισαγωγή στον Προγραµµατισµό Μέρος Πρώτο (6.1, 6.2 και 6.3) Α. Ερωτήσεις Σωστού Λάθους 1. Η γλώσσα µηχανής είναι µία γλώσσα υψηλού επιπέδου.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-6 και

Διαβάστε περισσότερα

Τύποι, Σταθερές και Μεταβλητές

Τύποι, Σταθερές και Μεταβλητές ΚΕΦΑΛΑΙΟ 3 Τύποι, Σταθερές και Μεταβλητές Η έννοια της μεταβλητής Γενικά μπορούμε να πούμε ότι η έννοια της μεταβλητής στον προγραμματισμό είναι άμεσα συνδεδεμένη με την έννοια που αυτή έχει σε μαθηματικό

Διαβάστε περισσότερα

Έστω λοιπόν ότι το αντικείμενο ενδιαφέροντος είναι. Ας δούμε τι συνεπάγεται το κάθε. πριν από λίγο

Έστω λοιπόν ότι το αντικείμενο ενδιαφέροντος είναι. Ας δούμε τι συνεπάγεται το κάθε. πριν από λίγο Μορφές Εκπόνησης Ερευνητικής Εργασίας Μαρία Κουτσούμπα Έστω λοιπόν ότι το αντικείμενο ενδιαφέροντος είναι «η τηλεδιάσκεψη». Ας δούμε τι συνεπάγεται το κάθε ερευνητικό ερώτημα που θέσαμε πριν από λίγο Κουτσούμπα/Σεμινάριο

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Περίγραµµα Εισαγωγή Στοιχεία Πολυπλοκότητας Ηλίας Κ. Σάββας Επίκουρος Καθηγητής Τμήμα: Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών Email: savvas@teilar teilar.gr Αλγόριθµοι

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΣΚΗΣΕΙΣ 6 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ Σημειώστε αν είναι σωστή ή

Διαβάστε περισσότερα

STRATEGIC MANAGEMENT ΙI SESSION 3

STRATEGIC MANAGEMENT ΙI SESSION 3 STRATEGIC MANAGEMENT ΙI SESSION 3 ΕΞΥΠΝΗ ΕΠΙΧΕΙΡΗΣΗ/ΜΟΝΤΕΛΟ ΕΥΦΥΗΣ ΕΠΙΧΕΙΡΗΣΗ Η «ΔΟΜΗΣΗ» ΤΗΣ ΟΙ 5 ΠΕΙΘΑΡΧΙΕΣ ΜΑΘΗΣΗΣ ΤΟ ΜΑΝΑΤΖΜΕΝΤ ΤΗΣ ΓΝΩΣΗΣ/ ΤΕΧΝΙΚΕΣ ΤΟ ΜΑΝΑΤΖΜΕΝΤ ΤΗΣ ΜΑΘΗΣΗΣ ΕΜΠΟΔΙΑ/ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΛΕΙΤΟΥΡΓΙΕΣ

Διαβάστε περισσότερα

UTECO ABEE ΒΙΟΜΗΧΑΝΙΚΟΣ & ΝΑΥΤΙΛΙΑΚΟΣ ΑΥΤΟΜΑΤΙΣΜΟΣ

UTECO ABEE ΒΙΟΜΗΧΑΝΙΚΟΣ & ΝΑΥΤΙΛΙΑΚΟΣ ΑΥΤΟΜΑΤΙΣΜΟΣ IMAGO F3000 Συνοπτική περιγραφή Αυτοί οι ελεγκτές διαδικασίας χτίζονται σε ένα σχεδιασμό επεκτάσιμης μονάδας, και είναι κατάλληλοι για τον έλεγχο ρύθμιση λειτουργίας, ψησίματος, καπνίσματος και ελέγχου

Διαβάστε περισσότερα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 8: Πρόβλημα Βυζαντινών Στρατηγών ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκες Συμφωνίας κάτω από Βυζαντινό Στρατηγό Πιθανοτικοί αλγόριθμοι επίλυσης Βυζαντινής

Διαβάστε περισσότερα

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013 Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013 27 Μαρτίου 2013 Περίληψη Σκοπός της παρούσας εργασίας είναι η εξοικείωσή σας με τις θεμελιώδεις θεωρητικές και πρακτικές πτυχές

Διαβάστε περισσότερα

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΘΗΓΗΤΗΣ Χ. ΛΕΜΟΝΙΔΗΣ ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 Στη διδασκαλία συνήθως τα παιδιά αρχικά διδάσκονται τις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΕΠΙΜΕΛΕΙΑ: Νάκου Αλεξάνδρα Εισαγωγή στις Επιστήμες της Αγωγής Ο όρος ΕΠΙΣΤΗΜΕΣ ΤΗΣ ΑΓΩΓΗΣ δημιουργεί μία αίσθηση ασάφειας αφού επιδέχεται πολλές εξηγήσεις. Υπάρχει συνεχής διάλογος και προβληματισμός ακόμα

Διαβάστε περισσότερα

ιοίκηση Ανθρωπίνων Πόρων

ιοίκηση Ανθρωπίνων Πόρων ιοίκηση Ανθρωπίνων Πόρων Επιλογή Προσωπικού Ιωάννης Νικολάου inikol@aueb.gr Λέκτορας Οργανωσιακής Συµπεριφοράς Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης και Τεχνολογίας Τα Στάδια της Συστηµατικής

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ 1 ΘΕΜΑ 1 o Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στην κόλλα σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1 5 και δίπλα τη λέξη

Διαβάστε περισσότερα

Προσφερόμενα Διπλώματα (Προσφερόμενοι Τίτλοι)

Προσφερόμενα Διπλώματα (Προσφερόμενοι Τίτλοι) Εισαγωγή Το Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του Πανεπιστημίου Κύπρου προσφέρει ολοκληρωμένα προπτυχιακά και μεταπτυχιακά προγράμματα σπουδών στους κλάδους του Ηλεκτρολόγου Μηχανικού

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

Εισαγωγή: ΑυτοοργΑνωση, AνΑδυση και ΠολυΠλοκοτητΑ κεφάλαιο 1: ΜοριΑκη BιολογιΑ και EΠιστηΜΕσ τησ ΠληροφοριΑσ

Εισαγωγή: ΑυτοοργΑνωση, AνΑδυση και ΠολυΠλοκοτητΑ κεφάλαιο 1: ΜοριΑκη BιολογιΑ και EΠιστηΜΕσ τησ ΠληροφοριΑσ Περιεχόμενα Περιεχόμενα Εισαγωγή: Αυτοοργάνωση, Aνάδυση και Πολυπλοκότητα... 15 Πώς μπορούν τα πράγματα να αυτοοργανώνονται;... 15 Προσπάθεια να δοθεί ένας προκαταρκτικός ορισμός της αυτοοργάνωσης...18

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-6 και δίπλα τη λέξη ΣΩΣΤΟ, αν η πρόταση

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής

Διαβάστε περισσότερα

Γλώσσες Προγραμματισμού Μεταγλωττιστές

Γλώσσες Προγραμματισμού Μεταγλωττιστές Γλώσσες Προγραμματισμού Μεταγλωττιστές Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου Δομή Γλώσσες Προγραμματισμού Εισαγωγικά Γλώσσα Μηχανής Γλώσσες υψηλού επιπέδου Μεταγλωττιστές

Διαβάστε περισσότερα

Μεταβλητές. Για περισσότερες λεπτομέρειες πάνω στις μεταβλητές θα ήταν χρήσιμο να διαβάσεις το

Μεταβλητές. Για περισσότερες λεπτομέρειες πάνω στις μεταβλητές θα ήταν χρήσιμο να διαβάσεις το Τάξη : Α Λυκείου Λογισμικό : Scratch Ενδεικτική Διάρκεια : 45 λεπτά Μεταβλητές Όλα όσα έμαθες στα προηγούμενα φυλλάδια είναι απαραίτητα για να υλοποιήσεις απλές εφαρμογές. Ωστόσο αν θέλεις να δημιουργήσεις

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και

Διαβάστε περισσότερα

10 Α2. 5 Α3. (ΟΧΙ = 20-4*2^2)) H (X>Ψ ΚΑΙ X > Ψ

10 Α2. 5 Α3. (ΟΧΙ = 20-4*2^2)) H (X>Ψ ΚΑΙ X > Ψ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 4 Α Ν Α Π Τ Υ Ξ Η Ε Φ Α Ρ Μ Ο Γ Ω Ν Σ Ε Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Τ Ι Κ Ο Π Ε Ρ Ι Β Α Λ Λ Ο Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α

Διαβάστε περισσότερα

Α4. Δίδεται ο παρακάτω αλγόριθμος

Α4. Δίδεται ο παρακάτω αλγόριθμος Διαγώνισμα 2014-15 Ανάπτυξη Εφαρμογών σε Πραγματικό Περιβάλλον Επώνυμο Όνομα Εξεταζόμενο μάθημα Γ Λυκείου Κυριακή 02/11/2014 Τμήμα Ημερομηνία Τάξη Θέμα Α A1. Επιλέξτε Σωστό ή Λάθος για τις παρακάτω προτάσεις:

Διαβάστε περισσότερα

Σχεδίαση του αλγορίθμου για το παιχνίδι Rat s Life

Σχεδίαση του αλγορίθμου για το παιχνίδι Rat s Life H παρουσίαση περιλαμβάνει: Λίγα λόγια για την Τεχνητή Νοημοσύνη Λίγα λόγια για το πρόγραμμα Webots Τεχνικά χαρακτηριστικά του αυτόνομου E-puckmobile-robot Σχεδίαση του αλγορίθμου για το παιχνίδι Rat s

Διαβάστε περισσότερα

Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου)

Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου) Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου) Ηλικίες: Προαπαιτούμενες δεξιότητες: Χρόνος: Μέγεθος ομάδας: 8 ενήλικες Καμία 15 λεπτά για τη βασική δραστηριότητα, περισσότερο για τις επεκτάσεις

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

Το περιβάλλον προγραμματισμού MicroWorlds Pro

Το περιβάλλον προγραμματισμού MicroWorlds Pro Μενού επιλογών Το περιβάλλον προγραμματισμού MicroWorlds Pro Γραμμή εργαλείων Επιφάνεια εργασίας Περιοχή Καρτελών Κέντρο εντολών Εικόνα 2.1: Το περιβάλλον της MicroWorlds Pro. Καρτέλες Οι πρώτες εντολές

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Εργαστήριο

Αρχιτεκτονική Υπολογιστών Εργαστήριο Αρχιτεκτονική Υπολογιστών Εργαστήριο Ενότητα: ΠΑΡΑΔΕΙΓΜΑ ΑΠΟΣΦΑΛΜΑΤΩΣΗΣ Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής

Διαβάστε περισσότερα

Απόστολος Μιχαλούδης

Απόστολος Μιχαλούδης ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΠΡΟΣΟΜΟΙΩΣΕΩΝ Ανάπτυξη και εφαρμογή διδακτικών προσομοιώσεων Φυσικής σε θέματα ταλαντώσεων και κυμάτων Απόστολος Μιχαλούδης υπό την επίβλεψη του αν. καθηγητή Ευριπίδη Χατζηκρανιώτη

Διαβάστε περισσότερα

Γιατί ροµποτική; Ποιοι οι διδαχτικοί στόχοι; Πως θα υλοποιηθεί η όλη εργασία; Ποιο ροµπότ θα χρησιµοποιηθεί; Πως θα χρηµατοδοτηθεί;

Γιατί ροµποτική; Ποιοι οι διδαχτικοί στόχοι; Πως θα υλοποιηθεί η όλη εργασία; Ποιο ροµπότ θα χρησιµοποιηθεί; Πως θα χρηµατοδοτηθεί; Ερευνητική Εργασία Β Λυκείου «ΡΟΜΠΟΤΙΚΗ» Βεζονιαράκης ηµήτρης καθηγητής ΠΕ19 4 ου ΓΕΛ ΚΟΡΙΝΘΟΥ 1 Μάθηµα ερευνητικής εργασίας «ροµποτική» Γιατί ροµποτική; Ποιοι οι διδαχτικοί στόχοι; Πως θα υλοποιηθεί η

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΠΑΙΧΝΙΔΙΑ ΣΕ ΣΥΣΚΕΥΕΣ ΚΙΝΗΤΗΣ

ΨΗΦΙΑΚΑ ΠΑΙΧΝΙΔΙΑ ΣΕ ΣΥΣΚΕΥΕΣ ΚΙΝΗΤΗΣ 1 of 18 4/16/2015 4:11 PM ΨΗΦΙΑΚΑ ΠΑΙΧΝΙΔΙΑ ΣΕ ΣΥΣΚΕΥΕΣ ΚΙΝΗΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Το ερωτηματολόγιο αυτό έχει διάφορες ενότητες για τα ψηφιακά παιχνίδια που παίζονται σε συσκευές κινητής τεχνολογίας και ειδικότερα

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ ΤΑΞΗ ΚΕΦΑΛΑΙΟ 2 ο ΕΙΣΗΓΗΤΗΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ : ΚΑΖΑΝΤΖΗΣ ΧΡΗΣΤΟΣ 1. Γενικός

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ Ενότητα 2: Επαγωγική-περιγραφική στατιστική, παραµετρικές

Διαβάστε περισσότερα

Μηχανική Ικανότητα ΠΑΡΑΔΕΙΓΜΑ: Κάθε υλικό από το οποίο μπορεί να περάσει ηλεκτρικό ρεύμα, ονομάζεται

Μηχανική Ικανότητα ΠΑΡΑΔΕΙΓΜΑ: Κάθε υλικό από το οποίο μπορεί να περάσει ηλεκτρικό ρεύμα, ονομάζεται Μηχανική Ικανότητα Πώς τα πας με τους νόμους της φύσης; Κατανοείς τις βασικές αρχές της φυσικής, χημείας, μηχανολογίας; Είσαι καλός στις επιδιορθώσεις και στο χειρισμό εργαλείων; Κάνοντας το επόμενο τεστ

Διαβάστε περισσότερα

Οι μεγάλες εξισώσεις....όχι μόνο σωστές αλλά και ωραίες...

Οι μεγάλες εξισώσεις....όχι μόνο σωστές αλλά και ωραίες... Οι μεγάλες εξισώσεις. {...όχι μόνο σωστές αλλά και ωραίες... Ερευνητική εργασία μαθητών της Β λυκείου. E = mc 2 Στοιχεία ταυτότητας: Ε: ενέργεια (joule) m: μάζα (kg) c: ταχύτητα του φωτός στο κενό (m/s)

Διαβάστε περισσότερα

ΤΟ ΤΕΣΤ ΑΝΙΧΝΕΥΣΗΣ ΤΗΣ ΔΥΣΛΕΞΙΑΣ ΣΤΟΥΣ ΕΝΗΛΙΚΕΣ(DAST) Δριδάκη Αργυρώ Α.Μ.: 10909 Κόλλια Δήμητρα Α.Μ.: 11283

ΤΟ ΤΕΣΤ ΑΝΙΧΝΕΥΣΗΣ ΤΗΣ ΔΥΣΛΕΞΙΑΣ ΣΤΟΥΣ ΕΝΗΛΙΚΕΣ(DAST) Δριδάκη Αργυρώ Α.Μ.: 10909 Κόλλια Δήμητρα Α.Μ.: 11283 ΤΟ ΤΕΣΤ ΑΝΙΧΝΕΥΣΗΣ ΤΗΣ ΔΥΣΛΕΞΙΑΣ ΣΤΟΥΣ ΕΝΗΛΙΚΕΣ(DAST) Δριδάκη Αργυρώ Α.Μ.: 10909 Κόλλια Δήμητρα Α.Μ.: 11283 Αναπτυξιακή Δυσλεξία Παγκόσμια Ομοσπονδία Νευρολογίας το 1968 «μια διαταραχή στα παιδιά τα οποία,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1) Ο έλεγχος μιας συνθήκης έχει μόνο δυο τιμές,

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης

ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης ΠΡΟΒΛΗΜΑ Ένας μαθητής της Γ γυμνασίου, για να περάσει το μάθημα της Πληροφορικής θα πρέπει να βγάλει γενικό μέσο όρο (ΓΜΟ) 9.5 Το πρόγραμμα που

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες ----Πράκτορες

Ευφυείς Τεχνολογίες ----Πράκτορες Ευφυείς Τεχνολογίες ----Πράκτορες Ενότητα 3: Εισαγωγή στους Ευφυείς Πράκτορες Δημοσθένης Σταμάτης demos@it.teithe.gr www.it.teithe.gr/~demos Μαθησιακοί Στόχοι της ενότητας 3 H κατανόηση της φύσης των πρακτόρων

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 MAΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά 5η Δραστηριότητα Λύσε το γρίφο Η Θεωρία της Πληροφορίας Περίληψη Πόση πληροφορία περιέχεται σε ένα βιβλίο των 1000 σελίδων; Υπάρχει περισσότερη πληροφορία σε έναν τηλεφωνικό κατάλογο των 1000 σελίδων ή

Διαβάστε περισσότερα

7. Βασικά στοιχεία προγραµµατισµού.

7. Βασικά στοιχεία προγραµµατισµού. 7. Βασικά στοιχεία προγραµµατισµού. ΗΜ01-Θ1Γ Δίνονται οι παρακάτω έννοιες: 1. Λογικός τύπος δεδοµένων 2. Επιλύσιµο 3. Ακέραιος τύπος δεδοµένων 4. Περατότητα 5. Μεταβλητή 6. Ηµιδοµηµένο 7. Πραγµατικός τύπος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Η ΕΝΤΑΞΗ ΤΟΥ ΠΑΙΔΙΟΥ ΜΕ ΑΥΤΙΣΜΟ

Η ΕΝΤΑΞΗ ΤΟΥ ΠΑΙΔΙΟΥ ΜΕ ΑΥΤΙΣΜΟ Η ΕΝΤΑΞΗ ΤΟΥ ΠΑΙΔΙΟΥ ΜΕ ΑΥΤΙΣΜΟ Αγγελική Γενά agena@ppp.uoa.gr ΣΗΜΑΝΤΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ ΕΤΟΙΜΟΤΗΤΑΣ ΓΙΑ ΕΝΤΑΞΗ ΠΑΙΔΙΩΝ ΜΕ ΑΥΤΙΣΜΟ ΣΤΟ ΓΕΝΙΚΟ ΣΧΟΛΕΙΟ Α. ΚΟΙΝΩΝΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ Επίσταση Προσοχής Ομαδική & όχι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ Α3. α. (σελ. 183-184) Στοίβα: ώθηση, απώθηση Ουρά:

Διαβάστε περισσότερα

Λίγα για το Πριν, το Τώρα και το Μετά.

Λίγα για το Πριν, το Τώρα και το Μετά. 1 Λίγα για το Πριν, το Τώρα και το Μετά. Ψάχνοντας από το εσωτερικό κάποιων εφημερίδων μέχρι σε πιο εξειδικευμένα περιοδικά και βιβλία σίγουρα θα έχουμε διαβάσει ή θα έχουμε τέλος πάντων πληροφορηθεί,

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ)

Πανεπιστήμιο Κύπρου. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) 26/01/2014 Συνεισφορά του κλάδους ΗΜΜΥ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ευρύ φάσμα γνώσεων και επιστημονικών

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες Πράκτορες

Ευφυείς Τεχνολογίες Πράκτορες Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης mos@it.tith.gr www.it.tith.gr/~mos Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗΣ MANAGEMENT INFORMATION SYSTEMS (M.I.S.)

ΔΙΟΙΚΗΣΗΣ MANAGEMENT INFORMATION SYSTEMS (M.I.S.) ΔΙΟΙΚΗΣΗΣ MANAGEMENT INFORMATION SYSTEMS (M.I.S.) 2.1 Κωνσταντίνος Ταραμπάνης Καθηγητής Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Πανεπιστήμιο Μακεδονίας Γρ. 307 2310-891-578 kat@uom.gr ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ

Διαβάστε περισσότερα

[Ε-LEARNING ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ ΤΗΣ ΕΘΝΙΚΗΣ ΤΡΑΠΕΖΑΣ] learn-era.gr. Βασίλης Παλίλης

[Ε-LEARNING ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ ΤΗΣ ΕΘΝΙΚΗΣ ΤΡΑΠΕΖΑΣ] learn-era.gr. Βασίλης Παλίλης 2014 learn-era.gr Βασίλης Παλίλης [Ε-LEARNING ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ ΤΗΣ ΕΘΝΙΚΗΣ ΤΡΑΠΕΖΑΣ] Ενημερωτικό δελτίο για το e-μάθημα που αφορά τον Διαγωνισμό για την πρόσληψη υπαλλήλων της Εθνικής Τράπεζας της Ελλάδος.

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ 1 (Εργαστήριο)

Προγραμματισμός Η/Υ 1 (Εργαστήριο) Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 1: Εισαγωγή στη C - Αλγόριθμοι Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Πιθανότητες ΣΤ Δημοτικού

Πιθανότητες ΣΤ Δημοτικού ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Διδακτική των Μαθηματικών Χειμερινό εξάμηνο ακαδ. έτους 2012-2013 ΣΧΕΔΙΑΣΜΟΣ ΜΑΘΗΜΑΤΟΣ Πιθανότητες ΣΤ Δημοτικού Σοφία Άιζενμπαχ Α.Μ. 5898 Πάτρα,

Διαβάστε περισσότερα

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σενάριο με το λογισμικό modellus Τίτλος: Πότε δύο τρένα έχουν την ελάχιστη απόσταση μεταξύ τους; Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σε μια πρώτη

Διαβάστε περισσότερα

Πρόβλεψη αποτελεσμάτων ποδοσφαιρικών αγώνων βάσει του ιστορικού των αναμετρήσεων

Πρόβλεψη αποτελεσμάτων ποδοσφαιρικών αγώνων βάσει του ιστορικού των αναμετρήσεων Πολυτεχνείο Κρήτης Αυτόνομοι Πράκτορες 2012-2013 Πρόβλεψη αποτελεσμάτων ποδοσφαιρικών αγώνων βάσει του ιστορικού των αναμετρήσεων Δουγιάκης Λάζαρος 13 Πρόβλεψη αποτελεσμάτων ποδοσφαιρικών αγώνων βάσει

Διαβάστε περισσότερα

Πληροφορική Ι (Θεωρία)

Πληροφορική Ι (Θεωρία) Πληροφορική Ι (Θεωρία) ρ Α Εξάμηνο Διδασκαλία: Δευτέρα 16:00-18:00 (Αίθουσα 303) Επίπεδο μαθήματος: Υποχρεωτικό Τμήμα Βιομηχανικού Σχεδιασμού Σκοπός του μαθήματος «ΠΛΗΡΟΦΟΡΙΚΗ Ι» Απόκτηση από τους σπουδαστές

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΕΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2010 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΘΕΜΑΤΑ ΚΑΙ ΕΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2010 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. ίνονται τα παρακάτω τμήματα αλγορίθμου σε φυσική γλώσσα. 1 Αν η βαθμολογία (ΒΑΘΜΟΣ) είναι μεγαλύτερη από τον Μέσο Ορο (ΜΟ), τότε να τυπώνει «Πολύ

Διαβάστε περισσότερα