COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi"

Transcript

1 OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete di elemete date se umesc arajamete.! A = ( )( )... ( )! = + ( ) Proprietăţi 0 A = A A = =! ( ) factori A = + A formula de recureţă Submulţimile care se formează cu elemete di elemete date se umesc combiări.! A = =!! P ( ) Observaţie importată: Numărul total de submulţimi obţiute di elemete date este egal cu deci = = = Proprietăţi 0 = 0 = = = ( ) = = + formula combiărilor complemetare formula de recureţă

2 ( ) ( ) Fie şi f : A B card, A = card B = Numărul total de fucţii este Numărul total de fucţii ijective este Numărul total de fucţii strict mootoe este Numărul de fucţii strict crescătoare=numărul de fuc ţii strict descrescătoa A ( = ) Numărul total de fucţii bijective este P PROBABILITĂŢI. re = umărul cazurilor favorabile c f P= = umărul cazurilor posibile ( totale ) c p. Se cosideră toate umerele aturale de câte trei cifre scrise cu elemete di mulţimea { ;}. Să calculeze probabilitatea ca, alegâd u astfel de umăr divizibil cu.. Să calculeze probabilitatea ca, alegâd u umăr di mulţimea { },,,..., 0 umăr raţioal.. Să calculeze probabilitatea ca, alegâd u umăr di mulţimea {,,,..., 0} umăr raţioal.. Să calculeze probabilitatea ca, alegâd u umăr di mulţimea {,,,..., } umăr iraţioal.. Să calculeze probabilitatea ca u elemet al mulţimii { 0;;;;; } acesta să verifice iegalitatea!< Să calculeze probabilitatea ca, alegâd uul ditre umerele, şi acesta să fie divizibil cu. 7. Să calculeze probabilitatea ca, alegâd u elemet al mulţimii { ;;;; } acesta să verifice iegalitatea. 8. Să calculeze probabilitatea ca, alegâd u elemet al mulţimii { ;;; } acesta să verifice iegalitatea!.. Să calculeze probabilitatea ca, alegâd uul ditre umerele P, A şi acesta să fie divizibil cu. 0. Să calculeze probabilitatea ca, alegâd u elemet al mulţimii { ;;;6 } acesta să verifice iegalitatea ( ) 0.. Să se calculeze probabilitatea ca alegâd u elemet al mulţimii A = {,,, }, acesta să verifice iegalitatea!<.. Să se calculeze probabilitatea ca alegâd u elemet al mulţimii A = {,,, }, acesta să verifice iegalitatea + >!.. Să se calculeze probabilitatea ca alegâd u elemet al mulţimii A = {,,, }, acesta să verifice iegalitatea >.. Să se calculeze probabilitatea ca alegâd u elemet al mulţimii A = {,,, }, acesta să verifice iegalitatea >!.. Să se calculeze probabilitatea ca alegâd u elemet al mulţimii {,,...,0} acesta să fie umăr prim. 6. Să se calculeze probabilitatea ca alegâd u umăr atural de două cifre acesta să fie cub perfect. 7. Să se determie probabilitatea ca, alegâd u elemet di mulţimea {,,, }, acesta să verifice egalitatea =.

3 8. Să se determie probabilitatea ca, alegâd u umăr ab di mulţimea umerelor aturale de două cifre, să avem a b. V. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de două cifre, acesta să fie pătrat perfect. V 0. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de trei cifre, acesta să aibă exact două cifre egale. V. Să se determie probabilitatea ca, alegâd u umăr ab di mulţimea umerelor aturale de două cifre, să avem a+ b=. V7. are este probabilitatea ca, alegâd u umăr di mulţimea { 0,,,...,7 }, umărul 7 să fie prim. V8. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de trei cifre, acesta să aibă toate cifrele pare. V,,,...,0 umărul + 6 să. Să se determie probabilitatea ca, alegâd u elemet di mulţimea { } fie pătrat perfect. V. Să se determie probabilitatea ca, alegâd u elemet di mulţimea { } 0,,,...,0, suma cifrelor lui să fie divizibilă cu trei. V 6. Să se calculeze probabilitatea ca, alegâd o mulţime di mulţimea submulţimilor evide ale mulţimii A =,,,,,6, aceasta să aibă toate elemetele impare. V { } 7. Să se calculeze probabilitatea ca, alegâd o mulţime di mulţimea submulţimilor evide ale mulţimii A =,,,,, aceasta să aibă produsul elemetelor 0. V0 { } 8. Să se determie probabilitatea ca, alegâd u elemet di mulţimea {, < 00} umăr raţioal. V. Se cosideră mulţimea A = { 0,,,...,00}. Să se determie probabilitatea ca, alegâd u elemet di mulţimea A divizibil cu. V 0. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de trei cifre, acesta să fie divizibil cu 0. V6,,,,,6 ab,. Se cosideră mulţimea A = { }. Să se determie probabilitatea ca, alegâd o pereche ( ) di produsul cartezia A A să avem egalitatea a+ b= 6. V0,,,,,6. Fie mulţimea A = { }. Să se calculeze probabilitatea ca, alegâd o pereche (, ) ab di mulţimea A A, produsul umerelor a şi b să fie impar. V. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de patru cifre, acesta să divizibil cu. V7 A =,,...,000. Să se calculeze probabilitatea ca, alegâd u elemet di mulţimea. Fie mulţimea { } { A} umăr raţioal. V. Să se determie probabilitatea ca, alegâd u umăr di mulţimea { },,...,0 divizibil cu şi cu. V0 6. Să se determie probabilitatea ca, alegâd u elemet al mulţimii divizorilor aturali ai umărului 6, acesta să fie divizibil cu. V A =,,,..., Să se determie probabilitatea ca, alegâd u elemet al mulţimii { } multiplu de. V8 8. Să se determie probabilitatea ca, alegâd u elemet al mulţimii A = {,,6,...,00} divizibil cu, dar să u fie divizibil cu 8. V

4 . Fie mulţimea M = {,,,,,6}. Să se determie probabilitatea ca, alegâd ua ditre submulţimile mulţimii M, aceasta să aibă elemete. V6 0. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de trei cifre, acesta să aibă suma cifrelor egală cu. V6,, B =,6,7. Să se. Se cosideră mulţimea M a tuturor fucţiilor defiite pe A = { } cu valori î { } calculeze probabilitatea ca, alegâd o fucţie di mulţimea M, aceasta să fie ijectivă. V67. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale pare de două cifre divizibil cu. V68 0,,,...,, aceasta să verifice. Să se calculeze probabilitatea ca, alegâd o cifră di mulţimea { } iegalitatea ( x+ )! x! 00. V6. Să se determie probabilitatea ca, alegâd u elemet al mulţimii A = { 0,,0,...,00} divizibil cu. V7. Să se calculeze probabilitatea ca alegâd u umăr di mulţimea umerelor aturale de două cifre, acesta să aibă ambele cifre impare. V8 6. Îtr-o ură sut de bile, iscripţioate cu umerele de la la. Să se calculeze probabilitatea ca extrăgâd o bilă di ură, aceasta să aibă scris pe ea u pătrat perfect. V8,,,...,00, acesta să u fie 7. Să se calculeze probabilitatea ca alegâd u umăr di mulţimea { } divizibil cu 7. V0 8. are este probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de la la 000, acesta să fie cub perfect? V. are este probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de trei cifre, prima sa cifră să fie umăr prim? V 0. are este probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de trei cifre, produsul cifrelor sale să fie impar? V. are este probabilitatea ca alegâd u umăr di mulţimea umerelor aturale de trei cifre, produsul cifrelor sale să fie impar. Bac00 π π π. Fie mulţimea A = 0,,, π,. are este probabilitatea ca, alegâd u elemet di mulţimea A, 6 acesta să fie soluţie a ecuaţiei si x+ cos x=? Bac00 ALTE EXERIŢII. Să se calculeze +. P A. Să se calculeze +.. Să se rezolve ecuaţia = 8,. 6. Să se determie umărul tuturor submulţimilor de elemete ce se pot forma cu elemete di mulţimea {,,,, }. 7. Se cosideră 0 pucte, oricare ecoliiare. âte drepte trec pri cel puţi pucte di cele Să se calculeze umărul submulţimilor mulţimii {,,, }. care au u umăr par eul de elemete.. Să se determie umărul atural ştiid că A = 0. + ( )! 60. Să se determie umărul atural ştiid că = 6. ( )! 6. Să se determie câte umere de câte trei cifre disticte se pot forma cu elemtele mulţimii {,,, }. 6. Să se determie câte umere de două cifre se pot forma cu elemetele mulţimii {,,, }.

5 + 6. Să se rezolve ecuaţia,. 6. Să se calculeze + = 0 + A + 6 P x =, x Să se calculeze. 66. Să se calculeze A. 67. Să se rezolve ecuaţia 68. Se cosideră mulţimea A = {,,, }. Să se determie câte umere formate di cifre disticte se pot forma cu elemete ale mulţimii A. 6. Se cosideră mulţimea A = {,,,, }. Să se determie câte umere formate di cifre disticte se pot forma cu elemete ale mulţimii A. 70. Să se calculeze umărul submulţimilor cu elemete ale uei mulţimi cu 6 elemete. 7. Să se rezolve ecuaţia A =,. 7. Să se calculeze umărul submulţimilor cu elemete ale uei mulţimi cu elemete. 7. Să se verifice egalitatea = petru orice , = + 7. Să se rezolve ecuaţia,. ( + )! 7. Să se rezolve ecuaţia = 6,.! 76. Să se determie î câte moduri se poate alcătui u cuvât format di trei litere disticte ale uui alfabet de şapte litere. 77. Să se determie î câte moduri pot fi alese două persoae ditr-u grup de 6 persoae. 78. Să se determie î câte moduri se poate alcătui u cuvât format di trei litere disticte ale uui alfabet de litere. 7. Să se rezolve ecuaţia = 6,. 80. Să se determie umărul tuturor segmetelor orietate eule care se pot forma cu elemetele uei mulţimi de pucte di pla, oricare ecoliiare. 8. Să se determie câte umere de patru cifre disticte se pot forma cu elemetele mulţimii {,,, }. 8. âte submulţimi cu două elemete are mulţimea A={,,,,, 6}? 8. Să se determie câte umere de trei cifre se pot scrie folosid doar elemete di mulţimea {; }. 8. Să se determie câte umere de trei cifre disticte se pot scrie folosid doar elemete di mulţimea {; ; }.! 8. Să se rezolve ecuaţia = ( )!,. 86. Să se determie umărul atural eul astfel îcât umărul submulţimilor cu elemete ale uei mulţimi cu elemete să fie egal cu Să se calculeze. 88. Să se calculeze Să se calculeze Să se calculeze Să se calculeze 0! +! +! +!.. Să se arate că +!. =. Să se calculeze.. Să se calculeze +.. Să se verifice că =

6 6. Să se calculeze. 8 8 P + 7. Să se calculeze. A! +! 8. Să se calculeze. 8. Să se calculeze. A Să se determie valorile aturale ale umărului astfel îcât = Să se calculeze P Să se calculeze Să se rezolve iecuaţia + 8, ude,. 0. Să se rezolve iecuaţia, ude,. 0. Se cosideră mulţimea A = {,,,...,0} 7 ale mulţimii A, care coţi elemetul. V :,,,,,, 7 +. Să se determie umărul submulţimilor cu trei elemete 06. Să se determie umărul fucţiilor f { } { } cu proprietatea că f ( ) f ( ) 07. âte umere aturale de trei cifre disticte se pot forma cu elemete ale mulţimii { } * 08. Să se determie petru care mulţimea { } elemete. V7 =. V,,6,8? V6,,..., are exact 0 de submulţimi cu două,,,7,? V8 0. âte umere aturale de patru cifre disticte se pot forma cu cifre di mulţimea { } 0. Să se arate că > V 7 7. Să se determie umărul fucţiilor f : { 0,, } { 0,, } care verifică relaţia ( ) f =. V. Să se determie umărul elemetelor uei mulţimi ştiid că aceasta are exact de submulţimi cu două elemete. V,,,7,? V. âte umere aturale de patru cifre se pot forma cu elemete ale mulţimii { }. Să se rezolve ecuaţia. Să se calculeze 6. Să se calculeze 7. Să se rezolve iecuaţia 8 0 =, V0 V *, 0. V6 < 0,, atural. V 8. Să se determie umărul fucţiilor f :{ 0,,,} { 0,,,} care au proprietatea f ( ) f ( ) V7 0 = =.. Să se determie umărul fucţiilor f :{ 0,,,} { 0,,,} care au proprietatea că ( 0) f este umăr impar. V8 0. Îtr-o clasă sut de elevi, ditre care sut fete. Să se determie î câte moduri se poate alege u comitet reprezetativ al clasei format di fete şi băieţi. V A =,, 0,,. Să se determie umărul fucţiilor pare f : A A. V. Fie mulţimea { }. Fie mulţimea {,,,,} proprietatea că f ( ) =. V A =. Să se determie umărul fucţiilor bijective f : A A, cu. Să se arate că, petru orice umăr atural,, are loc relaţia + = +. V8 :,, 0,,, f este umăr par. V. Să se determie umărul fucţiilor f { } { } petru care ( ) 6

7 . Să se determie umărul fucţiilor :{,,,} {,,,} f ( ) + f ( ) = 7. V 6. Se cosideră mulţimea A = { 0,,,,...,} 7. Se cosideră mulţimile A = { } şi { } f care au proprietatea că. Să se determie umărul submulţimilor mulţimii A care au elemete, di care exact sut umere pare. V,,, B =,,,,,6. Să se determie umărul fucţiilor strict crescătoare f : A B. V 8. Se cosideră mulţimile A = {,,, } şi B = {,,,,} descrescătoare f : A B, cu proprietatea că f ( ) =. V6. Se cosideră mulţimea M = { 0,,,,,}. Să se determie umărul tripletelor (,, ) proprietate că abc,, M şi a< b< c. V8! 0. Să se rezolve î mulţimea umerelor aturale iecuaţia x 08. V. Să se determie x, x astfel îcât + A = 0. V x x x. Să se determie x, x astfel îcât =. V60. Să se arate că (!) divide pe ( ). Să se determie x, x ştiid că. Să se calculeze 6. Să se calculeze A V66. V70 7. Să se determie, astfel îcât 8. Să se calculeze. Să se arate că!, petru orice atural. V6 x x x x +. V6 8 + =. V7. Să se determie umărul fucţiilor strict V a b * a+ b= a+ bpetru orice ab,. V7 abc cu 0. Se cosideră dreptele paralele d, d şi puctele disticte AB,, d, M, N, PQ, d. Să se determie umărul triughiurilor care au toate vârfurile î mulţimea celor şapte pucte date. V7. Să se arate că oricare ar fi atural,, are loc egalitatea =. V76. Să se calculeze A A. V77. Să se calculeze umărul diagoalelor uui poligo covex cu 8 laturi. V78. Să se determie,, astfel îcât să dividă +. V7. Să se calculeze umărul fucţiilor ijective f :{,,} {,,,,} cu proprietatea că ( ) V80 6. Să se calculeze V Să se determie umerele aturale,, astfel îcât 8. âte elemete ale mulţimii A= { x x=,, 7 7 } =. V8 sut divizibile cu 7. V86. âte umere aturale de la la 00 sut divizibile şi 6 şi cu 8? V87 0. Să se arate că umărul A, este divizibil cu. V88. Să se calculeze umărul fucţiilor strict mootoe :{,,} {,6,7,8}. Să se calculeze. V 0. Să se determie umărul atural f. V8 = + +. V f. 7

8 . Să se determie umerele aturale,, petru care. Să se calculeze A. V7 6 + = 0. V6 6. Să se determie umărul submulţimilor cu trei elemete al mulţimii { } u umăr par. V8 7. âte fucţii :{,,,,,6,7,8,,0} { 0,} f ( ) + f ( ) + f ( ) f ( 0) =? V 8. Să se arate că divide umărul,,,, care coţi cel puţi f au proprietatea că V Determiaţi umărul elemetelor mulţimii A = {,,,,..., } 60. âte elemete di mulţimea A = {,,,...,00} 6. Determiați, petru care 6. Se cosideră mulţimea A = {,,,...,0}. Bac00 sut divizibile cu sau cu? Bac00 + A = 8. Bac0. Determiați umărul de submulțimi cu elemete ale mulțimii A, submulțimi care coți exact umere impare. Model Bac0 BINOMUL LUI NEWTON 0 ( ) T + a b = a + b = a + a b + a b + + a b + + ab + b Formula termeului geeral este : Suma coeficieţilor biomiali este: +. V0 6. Să se determie umărul termeilor raţioali di dezvoltarea ( ) 0 6. Să se determie a > 0 ştiid că termeul di mijloc al dezvoltării 88. V 6. Să se determie termeul care u coţie pe x di dezvoltarea x a + + x. V 66. Să se determie umărul termeilor raţioali di dezvoltarea biomului ( ) +. V 67. Să se determie umărul termeilor raţioali ai dezvoltării ( ) V 68. Să se determie umărul termeilor iraţioali ai dezvoltării ( ) 6. Se cosideră dezvoltarea ( ) aceeaşi putere. V 70. Se cosideră dezvoltarea a. V6 a a +. V7 să fie egal cu x + y. Să se determie termeul care îi coţie pe x şi pe y la 7. Să se determie termeul care u-l coţie pe x di dezvoltarea +, a 0. Să se determie ragul termeului care-l coţie pe a 00 x +, x> 0. V7 x 8

9 7. Suma coeficieţilor biomiali ai dezvoltării ( x y) de rag. V6 7. âţi termei ai dezvoltării ( ) 7 este egală cu. Să se determie termeul + sut divizibili cu? V8 +. Bac00 7. Determiaţi umărul termeilor raţioali di dezvoltarea ( ) 7. Determiați umărul de termei rațiomali ai dezvoltării ( ) Bac 0

Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ].

Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ]. Miisterul EducaŃiei, Cercetării, Tieretului şi Sportului Cetrul NaŃioal de Evaluare şi Eamiare Eameul de bacalaureat ańioal 0 Proba E c) Matematică M_mate-ifo Filiera teoretică, profilul real, specializarea

Διαβάστε περισσότερα

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.

Διαβάστε περισσότερα

Clasa a IX-a. 1. Rezolvaţi în R ecuaţiile: (3p) b) x x x Se consideră mulţimile A = { }, (2p) a) Determinaţi elementele mulţimii A

Clasa a IX-a. 1. Rezolvaţi în R ecuaţiile: (3p) b) x x x Se consideră mulţimile A = { }, (2p) a) Determinaţi elementele mulţimii A 1 Rezolvaţi î R ecuaţiile: (4p) a) x 1 5 = 8 (3p) b) Clasa a IX-a x 1 x x 1 + + + =, N x x x Se cosideră mulţimile A = { }, A = { 3,5}, A { 7, 9,11}, 1 1 3 = (p) a) Determiaţi elemetele mulţimii A 6 (3p)

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

SOCIETATEA DE ŞTIINŢE MATEMATICE DIN ROMÂNIA- FILIALA CLUJ

SOCIETATEA DE ŞTIINŢE MATEMATICE DIN ROMÂNIA- FILIALA CLUJ CLASA a IV-a U gospodar are î curte găii și iepuri, î total 30 de capete și 84 de picioare. Săptămâal, petru hraa uei păsări sut folosite, î medie, 500 g de grăuțe, iar petru hraa uui iepure de 4 ori mai

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Partea întreagă, partea fracţionară a unui număr real

Partea întreagă, partea fracţionară a unui număr real Cocursul Gazeta Matematică și ViitoriOlimpiciro Ediția a IV-a 0-0 Partea îtreagă, partea fracţioară a uui umăr real ABSTRACT: Materialul coţie câteva proprietăţi şi rezultate legate de partea îtreagă şi

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

Polinoame Fibonacci, polinoame ciclotomice

Polinoame Fibonacci, polinoame ciclotomice Polioame Fiboacci, polioame ciclotomice Loredaa STRUGARIU, Cipria STRUGARIU 1 Deoarece şirul lui Fiboacci este cuoscut elevilor îcă dicl.aix-a,iarrădăciile de ordiul ale uităţii şi polioamele ciclotomice

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

MATEMATICĂ. - frecvenţă redusă - clasa a IX a. Prof. Baran Mihaela Gabriela

MATEMATICĂ. - frecvenţă redusă - clasa a IX a. Prof. Baran Mihaela Gabriela MATEMATICĂ clasa a IX a - frecveţă redusă - Prof. Bara Mihaela Gariela CUPRINS. Mulţimi şi elemete de logică matematică Mulţimea umerelor reale Elemete de logică matematică Şiruri. Fuctii, ecuaţii, iecuaţii

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Clasa a V-a. Clasa a VI-a. Clasa a VII-a

Clasa a V-a. Clasa a VI-a. Clasa a VII-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ MATEMATICA, DE DRAG EDIŢIA I, 4-6006 Clasa a V-a a+ b Numerele a, b, c, d N verifică relaţia: b+ c + c+ d + d+ a + = 5 Calculaţi: a + b+ c+ d 7 (G M /006) Suma a două

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii...

1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii... Cupris 1. Operaţii cu umere reale... 1 1.1. Radicali, puteri... 1 1.1.1. Puteri... 1 1.1.. Radicali... 1 1.. Idetităţi... 1.3. Iegalităţi... 3. Fucţii... 6.1. Noţiuea de fucţii... 6.. Fucţii ijective,

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Inegalitati. I. Monotonia functiilor

Inegalitati. I. Monotonia functiilor Iegalitati I acest compartimet vor fi prezetate diverse metode de demostrare a iegalitatilor, utilizad metodele propuse vor fi demostrate atat iegalitati clasice precum si iegalitati propuse la diferite

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

CULEGERE DE PROBLEME

CULEGERE DE PROBLEME Colecţia "LICEU CULEGERE DE PROBLEME petru eameul de admitere la Facultatea de Automatică şi Calculatoare, Facultatea de Electroică şi Telecomuicaţii, Facultatea de Arhitectură Descrierea CIP a Bibliotecii

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Formula lui Taylor. 25 februarie 2017

Formula lui Taylor. 25 februarie 2017 Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =

Διαβάστε περισσότερα

4. Ecuaţii diferenţiale de ordin superior

4. Ecuaţii diferenţiale de ordin superior 4.. Ecuaţii liiare 4. Ecuaţii difereţiale de ordi superior O problemã iportatã este rezolvarea ecuaţiilor difereţiale de ordi mai mare ca. Sut puţie ecuaţiile petru care se poate preciza forma aaliticã

Διαβάστε περισσότερα

BACALAUREAT 2007 SESIUNEA IULIE M1-1

BACALAUREAT 2007 SESIUNEA IULIE M1-1 BACALAUREAT 2007 SESIUNEA IULIE M1-1 Filiera teoretică, specializarea matematică - informatică. Filiera vocaţională, profil Militar, specializarea matematică - informatică. a) Să se calculeze modulul vectorului

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

CAPITOLUL III FUNCŢII CONTINUE

CAPITOLUL III FUNCŢII CONTINUE CAPITOLUL III FUNCŢII CONTINUE. Fucţii de o variabilă reală Fucţiile defiite pe mulţimi abstracte X, Y cu f : X Y au î geeral puţie proprietăţi şi di acest motiv, puţie aplicaţii î rezolvarea uor probleme

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

2.1. DEFINIŢIE. EXEMPLE

2.1. DEFINIŢIE. EXEMPLE Modulul SPAŢII METRICE Subiecte :. Spaţii metrice. Defiiţii, exemple.. Mulţimi deschise, mulţimi îchise î spaţii metrice. Mulţimi compacte. 3. Spaţii metrice complete. Pricipiul cotracţiei. Evaluare:.Răspusuri

Διαβάστε περισσότερα

TESTE GRILĂ DE MATEMATICĂ. pentru examenul de bacalaureat şi admiterea în învăţământul superior UNIVERSITATEA POLITEHNICA DIN TIMISOARA

TESTE GRILĂ DE MATEMATICĂ. pentru examenul de bacalaureat şi admiterea în învăţământul superior UNIVERSITATEA POLITEHNICA DIN TIMISOARA TESTE GRILĂ DE MATEMATICĂ petru emeul de bcluret şi dmitere î îvăţămâtul superior l UNIVERSITATEA POLITEHNICA DIN TIMISOARA PREFAŢĂ Prezet culegere se dreseză deopotrivă elevilor de liceu, î scopul istruirii

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5 Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA

CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA î ul uiversitr 9 PREFAŢĂ Prezet culegere se dreseză deopotrivă elevilor de liceu, î scopul istruirii lor

Διαβάστε περισσότερα

CERCUL. Prof. V Corcalciuc Scoala nr. 146 I.G. Duca Bucuresti ( Lectie facuta dupa manualul de clasa a 7-a Prof.Radu)

CERCUL. Prof. V Corcalciuc Scoala nr. 146 I.G. Duca Bucuresti ( Lectie facuta dupa manualul de clasa a 7-a Prof.Radu) ERUL Prof. V orcalciuc Scoala r. 46 I.G. Duca ucuresti ( Lectie facuta dupa maualul de clasa a 7-a Prof.Radu) Defiitie:ercul cu cetrul i si de raza r este multimea tuturor puctelor di pla situate la distata

Διαβάστε περισσότερα

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

OperaŃii cu numere naturale

OperaŃii cu numere naturale MulŃime umereleor turle www.webmteifo.com Petru scrie u umr orecre trebuie s combim itre ele uele ditre cele 0 simboluri: 0,,,, 4,, 6, 7, 8, 9.Aceste simboluri se umesc cifre. Ele sut de origie rb. Ν =

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

Spaţii topologice. Spaţii metrice. Spaţii normate. Spaţii Hilbert

Spaţii topologice. Spaţii metrice. Spaţii normate. Spaţii Hilbert Metode de Optimizare Noţiui recapitulative de Aaliză Matematică şi Algebră Liiară Spaţii topologice. Spaţii metrice. Spaţii ormate. Spaţii Hilbert Reamitim o serie de defiiţii şi teoreme legate de spaţiile

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE ŞIRURI ŞI SERII DE NUMERE REALE Noţiui teoretice şi rezultate fudametale Şiruri de umere reale Presupuem cuoscute oţiuile de bază despre mulţimea N a umerelor aturale, mulţimea Z a umerelor îtregi, mulţimea

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

în care suma termenilor din fiecare grup este 0, poate conduce la ideea că valoarea acestei sume este 0. De asemenea, gruparea în modul

în care suma termenilor din fiecare grup este 0, poate conduce la ideea că valoarea acestei sume este 0. De asemenea, gruparea în modul Capitolul 3 SERII NUMERICE Date fiid umerele reale x 0, x,..., x, î umăr fiit, suma lor x 0 + x +... + x se poate calcula fără dificultate, după regulile uzuale. Extiderea oţiuii de sumă petru mulţimi

Διαβάστε περισσότερα

VARIANTE PENTRU BACALAUREAT, M1-1, 2007

VARIANTE PENTRU BACALAUREAT, M1-1, 2007 VARIANTE PENTRU BACALAUREAT, M-, 27 VARIANTA SUBIECTUL I. a) Să se determine ecuația dreptei care trece prin punctul A(2; 5;3) și este paralelă cu dreapta x = y 2 4 6 = z +3 9. b) Să se determine valoarea

Διαβάστε περισσότερα

Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul diferenţial

Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul diferenţial Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul difereţial MATHEMATICAL ANALYSIS Differetial calculus The preset book is the first part of the cours of Mathematical Aalysis give by the author for may years

Διαβάστε περισσότερα

Sala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ

Sala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ Sala: 203 Decembrie 204 Cof. uiv. dr.: Dragoş-Pătru Covei CURS 0: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs u a fost supus uui proces riguros de recezare petru a fi oficial publicat. distribuit

Διαβάστε περισσότερα

3.1. DEFINIŢII. PROPRIETĂŢI

3.1. DEFINIŢII. PROPRIETĂŢI Modulul 3 SERII NUMERICE Subiecte :. Criterii de covergeţă petşru serii cu termei oarecare. Serii alterate 3. Criterii de covergeţă petru serii cu termei poziţivi Evaluare. Criterii de covergeţă petru

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

DETERMINAREA PUTERILOR MATRICELOR

DETERMINAREA PUTERILOR MATRICELOR DETERMINAREA PUTERILOR MATRICELOR IOANA MONICA MAŞCA Prezetăm mai multe procedee de calcul al puterilor matricelor ilustrate pri probleme cu soluţii cometate. Putem realiza selecţii de metode şi/sau exemple

Διαβάστε περισσότερα

Probleme pentru clasa a XI-a

Probleme pentru clasa a XI-a Probleme pentru clasa a XI-a 1 ( ) 01. Fie A si B doua matrici de ordin n cu elemente numere reale, care satisfac relatia AB = A + B. a) Sa se arate ca det(a 2 + B 2 ) 0. b) Sa se arate ca rang A + B =

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Subiecte Clasa a VI-a

Subiecte Clasa a VI-a Clasa a VI Lumina Math Intrebari (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a X-a, MAI 2010 CLASA A IV-A

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a X-a, MAI 2010 CLASA A IV-A Ediţia a X-a, 4 5 MAI 00 CLASA A IV-A I. Suma a două numere naturale este 75. Dacă adunăm de patru ori primul număr cu de trei ori al doilea număr obţinem 40. Aflaţi numărul cel mai mare. Eugenia Miron

Διαβάστε περισσότερα

Soluţiile problemelor pentru pregătirea concursurilor propuse în nr. 2/2013

Soluţiile problemelor pentru pregătirea concursurilor propuse în nr. 2/2013 Rezultă căb 7 +b m 5 b 0, m, N şi, de aici, cocluzia problemei. XII.145. Fie (A, +, ) iel cu 1 0, avâd u umăr impar de elemete, î care are loc implicaţia:,,dacă x xy + y = 1 + 1 + 1 + 1, atuci x + y =

Διαβάστε περισσότερα

Şiruri de tip Fibonacci

Şiruri de tip Fibonacci Şiruri de tip iboacci Sirul lui iboacci este o secveta de umere i care fiecare umar se obtie di suma precedetelor doua di sir. Astfel, primele 10 umere ale sirului lui iboacci sut: 1, 1, 2, 3, 5, 8, 13,

Διαβάστε περισσότερα

Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, august 2015 Soluţii şi baremuri Clasa a IV-a

Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, august 2015 Soluţii şi baremuri Clasa a IV-a Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, 17-22 august 2015 Soluţii şi baremuri Clasa a IV-a Problema 1. Câte numere naturale de cinci cifre trebuie să scriem pentru

Διαβάστε περισσότερα

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ LUCRARE CONCEPUTĂ ȘI REALIZATĂ DE COLECTIVUL CLASEI XII- A, PROFIL REAL, SPECIALIZAREA MATEMATICĂ-INFORMATICĂ.

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

ŞIRURI ŞI SERII DE FUNCŢII

ŞIRURI ŞI SERII DE FUNCŢII Capitolul 8 ŞIRURI ŞI SERII DE FUNCŢII 8. Şiruri de fucţii Fie D R, D = şi fie f 0, f, f 2,... fucţii reale defiite pe mulţimea D. Şirul f 0, f, f 2,... se umeşte şir de fucţii şi se otează cu ( f ) 0.

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2014 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2014 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2014 Clasa a V-a 1. Aflați cel mai mare număr de cinci cifre astfel încât cea de-a patra cifră să fie mai mare decât cea de-a cincea, a treia să fie

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

Mădălina Roxana Buneci. Metode Numerice - aspecte teoretice şi practice

Mădălina Roxana Buneci. Metode Numerice - aspecte teoretice şi practice Mădălia Roxaa Bueci Metode Numerice - aspecte teoretice şi practice Editura Academica Brâcuşi Târgu-Jiu, 009 Mădălia Roxaa Bueci ISBN 978-973-44-89- Metode Numerice CUPRINS Prefaţă...7 I. Noţiui itroductive...9

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a)

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a) Universitatea "Dunărea de Jos" din Galaţi MODELE DE TESTE GRILĂ PENTRU ADMITEREA 01 DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a Testele sunt recomandate pentru următoarele domenii de licenţă şi facultăţi:

Διαβάστε περισσότερα

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita REZUMAT CURS 3. Clse de uctii itegrbile Teorem.. Dc :, b] R este cotiu tuci este itegrbil pe, b]. Teorem.2. Dc :, b] R este mooto tuci este itegrbil pe, b]. 2. Sume Riem. Criteriul de itegrbilitte Riem

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

DUMITRU BUŞNEAG PROBLEME ALGEBRĂ

DUMITRU BUŞNEAG PROBLEME ALGEBRĂ DUMITRU BUŞNEAG FLORENTINA CHIRTEŞ DANA PICIU PROBLEME de ALGEBRĂ Dumitru BUŞNEAG Floreti CHIRTEŞ D PICIU PROBLEME de ALGEBRĂ Dumitru BUŞNEAG Floreti CHIRTEŞ D PICIU PROBLEME de ALGEBRĂ Editur UNIVERSITARIA

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2017 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2017 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2017 Clasa a V-a 1. Fiind dat un număr natural nenul n, vom nota prin n! produsul 1 2 3... n (de exemplu, 4! = 1 2 3 4). Determinați numerele naturale

Διαβάστε περισσότερα

Curs 3. Spaţii vectoriale

Curs 3. Spaţii vectoriale Lector uv dr Crsta Nartea Curs Spaţ vectorale Defţa Dacă este u îtreg, ş x, x,, x sut umere reale, x, x,, x este u vector -dmesoal Mulţmea acestor vector se otează cu U spaţu vectoral mplcă patru elemete:

Διαβάστε περισσότερα

Concursul de matematica Arhimede Editia a IV-a. Etapa I-a 25 noiembrie Subiecte clasa a III-a

Concursul de matematica Arhimede Editia a IV-a. Etapa I-a 25 noiembrie Subiecte clasa a III-a Editia a IV-a. Etapa I-a 5 noiembrie 006. Subiecte clasa a III-a I. Aflati cea mai mica suma de forma în care s-au folosit doar cifrele 0,,, 4, 5, 6 o singura data. Aratati variantele posibile. II. a)

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Aplicatii ale marimilor medii in practica

Aplicatii ale marimilor medii in practica Aplicatii ale marimilor medii i practica October 5, 2012 Aplicatii ale marimilor medii i practica Calculul marimilor medii Exemplu: u grup de 40, 20, 60 elevi au primit ca premiu la olimpiada de matematica

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

ISTORICUL NOŢIUNILOR MATEMATICE STUDIATE ÎN GIMNAZIU ŞI LICEU

ISTORICUL NOŢIUNILOR MATEMATICE STUDIATE ÎN GIMNAZIU ŞI LICEU ISTORICUL NOŢIUNILOR MATEMATICE STUDIATE ÎN GIMNAZIU ŞI LICEU ROXANA MIHAELA STANCIU aria triughiului, paralelogramului şi trapezului; volumul prismei, piramidei şi truchiului de piramidă; pătrate şi triughiuri

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

Polinoame.. Prescurtat putem scrie. sunt coeficienţii polinomului cu a. este mulţimea polinoamelor cu coeficienţi complecşi.

Polinoame.. Prescurtat putem scrie. sunt coeficienţii polinomului cu a. este mulţimea polinoamelor cu coeficienţi complecşi. Poliome ) Form lgebrică uui poliom Pri form lgebrică su form coică îţelegem f X X X Prescurtt putem scrie f X,,, sut coeficieţii poliomului cu, se umeşte coeficiet domit şi X terme domit tuci poliomul

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora. Cap PRIMITIVE 5 CAPITOLUL PRIMITIVE METODE GENERALE DE CALCUL ALE PRIMITIVELOR Î aces paragraf vom reamii oţiuea de primiivă, proprieăţile primiivelor şi meodele geerale de calcul ale acesora Defiiţia

Διαβάστε περισσότερα

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Subiecte : 1. Proprietăţile mulţimilor. Mulţimi numerice importante. 2. Relaţii binare. Relaţii de ordine. Relaţii de echivalenţă. 3. Imagini directe şi imagini inverse

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

I3: PROBABILITǍŢI - notiţe de curs

I3: PROBABILITǍŢI - notiţe de curs I3: PROBABILITǍŢI - notiţe de curs Ştefan Balint, Eva Kaslik, Simina Mariş Cuprins Experienţǎ şi evenimente aleatoare 3 2 Eveniment sigur. Eveniment imposibil 3 3 Evenimente contrare 4 4 Evenimente compatibile.

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Capitolul II. Grupuri. II.1. Grupuri; subgrupuri; divizori normali; grupuri factor

Capitolul II. Grupuri. II.1. Grupuri; subgrupuri; divizori normali; grupuri factor Capitolul II Grupuri II.1. Grupuri; subgrupuri; divizori normali; grupuri factor Definiţia 1. Fie G o mulţime nevidă şi " " operaţie algebrică pe G. Cuplul (G, ) se numeşte grup, dacă sunt satisfăcute

Διαβάστε περισσότερα

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate. Copyright c 009 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 15 iunie

Διαβάστε περισσότερα