COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi"

Transcript

1 OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete di elemete date se umesc arajamete.! A = ( )( )... ( )! = + ( ) Proprietăţi 0 A = A A = =! ( ) factori A = + A formula de recureţă Submulţimile care se formează cu elemete di elemete date se umesc combiări.! A = =!! P ( ) Observaţie importată: Numărul total de submulţimi obţiute di elemete date este egal cu deci = = = Proprietăţi 0 = 0 = = = ( ) = = + formula combiărilor complemetare formula de recureţă

2 ( ) ( ) Fie şi f : A B card, A = card B = Numărul total de fucţii este Numărul total de fucţii ijective este Numărul total de fucţii strict mootoe este Numărul de fucţii strict crescătoare=numărul de fuc ţii strict descrescătoa A ( = ) Numărul total de fucţii bijective este P PROBABILITĂŢI. re = umărul cazurilor favorabile c f P= = umărul cazurilor posibile ( totale ) c p. Se cosideră toate umerele aturale de câte trei cifre scrise cu elemete di mulţimea { ;}. Să calculeze probabilitatea ca, alegâd u astfel de umăr divizibil cu.. Să calculeze probabilitatea ca, alegâd u umăr di mulţimea { },,,..., 0 umăr raţioal.. Să calculeze probabilitatea ca, alegâd u umăr di mulţimea {,,,..., 0} umăr raţioal.. Să calculeze probabilitatea ca, alegâd u umăr di mulţimea {,,,..., } umăr iraţioal.. Să calculeze probabilitatea ca u elemet al mulţimii { 0;;;;; } acesta să verifice iegalitatea!< Să calculeze probabilitatea ca, alegâd uul ditre umerele, şi acesta să fie divizibil cu. 7. Să calculeze probabilitatea ca, alegâd u elemet al mulţimii { ;;;; } acesta să verifice iegalitatea. 8. Să calculeze probabilitatea ca, alegâd u elemet al mulţimii { ;;; } acesta să verifice iegalitatea!.. Să calculeze probabilitatea ca, alegâd uul ditre umerele P, A şi acesta să fie divizibil cu. 0. Să calculeze probabilitatea ca, alegâd u elemet al mulţimii { ;;;6 } acesta să verifice iegalitatea ( ) 0.. Să se calculeze probabilitatea ca alegâd u elemet al mulţimii A = {,,, }, acesta să verifice iegalitatea!<.. Să se calculeze probabilitatea ca alegâd u elemet al mulţimii A = {,,, }, acesta să verifice iegalitatea + >!.. Să se calculeze probabilitatea ca alegâd u elemet al mulţimii A = {,,, }, acesta să verifice iegalitatea >.. Să se calculeze probabilitatea ca alegâd u elemet al mulţimii A = {,,, }, acesta să verifice iegalitatea >!.. Să se calculeze probabilitatea ca alegâd u elemet al mulţimii {,,...,0} acesta să fie umăr prim. 6. Să se calculeze probabilitatea ca alegâd u umăr atural de două cifre acesta să fie cub perfect. 7. Să se determie probabilitatea ca, alegâd u elemet di mulţimea {,,, }, acesta să verifice egalitatea =.

3 8. Să se determie probabilitatea ca, alegâd u umăr ab di mulţimea umerelor aturale de două cifre, să avem a b. V. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de două cifre, acesta să fie pătrat perfect. V 0. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de trei cifre, acesta să aibă exact două cifre egale. V. Să se determie probabilitatea ca, alegâd u umăr ab di mulţimea umerelor aturale de două cifre, să avem a+ b=. V7. are este probabilitatea ca, alegâd u umăr di mulţimea { 0,,,...,7 }, umărul 7 să fie prim. V8. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de trei cifre, acesta să aibă toate cifrele pare. V,,,...,0 umărul + 6 să. Să se determie probabilitatea ca, alegâd u elemet di mulţimea { } fie pătrat perfect. V. Să se determie probabilitatea ca, alegâd u elemet di mulţimea { } 0,,,...,0, suma cifrelor lui să fie divizibilă cu trei. V 6. Să se calculeze probabilitatea ca, alegâd o mulţime di mulţimea submulţimilor evide ale mulţimii A =,,,,,6, aceasta să aibă toate elemetele impare. V { } 7. Să se calculeze probabilitatea ca, alegâd o mulţime di mulţimea submulţimilor evide ale mulţimii A =,,,,, aceasta să aibă produsul elemetelor 0. V0 { } 8. Să se determie probabilitatea ca, alegâd u elemet di mulţimea {, < 00} umăr raţioal. V. Se cosideră mulţimea A = { 0,,,...,00}. Să se determie probabilitatea ca, alegâd u elemet di mulţimea A divizibil cu. V 0. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de trei cifre, acesta să fie divizibil cu 0. V6,,,,,6 ab,. Se cosideră mulţimea A = { }. Să se determie probabilitatea ca, alegâd o pereche ( ) di produsul cartezia A A să avem egalitatea a+ b= 6. V0,,,,,6. Fie mulţimea A = { }. Să se calculeze probabilitatea ca, alegâd o pereche (, ) ab di mulţimea A A, produsul umerelor a şi b să fie impar. V. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de patru cifre, acesta să divizibil cu. V7 A =,,...,000. Să se calculeze probabilitatea ca, alegâd u elemet di mulţimea. Fie mulţimea { } { A} umăr raţioal. V. Să se determie probabilitatea ca, alegâd u umăr di mulţimea { },,...,0 divizibil cu şi cu. V0 6. Să se determie probabilitatea ca, alegâd u elemet al mulţimii divizorilor aturali ai umărului 6, acesta să fie divizibil cu. V A =,,,..., Să se determie probabilitatea ca, alegâd u elemet al mulţimii { } multiplu de. V8 8. Să se determie probabilitatea ca, alegâd u elemet al mulţimii A = {,,6,...,00} divizibil cu, dar să u fie divizibil cu 8. V

4 . Fie mulţimea M = {,,,,,6}. Să se determie probabilitatea ca, alegâd ua ditre submulţimile mulţimii M, aceasta să aibă elemete. V6 0. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de trei cifre, acesta să aibă suma cifrelor egală cu. V6,, B =,6,7. Să se. Se cosideră mulţimea M a tuturor fucţiilor defiite pe A = { } cu valori î { } calculeze probabilitatea ca, alegâd o fucţie di mulţimea M, aceasta să fie ijectivă. V67. Să se determie probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale pare de două cifre divizibil cu. V68 0,,,...,, aceasta să verifice. Să se calculeze probabilitatea ca, alegâd o cifră di mulţimea { } iegalitatea ( x+ )! x! 00. V6. Să se determie probabilitatea ca, alegâd u elemet al mulţimii A = { 0,,0,...,00} divizibil cu. V7. Să se calculeze probabilitatea ca alegâd u umăr di mulţimea umerelor aturale de două cifre, acesta să aibă ambele cifre impare. V8 6. Îtr-o ură sut de bile, iscripţioate cu umerele de la la. Să se calculeze probabilitatea ca extrăgâd o bilă di ură, aceasta să aibă scris pe ea u pătrat perfect. V8,,,...,00, acesta să u fie 7. Să se calculeze probabilitatea ca alegâd u umăr di mulţimea { } divizibil cu 7. V0 8. are este probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de la la 000, acesta să fie cub perfect? V. are este probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de trei cifre, prima sa cifră să fie umăr prim? V 0. are este probabilitatea ca, alegâd u umăr di mulţimea umerelor aturale de trei cifre, produsul cifrelor sale să fie impar? V. are este probabilitatea ca alegâd u umăr di mulţimea umerelor aturale de trei cifre, produsul cifrelor sale să fie impar. Bac00 π π π. Fie mulţimea A = 0,,, π,. are este probabilitatea ca, alegâd u elemet di mulţimea A, 6 acesta să fie soluţie a ecuaţiei si x+ cos x=? Bac00 ALTE EXERIŢII. Să se calculeze +. P A. Să se calculeze +.. Să se rezolve ecuaţia = 8,. 6. Să se determie umărul tuturor submulţimilor de elemete ce se pot forma cu elemete di mulţimea {,,,, }. 7. Se cosideră 0 pucte, oricare ecoliiare. âte drepte trec pri cel puţi pucte di cele Să se calculeze umărul submulţimilor mulţimii {,,, }. care au u umăr par eul de elemete.. Să se determie umărul atural ştiid că A = 0. + ( )! 60. Să se determie umărul atural ştiid că = 6. ( )! 6. Să se determie câte umere de câte trei cifre disticte se pot forma cu elemtele mulţimii {,,, }. 6. Să se determie câte umere de două cifre se pot forma cu elemetele mulţimii {,,, }.

5 + 6. Să se rezolve ecuaţia,. 6. Să se calculeze + = 0 + A + 6 P x =, x Să se calculeze. 66. Să se calculeze A. 67. Să se rezolve ecuaţia 68. Se cosideră mulţimea A = {,,, }. Să se determie câte umere formate di cifre disticte se pot forma cu elemete ale mulţimii A. 6. Se cosideră mulţimea A = {,,,, }. Să se determie câte umere formate di cifre disticte se pot forma cu elemete ale mulţimii A. 70. Să se calculeze umărul submulţimilor cu elemete ale uei mulţimi cu 6 elemete. 7. Să se rezolve ecuaţia A =,. 7. Să se calculeze umărul submulţimilor cu elemete ale uei mulţimi cu elemete. 7. Să se verifice egalitatea = petru orice , = + 7. Să se rezolve ecuaţia,. ( + )! 7. Să se rezolve ecuaţia = 6,.! 76. Să se determie î câte moduri se poate alcătui u cuvât format di trei litere disticte ale uui alfabet de şapte litere. 77. Să se determie î câte moduri pot fi alese două persoae ditr-u grup de 6 persoae. 78. Să se determie î câte moduri se poate alcătui u cuvât format di trei litere disticte ale uui alfabet de litere. 7. Să se rezolve ecuaţia = 6,. 80. Să se determie umărul tuturor segmetelor orietate eule care se pot forma cu elemetele uei mulţimi de pucte di pla, oricare ecoliiare. 8. Să se determie câte umere de patru cifre disticte se pot forma cu elemetele mulţimii {,,, }. 8. âte submulţimi cu două elemete are mulţimea A={,,,,, 6}? 8. Să se determie câte umere de trei cifre se pot scrie folosid doar elemete di mulţimea {; }. 8. Să se determie câte umere de trei cifre disticte se pot scrie folosid doar elemete di mulţimea {; ; }.! 8. Să se rezolve ecuaţia = ( )!,. 86. Să se determie umărul atural eul astfel îcât umărul submulţimilor cu elemete ale uei mulţimi cu elemete să fie egal cu Să se calculeze. 88. Să se calculeze Să se calculeze Să se calculeze Să se calculeze 0! +! +! +!.. Să se arate că +!. =. Să se calculeze.. Să se calculeze +.. Să se verifice că =

6 6. Să se calculeze. 8 8 P + 7. Să se calculeze. A! +! 8. Să se calculeze. 8. Să se calculeze. A Să se determie valorile aturale ale umărului astfel îcât = Să se calculeze P Să se calculeze Să se rezolve iecuaţia + 8, ude,. 0. Să se rezolve iecuaţia, ude,. 0. Se cosideră mulţimea A = {,,,...,0} 7 ale mulţimii A, care coţi elemetul. V :,,,,,, 7 +. Să se determie umărul submulţimilor cu trei elemete 06. Să se determie umărul fucţiilor f { } { } cu proprietatea că f ( ) f ( ) 07. âte umere aturale de trei cifre disticte se pot forma cu elemete ale mulţimii { } * 08. Să se determie petru care mulţimea { } elemete. V7 =. V,,6,8? V6,,..., are exact 0 de submulţimi cu două,,,7,? V8 0. âte umere aturale de patru cifre disticte se pot forma cu cifre di mulţimea { } 0. Să se arate că > V 7 7. Să se determie umărul fucţiilor f : { 0,, } { 0,, } care verifică relaţia ( ) f =. V. Să se determie umărul elemetelor uei mulţimi ştiid că aceasta are exact de submulţimi cu două elemete. V,,,7,? V. âte umere aturale de patru cifre se pot forma cu elemete ale mulţimii { }. Să se rezolve ecuaţia. Să se calculeze 6. Să se calculeze 7. Să se rezolve iecuaţia 8 0 =, V0 V *, 0. V6 < 0,, atural. V 8. Să se determie umărul fucţiilor f :{ 0,,,} { 0,,,} care au proprietatea f ( ) f ( ) V7 0 = =.. Să se determie umărul fucţiilor f :{ 0,,,} { 0,,,} care au proprietatea că ( 0) f este umăr impar. V8 0. Îtr-o clasă sut de elevi, ditre care sut fete. Să se determie î câte moduri se poate alege u comitet reprezetativ al clasei format di fete şi băieţi. V A =,, 0,,. Să se determie umărul fucţiilor pare f : A A. V. Fie mulţimea { }. Fie mulţimea {,,,,} proprietatea că f ( ) =. V A =. Să se determie umărul fucţiilor bijective f : A A, cu. Să se arate că, petru orice umăr atural,, are loc relaţia + = +. V8 :,, 0,,, f este umăr par. V. Să se determie umărul fucţiilor f { } { } petru care ( ) 6

7 . Să se determie umărul fucţiilor :{,,,} {,,,} f ( ) + f ( ) = 7. V 6. Se cosideră mulţimea A = { 0,,,,...,} 7. Se cosideră mulţimile A = { } şi { } f care au proprietatea că. Să se determie umărul submulţimilor mulţimii A care au elemete, di care exact sut umere pare. V,,, B =,,,,,6. Să se determie umărul fucţiilor strict crescătoare f : A B. V 8. Se cosideră mulţimile A = {,,, } şi B = {,,,,} descrescătoare f : A B, cu proprietatea că f ( ) =. V6. Se cosideră mulţimea M = { 0,,,,,}. Să se determie umărul tripletelor (,, ) proprietate că abc,, M şi a< b< c. V8! 0. Să se rezolve î mulţimea umerelor aturale iecuaţia x 08. V. Să se determie x, x astfel îcât + A = 0. V x x x. Să se determie x, x astfel îcât =. V60. Să se arate că (!) divide pe ( ). Să se determie x, x ştiid că. Să se calculeze 6. Să se calculeze A V66. V70 7. Să se determie, astfel îcât 8. Să se calculeze. Să se arate că!, petru orice atural. V6 x x x x +. V6 8 + =. V7. Să se determie umărul fucţiilor strict V a b * a+ b= a+ bpetru orice ab,. V7 abc cu 0. Se cosideră dreptele paralele d, d şi puctele disticte AB,, d, M, N, PQ, d. Să se determie umărul triughiurilor care au toate vârfurile î mulţimea celor şapte pucte date. V7. Să se arate că oricare ar fi atural,, are loc egalitatea =. V76. Să se calculeze A A. V77. Să se calculeze umărul diagoalelor uui poligo covex cu 8 laturi. V78. Să se determie,, astfel îcât să dividă +. V7. Să se calculeze umărul fucţiilor ijective f :{,,} {,,,,} cu proprietatea că ( ) V80 6. Să se calculeze V Să se determie umerele aturale,, astfel îcât 8. âte elemete ale mulţimii A= { x x=,, 7 7 } =. V8 sut divizibile cu 7. V86. âte umere aturale de la la 00 sut divizibile şi 6 şi cu 8? V87 0. Să se arate că umărul A, este divizibil cu. V88. Să se calculeze umărul fucţiilor strict mootoe :{,,} {,6,7,8}. Să se calculeze. V 0. Să se determie umărul atural f. V8 = + +. V f. 7

8 . Să se determie umerele aturale,, petru care. Să se calculeze A. V7 6 + = 0. V6 6. Să se determie umărul submulţimilor cu trei elemete al mulţimii { } u umăr par. V8 7. âte fucţii :{,,,,,6,7,8,,0} { 0,} f ( ) + f ( ) + f ( ) f ( 0) =? V 8. Să se arate că divide umărul,,,, care coţi cel puţi f au proprietatea că V Determiaţi umărul elemetelor mulţimii A = {,,,,..., } 60. âte elemete di mulţimea A = {,,,...,00} 6. Determiați, petru care 6. Se cosideră mulţimea A = {,,,...,0}. Bac00 sut divizibile cu sau cu? Bac00 + A = 8. Bac0. Determiați umărul de submulțimi cu elemete ale mulțimii A, submulțimi care coți exact umere impare. Model Bac0 BINOMUL LUI NEWTON 0 ( ) T + a b = a + b = a + a b + a b + + a b + + ab + b Formula termeului geeral este : Suma coeficieţilor biomiali este: +. V0 6. Să se determie umărul termeilor raţioali di dezvoltarea ( ) 0 6. Să se determie a > 0 ştiid că termeul di mijloc al dezvoltării 88. V 6. Să se determie termeul care u coţie pe x di dezvoltarea x a + + x. V 66. Să se determie umărul termeilor raţioali di dezvoltarea biomului ( ) +. V 67. Să se determie umărul termeilor raţioali ai dezvoltării ( ) V 68. Să se determie umărul termeilor iraţioali ai dezvoltării ( ) 6. Se cosideră dezvoltarea ( ) aceeaşi putere. V 70. Se cosideră dezvoltarea a. V6 a a +. V7 să fie egal cu x + y. Să se determie termeul care îi coţie pe x şi pe y la 7. Să se determie termeul care u-l coţie pe x di dezvoltarea +, a 0. Să se determie ragul termeului care-l coţie pe a 00 x +, x> 0. V7 x 8

9 7. Suma coeficieţilor biomiali ai dezvoltării ( x y) de rag. V6 7. âţi termei ai dezvoltării ( ) 7 este egală cu. Să se determie termeul + sut divizibili cu? V8 +. Bac00 7. Determiaţi umărul termeilor raţioali di dezvoltarea ( ) 7. Determiați umărul de termei rațiomali ai dezvoltării ( ) Bac 0

Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ].

Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ]. Miisterul EducaŃiei, Cercetării, Tieretului şi Sportului Cetrul NaŃioal de Evaluare şi Eamiare Eameul de bacalaureat ańioal 0 Proba E c) Matematică M_mate-ifo Filiera teoretică, profilul real, specializarea

Διαβάστε περισσότερα

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.

Διαβάστε περισσότερα

Clasa a IX-a. 1. Rezolvaţi în R ecuaţiile: (3p) b) x x x Se consideră mulţimile A = { }, (2p) a) Determinaţi elementele mulţimii A

Clasa a IX-a. 1. Rezolvaţi în R ecuaţiile: (3p) b) x x x Se consideră mulţimile A = { }, (2p) a) Determinaţi elementele mulţimii A 1 Rezolvaţi î R ecuaţiile: (4p) a) x 1 5 = 8 (3p) b) Clasa a IX-a x 1 x x 1 + + + =, N x x x Se cosideră mulţimile A = { }, A = { 3,5}, A { 7, 9,11}, 1 1 3 = (p) a) Determiaţi elemetele mulţimii A 6 (3p)

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

SOCIETATEA DE ŞTIINŢE MATEMATICE DIN ROMÂNIA- FILIALA CLUJ

SOCIETATEA DE ŞTIINŢE MATEMATICE DIN ROMÂNIA- FILIALA CLUJ CLASA a IV-a U gospodar are î curte găii și iepuri, î total 30 de capete și 84 de picioare. Săptămâal, petru hraa uei păsări sut folosite, î medie, 500 g de grăuțe, iar petru hraa uui iepure de 4 ori mai

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

MATEMATICĂ. - frecvenţă redusă - clasa a IX a. Prof. Baran Mihaela Gabriela

MATEMATICĂ. - frecvenţă redusă - clasa a IX a. Prof. Baran Mihaela Gabriela MATEMATICĂ clasa a IX a - frecveţă redusă - Prof. Bara Mihaela Gariela CUPRINS. Mulţimi şi elemete de logică matematică Mulţimea umerelor reale Elemete de logică matematică Şiruri. Fuctii, ecuaţii, iecuaţii

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii...

1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii... Cupris 1. Operaţii cu umere reale... 1 1.1. Radicali, puteri... 1 1.1.1. Puteri... 1 1.1.. Radicali... 1 1.. Idetităţi... 1.3. Iegalităţi... 3. Fucţii... 6.1. Noţiuea de fucţii... 6.. Fucţii ijective,

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

CULEGERE DE PROBLEME

CULEGERE DE PROBLEME Colecţia "LICEU CULEGERE DE PROBLEME petru eameul de admitere la Facultatea de Automatică şi Calculatoare, Facultatea de Electroică şi Telecomuicaţii, Facultatea de Arhitectură Descrierea CIP a Bibliotecii

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

TESTE GRILĂ DE MATEMATICĂ. pentru examenul de bacalaureat şi admiterea în învăţământul superior UNIVERSITATEA POLITEHNICA DIN TIMISOARA

TESTE GRILĂ DE MATEMATICĂ. pentru examenul de bacalaureat şi admiterea în învăţământul superior UNIVERSITATEA POLITEHNICA DIN TIMISOARA TESTE GRILĂ DE MATEMATICĂ petru emeul de bcluret şi dmitere î îvăţămâtul superior l UNIVERSITATEA POLITEHNICA DIN TIMISOARA PREFAŢĂ Prezet culegere se dreseză deopotrivă elevilor de liceu, î scopul istruirii

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5 Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei

Διαβάστε περισσότερα

CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA

CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA î ul uiversitr 9 PREFAŢĂ Prezet culegere se dreseză deopotrivă elevilor de liceu, î scopul istruirii lor

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

OperaŃii cu numere naturale

OperaŃii cu numere naturale MulŃime umereleor turle www.webmteifo.com Petru scrie u umr orecre trebuie s combim itre ele uele ditre cele 0 simboluri: 0,,,, 4,, 6, 7, 8, 9.Aceste simboluri se umesc cifre. Ele sut de origie rb. Ν =

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

în care suma termenilor din fiecare grup este 0, poate conduce la ideea că valoarea acestei sume este 0. De asemenea, gruparea în modul

în care suma termenilor din fiecare grup este 0, poate conduce la ideea că valoarea acestei sume este 0. De asemenea, gruparea în modul Capitolul 3 SERII NUMERICE Date fiid umerele reale x 0, x,..., x, î umăr fiit, suma lor x 0 + x +... + x se poate calcula fără dificultate, după regulile uzuale. Extiderea oţiuii de sumă petru mulţimi

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE ŞIRURI ŞI SERII DE NUMERE REALE Noţiui teoretice şi rezultate fudametale Şiruri de umere reale Presupuem cuoscute oţiuile de bază despre mulţimea N a umerelor aturale, mulţimea Z a umerelor îtregi, mulţimea

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul diferenţial

Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul diferenţial Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul difereţial MATHEMATICAL ANALYSIS Differetial calculus The preset book is the first part of the cours of Mathematical Aalysis give by the author for may years

Διαβάστε περισσότερα

DETERMINAREA PUTERILOR MATRICELOR

DETERMINAREA PUTERILOR MATRICELOR DETERMINAREA PUTERILOR MATRICELOR IOANA MONICA MAŞCA Prezetăm mai multe procedee de calcul al puterilor matricelor ilustrate pri probleme cu soluţii cometate. Putem realiza selecţii de metode şi/sau exemple

Διαβάστε περισσότερα

Sala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ

Sala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ Sala: 203 Decembrie 204 Cof. uiv. dr.: Dragoş-Pătru Covei CURS 0: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs u a fost supus uui proces riguros de recezare petru a fi oficial publicat. distribuit

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ LUCRARE CONCEPUTĂ ȘI REALIZATĂ DE COLECTIVUL CLASEI XII- A, PROFIL REAL, SPECIALIZAREA MATEMATICĂ-INFORMATICĂ.

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Soluţiile problemelor pentru pregătirea concursurilor propuse în nr. 2/2013

Soluţiile problemelor pentru pregătirea concursurilor propuse în nr. 2/2013 Rezultă căb 7 +b m 5 b 0, m, N şi, de aici, cocluzia problemei. XII.145. Fie (A, +, ) iel cu 1 0, avâd u umăr impar de elemete, î care are loc implicaţia:,,dacă x xy + y = 1 + 1 + 1 + 1, atuci x + y =

Διαβάστε περισσότερα

Şiruri de tip Fibonacci

Şiruri de tip Fibonacci Şiruri de tip iboacci Sirul lui iboacci este o secveta de umere i care fiecare umar se obtie di suma precedetelor doua di sir. Astfel, primele 10 umere ale sirului lui iboacci sut: 1, 1, 2, 3, 5, 8, 13,

Διαβάστε περισσότερα

Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, august 2015 Soluţii şi baremuri Clasa a IV-a

Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, august 2015 Soluţii şi baremuri Clasa a IV-a Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, 17-22 august 2015 Soluţii şi baremuri Clasa a IV-a Problema 1. Câte numere naturale de cinci cifre trebuie să scriem pentru

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

ŞIRURI ŞI SERII DE FUNCŢII

ŞIRURI ŞI SERII DE FUNCŢII Capitolul 8 ŞIRURI ŞI SERII DE FUNCŢII 8. Şiruri de fucţii Fie D R, D = şi fie f 0, f, f 2,... fucţii reale defiite pe mulţimea D. Şirul f 0, f, f 2,... se umeşte şir de fucţii şi se otează cu ( f ) 0.

Διαβάστε περισσότερα

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a)

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a) Universitatea "Dunărea de Jos" din Galaţi MODELE DE TESTE GRILĂ PENTRU ADMITEREA 01 DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a Testele sunt recomandate pentru următoarele domenii de licenţă şi facultăţi:

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

Polinoame.. Prescurtat putem scrie. sunt coeficienţii polinomului cu a. este mulţimea polinoamelor cu coeficienţi complecşi.

Polinoame.. Prescurtat putem scrie. sunt coeficienţii polinomului cu a. este mulţimea polinoamelor cu coeficienţi complecşi. Poliome ) Form lgebrică uui poliom Pri form lgebrică su form coică îţelegem f X X X Prescurtt putem scrie f X,,, sut coeficieţii poliomului cu, se umeşte coeficiet domit şi X terme domit tuci poliomul

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Aplicatii ale marimilor medii in practica

Aplicatii ale marimilor medii in practica Aplicatii ale marimilor medii i practica October 5, 2012 Aplicatii ale marimilor medii i practica Calculul marimilor medii Exemplu: u grup de 40, 20, 60 elevi au primit ca premiu la olimpiada de matematica

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Subiecte : 1. Proprietăţile mulţimilor. Mulţimi numerice importante. 2. Relaţii binare. Relaţii de ordine. Relaţii de echivalenţă. 3. Imagini directe şi imagini inverse

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

I3: PROBABILITǍŢI - notiţe de curs

I3: PROBABILITǍŢI - notiţe de curs I3: PROBABILITǍŢI - notiţe de curs Ştefan Balint, Eva Kaslik, Simina Mariş Cuprins Experienţǎ şi evenimente aleatoare 3 2 Eveniment sigur. Eveniment imposibil 3 3 Evenimente contrare 4 4 Evenimente compatibile.

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

Concursul interjudețean DISCIPOLII LUI LAZĂR. Matematică - Ediția a VII-a 8 mai Clasa a IV-a

Concursul interjudețean DISCIPOLII LUI LAZĂR. Matematică - Ediția a VII-a 8 mai Clasa a IV-a Clasa a IV-a I. Aflați cifra a ştiind că : 101 + 202 + 303 +... + a0a = 3636 Gazeta Matematică Determinați numărul natural de trei cifre abc, scris în baza 10, ştiind că, dacă adăugăm cifra 8 la dreapta

Διαβάστε περισσότερα

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate. Copyright c 009 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 15 iunie

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =. Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp

Διαβάστε περισσότερα

Numere complexe. a numerelor complexe z b b arg z.

Numere complexe. a numerelor complexe z b b arg z. Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea

Διαβάστε περισσότερα

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB = Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului

Διαβάστε περισσότερα

5. Sisteme cu mai multe grade de libertate dinamică

5. Sisteme cu mai multe grade de libertate dinamică Diamica Structurilor şi Igierie Seismică. [v.04] http://www.ct.upt.ro/users/aurelstrata/ 5. Sisteme cu mai multe grade de libertate diamică 5.. Ecuaţii de mişcare, formularea problemei, metode de rezolvare

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII DIFERENŢIALE ORDINARE

REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII DIFERENŢIALE ORDINARE REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII DIFERENŢIALE ORDINARE. Aspecte itroductive Studiul comportametului diamic al sistemelor fizice modele matematice sub forma ecuaţiilor sau sistemelor

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

Curs 9. Teorema limită centrală. 9.1 Teorema limită centrală. Enunţ

Curs 9. Teorema limită centrală. 9.1 Teorema limită centrală. Enunţ Curs 9 Teorema limiă cerală 9 Teorema limiă cerală Euţ Teorema Limiă Cerală TLC) ese ua dire cele mai imporae eoreme di eoria probabiliăţilor Iuiiv, orema afirmă că suma uui umăr mare de v a idepedee,

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

TEORIA PROBABILITĂŢILOR UNIVERSITATEA TEHNICĂ GH. ASACHI,

TEORIA PROBABILITĂŢILOR UNIVERSITATEA TEHNICĂ GH. ASACHI, Ariadna Lucia Pletea Liliana Popa TEORIA PROBABILITĂŢILOR UNIVERSITATEA TEHNICĂ GH. ASACHI, IAŞI 999 Cuprins Introducere 5 Câmp de probabilitate 7. Câmp finit de evenimente...........................

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

1. Mulţimi. Definiţia mulţimii.

1. Mulţimi. Definiţia mulţimii. Definiţia mulţimii. 1. Mulţimi Definiţia 1.1. (Cantor) Prin mulţime înţelegem o colecţie de obiecte bine determinate şi distincte. Obiectele din care este constituită mulţimea se numesc elementele mulţimii.

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

2 Probleme propuse Clasele V-VI Clasele VII-VIIII Clasele IX-X... 18

2 Probleme propuse Clasele V-VI Clasele VII-VIIII Clasele IX-X... 18 Cuprins 1 O privire de ansamblu asupra metodei 1 1.1 Un joc cu jetoane colorate...................... 2 1.2 O problemă amuzantă........................ 3 1.3 Şcoala lui Pitagora şi numerele iraţionale.............

Διαβάστε περισσότερα

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs Aritmetică în domenii de integritate şi teoria modulelor Note de curs În prima parte a cursului, vom prezenta câteva clase remarcabile de domenii de integritate şi legăturile dintre acestea A doua parte

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Subiectul III (30 de puncte) - Varianta 001

Subiectul III (30 de puncte) - Varianta 001 (30 de puncte) - Varianta 001 1. Utilizând metoda backtracking se generează în ordine lexicografică cuvintele de câte patru litere din mulţimea A={a,b,c,d,e}, cuvinte care nu conţin două vocale alăturate.

Διαβάστε περισσότερα

APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR. Călinici Tudor 2016

APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR. Călinici Tudor 2016 APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR Călinici Tudor 2016 OBIECTIVE EDUCAŢIONALE Prezentarea conceptelor fundamentale ale teoriei calculului probabilitaţilor Evenimente independente Probabilități

Διαβάστε περισσότερα

INTRODUCERE ÎN COMPRESIA DATELOR

INTRODUCERE ÎN COMPRESIA DATELOR INTRODUCERE ÎN COMPRESIA DATELOR Compresia datelor se ocupă cu reprezetarea iformaţiei îtr-o formă compactă. Acest lucru se realizează pri idetificarea şi extragerea redudaţei di date. Datele pot fi caractere

Διαβάστε περισσότερα

Exerciţii de Analiză Matematică

Exerciţii de Analiză Matematică Exerciţii de Aliză Mtemtică October, 5 Şiruri si serii de umere rele. Să se stbilescă dcă şirul cu termeul geerl x =... este su u fudmetl.. Petru răt că şirul este fudmetl: Petru răt că şirul este fudmetl:

Διαβάστε περισσότερα

2) Numim matrice elementara o matrice:

2) Numim matrice elementara o matrice: I TRANSFORMARI ELEMENTARE ) Cre di urmtorele opertii efectute supr uei mtrice este trsformre elemetr: ) dure uei liii l o colo; b) imultire uei liii cu sclrul α = c) schimbre dou liii itre ele; d) dure

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

Prelegerea 11. Securitatea sistemului RSA Informaţii despre p şi q

Prelegerea 11. Securitatea sistemului RSA Informaţii despre p şi q Prelegerea 11 Securitatea sistemului RSA Vom trece în revistă câteva modalităţi de atac ale sistemelor de criptare RSA. Ca o primă observaţie, RSA nu rezistă la un atac de tipul meet-in-the middle, strategia

Διαβάστε περισσότερα

29 Iunie Aplicaţii ale numerelor complexe în Geometrie. Absolvent: Haliţă Diana-Florina. Coordonator ştiinţific: Prof. Dr.

29 Iunie Aplicaţii ale numerelor complexe în Geometrie. Absolvent: Haliţă Diana-Florina. Coordonator ştiinţific: Prof. Dr. I UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Specializarea Matematică-Informatică, linia de studiu română 29 Iunie I 1 2 3 I 4 5 MATEM 6 MATEM 7 Bibliografie I Motivaţia:

Διαβάστε περισσότερα

Breviar teoretic Vectori în plan

Breviar teoretic Vectori în plan Proiect cofiţt i Foul Socil Europe pri Progrmul Operţiol Sectoril Dezvoltre Resurselor Ume 7- prioritră Eucţi şi formre profesiolă î sprijiul creşterii ecoomice şi ezvoltării societăţii zte pe cuoştere

Διαβάστε περισσότερα

Prelegerea 10. Sistemul de criptare RSA Descrierea sistemului RSA

Prelegerea 10. Sistemul de criptare RSA Descrierea sistemului RSA Prelegerea 10 Sistemul de criptare RSA 10.1 Descrierea sistemului RSA Sistemul de criptare RSA (Rivest - Shamir - Adlema este în acest moment cel mai cunoscut şi uzitat sistem cu cheie publică 1. Aceasta

Διαβάστε περισσότερα