3.1. Ecuaţii de gradul întâi Inecua tii de gradul întâi Modul unui număr real... 9

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3.1. Ecuaţii de gradul întâi Inecua tii de gradul întâi Modul unui număr real... 9"

Transcript

1

2 Cuprins 1 Operaţii cu numere reale 1 11 Radicali, puteri Puteri Radicali 1 12 Identităţi 2 13 Inegalităţi 3 2 Funcţii 4 21 Noţiunea de funcţii 4 22 Funcţii injective, surjective, bijective 5 23 Compunerea funcţiilor 5 24 Funcţia inversă 6 3 Ecuaţii şi inecuaţii de gradul întâi 7 31 Ecuaţii de gradul întâi 7 32 Inecua tii de gradul întâi 8 33 Modul unui număr real 9 4 Numere complexe Forma algebrică Puterile numărului i11 43 Conjugatul lui z Modulul unui număr complex Forma trigonometrică Formula lui Moivre Forma exponenţială Ecuaţia binomă 15 5 Progresii Progresiile aritmetice Progresiile geometrice 16 6 Logaritmi Ecuaţii şi inecuaţii logaritmice fundamentale Ecuaţii şi inecuaţii exponenţiale fundamentale 19

3 7 Geometrie Vectori Adunarea vectorilor Teoreme cu vectori Geometrie analitică în plan şi în spaţiu Plan determinat de un punct şi doi vectori necolinari paraleli cu planul Plan determinat de trei puncte necolinare Ecuaţia planului prin tăieturi Ecuaţia generală a planului Poziţia planelor Ecuaţia dreptei Ecuaţia dreptei determinat de un punct şi de un vector paralel cu dreapta Ecuaţia dreptei determinat de două puncte diferite Ecuaţia generală a dreptei Ecuaţia dreptei în plan Ecuaţia dreptei determinat de două puncte diferite Unghul determinat de două drepte Distanţa la un punct la o dreaptă (în plan) Ecuaţia bisectoarei (în plan) Distanţa la un punct la o dreaptă (în spaţiu) Cercul Elipsa Hiperbola Parabola Alte aplicaţii cu vectori 43 8 Metoda inducţiei matematice Axioma de recurenţă a lui Peano44 82 Metoda unducţiei matematice Variantă a metodei inducţiei matematice 44 9 Analiză combinatorie Permutări Aranjamente Combinări Binomul lui Newton Suma puterilor asemenea ale primelor n numere naturale Polinoame Forma algebrică a unui polinom 47

4 102 Divizibilitatea polinoamelor Rădăcinile polinoamelor Ecuaţii algebrice Polinoame cu coeficienţi din R, Q, Z Permutări, matrici, determinanţi Permutări Matrici Determinanţi Inversa unei matrici Tr(A) Determinantul şi rangul Sisteme liniare Notaţii Compatibilitatea Sisteme omogene (b i =0) Trigonometrie Aplicaţii ale trigonometriei în geometrie Analiză matematică Recurenţe Recurenţe de ordin Recurenţe de ordin al doilea Limita de şiruri Limite generale, criterii de convergenţă Limite de funcţii Operaţii cu limite de funcţii Limite tip Continuitatea funcţiilor Teoreme pentru continuitatea funcţiilor Funcţii derivabile Definiţia derivatei într-un punct Reguli de derivare Derivatele funcţiilor elementare Derivatele funcţiilor compuse Derivatele de ordin superior ale unor funcţii elementare Proprietăţi ale funcţiilor derivabile Integrale Primitive 75

5 15 Primitivele funcţiilor Reguli pentru integrarea generală a funcţiilor Primitivele funcţiilor raţionale Integrale cu r=(x 2 +a 2 ) 1/ Integrale cu s=(x 2 a 2 ) 1/ Integrale cu t=(a 2 x 2 ) 1/ Integrale cu R 1/2 =(ax 2 +bx+c) 1/ Integrale cu R 1/2 =(ax+b) 1/ Integrale de funcţii trigonometrice ce conţin numai sin Integrale cu funcţii trigonometrice ce conţin numai cos Integrale cu funcţii trigonometrice ce conţin numai tan Integrale cu funcţii trigonometrice ce conţin atât sin cât şi cos Funcţii logaritmice Proprietăţi ale integralei definite Teorema Fundamentală Inegalităţi Alte teoreme Funcţii primitivabile Funcţii integrabile Arii Structuri algebrice Grupul Proprietăţi şi teoreme Monoid Inel Corpuri Spaţii vectoriale 93

6 1 Operaţii cu numere reale 11 Radicali,Puteri 111 Puteri 1 a m n = a m a n 2 a m b m = (a b) m 3 a m : a n = a m n 4 a m : b m = (a : b) m 5 a m = 1 a m 6 (a m ) n = a mn Puterile numerelor reale se extiind atât pentru exponenți raționali pozitivi sau negativi, cât şi pentru puterile reale fiind definite cu ajutorul şirurilor de puteri raționale Aceste puteri au proprietǎți identice cu exponenți numere naturale 112 Radicali n 1 a = a 1 n, a > 0; n 1 2 a = n 1 a = a 1 m ; 3 ( n a) n = a; n 4 a n b = n ab; 5 ( n 1 a )n = 1 a ; n 6 a n b n c = n abc; n 7 a : n b = n a b ; m 8 a n a = nm a n+m ; m 9 a : n a = nm a n m ; 10 n a nm = a m ; m 11 a n = a n m ; mn 12 a mp = n a p ; m 13 a p n b q = nm a pn b qm ; m 14 n a = nm a; 1

7 15 a 2 = a ; 2n+1 16 a = 2n+1 a; 17 a ± a+c a c b = 2 ± 2, c2 = a 2 b; 12 Identitǎţi Oricare ar fi x, y, z, t, a, b, c, d R şi n N avem: 1 a 2 b 2 = (a b)(a + b) 2 (a 2 + b 2 )(x 2 + y 2 ) = (ax by) 2 + (ay + bx) 2 3 a b b 3 = (a b)(a 2 + ab + b 2 ) 4 a 3 + b 3 = (a + b)(a 2 ab + b 2 ) 5 a 3 + b 3 + c 3 3abc = (a + b + c)(a 2 + b 2 + c 2 ab bc ca) 6 a b + b 3 + c 3 = (a + b + c) 3 3(a + b)(b + c)(c + a) 7 a 4 b 4 = (a b)(a + b)(a 2 + b 2 ) 8 a 4 + b 4 = (a 2 + b 2 ab 2)(a 2 + b 2 + ab 2) 9 a 5 b 5 = (a + b)(a 4 + a 3 b + a 2 b 2 + ab 3 + b 4 ) 10 a 6 + b 6 = (a 3 2ab 2 ) 2 + (b 3 2a 2 b) 2 11 a n b n = (a b)(a n 1 + a n 2 b + + ab n 2 + b n 1 ) 12 a 2n+1 + b 2n+1 = (a + b)(a 2 n a 2n 1 b + ab 2n 1 + b 2n ) 13 (a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ac 2 n n n 14 a j x j = a 2 j j=1 15 (Hermite) x 2 j j=1 j=1 k=0 1 i<j n n 1 [ x + k ] = [nx], n (a i x j a j x i ) 2 cu [ ] notǎm partea întreagǎ Fie x un numǎr real Se numeşte parte întreagǎ a lui x, cel mai apropiat întreg mai mic sau egal cu x Se numeşte parte fracționară a lui x, diferența dintre numǎr şi partea lui întreagă Definiția este sugerată de Axioma lui Arhimede : Pentru orice numar real x, existǎ un numǎr întreg n, unic, astfel incat n x < n+1 2

8 11 Permutǎri, matrici, determinanţi 111 Permutǎri Definiţie 111 Fie A = {1, 2,, n}, σ se numeşte permutare de gradul n dacǎ σ : A A şi bijectivǎ ( σ = ) 1 2 n σ(a) σ(2) σ(n) S n mulțimea ( permutǎrilor ) de grad n; S n = n!; 1 A = e, permutarea identicǎ e = 1 2 n 1 2 n ; Compunerea permutǎrilor: ( ) Fie σ, τ S n atunci σ τ = 1 2 n σ(τ(1)) σ(τ(2)) σ(τ(n)) S n Transpoziții: Definiţie 112 Fie i, j A, i j, τ ij S n, τ ij se numeşte transpoziţie dacǎ: Observații: τ ij (k) = 1) (τ ij ) 1 = τ ij ; j, dacǎ k=i; τ ij (k) = i, dacǎ k=j; k, în celelalte cazuri ( 1 2 i k j n 1 2 j k i n 2) Numǎrul transpozițiilor de grad n este C 2 n Signatura(semnul) unei permutǎri:, ) Definiţie 113 Fie (i, j) AxA, i < j, (i, j) se numeşte inversiune a lui σ dacǎ σ(j) < σ(i) m(σ) numǎrul inversiunilor a lui σ : 0 m(σ) C 2 n = n(n 1) 2 ɛ(σ) = ( 1) m(σ) se numeşte signatura lui σ 50

9 Observații: 1) Permutarea σ se numeşte parǎ dacǎ ɛ(σ) = 1, respectiv imparǎ dacǎ ɛ(σ) = 1; 2) Orice transpoziție este imparǎ; 3) ɛ(σ) = σ(i) σ(j) ; i j 1 i<j n 4) ɛ(σ τ) = ɛ(σ) ɛ(τ) 112 Matrici Definiţie 114 Fie M = {1, 2,, m} şi N = {1, 2,, n} O aplicaţie A : MxN C, A(i, j) = a ij se numeşte matrice de tipul (m, n); cu m linii şi n coloane: a 11 a 1n a 21 a 2n a m1 a mn şi notǎm M m,n (C) mulţimea matricelor de tipul (m, n) cu elemente numere complexe Definiţie 115 Dacǎ m = n atunci matricea se numeşte pǎtraticǎ de prdinul n, iar mulţimea lor se noteazǎ M n (C) Definiţie 116 Douǎ matrici A, B M m,n (C) sunt egale dacǎ şi numai dacǎ a ij = b ij, (i, j) MxN Operații cu matrici: 1 (Adunarea:)Fie A, B M m,n (C) atunci C = A + B M m,n (C), unde c ij = a ij + b ij, 51

10 (i, j) M N este suma lor Proprietǎți: Pentru orice A, B, C M m,n (C) avem cǎ: (a) A + B = B + A (b) (A + B) + C = A + (B + C) (c) A + O = O + A = A(elementul neutru O = O m,n matricea nulǎ) (d) A + ( A) = ( A) + A = O (inversa lui A) 2 (Înmulțirea cu scalari): Fie A M m,n (C) şi λ C atunci B = λa M m,n (C), unde b ij = λa ij, (i, j) M N este produsul matricei A cu scalarul λ Proprietǎți: Pentru A, B M m,n (C) şi λ, µ C avem cǎ: (a) 1 A = A; (b) λ A = A λ; (c) (λ + µ)a = λa + µa; (d) λ(a + B) = λa + λb; (e) λ(µa) = (λµ)a = µ(λa) 3 (Transpusa unei matrici): Fie A M m,n (C) atunci t A M m,n (C) unde t a ij = a ji, (i, j) M N 4 (Înmulțirea matricelor): Fie A M m,n (C) şi B M n,p (C) atunci n C = A B M m,p (C), unde c ij = a ik b kj, (i, j) M N este produsul lor Proprietǎți: k=1 (a) (AB)C = A(BC); (b) AI n = I n (element neutru matricea unitate) I n = M m,n (C);

11 (c) (A + B)C = AC + BC; (d) A(B + C) = AB + AC 113 Determinanţi Fie M n (C) mulțimea matricilor pǎtrate de ordin n cu elemente din C: A = a 11 a 1n a 21 a 2n a n1 a nn M n(c); Definiţie 117 Se neşte determinantul matricii A numǎrul det A = σ S n ɛ(σ)a 1σ(a) a 2σ(2) a nσ(n) a 11 a 1n a 21 a 2n det A = a n1 a nn det A = a i1 A i1 + a i2 A i2 + + a in A in, unde A ij este complementul algebric al elementului a ij Dacǎ C = AB, atunci det C = det A det B(A, B, C M n (C)) Determinantul de ordin 2: a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21 Determinantul de ordin 3: a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 11 a 22 a 33 + a 21 a 32 a 13 + a 12 a 23 a 31 a 31 a 22 a 13 a 11 a 32 a 23 a 21 a 12 a 33 53

12 are arie şi aria este b a (g(x) f(x))dx 16 Structuri algebrice 161 Grupul În matematică, un grup este o structură algebrică ce constă dintr-o mulțime şi o operație care combină două elemente ale mulțimii pentru a forma un al treilea element al aceleiaşi mulțimi Pentru a fi un grup, mulțimea şi operația trebuie să satisfacă o serie de condiții, denumite axiomele grupurilor, şi anume asociativitatea, elementul neutru şi elementul simetric Deşi acestea sunt proprietăți cunoscute ale multor structuri matematice, cum ar fi mulțimile de numere-de exemplu, mulțimea numerelor întregi împreunǎ cu operația de adunare formează un grup-formularea axiomelor este detaşatǎ de natura concretǎ a grupului şi de operația respectivǎ Aceasta permite manevrarea unor entități de origini matematice diferite într-o manieră flexibilǎ, pǎstrând în acelaşi timp aspecte structurale esențiale comune ale multor tipuri de obiecte Omniprezența grupurilor în numeroase domenii-atât matematice cât şi din afara matematicii-face din ele un principiu central de organizare în matematica contemporanǎ Un (G, ), format dintr-o mulțime G şi o lege de compoziție internǎ pe G, este grup dacǎ sunt satisfǎcute axiomele: Axioma închiderii: Oricare ar fi x şi y din G, şi rezultatul operației x y face parte din G Axioma asociativitǎții:oricare ar fi x,y,z din G, (x y) z = x (y z) Axioma elementului neutru Existǎ un element e în G, astfel încât e x = x e = x, oricare ar fi x din G Axioma elementelor simetrice: Oricare ar fi x din G, există y în G cu proprietatea cǎ x y = y x = e Dacă este satisfăcută şi axioma Axioma comutativității: Oricare ar fi x,y din G, x y = y x atunci grupul (G, ) se numeşte grup comutativ sau belian 89

13 1611 Proprietǎţi şi teoreme Teoremǎ 161 (Grupul lui Lorenz) Fie a > 0, G = ( a, a), x y = Atunci (G, ) este grup Abelian x+y 1+ xy a 2 Teoremǎ 162 Fie (G, ) şi fie H G Dacǎ H şi pentru orice x, y H avem x y H, şi pentru orice x H avem x 1 H, în acest caz H este subgroup a lui G şi notǎm cu H G Teoremǎ 163 Fie (G, ) un group, atunci H G este subgrup a lui G, dacǎ şi numai dacǎ, e H( e elementul neutru a lui G) şi pentru orice x, y H avem x y 1 H Teoremǎ 164 Fie (G, ) un group Fie Z G = {x G : x y = y x, y G}Atunci Z G este grup abelian Teoremǎ 165 Fie (G, ) un grup Atunci H = {e, a, a 2, a 3,, a n, } {a 1, a 2, } este subrup a lui G şi senumeşte subrup generat de a care se noteazǎ cu H = a Teoremǎ 166 Fie G un grup şi H, K G atunci (H K) G Teoremǎ 167 Fie (G, ) şi (G, ) grupuri Spunem cǎ grupurile G şi G sun izomorfe dacǎ şi numai dacǎ existǎ f : G G o funcţie bijectiǎ, pentru care f(x 1 x 2 ) = f(x 1 ) f(x 2 ), x 1, x 2 G şi f nu este bijectiǎ atunci f este morfism de grupuri Dacǎ G = G şi f este izomorfism, atunci f este automorfism Teoremǎ 168 Fie (G, ) şi (G, ) grupuri, fie f : G G un morfism Atunci f(e 1 ) = e 2, f(x 1 ) = [f(x)] 1, x G şi f(x n ) = [f(x)] n x G Teoremǎ 169 Fie ker(f) = {x G : f(x) = e 2 }, atunci ker G, respectiv Im(f) G Teoremǎ 1610 Fie (G, ) un grup şi H G un subrup al lui G şi fie xh = xh h H, x G x, y G atunci xh = yh, dacǎ şi numai dacǎ y 1 x H Teoremǎ 1611 (Lagrange) Fie (G, ) un grup finit şi fie H G un subrup a lui G Atunci H G, unde G numǎrul elementelor a lui G 90

14 Teoremǎ 1612 Fie G un grup cu n elemente Atunci ord(a) n, unde ord(a) = min{k : a k = e} Teoremǎ 1613 Dacǎ (G, ) este group cu G = p elemű csoport, unde p prim, atunci G ciclic Teoremǎ 1614 Fie G, G douǎ grupuri ciclic cu acelasi ordin Atunci G = G Teoremǎ 1615 (Cauchy) Fie (G, ) este grup finit cu ordin p, unde p este prim, p G, atunci x G, astfel încât ord(x) = p Definiţie 161 Fie (G, ) un grup şi p un numǎr prim, astfel încât G = p m r, p r, atunci un grup de ordin p m care este subgrup a lui G, atunci subgrupul se numeste subgrup Sylow de oridn p Teoremǎ 1616 (Feit-Thomson) Orice grup simplu cu ordin finit este abelian Teoremǎ 1617 Fie N G (H) = {g G ghg 1 = H} Dacǎ H G, atunci H N G (H) Teoremǎ 1618 Existǎ un morfism f : Q + Q surjectiv între (Q +, ) şi (Q, +) Teoremǎ 1619 Fie p un numǎr prim şi fie G = p 2 Atunci G este Abelian Teoremǎ 1620 Dacǎ G = Z n, atunci G este un grup cu ordin n Teoremǎ 1621 Dacǎ G = p 3, atunci x p Z(G) 162 Monoid În matematică monoid este o structură algebrică formată dintr-o mulțime S şi o lege de compoziție internă asociativă şi cu element neutru Astfel, un monoid este un semigrup cu element neutru Operația monoidului este adesea notată multiplicativ (de exemplu, ), adică rezultatul aplicării operației asupra perechii ordonate (x, y) este notat x y, x y sau chiar xy Reluând definiția, sunt îndeplinite următoarele reguli: 91

15 Lege de compoziție internă : A A A sau oricare ar fi x şi y două elemente din A, avem adevărată relația: x y A (Asociativitate)Oricare ar fi x, y şi z trei elemente din A, avem adevărată relația: x (y z) = (x y) z (Element neutru):există e un element din A astfel încât: oricare ar fi x un element arbitrar din A, avem relațiile: e x = x e = x 163 Inel Structura (A, +, )-t este inel dacǎ: (A, +) este Abelian (A, ) este monoid şi " " distributiv fațǎ "+": - x (y + z) = x y + x z, - (y + z) x = y x + z x x, y, z A dacǎ x y = y x, x, y A, atunci inelul este commutativ Exemple: 1 (Z, +, ) ; 2 (Z[i], +, ) unde Z[i] = {z = a + ib a, b Z} 3 (R n,, ); 4 (M n (R), +, ) ; 5 (Z n, +, ) Fie (A,, ) şi (A,, ) inele: Definiţie 162 f : A A -et este morfism de inele dacǎ f este bijectivǎ şi f(x y) = f(x) f(y), f(x y) = f(x) f(y), x, y A 164 Corpuri Fie (K, +, ) structurǎ algebricǎ şi, K K K, (x, y) x+y, K K K, (x, y) x y, K nevidǎ; 92

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

1. Mulţimi. Definiţia mulţimii.

1. Mulţimi. Definiţia mulţimii. Definiţia mulţimii. 1. Mulţimi Definiţia 1.1. (Cantor) Prin mulţime înţelegem o colecţie de obiecte bine determinate şi distincte. Obiectele din care este constituită mulţimea se numesc elementele mulţimii.

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii...

1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii... Cupris 1. Operaţii cu umere reale... 1 1.1. Radicali, puteri... 1 1.1.1. Puteri... 1 1.1.. Radicali... 1 1.. Idetităţi... 1.3. Iegalităţi... 3. Fucţii... 6.1. Noţiuea de fucţii... 6.. Fucţii ijective,

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Capitolul II. Grupuri. II.1. Grupuri; subgrupuri; divizori normali; grupuri factor

Capitolul II. Grupuri. II.1. Grupuri; subgrupuri; divizori normali; grupuri factor Capitolul II Grupuri II.1. Grupuri; subgrupuri; divizori normali; grupuri factor Definiţia 1. Fie G o mulţime nevidă şi " " operaţie algebrică pe G. Cuplul (G, ) se numeşte grup, dacă sunt satisfăcute

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0 DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G

Διαβάστε περισσότερα

CURS 5 Spaţii liniare. Spaţiul liniar R n

CURS 5 Spaţii liniare. Spaţiul liniar R n CURS 5 Spaţii liniare. Spaţiul liniar R n A. Arusoaie arusoaie.andreea@gmail.com andreea.arusoaie@info.uaic.ro Facultatea de Informatică, Universitatea Alexandru Ioan Cuza din Iaşi 30 Octombrie 2017 Structura

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Criterii de comutativitate a grupurilor

Criterii de comutativitate a grupurilor Criterii de comutativitate a grupurilor Marius Tărnăuceanu 10.03.2017 Abstract În această lucrare vom prezenta mai multe condiţii suficiente de comutativitate a grupurilor. MSC (2010): 20A05, 20K99. Key

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

GRADUL II n α+1 1

GRADUL II n α+1 1 GRADUL II 2007 BUCUREŞTI 1. Fie A un inel cu unitate. Notăm cu Z(A) = {a A ( )x A,ax = xa}. Să se arate că: a) Z(A) este un subinel comutativ al lui A (numit centrul inelului A). b) Dacă B este un alt

Διαβάστε περισσότερα

Curs 7. Definiţia II Un grup G este o mulţime, împreună cu o operaţie binară

Curs 7. Definiţia II Un grup G este o mulţime, împreună cu o operaţie binară Curs 7 II.3 Grupuri II.3.1 Definiţie. Exemple Definiţia II.3.1.1. Un grup G este o mulţime, împreună cu o operaţie binară pe G, notată : G G G, (x, y) x y, astfel încât: (G1) (Asociativitate) (x y) z =

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 25 martie 2018 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 25 martie 2018 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, 5 martie 18 Proba scrisă la MATEMATICĂ NOTĂ IMPORTANTĂ: 1 Problemele tip grilă (Partea A pot avea unul

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

VARIANTE PENTRU BACALAUREAT, M1-1, 2007

VARIANTE PENTRU BACALAUREAT, M1-1, 2007 VARIANTE PENTRU BACALAUREAT, M-, 27 VARIANTA SUBIECTUL I. a) Să se determine ecuația dreptei care trece prin punctul A(2; 5;3) și este paralelă cu dreapta x = y 2 4 6 = z +3 9. b) Să se determine valoarea

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

Introducere în algebră pentru fizicieni

Introducere în algebră pentru fizicieni Introducere în algebră pentru fizicieni Andrei Mărcuş 30 septembrie 2017 Cuprins 0 Descrierea cursului 5 01 Tematica 5 02 Evaluare 5 1 Mulţimi şi funcţii 6 11 Preliminarii 6 111 Operaţii cu mulţimi 6 12

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

PROGRAMA M1 Clasa a IX-a

PROGRAMA M1 Clasa a IX-a PROGRAMA M1 Clasa a IX-a Mulţimi şi elemente de logică matematică. Mulţimea numerelor reale: operaţii algebrice cu numere reale, ordonarea numerelor reale, modulul unui număr real, aproximări prin lipsă

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

Contract POSDRU/86/1.2/S/ POSDRU ID * Bucureşti 2012

Contract POSDRU/86/1.2/S/ POSDRU ID * Bucureşti 2012 Contract POSDRU/86/1.2/S/62485 Algebră Liniară POSDRU ID 62485 * Bucureşti 212 Prefaţă Algebra liniară şi geometria analitică stau la baza pregătirii matematice universitare, oferind modelări bazate pe

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Probleme pentru clasa a XI-a

Probleme pentru clasa a XI-a Probleme pentru clasa a XI-a 1 ( ) 01. Fie A si B doua matrici de ordin n cu elemente numere reale, care satisfac relatia AB = A + B. a) Sa se arate ca det(a 2 + B 2 ) 0. b) Sa se arate ca rang A + B =

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

elemente de geometrie euclidiană

elemente de geometrie euclidiană Universitatea de Vest din Timişoara Facultatea de Fizică Algebră liniară şi elemente de geometrie euclidiană Adrian NECULAE - Curs pentru uzul studenţilor - Timişoara - 2010 Tipografia Universităţii de

Διαβάστε περισσότερα

Prof. univ. dr. Ion CRĂCIUN Departamentul de Matematică Universitatea Tehnică Gheorghe Asachi din Iaşi CALCUL DIFERENŢIAL

Prof. univ. dr. Ion CRĂCIUN Departamentul de Matematică Universitatea Tehnică Gheorghe Asachi din Iaşi CALCUL DIFERENŢIAL Prof. univ. dr. Ion CRĂCIUN Departamentul de Matematică Universitatea Tehnică Gheorghe Asachi din Iaşi ANALIZĂ MATEMATICĂ CALCUL DIFERENŢIAL IAŞI 2011 Cuprins 1 Noţiuni fundamentale de teoria mulţimilor

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

GRADUL II 1995 CRAIOVA PROFESORI I

GRADUL II 1995 CRAIOVA PROFESORI I GRADUL II 1995 CRAIOVA PROFESORI I 1. Fie f : R R definită prin f(x) = x(1+e x ). a) Să se arate că f este indefinit derivabilă şi că f (n) (x) = a n e x +b n xe x, ( ) n 3, ( ) x R. Deduceţi că a n+1

Διαβάστε περισσότερα

Curs 4. I.4 Grafuri. Grafuri orientate

Curs 4. I.4 Grafuri. Grafuri orientate Curs 4 I.4 Grafuri I.4.1 Grafuri orientate Definiţia I.4.1.1. Un graf orientat este un tuplu G = (N, A, ϕ : A N N), unde N şi A sunt mulţimi, numite mulţimea nodurilor, respectiv mulţimea arcelor, iar

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma:

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma: CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a 1. Scriem numerele naturale nenule consecutive sub forma: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,... (pe fiecare

Διαβάστε περισσότερα

TEMATICA PENTRU PROBA DE MATEMATICĂ DIN CADRUL CONCURSULUI DE ADMITERE ÎN ACADEMIA TEHNICĂ MILITARĂ SESIUNEA IULIE 2014

TEMATICA PENTRU PROBA DE MATEMATICĂ DIN CADRUL CONCURSULUI DE ADMITERE ÎN ACADEMIA TEHNICĂ MILITARĂ SESIUNEA IULIE 2014 TEMATICA PENTRU PROBA DE MATEMATICĂ DIN CADRUL CONCURSULUI DE ADMITERE ÎN ACADEMIA TEHNICĂ MILITARĂ SESIUNEA IULIE 2014 Conţinuturi Algebră clasa a IX-a. 1. Mulţimi şi elemente de logică matematică. Mulţimea

Διαβάστε περισσότερα

2.3. Inegalităţi şi limite Convergenţă, monotonie, mărginire Limite remarcabile Limita unei funcţii...

2.3. Inegalităţi şi limite Convergenţă, monotonie, mărginire Limite remarcabile Limita unei funcţii... Cuprins GEOMETRIE 1 Vectori 1 11 Segmente orientate Vectori în plan 1 12 Operaţii cu vectori 3 13 Vectori coliniari 8 14 Vectori de poziţie 10 15 Drepte paralele, concurente Colinearitate 12 16 Produsul

Διαβάστε περισσότερα

Curs 7. Definiţia II Un grup G este o mulţime, împreună cu o operaţie binară

Curs 7. Definiţia II Un grup G este o mulţime, împreună cu o operaţie binară Curs 7 II.3 Grupuri II.3.1 Definiţie. Exemple Definiţia II.3.1.1. Un grup G este o mulţime, împreună cu o operaţie binară pe G, notată : G G G, (x, y) x y, astfel încât: (G1) (Asociativitate) (x y) z =

Διαβάστε περισσότερα

1 Corpuri finite. 1.1 Introducere. Reamintim mai intai

1 Corpuri finite. 1.1 Introducere. Reamintim mai intai 1 Corpuri finite. 1.1 Introducere Reamintim mai intai Definiţie 1 Se numeşte corp un inel comutativ (K,+, ) cu proprietatea ca orice element nenul x din k este inversabil, i.e. există x 1 k astfel încât

Διαβάστε περισσότερα

PROGRAMA Etapa sumativă la Matematică 10 Mai 2014

PROGRAMA Etapa sumativă la Matematică 10 Mai 2014 PROGRAMA Etapa sumativă la Matematică 10 Mai 2014 Programa disciplinei Matematică pentru etapa a III-a sumativă a Concursului de Verificare a Cunoștințelor BestEdu cuprinde următoarele conținuri ale învățării,

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

TITULARIZARE 2000 Varianta 1. cot 2p+1 = 1

TITULARIZARE 2000 Varianta 1. cot 2p+1 = 1 TITULARIZARE 2000 Varianta 1 1. a) Teoremele lui Bernoulli-L Hôpital. b) Relații binare. Relații de echivalență și mulțimi cât. Relații de ordine. Exemple. 2. a) Exemple și contraexemple în predarea noțiunilor

Διαβάστε περισσότερα

DEFINITIVAT 1991 PROFESORI I. x 2 dacă x [ 2,2) f(x) =. 10 x 2, dacă x [2, 5] x+1, dacă x Q x 3 +2, dacă x / Q,

DEFINITIVAT 1991 PROFESORI I. x 2 dacă x [ 2,2) f(x) =. 10 x 2, dacă x [2, 5] x+1, dacă x Q x 3 +2, dacă x / Q, DEFINITIVAT 99 BUCUREŞTI. a) Derivabilitate. Proprietăţi ale funcţiilor derivabile. b) Fie f : [ 3, ) R dată prin 4, dacă x [ 3, 2) x x 2 dacă x [ 2,2) f(x) =. 0 x 2, dacă x [2, 5] 2, dacă x ( 5, ) Să

Διαβάστε περισσότερα

5.8. Ecuaţii iraţionale Funcţia exponenţială Ecuaţii exponenţiale Funcţia logaritmică

5.8. Ecuaţii iraţionale Funcţia exponenţială Ecuaţii exponenţiale Funcţia logaritmică Cuprins 1 Elemente de logică matematică 1 11 Propoziţii 1 12 Predicate 4 13 Mulţimi 5 14 Inducţia matematică 7 2 Numere reale 9 21 Numere reale 9 22 Puteri 12 23 Radicali 14 24 Logaritmi 16 3 Şiruri, progresii

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

TIBERIU DUMITRESCU ALGEBRA 1. Bucureşti, 2006

TIBERIU DUMITRESCU ALGEBRA 1. Bucureşti, 2006 1 TIBERIU DUMITRESCU ALGEBRA 1 Bucureşti, 2006 2 Profesorului meu NICOLAE RADU 3 PREFAŢĂ Lucrarea se adresează studenţilor din anul I de la facultăţile de matematică şi informatică din universităţi. În

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc = GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a)

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a) Universitatea "Dunărea de Jos" din Galaţi MODELE DE TESTE GRILĂ PENTRU ADMITEREA 01 DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a Testele sunt recomandate pentru următoarele domenii de licenţă şi facultăţi:

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs

Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Adriana-Ioana Lefter MATEMATICĂ (ALGEBRĂ ŞI ECUAŢII DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Cuprins Partea 1 ALGEBRĂ 1 Capitolul 1 Matrice şi determinanţi 3 11 Corpuri 3 12 Matrice 4 13

Διαβάστε περισσότερα

Matematici în Criptografie. Adrian Atanasiu

Matematici în Criptografie. Adrian Atanasiu Matematici în Criptografie Adrian Atanasiu 3 Prefaţă În era digitală cum este şi firesc criptografia este omniprezentă. Tehnicile criptografice sunt folosite pentru a securiza comunicaţiile derulate prin

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n 1 Preliminarii Fie M, A mulţimi nevide şi n N. Se muneşte operaţie n ară (sau lege de compoziţie n-ară) definită pe M orice aplicaţie τ : M n M (M n = } M {{... M } ). In cazul n = 2, obţinem operaţiile

Διαβάστε περισσότερα

Vladimir BALAN. Algebră Liniară, Geometrie Analitică, şi Elemente de Geometrie Diferenţială. Student Web Copy. = Bucureşti 2011 =

Vladimir BALAN. Algebră Liniară, Geometrie Analitică, şi Elemente de Geometrie Diferenţială. Student Web Copy. = Bucureşti 2011 = Vladimir BALAN Algebră Liniară, Geometrie Analitică, şi Elemente de Geometrie Diferenţială = Bucureşti 2011 = Prefaţă Acest material include noţiunile, rezultatele teoretice de bază, precum şi probleme

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα