ΜΕΛΕΤΗ ΣΥΓΚΕΝΤΡΩΤΙΚΩΝ ΦΩΤΟΒΟΛΤΑΙΚΩΝ/ΘΕΡΜΙΚΩΝ ΗΛΙΑΚΩΝ ΣΥΛΛΕΚΤΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΛΕΤΗ ΣΥΓΚΕΝΤΡΩΤΙΚΩΝ ΦΩΤΟΒΟΛΤΑΙΚΩΝ/ΘΕΡΜΙΚΩΝ ΗΛΙΑΚΩΝ ΣΥΛΛΕΚΤΩΝ"

Transcript

1 Πανεπιστήμιο Πατρών Σχολή Θετικών Επιστημών Μεταπτυχιακό Πρόγραμμα Εφαρμοσμένης Φυσικής ΜΕΛΕΤΗ ΣΥΓΚΕΝΤΡΩΤΙΚΩΝ ΦΩΤΟΒΟΛΤΑΙΚΩΝ/ΘΕΡΜΙΚΩΝ ΗΛΙΑΚΩΝ ΣΥΛΛΕΚΤΩΝ ΓΕΩΡΓΟΣΤΑΘΗΣ ΠΑΝΑΓΙΩΤΗΣ Α Μ. : 315 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Ι. ΤΡΥΠΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ ΑΝΑΠΛ. ΚΑΘΗΓΗΤΗΣ ΤΜ. ΦΥΣΙΚΗΣ ΠΑΤΡΑ 21

2 ΤΡΙΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ ΑΝΑΠΛ.ΚΑΘΗΓΗΤΗΣ: ΤΡΥΠΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ ΙΩΑΝΝΗΣ (ΕΠΙΒΛΕΠΩΝ) ΚΑΘΗΓΗΤΗΣ: ΓΙΑΝΝΟΥΛΗΣ ΠΑΝΑΓΙΩΤΗΣ ΑΝΑΠΛ.ΚΑΘΗΓΗΤΗΣ: ΑΡΓΥΡΙΟΥ ΑΘΑΝΑΣΙΟΣ

3 Στου γονείς μου Γιώργο και Ευτυχία

4 Περίληψη Οι ανανεώσιμες πηγές ενέργειας (ΑΠΕ), όπως η ηλιακή ενέργεια, μπορούν να προσφέρουν εναλλακτικούς τρόπους παραγωγής ενέργειας. Κάθε μορφή ΑΠΕ έχει τις δικές της ιδιομορφίες και μπορούν να εφαρμοστούν είτε σε μεγάλες εγκαταστάσεις παραγωγής ηλεκτρικής και θερμικής ενέργειας είτε σε μικρότερες μονάδες όπως στα κτίρια. Ενδιαφέρον παρουσιάζει η συνδυασμένη αξιοποίηση των παραπάνω ενεργειακών πηγών, ιδίως για την κάλυψη των ηλεκτρικών και θερμικών αναγκών των κτιρίων. Αντικείμενο αυτής της διπλωματικής εργασίας είναι η μελέτη συγκεντρωτικών συστημάτων χαμηλής συγκέντρωσης και των παραγόντων που επηρεάζουν την λειτουργία τους, με την χρήση τριών γεωμετρικών συγκεντρωτικών μέσων, τα οποία είναι: το σύστημα V-Trough, το σύστημα Fresnel γραμμικής εστίας και το κυλινδροπαραβολικό σύστημα γραμμικής εστίας, με χρήση συμβατικών φωτοβολταϊκών για την παραγωγή ηλεκτρικής ισχύος. Όμως, από το την προσπίπτουσα ηλιακή ακτινοβολία που συγκεντρώνεται στον απορροφητή, ένα μέρος μετατρέπεται σε ηλεκτρική ενέργεια, ενώ το υπόλοιπο μεταδίδεται στο περιβάλλον με την μορφή θερμότητας. Έτσι, περαιτέρω μελέτη έγινε με βάση την δημιουργία υβριδικού συγκεντρωτικού φωτοβολταϊκού/θερμικού συστήματος, ταυτόχρονης παραγωγής ηλεκτρικής και θερμικής ενέργειας χρησιμοποιώντας την βέλτιστη γεωμετρία, το οποίο θα μπορούσε να δώσει ικανοποιητικά ποσά θερμικής ενέργειας, χωρίς να ζημιώνεται η ηλεκτρική και το αντίστροφο, κάτι που θα καθιστούσε τα συστήματα αυτά ενεργειακώς και οικονομικώς πιο ανταγωνιστικά. Τα πειραματικά αποτελέσματα περιλαμβάνουν διαγράμματα ηλεκτρικών αποδοτικοτήτων των πειραματικών συστημάτων καθώς και των μεγεθών Pmax, Vpmax, Voc, Ιpmax, Ιsc, συναρτήσει της θερμοκρασίας λειτουργίας Tpv, κάτω από σταθερή ακτινοβολία G, θερμικών αποδόσεων, προφίλ κατανομών συγκεντρωτικής ακτινοβολίας καθώς και χαρακτηριστικές καμπύλες I-V για καθένα απ αυτά. Λέξεις Κλειδιά Aνανεώσιμες πηγές ενέργειας, ηλιακή ενέργεια, φωτοβολταϊκά, θερμική ενέργεια, υβριδικά συστήματα PV/T, συγκεντρωτικά συστήματα ηλιακής ενέργειας, σύστημα V-Trough, Fresnel, κυλινδροπαραβολικό σύστημα γραμμικής εστίας.

5 Abstract The renewable energy sources (RES) like solar energy, can offer an alternative solution to power production. Each form of RES, has its own specifications and they can be applied in big installations of electric and thermal energy production or in smaller units as the buildings. This thesis investigates the performance of three different types of solar concentrating systems, which are: the V-Trough system, the linear Fresnel system and the Parabolic Trough system, with usage of common photovoltaics, instead of concentrating photovoltaics, for the electricity production. However, only a small part of the incoming solar radiation it is changed by an absorber into electric energy, while the rest is transmitted to the environment with the form of heat. Thus, further study has been done with base of the creation of a hybrid concentrating photovoltaic/thermal system, with simultaneous production of electric and thermal energy using the most optimal geometry. This could give satisfactory sums of thermal energy, without affecting the production of electric energy and vice versa, something that would render this systems economically more competitively. The experimental results include diagrams with the electric performance of the experimental systems as well as values of Pmax, Vpmax, Voc, Ipmax, Isc, associated with the operating temperature Tpv, under constant radiation G, thermal output, distribution profiles of the concentrating radiation as well as characteristic curves I-V for each one of them. Key words Renewable energy, solar energy, thermal energy, photovoltaics, solar hybrid systems PV/T, solar concentrating systems, V-Trough, Parabolic Trough, Fresnel.

6 Η παρούσα διπλωματική εργασία πραγματοποιήθηκε στο εργαστήριο ηλιακής ενέργειας του Τμήματος Φυσικής, την χρονική περίοδο Ευχαριστώ τον κ. Ιωάννη Τρυπαναγνωστόπουλο, Αναπληρωτή Καθηγητή του Τμ. Φυσικής ο οποίος είχε την επίβλεψη της εργασίας, για τον χρόνο που διέθεσε, για την καθοδήγηση του και την υπομονή του, όπως επίσης τον Καθηγητή κ. Παναγιώτη Γιαννούλη και τον Αναπληρωτή Καθηγητή κ. Αθανάσιο Αργυρίου, μέλη της τριμελούς επιτροπής μου για τις χρήσιμες και εποικοδομητικές συμβουλές τους καθ όλη τη διάρκεια της παρουσίας μου στο Εργαστήριο Ηλιακής Ενέργειας του Πανεπιστημίου Πατρών. Ευχαριστώ πολύ επίσης τον διδάκτορα Μανόλη Σουλιώτη, τους μεταπτυχιακούς φοιτητές Μακρή Θεόδωρο και Ανδριοπούλου Συμεώνη και τον προπτυχιακό φοιτητή Σαρρή Μάρκο για την πολύτιμη βοήθεια που προσέφεραν κατά την διάρκεια υλοποίησης της εργασίας.

7 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ 1 Περίληψη - Αντικείμενο της παρούσης εργασίας...1 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ 3 ΕΙΣΑΓΩΓΗ - ΓΕΝΙΚΑ ΠΕΡΙ ΤΩΝ ΑΠΕ 1.1 To ενεργειακό πρόβλημα Η ανάπτυξη των ΑΠΕ στην Ελλάδα Το φαινόμενο του θερμοκηπίου...8 ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ 11 ΤΟ ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ 2.1 Γενικά Ημιαγωγοί Φωτοβολταϊκό Φαινόμενο Η απορρόφηση της ακτινοβολίας στα φωτοβολταϊκά στοιχεία Η δημιουργία του φωτορεύματος Τα ηλεκτρικά χαρακτηριστικά των φωτοβολταϊκών στοιχείων Ο συντελεστής πλήρωσης Τα ηλεκτρικά χαρακτηριστικά των φωτοβολταϊκών στοιχείων - Δεύτερη προσέγγιση Παράγοντες που επηρεάζουν την απόδοση των φωτοβολταϊκών στοιχείων Φωτοβολταϊκά στοιχεία Τύποι φωτοβολταϊκών στοιχείων...33 ΚΕΦΑΛΑΙΟ 3 41 ΣΥΓΚΕΝΤΡΩΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 3.1 Εισαγωγή Βασικοί τύποι συγκεντρωτικών μέσων Τύποι οπτικών μέσων Τύποι συστημάτων παρακολούθησης του ήλιου (solar trackers) Οπτική των συγκεντρωτικών μέσων Βασικά...48

8 3.3.2 Ανάκλαση και διάθλαση Κυλινδροπαραβολικό συγκεντρωτικό σύστημα Συγκεντρωτικό σύστημα V-Trough Διαθλαστικοί φακοί Fresnel Τύποι ηλιακών συγκεντρωτικών συστημάτων Κυλινδροπαραβολικά συστήματα Ιστορική ανάδρομη Περιγραφή λειτουργιάς του συστήματος Συστήματα ηλιακών πύργων ισχύος Ιστορική ανάδρομη Περιγραφή του συστήματος Παραβολικά συστήματα σημειακής εστίας (συστήματα δίσκου/μηχανής) Περιγραφή του συστήματος Η εξέλιξη στα συστήματα δίσκου / Sterling Συστήματα Fresnel Περιγραφή λειτουργιάς του συστήματος Υβριδικά συγκεντρωτικά συστήματα CPV/T Συγκεντρωτικό υβριδικό σύστημα Power Spar Συγκεντρωτικό υβριδικό σύστημα Absolicon X Επιστημονικές εργασίες συσχετιζόμενες με το αντικείμενο μελέτης της εργασίας Εργασίες που έχουν πραγματοποιηθεί στο Εργαστήριο Ηλιακής Ενέργειας...9 ΚΕΦΑΛΑΙΟ 4 93 ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ 4.1 Περιγραφή των πειραματικών συγκεντρωτικών συστημάτων Σύστημα V-Trough Σύστημα Fresnel γραμμικής εστίας Κυλινδροπαραβολικό σύστημα γραμμικής εστίας Επιμέρους τμήματα των συγκεντρωτικών συστημάτων Φωτοβολταϊκά Σύστημα ψύξης Θερμικός απορροφητής Μετρητικά όργανα παρακολούθησης Πυρανόμετρο Θερμοζεύγη και θερμόμετρα

9 4.3.3 PVPM Μετρητικά όργανα συγκέντρωσης (Cref) ΚΕΦΑΛΑΙΟ ΠΕΙΡΑΜΑΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑTA 5.1 Εισαγωγή Σύστημα V-Through Diffuse V-Trough Concentrating System L=1cm Diffuse V-Trough Concentrating System L=25cm Diffuse V-Trough Concentrating System L=5cm Specular V-Trough Concentrating System L=1cm Specular V-Trough Concentrating System L=25cm Specular V-Trough Concentrating System L=5cm Συγκριτικά αποτελέσματα για το σύστημα V-Through Σύστημα Fresnel Γραμμικής Εστίας Fresnel Concentrating System R=25cm Fresnel Concentrating System R=3cm Fresnel Concentrating System R=35cm Fresnel Concentrating System R=4cm Fresnel Concentrating System R=45cm Fresnel Concentrating System R=5cm Συγκριτικά αποτελέσματα για το σύστημα Fresnel Κυλινδροπαραβολικό Σύστημα Γραμμικής Εστίας Cold Parabolic Concentrator 2x Electrical Cold Parabolic Concentrator 4x Electrical Cold Parabolic Concentrator 6x Electrical Cold Parabolic Concentrator 8x Electrical Cold Parabolic Concentrator 1x Electrical Cold Parabolic Concentrator 12x Electrical Cold Parabolic Concentrator 15x Electrical Συγκριτικά Αποτελέσματα Για Το Σύστημα Cold Parabolic Concentrator/ Electrical Mirror Parabolic Concentrator 2x- Electrical Mirror Parabolic Concentrator 4x- Electrical Mirror Parabolic Concentrator 6x- Electrical...177

10 Mirror Parabolic Concentrator 8x- Electrical Mirror Parabolic Concentrator 1x- Electrical Mirror Parabolic Concentrator 12x- Electrical Mirror Parabolic Concentrator 15x- Electrical Συγκριτικά Αποτελέσματα Για Το Σύστημα Mirror Parabolic Concentrator/ Electrical Θερμικές Αποδόσεις Των Συστημάτων Parabolic Concentrator Cold Parabolic Concentrator 15x- Thermal Mirror Parabolic Concentrator 15x- Thermal Συγκριτικά Αποτελέσματα Για Τα Συστήματα Mirror Και Cold Parabolic Concentrator-Thermal Υβριδικό Φωτοβολταϊκό/Θερμικό Συγκεντρωτικό Σύστημα...2 ΚΕΦΑΛΑΙΟ 6 23 ΣΥΜΠΕΡΑΣΜΑΤΑ ΒΙΒΛΙΟΓΡΑΦΙΑ

11 ΕΙΣΑΓΩΓΗ ΠΕΡΙΛΗΨΗ - ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΠΑΡΟΥΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Οι ανανεώσιμες πηγές ενέργειας ΑΠΕ (ηλιακή, αιολική, βιομάζα, ενέργεια νερού, γεωθερμία), μπορούν να προσφέρουν εναλλακτικούς τρόπους παραγωγής ενέργειας. Κάθε μορφή ΑΠΕ έχει τις δικές της ιδιομορφίες και μπορούν να εφαρμοστούν είτε σε μεγάλες εγκαταστάσεις παραγωγής ηλεκτρικής και θερμικής ενέργειας είτε σε μικρότερες μονάδες όπως στα κτίρια. Οι νέες τεχνολογίες που εξετάζονται σήμερα, κυμαίνονται με βάση την παραγωγή ποσών ενέργειας με παρονομαστή το κόστος, δηλαδή να είναι οικονομικά αποδεκτές και ταυτόχρονα να καλύπτουν υψηλά ποσά ενέργειας. Τα συγκεντρωτικά ηλιακά συστήματα, είτε ηλεκτρικής είτε θερμικής ενέργειας, έχουν κινήσει το ενδιαφέρον πολλών ερευνητών, μιας και με την χρήση πολύ μικρότερης επιφάνειας απορροφητή, μπορούν να παράγουν πολλαπλάσια ποσά ενέργειας, κάτι που μελλοντικά, σε μια ευρεία παραγωγή, τα καταστήσει οικονομικώς αποδεκτά. Αντικείμενο της διπλωματικής αυτής εργασίας είναι η μελέτη συγκεντρωτικών συστημάτων χαμηλής συγκέντρωσης και των παραγόντων που επηρεάζουν την λειτουργία τους. Χρησιμοποιήθηκαν τρία γεωμετρικά συγκεντρωτικά μέσα, τα οποία είναι το σύστημα V-Trough, το σύστημα Fresnel γραμμικής εστίας και το κυλινδροπαραβολικό σύστημα γραμμικής εστίας και συμβατικά φωτοβολταϊκά για την παραγωγή ηλεκτρικής ισχύος. Όμως, από το την προσπίπτουσα ηλιακή ακτινοβολία που συγκεντρώνεται στον απορροφητή, ένα μικρό μέρος μετατρέπεται σε ηλεκτρική ενέργεια, ενώ το υπόλοιπο μεταδίδεται στο περιβάλλον με την μορφή θερμότητας. Έτσι, μελετήθηκε υβριδικό συγκεντρωτικό φωτοβολταϊκό/θερμικό σύστημα, ταυτόχρονης παραγωγής ηλεκτρικής και θερμικής ενέργειας χρησιμοποιώντας την βέλτιστη γεωμετρία, το οποίο θα μπορούσε να δώσει ικανοποιητικά ποσά θερμικής ενέργειας, χωρίς να ζημιώνεται η ηλεκτρική και το αντίστροφο, μιας και όπως αναφέρεται παρακάτω, η αύξηση της θερμοκρασίας λειτουργίας ενός φωτοβολταϊκού, δρα αρνητικά στην απόδοση του. Ένας δεύτερος απώτερος σκοπός της εργασίας αυτής, ήταν η μελέτη της ενεργειακής συμπεριφοράς συγκεντρωτικής διάταξης ηλιακής ενέργειας με χρήση πιο φθηνών μέσων και υλικών, για την επιδίωξη οικονομικότερων συσκευών. 1

12 Η εργασία χωρίζεται σε τρία μέρη, με το πρώτο να περιλαμβάνει την βιβλιογραφική έρευνα που αφορά τα φωτοβολταϊκά πλαίσια, την θεωρία που τα περιβάλλει, τα συγκεντρωτικά συστήματα και την θεωρία της οπτικής και γεωμετρίας που τα απαρτίζουν, το δεύτερο να περιγράφει τις τεχνικές προδιαγραφές της εγκατάστασης και το τρίτο μέρος να παρουσιάζει τα πειραματικά αποτελέσματα των δοκιμών καθώς και τα συμπεράσματα της εργασίας αυτής. Στο 1 ο Κεφάλαιο γίνεται μια εισαγωγή στις ΑΠΕ, στην ανάπτυξη των ανανεώσιμων πηγών ενέργειας στον ελλαδικό χώρο και τέλος στο φαινόμενο του θερμοκηπίου, ένα από τα βασικότερα ζητήματα των χρόνων μας. Το 2 ο Κεφάλαιο περιλαμβάνει τη μελέτη για τα φωτοβολταϊκά στοιχεία (φ/β). Συγκεκριμένα, παρουσιάζονται θεωρητικά στοιχεία σχετικά με τους ημιαγωγούς, το φωτοβολταϊκό φαινόμενο, τα είδη των φωτοβολταϊκών στοιχείων, την λειτουργία ενός φ/β και τους παράγοντες που επηρεάζουν τη λειτουργία τους. Στο 3 ο Κεφάλαιο παρουσιάζονται τα κυριότερα συγκεντρωτικά συστήματα παραγωγής ενέργειας που έχουν εγκατασταθεί καθώς και η εξελικτική τους πορεία. Γίνεται αναφορά στο θεωρητικό υπόβαθρο της οπτικής και γεωμετρίας των συστημάτων που ερευνήθηκαν στην εργασία αυτή καθώς επίσης και μια συνοπτική αναφορά στους βασικούς τύπους συγκεντρωτικών μέσων. Το 4 ο Κεφάλαιο αναφέρεται στην πειραματική διαδικασία. Αρχικά παρατίθενται όλες οι κατασκευαστικές λεπτομέρειες των συστημάτων που μελετήθηκαν με τα επιμέρους τμήματά τους και εν συνεχεία μια αναφορά στα μετρητικά όργανα παρακολούθησης των μονάδων. Το 5 ο Κεφάλαιο αναφέρεται αναλυτικά στην παρουσίαση των πειραματικών αποτελεσμάτων όσων αναφορά τις ηλεκτρικές και θερμικές αποδόσεις και των μεγεθών της ισχύς, τάσης και ρεύματος, των προφίλ της κατανομής (πειραματικά και μέσω λογισμικού) και των συγκεντρωτικών συγκριτικών αποτελεσμάτων. Τέλος στο 6 ο Κεφάλαιο αναφέρονται τα συμπεράσματα που προέκυψαν από την εργασία αυτή και παρουσιάζονται μελλοντικές πιθανές εφαρμογές που μπορούν να γίνουν. 2

13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ - ΓΕΝΙΚΑ ΠΕΡΙ ΤΩΝ ΑΠΕ 1.1 ΤΟ ΕΝΕΡΓΕΙΑΚΟ ΠΡΟΒΛΗΜΑ Από τις αρχές του προηγούμενου αιώνα, όταν άρχισαν οι εφαρμογές του ηλεκτρισμού, μέχρι τις αρχές της 1ετίας του 7, παρατηρείται διεθνώς μία συνεχής συγκέντρωση της παραγωγής σε συνεχώς μεγαλύτερους «Σταθμούς Παραγωγής» και παράλληλα ανάπτυξη των δικτύων Μεταφοράς και Διανομής με συνεχώς μεγαλύτερες τάσεις, λόγω της ραγδαίας αύξησης της ζήτησης ηλεκτρικής ενέργειας. Αυτό συνέβη και στην χώρα μας με την ανάπτυξη του Εθνικού Συστήματος Ηλεκτρικής Ενέργειας της Δημόσιας Επιχείρησης Ηλεκτρισμού (ΔΕΗ), η οποία κατά την περίοδο (περίπου) εξαγόρασε τις 3 περίπου ηλεκτρικές εταιρείες που προμήθευαν τότε την ηλεκτρική ενέργεια με μικρά τοπικά δίκτυα. Όμως, με αφορμή τις «πετρελαϊκές κρίσεις» της 1ετίας του 7, άρχισε να γίνεται διεθνώς συνείδηση η ανάγκη καλύτερης αξιοποίησης της ενέργειας, αφενός μεν για να αξιοποιούνται καλύτερα οι διατιθέμενοι ενεργειακοί πόροι, αφετέρου δε για να περιορίζεται η ρύπανση του περιβάλλοντος. Άρχισε τότε σε διεθνές επίπεδο η αναζήτηση Εναλλακτικών Πηγών Ενέργειας, σε αντιστάθμισμα των Συμβατικών Πηγών, όπως είναι το κάρβουνο και το πετρέλαιο, καθώς και της πυρηνικής ενέργειας, η οποία βεβαίως παρουσιάζει τα γνωστά προβλήματα. Παράλληλα άρχισε μία προσπάθεια για την εξοικονόμηση και γενικότερα την καλύτερη και αποδοτικότερη χρήση της ενέργειας. Οι παραπάνω παράγοντες συνέβαλαν αποφασιστικά αφενός μεν στην ανάπτυξη των Ανανεώσιμων Πηγών Ενέργειας (ΑΠΕ), αφετέρου δε στην ανάπτυξη συστημάτων Συμπαραγωγής Ηλεκτρισμού και Θερμότητας (ΣΗΘ). Ως Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) ορίζονται οι ενεργειακές πηγές (ο ήλιος, το νερό, ο άνεμος, η βιομάζα, κλπ.), οι οποίες υπάρχουν σε αφθονία στο φυσικό μας περιβάλλον. Είναι οι πρώτες μορφές ενέργειας που χρησιμοποίησε ο άνθρωπος, σχεδόν αποκλειστικά, μέχρι τις αρχές του 2 ου αιώνα, οπότε και στράφηκε στην εντατική χρήση του άνθρακα και των υδρογονανθράκων. Οι μορφές των ΑΠΕ που είναι σήμερα τεχνικοοικονομικά εκμεταλλεύσιμες είναι οι ακόλουθες: Ηλιακή Ενέργεια 3

14 Βιομάζα Αιολική Ενέργεια Γεωθερμική Ενέργεια Υδροηλεκτρική Ενέργεια Το ενδιαφέρον για την ευρύτερη αξιοποίηση των ΑΠΕ, καθώς και για την ανάπτυξη αξιόπιστων και οικονομικά αποδοτικών τεχνολογιών που δεσμεύουν το δυναμικό τους παρουσιάσθηκε αρχικά μετά την πρώτη πετρελαϊκή κρίση του 1974 και παγιώθηκε την τελευταία δεκαετία, μετά τη συνειδητοποίηση των παγκόσμιων περιβαλλοντικών προβλημάτων. Τα εγγενή πλεονεκτήματα των ΑΠΕ και κυρίως η ουσιαστική συμβολή τους στην ενεργειακή απεξάρτηση της ανθρωπότητας από τους εξαντλήσιμους ενεργειακούς πόρους, επιτάσσουν αυτήν τη στροφή. Για πολλές χώρες, οι ΑΠΕ αποτελούν μία σημαντική εγχώρια πηγή ενέργειας, με μεγάλες δυνατότητες ανάπτυξης σε τοπικό και εθνικό επίπεδο. Συνεισφέρουν σημαντικά στο ενεργειακό τους ισοζύγιο, συμβάλλοντας στη μείωση της εξάρτησης από το ακριβό και εισαγόμενο πετρέλαιο και στην ενίσχυση της ασφάλειας του ενεργειακού τους εφοδιασμού. Παράλληλα, συντελούν και στην προστασία του περιβάλλοντος, καθώς έχει πλέον διαπιστωθεί ότι ο ενεργειακός τομέας είναι ο πρωταρχικός υπεύθυνος για τη ρύπανση του περιβάλλοντος. Πραγματικά, σχεδόν το 95% της ατμοσφαιρικής ρύπανσης οφείλεται στην παραγωγή, το μετασχηματισμό και τη χρήση των συμβατικών καυσίμων (άνθρακας και πετρέλαιο). Φαίνεται συνεπώς ότι ο μόνος δυνατός τρόπος για να μπορέσει η Ευρωπαϊκή Ένωση να ανταποκριθεί στο φιλόδοξο στόχο που έχει θέσει, για σημαντικό περιορισμό των εκπομπών του διοξειδίου του άνθρακα (CO 2 ), είναι να επιταχύνει την ανάπτυξη των ΑΠΕ. Τα κύρια πλεονεκτήματα των Ανανεώσιμων Πηγών Ενέργειας (ΑΠΕ), είναι τα εξής: Είναι πρακτικά ανεξάντλητες πηγές ενέργειας και συμβάλλουν στη μείωση της εξάρτησης από εξαντλήσιμους συμβατικούς ενεργειακούς πόρους. Είναι εγχώριες πηγές ενέργειας και συνεισφέρουν στην ενίσχυση της ενεργειακής ανεξαρτητοποίησης και της ασφάλειας του ενεργειακού εφοδιασμού σε εθνικό επίπεδο. Είναι διάσπαρτες γεωγραφικά και οδηγούν στην αποκέντρωση του ενεργειακού συστήματος, δίνοντας τη δυνατότητα κάλυψης των ενεργειακών αναγκών σε τοπικό και περιφερειακό επίπεδο, ανακουφίζοντας έτσι τα συστήματα υποδομής και μειώνοντας τις απώλειες από τη μεταφορά ενέργειας. 4

15 Προσφέρουν τη δυνατότητα ορθολογικής αξιοποίησης των ενεργειακών πόρων, καλύπτοντας ένα ευρύ φάσμα των ενεργειακών αναγκών των χρηστών (π.χ. ηλιακή ενέργεια για θερμότητα χαμηλών θερμοκρασιών, αιολική ενέργεια για ηλεκτροπαραγωγή). Έχουν συνήθως χαμηλό λειτουργικό κόστος που δεν επηρεάζεται από τις διακυμάνσεις της διεθνούς οικονομίας και ειδικότερα των τιμών των συμβατικών καυσίμων. Οι εγκαταστάσεις εκμετάλλευσης των ΑΠΕ έχουν σχεδιαστεί για να καλύπτουν τις ανάγκες των χρηστών και σε μικρή κλίμακα εφαρμογών ή σε μεγάλη κλίμακα, αντίστοιχα, έχουν μικρή διάρκεια κατασκευής, επιτρέποντας έτσι τη γρήγορη ανταπόκριση της προσφοράς προς τη ζήτηση ενέργειας. Οι επενδύσεις των ΑΠΕ είναι εντάσεως εργασίας, δημιουργώντας σημαντικό αριθμό νέων θέσεων εργασίας, ιδιαίτερα σε τοπικό επίπεδο. Μπορούν να αποτελέσουν σε πολλές περιπτώσεις πυρήνα για την αναζωογόνηση οικονομικά και κοινωνικά υποβαθμισμένων περιοχών και πόλο για την τοπική ανάπτυξη, με την προώθηση ανάλογων επενδύσεων (π.χ. θερμοκηπιακές καλλιέργειες με τη χρήση γεωθερμικής ενέργειας). Είναι φιλικές προς το περιβάλλον και τον άνθρωπο και η αξιοποίησή τους είναι γενικά αποδεκτή από το κοινό. 1.2 Η ΑΝΑΠΤΥΞΗ ΤΩΝ ΑΠΕ ΣΤΗΝ ΕΛΛΑΔΑ Η πρώτη προσπάθεια ανάπτυξης των ΑΠΕ έγινε με τον Ν. 1559/85, με τον οποίο δόθηκε η δυνατότητα παραγωγής ηλεκτρικής ενέργειας από ΑΠΕ σε ιδιώτες και τους ΟΤΑ (αυτοπαραγωγούς), μέχρι το τριπλάσιο της ισχύος των εγκαταστάσεών τους και την πώληση της περίσσειας στη ΔΕΗ. Η συνεισφορά του νόμου στην ανάπτυξη των ΑΠΕ ήταν μηδαμινή, λόγω της χαμηλής τιμής αγοράς της ενέργειας από την ΔΕΗ αλλά και των πολύπλοκων διαδικασιών αδειοδότησης: Το 1993 λειτουργούσαν ανεμογεννήτριες συνολικής ισχύος 27 MW, από τις οποίες 3 MW ανήκαν σε ιδιώτες, τους ΟΤΑ και τον ΟΤΕ, ενώ οι λοιπές στην ΔΕΗ. 5

16 Σχήμα 1.1 : Κατανάλωση Τελικής Ενέργειας, κατανομή ανά τομέα και ενεργειακή μορφή 1998 Ένα επόμενο βήμα για την αξιοποίηση των ΑΠΕ έγινε με τον Ν.2244/94, με τον οποίο δινόταν η δυνατότητα παραγωγής ηλεκτρικής ενέργειας από ΑΠΕ και σε ιδιώτες και την πώληση της παραγόμενης ενέργειας στη ΔΕΗ και παράλληλα αύξησε τις δυνατότητες αυτοπαραγωγής. Όρισε επίσης σχετικά επαρκείς τιμές αγοράς της πωλούμενης στην ΔΕΗ ενέργειας και δεκαετή διάρκεια συμβάσεων. Παράλληλα θεσπίστηκαν αναπτυξιακά κίνητρα (Επιχειρησιακό Πρόγραμμα Ενέργειας, Αναπτυξιακός Νόμος κ.ά.), τα οποία περιλάμβαναν επιδοτήσεις των δαπανών εγκαταστάσεως ΑΠΕ και Συμπαραγωγής, ώστε παρά τα εμπόδια λόγω των πολύπλοκων διαδικασιών αδειοδότησης, που δεν κατέστη δυνατόν να ξεπεραστούν, να σημειωθεί σημαντική πρόοδος κατά τα τελευταία ιδίως έτη. Στο παρακάτω διάγραμμα παρουσιάζεται το ηλιακό δυναμικό της Ελλάδας, που λόγω των ετήσιων μέσων τιμών του, ευνοεί την εγκατάσταση των ΑΠΕ στον ελλαδικό χώρο. 6

17 Σχήμα 1.2: Ημερήσιες τιμές του ηλιακού δυναμικού στον ελλαδικό χώρο Συμβολή στην ανάπτυξη των ΑΠΕ, αποτέλεσε και η δημιουργία του Κέντρου Ανανεώσιμων Πηγών Ενέργειας-ΚΑΠΕ, το οποίο από το 1989 που ιδρύθηκε μετέχει ενεργά στην όλη προσπάθεια με μελέτες του δυναμικού των ΑΠΕ (αιολικού, ανάπτυξης μικρών υδροηλεκτρικών κ.ά.) καθώς και των Πανεπιστημίων, για την εκτέλεση πάσης φύσεως μετρήσεων και πιστοποιήσεων. Αξιόλογη επίσης υπήρξε η συμβολή της ΔΕΗ με την εγκατάσταση των πρώτων ανεμογεννητριών, κυρίως σε νησιά, και γενικότερα την απόκτηση των πρώτων εμπειριών. Τα κυριότερα από τα εμπόδια μιας μεγαλύτερης ανάπτυξης των ΑΠΕ, ήταν τα ακόλουθα: 1. Οι χρονοβόρες και επίπονες διαδικασίες έκδοσης Αδειών Εγκατάστασης, που κυρίως οφείλονται στην έλλειψη χωροταξικού σχεδιασμού, την μη επαρκή στελέχωση και εκπαίδευση των αρμόδιων περιφερειακών υπηρεσιών και την πολυπλοκότητα και ασάφεια των υφισταμένων ρυθμίσεων. 2. Την ανάγκη εκτεταμένων επεκτάσεων και ενισχύσεων των δικτύων της ΔΕΗ σε περιοχές με υψηλό αιολικό δυναμικό (π.χ. Ν. Εύβοια, Λακωνία) 3. Την έλλειψη κτηματολογίου και γενικότερου σχεδιασμού της χρήσης γης, η οποία σε συνδυασμό με την ελλιπή ενημέρωση των πολιτών για τα πλεονεκτήματα των ΑΠΕ, και 7

18 ακόμη τη μη απ αρχής πρόβλεψη κάποιου αντισταθμίσματος που θα ικανοποιούσε ανάγκες των τοπικών κοινωνιών, οδήγησαν σε αντιδράσεις των κατοίκων. 4. Την αδυναμία πλήρους αξιοποίησης του υψηλού αιολικού δυναμικού των νησιών, λόγω τεχνικών προβλημάτων συνεργασίας με τους υφιστάμενους Ντιζελοηλεκτρικούς σταθμούς. Σχήμα 1.3: Αθροιστικά εγκαθιστάμενη ισχύς μονάδων ΑΠΕ3 1.3 ΤΟ ΦΑΙΝΟΜΕΝΟ ΤΟΥ ΘΕΡΜΟΚΗΠΙΟΥ Το φαινόμενο του θερμοκηπίου πρόκειται για ένα φυσικό φαινόμενο. Αυτό που αποτελεί απειλή για το πλανήτη μας είναι η υπερβολική εμφάνιση του φαινομένου, η οποία οφείλεται στις ανθρωπογενείς εκπομπές ρύπων. Έχει εξακριβωθεί ότι ορισμένα αέρια της ατμόσφαιρας (γνωστά και ως αέρια θερμοκηπίου), επιτρέπουν την διέλευση της ηλιακής ακτινοβολίας προς τη Γη, ενώ αντίθετα απορροφούν και επανεκπέμπουν προς το έδαφος ένα μέρος της υπέρυθρης ακτινοβολίας που εκπέμπεται από την επιφάνεια της. Αυτή η παγίδευση της υπέρυθρης ακτινοβολίας (η οποία διαφορετικά θα απελευθερωνόταν στο Διάστημα) από τα συγκεκριμένα αέρια ονομάζεται «φαινόμενο του θερμοκηπίου». Πρόκειται για ένα γεωφυσικό φαινόμενο ουσιώδες και απαραίτητο για την ύπαρξη, τη διατήρηση και της εξέλιξη της ζωής στον πλανήτη. Χωρίς αυτόν τον μηχανισμό η μέση θερμοκρασία της Γης 8

19 θα ήταν περίπου κατά 35 C χαμηλότερη, δηλαδή περίπου -2 C αντί για +15 C που είναι σήμερα, και η ζωή θα ήταν αδύνατη, τουλάχιστον στη μορφή που τη γνωρίζουμε. Σχήμα 1.4: Το φαινόμενο του θερμοκηπίου Κατά συνέπεια, το εν λόγω φαινόμενο, στις φυσικές του διαστάσεις, δεν είναι επιβλαβές, αντίθετα έχει ζωτική σημασία για τη διατήρηση της μέσης θερμοκρασίας του πλανήτη στους 15 C περίπου. Το ανησυχητικό είναι η ενίσχυση του ως αποτέλεσμα της ατμοσφαιρικής ρύπανσης. Οι ανθρωπογενείς εκπομπές θερμοκηπικών αερίων αυξάνουν τη δυνατότητα της ατμόσφαιρας να παγιδεύσει την υπέρυθρη ακτινοβολία της Γης. Η αύξηση αυτή οδηγεί στην ενίσχυση του φαινομένου του θερμοκηπίου και συνεπώς στην άνοδο της θερμοκρασίας του πλανήτη. Τα αέρια εκείνα των οποίων οι συγκεντρώσεις στην ατμόσφαιρα αυξάνονται σημαντικά λόγω της ανθρώπινης παρέμβασης καθώς και ο βαθμός συνεισφοράς τους αναφέρονται στις παρακάτω παραγράφους. Εμάς μας ενδιαφέρουν οι εκπομπές ρύπων που προκαλούνται από τη παραγωγή ηλεκτρικής ενέργειας και τη χρήση της, άμεσα ή έμμεσα, δηλαδή από τον ενεργειακό τομέα. 9

20 1

21 ΚΕΦΑΛΑΙΟ 2 ΤΟ ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ 2.1 ΓΕΝΙΚΑ Τα φωτοβολταϊκά στοιχεία έχουν τις ρίζες τους στα διαστημικά προγράμματα και χρησιμοποιήθηκαν για πρώτη φορά το 196 σε δορυφόρους. Ακόμα εκπληρώνουν αυτό το ρόλο. Ο άλλος πρώιμος τομέας που οδήγησε στην επέκταση της αγοράς ήταν εφαρμογές για πολύ μικρές ποσότητες ισχύος όπως σε τηλεπικοινωνίες. Παρόλα αυτά, οι πολιτικές υποστήριξης σε αρκετές χώρες έχουν παίξει σημαντικό ρόλο στην επέκταση των αγορών για φωτοβολταϊκά στοιχεία και για δικτυακές και έξω-δικτυακές ηλεκτρικές παροχές στα τελευταία χρόνια. Σχήμα 2.1: Εγκατεστημένη Ισχύς φωτοβολταϊκών παγκοσμίως από 1995 έως 25 Η ανάπτυξη της αγοράς σε παραδόσεις φωτοβολταϊκών στοιχείων φτάνουν κατά μέσο όρο το 15% από τα μέσα του 198 και στα τελευταία 5 χρόνια αυτό το ποσοστό αυξήθηκε σε περίπου 3% το χρόνο με την ανάπτυξη να προσεγγίζει το 4% τα τελευταία 2 χρόνια. Αυτή η ανάπτυξη έχει συσχετιστεί με την εξέλιξη των προοδευτικά μεγαλύτερων αποκλειστικά κατασκευαστικών εργοστασίων. 11

22 Τα φωτοβολταϊκά στοιχεία έχουν μετακινηθεί από τα εξειδικευμένα εργαστήρια στα εξειδικευμένα εργοστάσια. Αυτό έχει επιφέρει οικονομία στη κλίμακα και στην αύξηση της αυτοματοποίησης και την τυποποίηση της κατασκευαστικής διαδικασίας. Το κόστος έχει μειωθεί από αρκετές εκατοντάδες δολλάρια ανά peak Watt (Wp) στις αρχές του 7 σε λιγότερο από 6 σε είκοσι χρόνια (Anderson,1998), ενώ τώρα πλησιάζει το 1$. Επιπλέον η επάρκεια μετατροπής των καλύτερων εμπορικά διαθέσιμων μοντέλων έχει αυξηθεί σταθερά από κάτω του 1% το 198, σε περίπου 14%-16% σήμερα. Σχήμα 2.2: Κόστη και αποδόσεις μετατροπής τυπικών φωτοβολταϊκών στοιχείων Με την εξέλιξη της τεχνολογίας, μεγάλα ποσά ηλιακής ενέργειας μπορούν να μετατραπούν σε ηλεκτρική με την χρησιμοποίηση κατασκευών που αποτελούνται από φωτοβολταϊκά στοιχεία. Όταν το ηλιακό φως προσπέσει στα φωτοβολταϊκά στοιχεία ελευθερώνει ηλεκτρικά φορτία στο εσωτερικό τους τα οποία με την ενέργεια που παίρνουν κινούνται ελεύθερα και μπορούν να περάσουν από έναν καταναλωτή όπως είναι μια λάμπα ή ένας κινητήρας και να τον θέσουν σε λειτουργία. Τα πρώτα φωτοβολταϊκά στοιχεία αναπτύχθηκαν από τη δεκαετία του πενήντα για να τροφοδοτήσουν τους διαστημικούς δορυφόρους με την απαραίτητη ηλεκτρική ενέργεια που χρειάζονταν για την λειτουργία των συσκευών τους. Από τότε μέχρι σήμερα τα φωτοβολταϊκά στοιχεία βρήκαν πολλές επίγειες εφαρμογές σε διάφορους τομείς της ανθρώπινης δραστηριότητας για δύο βασικούς λόγους. Ο ένας είναι η ευκολία με την οποία παράγουν την ηλεκτρική ενέργεια και ο άλλος τα διάφορα δισεπίλυτα 12

23 προβλήματα που παρουσιάζει ο κλασσικός τρόπος παραγωγής και διανομής της ηλεκτρικής ενέργειας. Τα βασικά χαρακτηριστικά των Φ/B συστημάτων, που τα διακρίνουν από τις άλλες μορφές ΑΠΕ είναι: Απευθείας παραγωγή ηλεκτρικής ενέργειας, ακόμη και σε πολύ μικρή κλίμακα, π.χ. σε επίπεδο μερικών δεκάδων Watt. Είναι εύχρηστα. Σε μικρά συστήματα μπορούν να εγκατασταθούν από τους ίδιους τους χρήστες. Μπορούν να εγκατασταθούν μέσα στις πόλεις και δεν προσβάλλουν αισθητικά το περιβάλλον. Μπορούν να συνδυαστούν με άλλες πηγές ενέργειας (υβριδικά συστήματα). Μπορούν να επεκταθούν ανά πάσα στιγμή για να αντιμετωπίσουν τις αυξημένες ανάγκες των χρηστών. Έχουν αθόρυβη λειτουργία και μηδενικές εκπομπές ρύπων. Οι απαιτήσεις συντήρησης είναι σχεδόν μηδενικές. Έχουν μεγάλη διάρκεια ζωής και αξιοπιστία. Υψηλό κόστος επένδυσης. Τα πλεονεκτήματα των Φ/Β συστημάτων Υψηλή Αξιοπιστία μεγάλη διάρκεια ζωής: Η αρχική τους κατασκευή ήταν για χρήση στο διάστημα όπου οι επισκευές είναι δαπανηρές έως ακατόρθωτες. Οι φωτοβολταϊκοί συλλέκτες σήμερα τροφοδοτούν με ρεύμα σχεδόν όλους τους δορυφόρους. Μηδενικό κόστος λειτουργίας: Χρησιμοποιούν το φως του ήλιου για να παράγουν ηλεκτρισμό. Δεν καταναλώνουν πρώτες ύλες. Δεν απαιτείται συντήρηση: Τα Φωτοβολταϊκά συστήματα δεν απαιτούν κινούμενα μέρη έτσι δεν χρειάζονται καθόλου συντήρηση κατά την λειτουργία τους. Δεν μολύνουν το περιβάλλον: Δεν παράγουν υποπροϊόντα ούτε χρειάζονται καύσιμα για να λειτουργήσουν. Επίσης δεν προκαλούν ηχορύπανση αφού η λειτουργία τους είναι εντελώς αθόρυβη. Επίσης κατασκευάζονται από ανακυκλώσιμα υλικά (γυαλί, αλουμίνιο, πυρίτιο) συνεπώς είναι περιβαλλοντικά καθαρά. Ευελιξία: Τα φωτοβολταϊκά συστήματα τοποθετούνται ανάλογα με τις απαιτήσεις σε ενέργεια. Σε περίπτωση που οι ανάγκες αυξηθούν πολύ εύκολα το σύστημα αναβαθμίζεται για να καλύψει ενεργειακά την νέα ζήτηση. 13

24 Αυτονομία: Παρέχουν πλήρη ενεργειακή αυτονομία. Έτσι μπορούν να τοποθετηθούν σε δύσβατες περιοχές, σε πλωτές εξέδρες και γενικά όπου το δίκτυο της ΔΕΗ είναι οικονομικά ασύμφορο να φτάσει. Η ενεργειακή ανεξαρτησία του χρήστη, όπου και να βρίσκεται αυτός είναι το μεγαλύτερο πλεονέκτημα των Φ/B συστημάτων. Το κόστος των Φ/B πλαισίων είναι σήμερα το μεγαλύτερο μειονέκτημα των Φ/Β συστημάτων. Όμως πρέπει να τονιστεί ότι υπάρχουν σήμερα αρκετοί χρήστες για τους οποίους το Φ/B σύστημα είναι η πλέον ενδεδειγμένη οικονομική λύση. Πρέπει να τονιστεί ότι η Φ/B τεχνολογία, όπως άλλωστε και οι περισσότερες τεχνολογίες Ανανεώσιμων Πηγών Ενέργειας, παρουσιάζει ιδιαιτερότητες που κάνουν δύσκολη τη σύγκριση της με τις συμβατικές τεχνολογίες, για παράδειγμα δεν υπάρχει σαφής τρόπος αποτίμησης του περιβαλλοντικού κόστους των συμβατικών τεχνολογιών. Το κόστος της ενέργειας από Φ/B συστήματα εξαρτάται πάρα πολύ από το κόστος του χρήματος. 2.2 ΗΜΙΑΓΩΓΟΙ Τα φωτοβολταϊκά στοιχεία όπως αναφέρθηκε προηγουμένως κατασκευάζονται κυρίως από ημιαγωγούς που είναι στοιχεία τετρασθενή με τετραεδρική κρυσταλλική δομή όπως το πυρίτιο (Si). Στα στοιχεία αυτά δεν υπάρχουν ελεύθεροι φορείς ηλεκτρικού ρεύματος και δε διαθέτουν ηλεκτρική αγωγιμότητα στην υποθετική περίπτωση που ο ημιαγωγός βρίσκεται στη θεμελιώδη ενεργειακή κατάσταση, δηλαδή είναι εντελώς υποβαθμισμένος ενεργειακά. Όταν όμως απορροφήσουν κάποια αξιόλογη ενέργεια, π.χ. με τη μορφή θερμότητας ή ακτινοβολίας, πραγματοποιείται μια ριζική μεταβολή. Σχήμα 2.3: Κρυσταλλικό πλέγμα πυριτίου με άτομα πρόσμιξης. 14

25 Η ενέργεια που παρέχεται στο σώμα και κατανέμεται στα άτομά του, προκαλεί την ελευθέρωση πολλών ηλεκτρονίων από τους δεσμούς. Τα ηλεκτρόνια αυτά απομακρύνονται από την περιοχή του δεσμού τους στο κρυσταλλικό πλέγμα, χάρη στην κινητική ενέργεια που απόκτησαν και γίνονται ευκίνητοι φορείς του ηλεκτρισμού, δίνοντας στον ημιαγωγό μια αξιόλογη ηλεκτρική αγωγιμότητα. Είναι φανερό ότι το ενεργειακό διάκενο ανάμεσα στη ζώνη σθένους και στη ζώνη αγωγιμότητας εκφράζει την ελάχιστη απαιτούμενη ενέργεια για τη διέγερση ενός ηλεκτρονίου σθένους, ώστε να μετατραπεί σε ελεύθερο ηλεκτρόνιο, με ταυτόχρονη δημιουργία μιας οπής. Αν στα ηλεκτρόνια των δεσμών του κρυστάλλου προσφερθεί μια ποσότητα ενέργειας π.χ. αν δεχθούν μια δέσμη ακτινοβολίας που αποτελείται από φωτόνια με ενέργεια hv μικρότερη από το ενεργειακό διάκενο (Εg>hν), δε μπορούν να την απορροφήσουν και μένουν στη ζώνη σθένους. Αν όμως τα ενεργειακά κβάντα που προσφέρονται είναι ίσα ή μεγαλύτερα από το ενεργειακό διάκενο του ημιαγωγού (Εg<hv), τότε κάθε κβάντο μπορεί να απορροφηθεί από ένα ηλεκτρόνιο σθένους και να διεγερθεί προς τη ζώνη αγωγιμότητας, αφήνοντας στη ζώνη σθένους μία οπή. Ο παραπάνω μηχανισμός διέγερσης εξαρτάται και από το αν ο ημιαγωγός είναι άμεσος ή έμμεσος. Αν τώρα στον τετρασθενή ημιαγωγό Si, γίνει πρόσμιξη με κάποιο πεντασθενές στοιχείο (φώσφορος, Ρ) ή με κάποιο τρισθενές στοιχείο (βόριο, Β), τότε παράγεται ημιαγωγός προσμίξεως τύπου-n και τύπου-p αντίστοιχα. Τέσσερα από τα πέντε ηλεκτρόνια σθένους κάθε ατόμου Ρ, θα ενωθούν με ηλεκτρόνια σθένους των γειτονικών ατόμων Si και θα σχηματίσουν ομοιοπολικούς δεσμούς. Το πέμπτο ηλεκτρόνιο (φορέας πλειονότητας) θα συγκρατείται πολύ χαλαρά από το θετικό πυρηνικό φορτίο του Ρ και με λίγη ενέργεια μπορεί να αποσπασθεί και να κινηθεί σαν ελεύθερο ηλεκτρόνιο, αφήνοντας ένα ανιόν (Ρ+) που μένει ακίνητο στο πλέγμα. Δηλαδή το πεντασθενές άτομο συμπεριφέρεται στο πλέγμα σαν δότης ηλεκτρονίων (τύπος-η ημιαγωγός). Αντίστοιχα, με την πρόσμιξη τρισθενών ατόμων Β σε πλεγματικές θέσεις του Si, δημιουργούνται κενές θέσεις ηλεκτρονίων στους δεσμούς. Με την απορρόφηση ενός μικρού ποσού ενέργειας, ένα ηλεκτρόνιο από ένα γειτονικό πλήρη δεσμό μπορεί να καλύψει την κενή θέση, αφήνοντας παράλληλα στην προηγούμενη θέση του μια οπή και μετατρέποντας το άτομο Β σε κατιόν (Β-). Δηλαδή το τρισθενές άτομο συμπεριφέρεται σαν αποδέκτης ηλεκτρονίων (φορείς μειονότητας) ή δότης οπών (τύπος-p ημιαγωγός). 15

26 Όταν σε μια περιοχή του ημιαγωγού υπάρχει δημιουργία ή έκχυση φορέων σε περίσσεια, αυτοί διαχέονται προς τις άλλες περιοχές του ημιαγωγού όπου η συγκέντρωση των αντίστοιχων φορέων είναι μικρότερη. Επίσης όταν ένα τεμάχιο ημιαγωγού τύπου p έλθει σε στενή επαφή με ένα τεμάχιο ημιαγωγού τύπου n, δηλαδή σχηματιστεί μια ένωση p-n (διάταξη διόδου ημιαγωγού), τότε ένα μέρος από τις οπές του τεμαχίου τύπου p διαχέεται προς το τεμάχιο τύπου n όπου οι οπές είναι λιγότερες και συγχρόνως ένα μέρος από τα ελεύθερα ηλεκτρόνια του τεμαχίου τύπου n διαχέεται προς το τεμάχιο τύπου p όπου τα ελεύθερα ηλεκτρόνια είναι πολύ λιγότερα. Η ανάμιξη αυτή των φορέων και η αύξηση της συγκέντρωσης των φορέων μειονότητας στις περιοχές κοντά στη διαχωριστική επιφάνεια (περιοχή αραίωσης) των τεμαχίων τύπου p και n, ανατρέπουν την ισορροπία που υπήρχε πριν. Η αποκατάσταση των συνθηκών ισορροπίας γίνεται με επανασυνδέσεις των φορέων, μέχρι οι συγκεντρώσεις τους να πάρουν τιμές που να ικανοποιούν τον νόμο δράσης των μαζών. Η συγκέντρωση των κατιόντων στα οποία μετατράπηκαν οι αποδέκτες στο τμήμα τύπου p και n, παραμένουν αμετάβλητες αφού τα ιόντα, όπως συνήθως όλα τα άτομα στα στερεά, μένουν ακίνητα στο σώμα. Έτσι το υλικό χάνει τοπικά την ηλεκτρική ουδετερότητα και οι δύο πλευρές της ένωσης p-n φορτίζονται με αντίθετα ηλεκτρικά φορτία. Δημιουργείται λοιπόν μια διαφορά δυναμικού, που η τιμή της είναι σχετικά μικρή, αλλά το ενσωματωμένο αυτό ηλεκτροστατικό πεδίο εμποδίζει την παραπέρα διάχυση των φορέων πλειονότητας προς το απέναντι τμήμα της ένωσης. Το αποτέλεσμα είναι ότι η δίοδος που περιέχει την ένωση p- n, παρουσιάζει εντελώς διαφορετική συμπεριφορά στη ροή του ηλεκτρικού ρεύματος, ανάλογα με την φορά του. Στο Σχήμα 2.4 φαίνεται η υλοποίηση διόδου σε ένα κρυσταλλικό ηλιακό κύτταρο πυριτίου. Σχήμα 2.4 : Σχηματική διάταξη ενός Φ/Β στοιχείου. Ηλιακή ακτινοβολία (φωτόνια) προσπίπτει στην εμπρόσθια επιφάνεια της δι-επαφής p-n όπως δείχνει το σχήμα. Το πάχος του στοιχείου μερικά μm. 16

27 2.3 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ Είναι γνωστό ότι τα ηλιακά στοιχεία είναι δίοδοι ημιαγωγού με τη μορφή ενός δίσκου, (δηλαδή η ένωση p-n εκτείνεται σε όλο το πλάτος του δίσκου), που δέχεται την ηλιακή ακτινοβολία. Κάθε φωτόνιο της ακτινοβολίας με ενέργεια ίση ή μεγαλύτερη από το ενεργειακό χάσμα του ημιαγωγού, έχει τη δυνατότητα να απορροφηθεί σε ένα χημικό δεσμό και να ελευθερώσει ένα ηλεκτρόνιο. Δημιουργείται έτσι, όσο διαρκεί η ακτινοβολία, μία περίσσεια από ζεύγη φορέων (ελεύθερα ηλεκτρόνια και οπές), πέρα από τις συγκεντρώσεις που αντιστοιχούν στις συνθήκες ισορροπίας. Οι φορείς αυτοί, καθώς κυκλοφορούν στο στερεό (και εφόσον δεν επανασυνδεθούν με φορείς αντιθέτου πρόσημου), μπορεί να βρεθούν στην περιοχή της ένωσης p-n οπότε θα δεχθούν την επίδραση του ενσωματωμένου ηλεκτροστατικού πεδίου (Σχήμα 2.5). Σχήμα 2.5: Το φωτοβολταϊκό Φαινόμενο Τα φωτόνια της ακτινοβολίας, που δέχεται το στοιχείο στην εμπρός του όψη, τύπου n στο παράδειγμα του σχήματος, παράγουν ζεύγη φορέων (ελεύθερα ηλεκτρόνια και οπές). Ένα μέρος από τους φορείς αυτούς διαχωρίζεται με την επίδραση του ενσωματωμένου πεδίου της διόδου και εκτρέπεται προς τα εμπρός (τα ελεύθερα ηλεκτρόνια, e-) ή προς τα πίσω (οι οπές, h+), δημιουργώντας μια διαφορά δυναμικού ανάμεσα στις δυο όψεις του στοιχείου. Οι υπόλοιποι φορείς επανασυνδέονται και εξαφανίζονται. Επίσης ένα μέρος της ακτινοβολίας ανακλάται στην επιφάνεια του στοιχείου, ενώ ένα άλλος μέρος της διέρχεται από το στοιχείο χωρίς να απορροφηθεί, μέχρι να συναντήσει το πίσω ηλεκτρόδιο. 17

28 Έτσι, τα ελεύθερα ηλεκτρόνια εκτρέπονται προς το τμήμα τύπου Ω και οι οπές εκτρέπονται προς το τμήμα τύπου p, με αποτέλεσμα να δημιουργηθεί μια διαφορά δυναμικού ανάμεσα στους ακροδέκτες των δύο τμημάτων της διόδου. Δηλαδή, η διάταξη αποτελεί μία πηγή ηλεκτρικού ρεύματος που διατηρείται όσο διαρκεί η πρόσπτωση του ηλιακού φωτός πάνω στην επιφάνεια του στοιχείου. Η εκδήλωση της διαφοράς δυναμικού ανάμεσα στις δύο όψεις του φωτιζόμενου δίσκου, η οποία αντιστοιχεί σε ορθή πόλωση της διόδου, ονομάζεται φωτοβολταϊκό φαινόμενο. Η αποδοτική λειτουργία των ηλιακών φωτοβολταϊκών στοιχείων παραγωγής ηλεκτρικής ενέργειας στηρίζεται στην πρακτική εκμετάλλευση του παραπάνω φαινομένου. Εκτός από τις προσμίξεις των τμημάτων p και n μιας ομοένωσης, δηλαδή υλικού από τον ίδιο βασικά ημιαγωγό, το ενσωματωμένο ηλεκτροστατικό πεδίο, που είναι απαραίτητη προϋπόθεση για την πραγματοποίηση ενός ηλιακού στοιχείου, αλλά και κάθε φωτοβολταϊκής διάταξης, μπορεί να προέρχεται επίσης και από διόδους άλλων. π.χ. από διόδους Σότκυ που σχηματίζονται όταν έρθουν σε επαφή ένας ημιαγωγός με ένα μέταλλο. 2.4 Η ΑΠΟΡΡΟΦΗΣΗ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΤΑ Φ/Β ΠΛΑΙΣΙΑ Στα φωτοβολταϊκά στοιχεία δεν είναι δυνατή η μετατροπή σε ηλεκτρική ενέργεια του συνόλου της ηλιακής ακτινοβολίας που δέχονται στην επιφάνειά τους. Ένα μέρος από την ακτινοβολία ανακλάται πάνω στην επιφάνεια του στοιχείου και διαχέεται πάλι προς το περιβάλλον. Στη συνέχεια, από την ακτινοβολία που διεισδύει στον ημιαγωγό, προφανώς δεν μπορεί να απορροφηθεί το μέρος που αποτελείται από φωτόνια με ενέργεια μικρότερη από το ενεργειακό χάσμα του ημιαγωγού. Για τα φωτόνια αυτά, ο ημιαγωγός συμπεριφέρεται σαν διαφανές σώμα. Έτσι, η αντίστοιχη ακτινοβολία διαπερνά άθικτη το ημιαγώγιμο υλικό του στοιχείου και απορροφάται τελικά στο μεταλλικό ηλεκτρόδιο που καλύπτει την πίσω όψη του, με αποτέλεσμα να το θερμαίνει. Αλλά και από τα φωτόνια που απορροφά ο ημιαγωγός, μόνο με το μέρος εκείνο της ενέργειάς τους που ισούται με το ενεργειακό χάσμα συμβάλλει, όπως είδαμε, στην εκδήλωση του φωτοβολταϊκού φαινομένου. Το υπόλοιπο μεταφέρεται, σαν κινητική ενέργεια, στο ηλεκτρόνιο που ελευθερώθηκε από τον δεσμό, και τελικά μετατρέπεται επίσης σε θερμότητα. Όπως θα αναλυθεί όμως παρακάτω, η αύξηση της θερμοκρασίας των φωτοβολταϊκών στοιχείων επιδρά αρνητικά στην απόδοσή τους. 18

29 Η ενέργεια ενός φωτονίου Ε συνδέεται με τη συχνότητα της ακτινοβολίας ν και με το μήκος κύματος λ με τις σχέσεις : h hc/ όπου h είναι η σταθερά δράσης του plank (h=6,3xι -34 Js) και c είναι η ταχύτητα του φωτός (c = m/s). Επομένως, αν το ενεργειακό χάσμα είναι σε μονάδες ηλεκτρονιοβόλτ (ev) και το μήκος κύματος σε μικρόμετρα (μm), τότε το μέγιστο χρησιμοποιήσιμο μήκος κύματος ακτινοβολίας σε ένα ημιαγωγό, ενεργειακού χάσματος Ε g, θα είναι : 1,238 / g g θεωρώντας τώρα ότι στην επιφάνεια ενός ημιαγωγού διεισδύει μια, μονοχρωματική δέσμη ακτινοβολίας από όμοια φωτόνια ενέργειας hv, που έχει ροή (η ένταση) ίση με Η μονάδες ισχύος ανά μονάδα επιφανείας. Η ροή των φωτονίων (Φ), δηλαδή το πλήθος των φωτονίων ανά μονάδα επιφανείας και χρόνου, θα είναι : /hv /hc Βλέπουμε όπως άλλωστε είναι αυτονόητο ότι, για σταθερή ένταση Η ροή Φ είναι αντίστροφα ανάλογα με την ενέργεια των φωτονίων ή, που είναι το ίδιο, αυξάνει γραμμικά με το λ. Ας συμβολίσουμε, στη συνέχεια με Φ ο την αρχική τιμή της ροής των φωτονίων στην επιφάνεια ενός ημιαγωγού, με x την απόσταση που διανύει η ακτινοβολία μέσα στον ημιαγωγό, αρχίζοντας από την επιφάνειά του, και με Φ(x) την τιμή της ροής των φωτονίων (δηλαδή το πλήθος των φωτονίων που δεν έχουν ακόμα απορροφηθεί) στο βάθος αυτό. Η ευκολία με την οποία πραγματοποιείτε η απορρόφηση των φωτονίων, που είναι μια πολύ σημαντική ιδιότητα για τη χρησιμοποίηση του ημιαγωγού ως υλικού κατασκευής ενός φωτοβολταϊκού στοιχείου, θα δίνεται από το ρυθμό της μεταβολής της Φ με την αύξηση της απόστασης που διανύει η ακτινοβολία. Ο ρυθμός αυτός έχει αρνητική τιμή, αφού η Φ μειώνεται με την αύξηση του x, και είναι προφανώς ανάλογος με τη συγκεκριμένη τιμή της Φ στο βάθος x, δηλαδή με τη Φ(x). Θα ισχύει επομένως η σχέση : d /dx (x) 19

30 και η σταθερά της αναλογίας α, που δίνεται σε αντίστροφες μονάδες μήκους, ονομάζεται συντελεστής απορρόφησης της υπόψη ακτινοβολίας. Δοθέντος ότι για x= η Φ(x) παίρνει την τιμή Φ ο, η λύση της παραπάνω διαφορικής εξίσωσης είναι : (x) exp ( x) που ονομάζεται νόμος του ΒΕΕR. Στη συνέχεια βρίσκουμε εύκολα ότι : d /dx exp ( x) δηλαδή ότι ο ρυθμός της απορρόφησης των φωτονίων, επομένως και της δημιουργίας των φορέων από την ακτινοβολία που δέχεται ο ημιαγωγός, είναι μεγαλύτερος κοντά στην επιφάνειά του και εξασθενίζει με την απόσταση από αυτή. Σχήμα 2.6: Η μεταβολή του συντελεστή απορρόφησης (α) σε συνάρτηση με το μήκος κύματος (λ) ή την ενέργεια των φωτονίων (hv) της ακτινοβολίας, για τους κυριότερους ημιαγωγούς των φωτοβολταϊκών διατάξεων Όπως δείχνεται και στο σχήμα 2.6, η τιμή του συντελεστή απορρόφησης μεταβάλλεται σε συνάρτηση με το μήκος κύματος της ακτινοβολίας. Συγκεκριμένα, μηδενίζεται όταν το λ 2

31 υπερβαίνει το λ g του ημιαγωγού, αφού για αυτά τα μήκη κύματος δεν πραγματοποιείται καμιά απορρόφηση φωτονίων. Αντίθετα, παίρνει μεγάλες τιμές προς την πλευρά των μικρών μηκών κύματος που σημαίνει ότι η απορρόφηση πρακτικά όλων των αντίστοιχων φωτονίων γίνεται πολύ κοντά στην επιφάνεια του ημιαγωγού. 2.5 Η ΔΗΜΙΟΥΡΓΙΑ ΤΟΥ ΦΩΤΟΡΕΥΜΑΤΟΣ Όταν ένα φωτοβολταϊκό στοιχείο δέχεται μια κατάλληλη ακτινοβολία, διεγείρεται παράγοντας ηλεκτρικό ρεύμα, το φωτορεύμα Ι Φ, που η τιμή του θα είναι ανάλογη προς τα φωτόνια που απορροφά το στοιχείο. π.χ. ας υποθέσουμε ότι έχουν εξασφαλιστεί οι δύο βασικές προϋποθέσεις για ένα καλό φωτοβολταϊκό στοιχείο, δηλαδή η ένωση p-n να βρίσκεται σε κατάλληλη απόσταση από την όψη του στοιχείου και η μέση διάρκεια ζωής των φορέων μειονότητας στον ημιαγωγό, από τον οποίο είναι κατασκευασμένο το στοιχείο, να είναι αρκετά μεγάλο. Τότε, για την πυκνότητα του φωτορεύματος, ισχύει ικανοποιητικά η σχέση : eg L L n p όπου e είναι το στοιχειώδες ηλεκτρικό φορτίο, g είναι ο ρυθμός δημιουργίας ζευγών φορέων από τα φωτόνια της ακτινοβολίας (πλήθος ζευγών ηλεκτρονίων-οπών ανά μονάδα χρόνου και μονάδα όγκου του ημιαγωγού), και L n, L p είναι τα μέσα μήκη διάχυσης των ηλεκτρονίων και των οπών, αντίστοιχα. Ένα χρήσιμο μέγεθος για τον υπολογισμό του φωτορεύματος είναι η φασματική απόκριση S (ή απόδοση συλλογής ή κβαντική απόδοση), που ορίζεται ως το πλήθος των φορέων που συλλέγονται στα ηλεκτρόδια του φωτοβολταϊκού στοιχείου, σε σχέση με τη φωτονική ροή Φ, δηλαδή με το πλήθος των φωτονίων της ακτινοβολίας που δέχεται το στοιχείο ανά μονάδα επιφάνειας και χρόνου. Για ακτινοβολία μήκους κύματος λ, η φασματική απόκριση S(λ) θα είναι : S I /e 21

32 όπου Φ(λ) είναι το πλήθος των φωτονίων με ενέργεια που αντιστοιχεί σε μήκος κύματος από λ μέχρι λ+dλ, και επομένως το συνολικό φωτορεύμα του στοιχείου, όταν δέχεται πολυχρωματική ακτινοβολία, θα είναι : g I e S( ) ( ) d Η τιμή της φασματικής απόκρισης, και συνεπώς του φωτορεύματος ενός φωτοβολταϊκού στοιχείου, εξαρτάται από πολλούς κατασκευαστικούς παράγοντες, όπως ο συντελεστής ανάκλασης στην επιφάνεια του στοιχείου, ο συντελεστής απορρόφησης και το πάχος του ημιαγωγού, το πλήθος των επανασυνδέσεων των φορέων κλπ. Στο σχήμα 2.7 δείχνεται η μεταβολή της φασματικής απόκρισης ενός φωτοβολταϊκού στοιχείου του εμπορίου σε συνάρτηση με την ενέργεια των φωτονίων της ακτινοβολίας που δέχεται. Σχήμα 2.7: Η μεταβολή της φασματικής απόκρισης S(ν) σε συνάρτηση με την ενέργεια των φωτονίων της ακτινοβολίας, στις 3 περιοχές ενός φωτοβολταϊκού ηλιακού στοιχείου πυριτίου Όταν το ποσοστό της επιφάνεια του στοιχείου δεν είναι αμελητέο γράφεται : g I e S( )[1 R( )] ( ) d όπου R(λ) είναι ο δείκτης ανάκλασης για την ακτινοβολία μήκους κύματος λ. 22

33 2.6 ΤΑ ΗΛΕΚΤΡΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΣΤΟΙΧΕΙΩΝ Για να προχωρήσουμε σε μια πρώτη εκτίμηση των ηλεκτρικών χαρακτηριστικών και της λειτουργίας ενός φωτοβολταϊκού στοιχείου, μπορούμε να το θεωρήσουμε ότι αποτελεί μια πηγή ρεύματος που ελέγχεται από μία δίοδο, και ότι περιγράφεται από το πολύ απλοποιημένο διάγραμμα του σχήματος 2.8. Σχήμα 2.8. Απλοποιημένο ισοδύναμο ηλεκτρικό κύκλωμα ενός φωτοβολταϊκού στοιχείου Σε συνθήκες ανοικτού κυκλώματος, θα αποκατασταθεί μια ισορροπία όταν η τάση, που θα αναπτυχθεί ανάμεσα στις δύο όψεις του στοιχείου, θα προκαλεί ένα αντίθετο ρεύμα που θα αντισταθμίζει το φωτορεύμα. Δηλαδή, σύμφωνα με αυτά που αναφέρθηκαν παραπάνω, θα ισχύει η σχέση : exp ev / kt 1 από την οποία βρίσκουμε ότι, η τιμή τάσης ανοιχτού κυκλώματος του στοιχείου V oc (από την αγγλική έκφραση open circuit Voltage ) θα είναι : Voc kt/e ln / o 1 Κατά τη λειτουργία των φωτοβολταϊκών στοιχείων, η τιμή του Ι Φ είναι πολύ μεγαλύτερη από το Ι ο και επομένως η παραπάνω σχέση μπορεί να απλοποιηθεί στη : Voc kt/e ln / o που δείχνει τη λογαριθμική μεταβολή της τάσης ανοιχτού κυκλώματος σε συνάρτηση με το φωτορεύμα, δηλαδή με την ένταση της ακτινοβολίας που δέχεται το φωτοβολταϊκό στοιχείο. 23

34 Από τις σχέσεις για το I o που αναφέρθηκαν μπορούμε να βρούμε την εξάρτηση της V oc από τις διάφορες ιδιότητες του ημιαγωγού, όπως το ενεργειακό χάσμα Ε g, η ενδογενής συγκέντρωση των φορέων n i, οι συγκεντρώσεις των προσμίξεων Ν Α και Ν D κλπ. Στην άλλη ακραία περίπτωση, δηλαδή σε συνθήκες βραχυκύκλωσης ανάμεσα στις δύο όψης του στοιχείου το ρεύμα Ι SC (short-circuit current) θα ισούται με το παραγόμενο φωτορεύμα : Isc I Όταν όμως το κύκλωμα του φωτοβολταϊκού στοιχείου κλείσει διαμέσου μιας εξωτερικής αντίστασης RL (από την αγγλική έκφραση Load resistance), το ρεύμα θα πάρει μια μικρότερη τιμή I L που βρίσκεται με την λύση της εξίσωσης : l I o exp eilr L / KT 1 Προφανώς θα υπάρχει κάποια τιμή της αντίστασης (δηλαδή του φορτίου του κυκλώματος) για την οποία η ισχύς που παράγει το φωτοβολταϊκό στοιχείο θα γίνεται μέγιστη. Στις συνθήκες αυτές, θα αντιστοιχεί μια βέλτιστη τάση V m, που δίνεται από την λύση της εξίσωσης : / 1 1 ev / k exp ev / / kt m m 2.7 Ο ΣΥΝΤΕΛΕΣΤΗΣ ΠΛΗΡΩΣΗΣ (FILL FACTOR) Ο λόγος της μέγιστης ηλεκτρικής ισχύος Ρ m =Ι m V m προς το γινόμενο της βραχυκυκλωμένης έντασης και της τάσης ανοιχτού κυκλώματος I sc V oc ενός φωτοβολταϊκού στοιχείου, ονομάζεται συντελεστής πλήρωσης FF (από την αγγλική έκφραση fill factor). Δηλαδή : FF I V / I V m m sc oc 24

35 Σχήμα 2.9: Η χαρακτηριστική καμπύλη I-V ενός φωτοβολταϊκού στοιχείου στο σκοτάδι και στο φως Στο διάγραμμα του σχήματος 2.9, ο FF δίνεται από το λόγο του εμβαδού του μέγιστου ορθογωνίου που μπορεί να εγγραφεί στη χαρακτηριστική καμπύλη I-V του στοιχείου, σε συνθήκες ακτινοβολίας, προς το εμβαδόν που ορίζεται από τις τιμές I sc και V oc. Οι τρεις παραπάνω παράμετροι, δηλαδή ο FF, I sc, και η V oc είναι τα κυριότερα μεγέθη για την αξιολόγηση της συμπεριφοράς και της λειτουργίας των φωτοβολταϊκών στοιχείων και καθορίζουν την απόδοσή τους. Επιστρέφοντας στον συντελεστή απόδοσης στοιχείων (η) μπορούμε τώρα να τον ορίσουμε με τη σχέση : n P m /AG ImV m /AG FFIscV oc /AG όπου G είναι η ένταση της ακτινοβολίας που δέχεται η επιφάνεια του Φ/β στοιχείου, εμβαδού Α. Όπως βλέπουμε, για την πραγματοποίηση αυξημένων αποδόσεων, επιδιώκεται οι τιμές των FF,I sc και V oc να είναι όσο το δυνατόν μεγαλύτερες. Προφανώς θα ισχύει και η σχέση : n g V / m όπου Φ(Ε g ) είναι η ροή των φωτονίων με ενέργεια μεγαλύτερη από το ενεργειακό χάσμα του ημιαγωγού, Φ είναι η συνολική φωτονική ροή στην ακτινοβολία που δέχεται το φωτοβολταϊκό στοιχείο, και Ε μ είναι η μέση ενέργεια των φωτονίων της ακτινοβολίας. Στην ηλιακή ακτινοβολία, περίπου τα 2/3 των φωτονίων έχουν ενέργεια μεγαλύτερη από το ενεργειακό χάσμα του πυριτίου (1,1eV). Επίσης, η V m των φωτοβολταϊκών στοιχείων 25

36 πυριτίου είναι περίπου ίση με το 1/3 της Ε μ της ηλιακής ακτινοβολίας. Επομένως βρίσκουμε πρόχειρα ότι η θεωρητική απόδοση των ηλιακών φωτοβολταϊκών στοιχείων πυριτίου είναι περίπου. n=2/3 1/3=22% O συντελεστής απόδοσης ενός φωτοβολταϊκού στοιχείου δεν είναι σταθερός αλλά επηρεάζεται σημαντικά από τη σύσταση της ακτινοβολίας. Δηλαδή, μια δέσμη ακτινοβολίας θα προκαλέσει σε ένα στοιχείο την παραγωγή λιγότερης ηλεκτρικής ενέργειας, σε σύγκριση με μια άλλη ίσης ισχύος αλλά πλουσιότερη σε φωτόνια με ευνοϊκότερη ενέργεια για τον ημιαγωγό, από τον οποίο είναι κατασκευασμένο το στοιχείο. 2.8 ΤΑ ΗΛΕΚΤΡΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΣΤΟΙΧΕΙΩΝ- ΔΕΥΤΕΡΗ ΠΡΟΣΕΓΓΙΣΗ Μια σωστότερη προσέγγιση αποτελεί το ισοδύναμο κύκλωμα του σχήματος 2.1, διότι περιέχει και τις αναπόφευκτες σειριακές αντιστάσεις R s (από την αγγλική έκφραση series resistance) που παρεμβάλλονται στην κίνηση των φορέων μέσα στον ημιαγωγό (κυρίως στο εμπρός επιφανειακό στρώμα του) και στις επαφές με τα ηλεκτρόδια. Ακόμα, επειδή η αντίσταση διαμέσου της διόδου δεν έχει άπειρη τιμή, αφού λόγω επίσης αναπόφευκτων κατασκευαστικών ελαττωμάτων γίνονται διαρροές ρεύματος, το ισοδύναμο κύκλωμα περιέχει και την παράλληλη αντίσταση R sh (από την αγγλική έκφραση shunt resistance). Συνήθως, στα φωτοβολταϊκά στοιχεία του εμπορίου η R s είναι μικρότερη από 5Ω και η R sh είναι μεγαλύτερη από 5 Ω. Σχήμα 2.1: Το ισοδύναμο ηλεκτρικό κύκλωμα ενός φωτοβολταϊκού στοιχείου 26

37 Πάντως επηρεάζουν αισθητά την τάση V L και του ρεύματος I L που διαρρέει το φορτίο του κυκλώματος R L, με αποτέλεσμα την αντίστοιχη μείωση της απόδοσης του στοιχείου. στην περίπτωση αυτή ισχύει η σχέση : 1 R /R exp e V R / k 1 V /R L s sh o L L s L sh Εκτός από τις αντιστάσεις R s και R sh, ένας άλλος παράγοντας που επιδρά αρνητικά στην απόδοση των φωτοβολταϊκών στοιχείων είναι η θερμοκρασία τους, όπως αναφέρεται και παρακάτω. Συγκεκριμένα, με την αύξηση της θερμοκρασίας προκαλεί αντίστοιχη αύξηση της ενδογενούς συγκέντρωσης των φορέων του ημιαγωγού, με αποτέλεσμα να πραγματοποιούνται περισσότερες επανασυνδέσεις φορέων. Έτσι, εκδηλώνεται ισχυρό ρεύμα διαρροής διαμέσου της διόδου, που συνεπάγεται μείωση της V oc και του FF. Παράλληλα μειώνεται και η απόδοση του φωτοβολταϊκού στοιχείου (Σχήμα 2.11). Σχήμα 2.11: Τυπική απόκλιση της μεταβολής της απόδοσης των φωτοβολταϊκών στοιχείων πυριτίου σε συνάρτηση με την θερμοκρασία λειτουργίας τους Αν ο συντελεστής απόδοσης ενός φωτοβολταϊκού στοιχείου σε μια δεδομένη θερμοκρασία (π.χ. 2 o C) είναι (n), η τιμή του σε μια διαφορετική θερμοκρασία (θ) θα είναι : n όπου σ θ είναι ένας αδιάστατος συντελεστής της θερμοκρασίας διόρθωσης της απόδοσης. Στη δεδομένη θερμοκρασία, ο σ θ είναι ίσος με τη μονάδα, και μειώνεται κατά περίπου,5 ανά βαθμό αύξησης θερμοκρασίας, για τα συνηθισμένα φωτοβολταϊκά ηλιακά στοιχεία πυριτίου του εμπορίου. 27

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ 1. ΓΕΝΙΚΑ Τα ηλιακά στοιχεία χρησιμοποιούνται για τη μετατροπή του φωτός (που αποτελεί μία μορφή ηλεκτρομαγνητικής ενέργειας) σε ηλεκτρική ενέργεια. Κατασκευάζονται από

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 1. Σκοπός Το φωτοβολταϊκό στοιχείο είναι μία διάταξη ημιαγωγών η οποία μετατρέπει την φωτεινή ενέργεια που προσπίπτει σε αυτήν σε ηλεκτρική.. Όταν αυτή φωτιστεί με φωτόνια κατάλληλης συχνότητας

Διαβάστε περισσότερα

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος 2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος Όπως είναι γνωστό από την καθημερινή εμπειρία τα περισσότερα σώματα που χρησιμοποιούνται στις ηλεκτρικές ηλεκτρονικές

Διαβάστε περισσότερα

αγωγοί ηµιαγωγοί µονωτές Σχήµα 1

αγωγοί ηµιαγωγοί µονωτές Σχήµα 1 Η2 Μελέτη ηµιαγωγών 1. Σκοπός Στην περιοχή της επαφής δυο ηµιαγωγών τύπου p και n δηµιουργούνται ορισµένα φαινόµενα τα οποία είναι υπεύθυνα για τη συµπεριφορά της επαφής pn ή κρυσταλλοδιόδου, όπως ονοµάζεται,

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΙΝΣΤΙΤΟΥΤΟ ΕΝΕΡΓΕΙΑΣ ΝΟΤΙΟΑΝΑΤΟΛΙΚΗΣ ΕΥΡΩΠΗΣ Εφαρμογές Α.Π.Ε. σε Κτίρια και Οικιστικά Σύνολα Μαρία Κίκηρα, ΚΑΠΕ - Τμήμα Κτιρίων Αρχιτέκτων MSc Αναφορές: RES Dissemination, DG

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Επικ. καθηγητής Αγωγοί- μονωτές- ημιαγωγοί Ενεργειακά διαγράμματα ημιαγωγού Ηλεκτρόνια (ΖΑ) Οπές (ΖΣ) Ενεργειακό χάσμα και απορρόφηση hc 1,24 Eg h Eg ev m max max Χρειάζονται

Διαβάστε περισσότερα

Μελέτη κάλυψης ηλεκτρικών αναγκών νησιού με χρήση ΑΠΕ

Μελέτη κάλυψης ηλεκτρικών αναγκών νησιού με χρήση ΑΠΕ Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ Μελέτη κάλυψης ηλεκτρικών αναγκών νησιού με χρήση ΑΠΕ Σπουδαστές: ΤΣΟΛΑΚΗΣ ΧΡΗΣΤΟΣ ΧΡΥΣΟΒΙΤΣΙΩΤΗ ΣΟΦΙΑ Επιβλέπων καθηγητής: ΒΕΡΝΑΔΟΣ ΠΕΤΡΟΣ

Διαβάστε περισσότερα

http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/

http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/ Δίοδος επαφής 1 http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/ 2 Θέματα που θα καλυφθούν Ορθή πόλωση Forward bias Ανάστροφη πόλωση Reverse bias Κατάρρευση Breakdown Ενεργειακά

Διαβάστε περισσότερα

γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ

γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ η εξεταστική περίοδος από 9//5 έως 9//5 γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας. Project Τμήμα Α 3

Ανανεώσιμες πηγές ενέργειας. Project Τμήμα Α 3 Ανανεώσιμες πηγές ενέργειας Project Τμήμα Α 3 Ενότητες εργασίας Η εργασία αναφέρετε στις ΑΠΕ και μη ανανεώσιμες πήγες ενέργειας. Στην 1ενότητα θα μιλήσουμε αναλυτικά τόσο για τις ΑΠΕ όσο και για τις μη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ 05 2 0 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας

Ανανεώσιμες πηγές ενέργειας Ανανεώσιμες πηγές ενέργειας Κέντρο Περιβαλλοντικής Εκπαίδευσης Καστρίου 2013 Ενέργεια & Περιβάλλον Το ενεργειακό πρόβλημα (Ι) Σε τι συνίσταται το ενεργειακό πρόβλημα; 1. Εξάντληση των συμβατικών ενεργειακών

Διαβάστε περισσότερα

Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ

Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ Για να κατανοήσουµε τη λειτουργία και το ρόλο των διόδων µέσα σε ένα κύκλωµα, θα πρέπει πρώτα να µελετήσουµε τους ηµιαγωγούς, υλικά που περιέχουν

Διαβάστε περισσότερα

ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΤΙ ΕΙΝΑΙ?

ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΤΙ ΕΙΝΑΙ? ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΤΙ ΕΙΝΑΙ? Η ηλιακή ενέργεια που προσπίπτει στην επιφάνεια της γης είναι ηλεκτροµαγνητική ακτινοβολία που παράγεται στον ήλιο. Φτάνει σχεδόν αµετάβλητη στο ανώτατο στρώµατηςατµόσφαιρας του

Διαβάστε περισσότερα

Εξοικονόμηση ενέργειας και χρήση συστημάτων ηλιακής ενέργειας στα κτίρια. Εμμανουήλ Σουλιώτης

Εξοικονόμηση ενέργειας και χρήση συστημάτων ηλιακής ενέργειας στα κτίρια. Εμμανουήλ Σουλιώτης Εξοικονόμηση ενέργειας και χρήση συστημάτων ηλιακής ενέργειας στα κτίρια Εμμανουήλ Σουλιώτης Πρόβλεψη για τις ΑΠΕ μέχρι το 2100 ΗΛΙΟΣ ΑΝΕΜΟΣ ΒΙΟΜΑΖΑ ΓΕΩΘΕΡΜΙΑ ΝΕΡΟ ΠΥΡΗΝΙΚΗ ΟΡΥΚΤΑ ΚΑΥΣΙΜΑ Οι προβλέψεις

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Επαφή p- Στάθμη Fermi Χαρακτηριστική ρεύματος-τάσης Ορθή και ανάστροφη πόλωση Περιεχόμενο της άσκησης Οι επαφές p- παρουσιάζουν σημαντικό ενδιαφέρον επειδή βρίσκουν εφαρμογή στη

Διαβάστε περισσότερα

Φωτοβολταϊκά συστήματα και σύστημα συμψηφισμού μετρήσεων (Net metering) στην Κύπρο

Φωτοβολταϊκά συστήματα και σύστημα συμψηφισμού μετρήσεων (Net metering) στην Κύπρο Ενεργειακό Γραφείο Κυπρίων Πολιτών Φωτοβολταϊκά συστήματα και σύστημα συμψηφισμού μετρήσεων (Net metering) στην Κύπρο Βασικότερα τμήματα ενός Φ/Β συστήματος Τα φωτοβολταϊκά (Φ/Β) συστήματα μετατρέπουν

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΘΕΜΑ A ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Παρασκευή, 0 Μαΐου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ Στις ερωτήσεις Α -Α να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ

ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ 1. Εισαγωγή. Η ενέργεια, όπως είναι γνωστό από τη φυσική, διαδίδεται με τρεις τρόπους: Α) δι' αγωγής Β) δια μεταφοράς Γ) δι'ακτινοβολίας Ο τελευταίος τρόπος διάδοσης

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ορισμός «Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) είναι οι μη ορυκτές ανανεώσιμες πηγές ενέργειας, δηλαδή η αιολική, η ηλιακή και η γεωθερμική ενέργεια, η ενέργεια κυμάτων, η παλιρροϊκή ενέργεια, η υδραυλική

Διαβάστε περισσότερα

Θέµατα που θα καλυφθούν

Θέµατα που θα καλυφθούν Ηµιαγωγοί Semiconductors 1 Θέµατα που θα καλυφθούν Αγωγοί Conductors Ηµιαγωγοί Semiconductors Κρύσταλλοι πυριτίου Silicon crystals Ενδογενείς Ηµιαγωγοί Intrinsic semiconductors ύο τύποι φορέων για το ρεύµασεηµιαγωγούς

Διαβάστε περισσότερα

Λύσεις Εξοικονόμησης Ενέργειας

Λύσεις Εξοικονόμησης Ενέργειας Λύσεις Εξοικονόμησης Ενέργειας Φωτοβολταϊκά Αστείρευτη ενέργεια από τον ήλιο! Η ηλιακή ενέργεια είναι μια αστείρευτη πηγή ενέργειας στη διάθεση μας.τα προηγούμενα χρόνια η τεχνολογία και το κόστος παραγωγής

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ήπιες Μορφές Ενέργειας Ενότητα 8: Φωτοβολταϊκά Καββαδίας Κ.Α. Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Συντακτική Οµάδα: έσποινα Παναγιωτίδου

Συντακτική Οµάδα: έσποινα Παναγιωτίδου ιαθεµατική Εργασία µε Θέµα: Οι Φυσικές Επιστήµες στην Καθηµερινή µας Ζωή Η Ηλιακή Ενέργεια Τµήµα: β2 Γυµνασίου Υπεύθυνος Καθηγητής: Παζούλης Παναγιώτης Συντακτική Οµάδα: έσποινα Παναγιωτίδου ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ

Διαβάστε περισσότερα

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04)

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04) ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη (ΠΕ02) Βασιλική Χατζηκωνσταντίνου (ΠΕ04) Β T C E J O R P Υ Ν Η Μ Α Ρ Τ ΤΕ Α Ν Α Ν Ε Ω ΣΙ Μ ΕΣ Π Η ΓΕ Σ ΕΝ Ε Ρ ΓΕ Ι Α Σ. Δ Ι Ε Ξ Δ Σ Α Π ΤΗ Ν Κ Ρ Ι ΣΗ 2 Να

Διαβάστε περισσότερα

Εθνικό Σχέδιο Δράσης για τις Ανανεώσιμες Πηγές Ενέργειας

Εθνικό Σχέδιο Δράσης για τις Ανανεώσιμες Πηγές Ενέργειας Εθνικό Σχέδιο Δράσης για τις Ανανεώσιμες Πηγές Ενέργειας Το Εθνικό Σχέδιο Δράσης για τις Ανανεώσιμες Πηγές Ενέργειας, εκπονήθηκε στο πλαίσιο εφαρμογής της Ευρωπαϊκής Ενεργειακής Πολιτικής σε σχέση με την

Διαβάστε περισσότερα

Περιβαλλοντική Διάσταση των Τεχνολογιών ΑΠΕ

Περιβαλλοντική Διάσταση των Τεχνολογιών ΑΠΕ Περιβαλλοντική Διάσταση των Τεχνολογιών ΑΠΕ Ομιλητές: Ι. Νικολετάτος Σ. Τεντζεράκης, Ε. Τζέν ΚΑΠΕ ΑΠΕ και Περιβάλλον Είναι κοινά αποδεκτό ότι οι ΑΠΕ προκαλούν συγκριτικά τη μικρότερη δυνατή περιβαλλοντική

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική 1 Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική Οµοιοπολικοί δεσµοί στο πυρίτιο Κρυσταλλική δοµή Πυριτίου ιάσταση κύβου για το Si: 0.543 nm Εισαγωγή στη Μικροηλεκτρονική

Διαβάστε περισσότερα

Γεωθερμία Εξοικονόμηση Ενέργειας

Γεωθερμία Εξοικονόμηση Ενέργειας GRV Energy Solutions S.A Γεωθερμία Εξοικονόμηση Ενέργειας Ανανεώσιμες Πηγές Σκοπός της GRV Ενεργειακές Εφαρμογές Α.Ε. είναι η κατασκευή ενεργειακών συστημάτων που σέβονται το περιβάλλον με εκμετάλλευση

Διαβάστε περισσότερα

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας το r με r n, έχουμε: Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας n=1, βρίσκουμε την τροχιά με τη μικρότερη ακτίνα n: Αντικαθιστώντας την τελευταία εξίσωση στη 2.6, παίρνουμε: Αν

Διαβάστε περισσότερα

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος Φωτοδίοδος 1.Σκοπός της άσκησης Ο σκοπός της άσκησης είναι να μελετήσουμε την συμπεριφορά μιας φωτιζόμενης επαφής p-n (φωτοδίοδος) όταν αυτή είναι ορθά και ανάστροφα πολωμένη και να χαράξουμε την χαρακτηριστική

Διαβάστε περισσότερα

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Η θερμοκρασία του εδάφους είναι ψηλότερη από την ατμοσφαιρική κατά τη χειμερινή περίοδο, χαμηλότερη κατά την καλοκαιρινή

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

Φύλλο εργασίας Το φωτοβολταϊκό στοιχείο

Φύλλο εργασίας Το φωτοβολταϊκό στοιχείο Φύλλο εργασίας Το φωτοβολταϊκό στοιχείο Στοιχεία ομάδας: Ονοματεπώνυμο Α.Μ. Ημερομηνία: Τμήμα: Απαραίτητες Θεωρητικές Γνώσεις: Το φωτοβολταϊκό στοιχείο είναι μία διάταξη που μετατρέπει τη φωτεινή ενέργεια

Διαβάστε περισσότερα

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s.

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s. Κεφάλαιο 1 Το Φως Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s. Το φως διαδίδεται στο κενό με ταχύτητα περίπου 3x10 8 m/s. 3 Η ταχύτητα του φωτός μικραίνει, όταν το φως

Διαβάστε περισσότερα

Πράσινο & Κοινωνικό Επιχειρείν

Πράσινο & Κοινωνικό Επιχειρείν Πράσινο & Κοινωνικό Επιχειρείν 1 Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) Eίναι οι ενεργειακές πηγές (ο ήλιος, ο άνεμος, η βιομάζα, κλπ.), οι οποίες υπάρχουν σε αφθονία στο φυσικό μας περιβάλλον Το ενδιαφέρον

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

6η Εργαστηριακή Άσκηση Μέτρηση διηλεκτρικής σταθεράς σε κύκλωµα RLC

6η Εργαστηριακή Άσκηση Μέτρηση διηλεκτρικής σταθεράς σε κύκλωµα RLC 6η Εργαστηριακή Άσκηση Μέτρηση διηλεκτρικής σταθεράς σε κύκλωµα RLC Θεωρητικό µέρος Αν µεταξύ δύο αρχικά αφόρτιστων αγωγών εφαρµοστεί µία συνεχής διαφορά δυναµικού ή τάση V, τότε στις επιφάνειές τους θα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή φράση, η οποία

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΑΥΣΗ

ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΑΥΣΗ ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΑΥΣΗ Την εργασία επιμελήθηκαν οι: Αναστασοπούλου Ευτυχία Ανδρεοπούλου Μαρία Αρβανίτη Αγγελίνα Ηρακλέους Κυριακή Καραβιώτη Θεοδώρα Καραβιώτης Στέλιος Σπυρόπουλος Παντελής Τσάτος Σπύρος

Διαβάστε περισσότερα

Η ΕΞΥΠΝΗ ΕΝΕΡΓΕΙΑ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ΜΑΣ

Η ΕΞΥΠΝΗ ΕΝΕΡΓΕΙΑ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ΜΑΣ Η ΕΞΥΠΝΗ ΕΝΕΡΓΕΙΑ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ΜΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Για περισσότερες πληροφορίες απευθυνθείτε στα site: ΑΝΕΜΟΓΕΝΝΗΤΡΙΕΣ ΥΔΡΟΗΛΕΚΤΡΙΚΟΙ ΣΤΑΘΜΟΙ ΗΛΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο Βασίλης Γαργανουράκης Φυσική ήγ Γυμνασίου Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις αλληλεπιδράσεις των στατικών (ακίνητων) ηλεκτρικών φορτίων. Σε αυτό το κεφάλαιο

Διαβάστε περισσότερα

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 2. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ Με τον όρο ακτινοβολία

Διαβάστε περισσότερα

ΗΛΙΑΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΦΩΤΟΒΟΛΤΑΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. 1. Ηλιακή ακτινοβολία

ΗΛΙΑΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΦΩΤΟΒΟΛΤΑΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. 1. Ηλιακή ακτινοβολία ΗΛΙΑΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΦΩΤΟΒΟΛΤΑΙΚΗ ΤΕΧΝΟΛΟΓΙΑ 1. Ηλιακή ακτινοβολία Ο ήλιος ενεργεί σχεδόν, ως μια τέλεια πηγή ακτινοβολίας σε μια θερμοκρασία κοντά στους 5.800 Κ Το ΑΜ=1,5 είναι το τυπικό ηλιακό φάσμα πάνω

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 204 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την:

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: Σκοπός της Άσκησης: ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: α. Κατασκευή μετασχηματιστών. β. Αρχή λειτουργίας μετασχηματιστών.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ νέες κατασκευές αναδιαµόρφωση καινούριων κτιρίων ανακαίνιση και µετασκευή ιστορικών κτιρίων έργα "εκ του µηδενός" σε ιστορικά πλαίσια

ΕΦΑΡΜΟΓΕΣ νέες κατασκευές αναδιαµόρφωση καινούριων κτιρίων ανακαίνιση και µετασκευή ιστορικών κτιρίων έργα εκ του µηδενός σε ιστορικά πλαίσια ΕΦΑΡΜΟΓΕΣ νέες κατασκευές αναδιαµόρφωση καινούριων κτιρίων ανακαίνιση και µετασκευή ιστορικών κτιρίων έργα "εκ του µηδενός" σε ιστορικά πλαίσια 2 Ο ηλιακός θερµοσίφωνας αποτελεί ένα ενεργητικό ηλιακό σύστηµα

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ήπιες Μορφές Ενέργειας Ενότητα 1: Εισαγωγή Καββαδίας Κ.Α. Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΟΥ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΦΟΡΑΣ ΔΙΑΝΟΜΗΣ ΚΑΙ ΧΡΗΣΙΜΟΠΟΙΗΣΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ «ΛΕΙΤΟΥΡΓΙΑ ΚΑΙ ΤΕΧΝΙΚΟΟΙΚΟΝΟΜΙΚΗ ΜΕΛΕΤΗ

Διαβάστε περισσότερα

Πηγές ενέργειας - Πηγές ζωής

Πηγές ενέργειας - Πηγές ζωής Πηγές ενέργειας - Πηγές ζωής Κέντρο Περιβαλλοντικής Εκπαίδευσης Καστρίου 2014 Παράγει ενέργεια το σώμα μας; Πράγματι, το σώμα μας παράγει ενέργεια! Για να είμαστε πιο ακριβείς, παίρνουμε ενέργεια από τις

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Ημιαγωγοί Θεωρία ζωνών Ενδογενής αγωγιμότητα Ζώνη σθένους Ζώνη αγωγιμότητας Προτεινόμενη βιβλιογραφία 1) Π.Βαρώτσος Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης» 2) C.Kittl, «Εισαγωγή

Διαβάστε περισσότερα

7.a. Οι δεσμοί στα στερεά

7.a. Οι δεσμοί στα στερεά ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 7-1 Κεφάλαιο 7. Στερεά Εδάφια: 7.a. Οι δεσμοί στα στερεά 7.b. Η θεωρία των ενεργειακών ζωνών 7.c. Νόθευση ημιαγωγών και εφαρμογές 7.d. Υπεραγωγοί 7.a. Οι δεσμοί στα στερεά Με

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 13 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ 1. ύο µονοχρωµατικές ακτινοβολίες Α και Β µε µήκη κύµατος στο κενό

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Πολυτεχνική σχολή Τμήμα Χημικών Μηχανικών Ακαδημαϊκό Έτος 2007-20082008 Μάθημα: Οικονομία Περιβάλλοντος για Οικονομολόγους Διδάσκων:Σκούρας Δημήτριος ΚΑΤΑΛΥΤΙΚΗ ΑΝΤΙΔΡΑΣΗ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

Μήνυμα από τη Φουκουσίμα: Οι ανανεώσιμες πηγές ενέργειας είναι το μέλλον!

Μήνυμα από τη Φουκουσίμα: Οι ανανεώσιμες πηγές ενέργειας είναι το μέλλον! Μήνυμα από τη Φουκουσίμα: Οι ανανεώσιμες πηγές ενέργειας είναι το μέλλον! Οι ανανεώσιμες πηγές ενέργειας είναι μία βιώσιμη λύση για να αντικατασταθούν οι επικίνδυνοι και πανάκριβοι πυρηνικοί και ανθρακικοί

Διαβάστε περισσότερα

Ενεργειακά συστήµατα-φωτοβολταϊκά & εξοικονόµηση ενέργειας

Ενεργειακά συστήµατα-φωτοβολταϊκά & εξοικονόµηση ενέργειας Επιστηµονικό Τριήµερο Α.Π.Ε από το Τ.Ε.Ε.Λάρισας.Λάρισας 29-30Νοεµβρίου,1 εκεµβρίου 2007 Ενεργειακά συστήµατα-φωτοβολταϊκά & εξοικονόµηση ενέργειας Θεόδωρος Καρυώτης Ενεργειακός Τεχνικός Copyright 2007

Διαβάστε περισσότερα

Μέτρηση της φωτοαγωγιμότητας του CdS συναρτήσει της έντασης και της συχνότητας της ακτινοβολίας διέγερσης

Μέτρηση της φωτοαγωγιμότητας του CdS συναρτήσει της έντασης και της συχνότητας της ακτινοβολίας διέγερσης ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΡΓΑΣΤΗΡΙΑ ΦΥΣΙΚΗΣ ΣΥΜΠΥΚΝΩΜΕΝΗΣ ΥΛΗΣ ΑΣΚΗΣΗ 5 Καθηγητής : κος Θεοδώνης Ιωάννης Όνομα σπουδάστριας : Καρανικολάου Μαρία ΑΜ : 09107075 Μέτρηση της φωτοαγωγιμότητας

Διαβάστε περισσότερα

ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ

ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ Α1) ΓΕΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΗΛΙΑΚΟΥ ΤΟΙΧΟΥ Ο ηλιακός τοίχος Trombe και ο ηλιακός τοίχος μάζας αποτελούν

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VLSI T echnol ogy ogy and Computer A r A chitecture Lab Γ Τσ ιατ α ο τ ύχ ύ α χ ς ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VLSI T echnol ogy ogy and Computer A r A chitecture Lab Γ Τσ ιατ α ο τ ύχ ύ α χ ς ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VSI Techology ad Comuter Archtecture ab Ηµιαγωγοί Γ. Τσιατούχας ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Φράγμα δυναμικού. Ενεργειακές ζώνες Ημιαγωγοί

Διαβάστε περισσότερα

Ημιαγωγοί ΦΒ φαινόμενο

Ημιαγωγοί ΦΒ φαινόμενο Διάγραμμα ενεργειακής κατανομής ηλεκτρονίων σε μεμονωμένο άτομο και σε στερεό σώμα Ημιαγωγοί ΦΒ φαινόμενο Διάκριση υλικών ανάλογα με την ολική ή μερική πληρότητα της ενεργειακής ζώνης Αγωγοί (μέταλλα)

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Νόμος του Coulomb Έστω δύο ακίνητα σημειακά φορτία, τα οποία βρίσκονται σε απόσταση μεταξύ τους. Τα φορτία αυτά αλληλεπιδρούν μέσω δύναμης F, της οποίας

Διαβάστε περισσότερα

Λαμπτήρες Μαγνητικής Επαγωγής

Λαμπτήρες Μαγνητικής Επαγωγής Φωτισμός οδοποιίας, πάρκων, πλατειών ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΠΛΕΟΝΕΚΤΗΜΑΤΑ-ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΦΩΤΙΣΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΜΑΓΝΗΤΙΚΗΣ ΕΠΑΓΩΓΗΣ ΚΑΙ LED Λαμπτήρες Μαγνητικής Επαγωγής Light Emitting Diodes LED Αρχή λειτουργίας

Διαβάστε περισσότερα

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά Ακτίνες Χ (Roentgen) Είναι ηλεκτρομαγνητικά κύματα με μήκος κύματος μεταξύ 10 nm και 0.01 nm, δηλαδή περίπου 10 4 φορές μικρότερο από το μήκος κύματος της ορατής ακτινοβολίας. ( Φάσμα ηλεκτρομαγνητικής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ 18 Φεβρουαρίου 2013 Εισήγηση του Περιφερειάρχη Νοτίου Αιγαίου Γιάννη ΜΑΧΑΙΡΙ Η Θέμα: Ενεργειακή Πολιτική Περιφέρειας Νοτίου Αιγαίου Η ενέργεια μοχλός Ανάπτυξης

Διαβάστε περισσότερα

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη

Διαβάστε περισσότερα

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία)

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Διάδοση Θερμότητας (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Τρόποι διάδοσης θερμότητας Με αγωγή Με μεταφορά (με τη βοήθεια ρευμάτων) Με ακτινοβολία άλλα ΠΑΝΤΑ από το θερμότερο προς το ψυχρότερο

Διαβάστε περισσότερα

Φωτοβολταϊκά συστήματα ιδιοκατανάλωσης, εφεδρείας και Εξοικονόμησης Ενέργειας

Φωτοβολταϊκά συστήματα ιδιοκατανάλωσης, εφεδρείας και Εξοικονόμησης Ενέργειας Φωτοβολταϊκά συστήματα ιδιοκατανάλωσης, εφεδρείας και Εξοικονόμησης Ενέργειας Λύσεις ΦωτοβολταΙκών συστημάτων εξοικονόμησης ενέργειας Απευθείας κατανάλωση Εφεδρική λειτουργία Αυτόνομο Σύστημα 10ΚWp, Αίγινα

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας Πολιτικές, Επιπτώσεις και ηανάγκη για έρευνα και καινοτομίες

Ανανεώσιμες Πηγές Ενέργειας Πολιτικές, Επιπτώσεις και ηανάγκη για έρευνα και καινοτομίες Τ.Ε.Ι. Πάτρας - Εργαστήριο Η.Μ.Ε Ανανεώσιμες Πηγές Ενέργειας Πολιτικές, Επιπτώσεις και ηανάγκη για έρευνα και καινοτομίες ΜΕΡΟΣ 2 ο Καθ Σωκράτης Καπλάνης Υπεύθυνος Εργαστηρίου Α.Π.Ε. Τ.Ε.Ι. Πάτρας kaplanis@teipat.gr

Διαβάστε περισσότερα

ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ. Θέμα Δ

ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ. Θέμα Δ ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ Θέμα Δ 4_2149 Άτομο υδρογόνου βρίσκεται σε κατάσταση όπου η στροφορμή του είναι ίση με 3,15 10-34 J s. Δ1) Σε ποια στάθμη βρίσκεται το ηλεκτρόνιο; Δ2) Αν το άτομο έφθασε στην προηγούμενη

Διαβάστε περισσότερα

Η Φύση του Φωτός. Τα Δ Θεματα της τράπεζας θεμάτων

Η Φύση του Φωτός. Τα Δ Θεματα της τράπεζας θεμάτων Η Φύση του Φωτός Τα Δ Θεματα της τράπεζας θεμάτων Η ΦΥΣΗ ΤΟΥ ΦΩΤΟΣ Θέμα Δ 4_2153 Δύο μονοχρωματικές ακτινοβολίες (1) και (2), που αρχικά διαδίδονται στο κενό με μήκη κύματος λ ο1 = 4 nm και λ ο2 = 6 nm

Διαβάστε περισσότερα

ΓΙΑ ΝΑ ΣΥΝΕΧΙΣΕΙ ΤΟ ΠΕΡΙΒΑΛΛΟΝ ΝΑ ΜΑΣ ΕΠΙΒΡΑΒΕΥΕΙ... ΕΞΟΙΚΟΝΟΜΟΥΜΕ ΕΝΕΡΓΕΙΑ & ΝΕΡΟ ΜΗ ΧΑΝΕΙΣ ΑΛΛΟ ΧΡΟΝΟ!

ΓΙΑ ΝΑ ΣΥΝΕΧΙΣΕΙ ΤΟ ΠΕΡΙΒΑΛΛΟΝ ΝΑ ΜΑΣ ΕΠΙΒΡΑΒΕΥΕΙ... ΕΞΟΙΚΟΝΟΜΟΥΜΕ ΕΝΕΡΓΕΙΑ & ΝΕΡΟ ΜΗ ΧΑΝΕΙΣ ΑΛΛΟ ΧΡΟΝΟ! ΓΙΑ ΝΑ ΣΥΝΕΧΙΣΕΙ ΤΟ ΠΕΡΙΒΑΛΛΟΝ ΝΑ ΜΑΣ ΕΠΙΒΡΑΒΕΥΕΙ... ΕΞΟΙΚΟΝΟΜΟΥΜΕ ΕΝΕΡΓΕΙΑ & ΝΕΡΟ ΜΗ ΧΑΝΕΙΣ ΑΛΛΟ ΧΡΟΝΟ! ΒΙΩΣΙΜΟΤΗΤΑ: Η ΕΤΑΙΡΙΚΗ ΑΞΙΑ ΠΟΥ ΜΟΙΡΑΖΕΤΑΙ - Μια εταιρία δεν μπορεί να θεωρείται «πράσινη» αν δεν

Διαβάστε περισσότερα

ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΠΗΓΕΣ ΖΩΗΣ; ΤΜΗΜΑ Β1

ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΠΗΓΕΣ ΖΩΗΣ; ΤΜΗΜΑ Β1 ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΠΗΓΕΣ ΖΩΗΣ; ΤΜΗΜΑ Β1 Σκοπός της ερευνητικής εργασίας είναι να διερευνήσουμε αν ο αέρας ο ήλιος το νερό μπορούν να αποτελέσουν τις ενεργειακές λύσεις για την ανθρωπότητα για το παρόν και

Διαβάστε περισσότερα

Ιστορία και Κωδικοποίηση Νομοθεσίας ΑΠΕ: (πηγή: http://www.lagie.gr/)

Ιστορία και Κωδικοποίηση Νομοθεσίας ΑΠΕ: (πηγή: http://www.lagie.gr/) Ιστορία και Κωδικοποίηση Νομοθεσίας ΑΠΕ: (πηγή: http://www.lagie.gr/) Το ελληνικό κράτος το 1994 με τον Ν.2244 (ΦΕΚ.Α 168) κάνει το πρώτο βήμα για τη παραγωγή ηλεκτρικής ενέργειας από τρίτους εκτός της

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΕΦΑΛΑΙΟ 3ο ΚΡΥΣΤΑΛΛΟΔΙΟΔΟΙ Επαφή ΡΝ Σε ένα κομμάτι κρύσταλλο πυριτίου προσθέτουμε θετικά ιόντα 5σθενούς στοιχείου για τη δημιουργία τμήματος τύπου Ν από τη μια μεριά, ενώ από την

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ Θεωρητικη αναλυση μεταλλα Έχουν κοινές φυσικές ιδιότητες που αποδεικνύεται πως είναι αλληλένδετες μεταξύ τους: Υψηλή φυσική αντοχή Υψηλή πυκνότητα Υψηλή ηλεκτρική και θερμική

Διαβάστε περισσότερα

6 Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας

6 Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας Πρόλογος Σ το βιβλίο αυτό περιλαμβάνεται η ύλη του μαθήματος «Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας» που διδάσκεται στους φοιτητές του Γ έτους σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας

Διαβάστε περισσότερα

ΘΕΡΜΙΚΗ ΑΝΕΣΗ ΚΛΕΙΩ ΑΞΑΡΛΗ

ΘΕΡΜΙΚΗ ΑΝΕΣΗ ΚΛΕΙΩ ΑΞΑΡΛΗ ΘΕΡΜΙΚΗ ΑΝΕΣΗ ΚΛΕΙΩ ΑΞΑΡΛΗ το κέλυφος του κτιρίου και τα συστήματα ελέγχου του εσωκλίματος επηρεάζουν: τη θερμική άνεση την οπτική άνεση την ηχητική άνεση την ποιότητα αέρα Ο βαθμός ανταπόκρισης του κελύφους

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της αρχής λειτουργίας των μηχανών συνεχούς ρεύματος, β) η ανάλυση της κατασκευαστικών

Διαβάστε περισσότερα

2015 Η ενέργεια είναι δανεική απ τα παιδιά μας

2015 Η ενέργεια είναι δανεική απ τα παιδιά μας Εκπαιδευτικά θεματικά πακέτα (ΚΙΤ) για ευρωπαϊκά θέματα Τ4Ε 2015 Η ενέργεια είναι δανεική απ τα παιδιά μας Teachers4Europe Οδηγιεσ χρησησ Το αρχείο που χρησιμοποιείτε είναι μια διαδραστική ηλεκτρονική

Διαβάστε περισσότερα

Φωτοβολταϊκά Συστήματα και Εφαρμογές

Φωτοβολταϊκά Συστήματα και Εφαρμογές Φωτοβολταϊκά Συστήματα και Εφαρμογές 1 Πρώτο Κεφάλαιο Το Ηλιακό φάσμα Η πηγή της ηλιακής ακτινοβολίας είναι φυσικά ο ήλιος, 3,8 x 1020 MW ηλεκτρομαγνητικής ενέργειας ακτινοβολούνται από την εξωτερική του

Διαβάστε περισσότερα

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια (παράγραφοι ά φ 3.1 31& 3.6) 36) Φυσική Γ Γυμνασίου Εισαγωγή Τα σπουδαιότερα χαρακτηριστικά της ηλεκτρικής ενέργειας είναι η εύκολη μεταφορά της σε μεγάλες αποστάσεις και

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 3 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α. Στις

Διαβάστε περισσότερα

δ. εξαρτάται µόνο από το υλικό του οπτικού µέσου. Μονάδες 4

δ. εξαρτάται µόνο από το υλικό του οπτικού µέσου. Μονάδες 4 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 7 ΙΟΥΛΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-5 να

Διαβάστε περισσότερα

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή:

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή: 54 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ 2014 ΘΕΜΑ Α Α1. Πράσινο και κίτρινο φως

Διαβάστε περισσότερα

Χριστίνα Αδαλόγλου Βαγγέλης Μαρκούδης Ευαγγελία Σκρέκα Γιώργος Στρακίδης Σωτήρης Τσολακίδης

Χριστίνα Αδαλόγλου Βαγγέλης Μαρκούδης Ευαγγελία Σκρέκα Γιώργος Στρακίδης Σωτήρης Τσολακίδης Χριστίνα Αδαλόγλου Βαγγέλης Μαρκούδης Ευαγγελία Σκρέκα Γιώργος Στρακίδης Σωτήρης Τσολακίδης Οι ανεπανόρθωτες καταστροφές που έχουν πλήξει τον πλανήτη μας, έχουν δημιουργήσει την καθυστερημένη άλλα αδιαμφισβήτητα

Διαβάστε περισσότερα

Επεμβάσεις Εξοικονόμησης Ενέργειας EUROFROST ΝΙΚΟΛΑΟΣ ΚΟΥΚΑΣ

Επεμβάσεις Εξοικονόμησης Ενέργειας EUROFROST ΝΙΚΟΛΑΟΣ ΚΟΥΚΑΣ Επεμβάσεις Εξοικονόμησης Ενέργειας EUROFROST ΝΙΚΟΛΑΟΣ ΚΟΥΚΑΣ Εξοικονόμηση χρημάτων σε υφιστάμενα και νέα κτίρια Ένα υφιστάμενο κτίριο παλαιάς κατασκευής διαθέτει εξοπλισμό χαμηλής ενεργειακής απόδοσης,

Διαβάστε περισσότερα

Θερμότητα. Κ.-Α. Θ. Θωμά

Θερμότητα. Κ.-Α. Θ. Θωμά Θερμότητα Οι έννοιες της θερμότητας και της θερμοκρασίας Η θερμοκρασία είναι μέτρο της μέσης κινητικής κατάστασης των μορίων ή ατόμων ενός υλικού. Αν m είναι η μάζα ενός σωματίου τότε το παραπάνω εκφράζεται

Διαβάστε περισσότερα

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ 1 ΦΩΣ Στο μικρόκοσμο θεωρούμε ότι το φως έχει δυο μορφές. Άλλοτε το αντιμετωπίζουμε με τη μορφή σωματιδίων που ονομάζουμε φωτόνια. Τα φωτόνια δεν έχουν μάζα αλλά μόνον ενέργεια. Άλλοτε πάλι αντιμετωπίζουμε

Διαβάστε περισσότερα

Η Πρόκληση της Ανάπτυξης Ηλιοθερμικών Σταθμών Ηλεκτροπαραγωγής στην Κρήτη

Η Πρόκληση της Ανάπτυξης Ηλιοθερμικών Σταθμών Ηλεκτροπαραγωγής στην Κρήτη Η Πρόκληση της Ανάπτυξης Ηλιοθερμικών Σταθμών Ηλεκτροπαραγωγής στην Κρήτη ρ Αντώνης Τσικαλάκης Εργαστηριακός Συνεργάτης ΤΕΙ Κρήτης ιδάσκων Π. 407/80 Πολυτεχνείου Κρήτης Διεθνής Συνάντηση για την Πράσινη

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 3 Μαΐου 015 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ A Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

Ήπιες µορφές ενέργειας

Ήπιες µορφές ενέργειας ΕΒ ΟΜΟ ΚΕΦΑΛΑΙΟ Ήπιες µορφές ενέργειας Α. Ερωτήσεις πολλαπλής επιλογής Επιλέξετε τη σωστή από τις παρακάτω προτάσεις, θέτοντάς την σε κύκλο. 1. ΥΣΑΡΕΣΤΗ ΟΙΚΟΝΟΜΙΚΗ ΣΥΝΕΠΕΙΑ ΤΗΣ ΧΡΗΣΗΣ ΤΩΝ ΟΡΥΚΤΩΝ ΚΑΥΣΙΜΩΝ

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΗΛΙΑΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΤΗΝ ΚΡΗΤΗ

ΔΥΝΑΜΙΚΟ ΗΛΙΑΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΤΗΝ ΚΡΗΤΗ ΣΕΠΤΕΜΒΡΙΟΣ-ΟΚΤΩΒΡΙΟΣ 2006 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 ΔΥΝΑΜΙΚΟ ΗΛΙΑΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΤΗΝ ΚΡΗΤΗ Γ. ΖΗΔΙΑΝΑΚΗΣ, Μ. ΛΑΤΟΣ, Ι. ΜΕΘΥΜΑΚΗ, Θ. ΤΣΟΥΤΣΟΣ Τμήμα Μηχανικών Περιβάλλοντος, Πολυτεχνείο Κρήτης ΠΕΡΙΛΗΨΗ Στην εργασία

Διαβάστε περισσότερα

Μεταφορά Ενέργειας με Ακτινοβολία

Μεταφορά Ενέργειας με Ακτινοβολία ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΠΙΣΤΗΜΗ - ΕΡΓΑΣΤΗΡΙΟ Εργαστηριακή Άσκηση: Μεταφορά Ενέργειας με Ακτινοβολία Σκοπός της Εργαστηριακής Άσκησης: Να προσδιοριστεί ο τρόπος με τον οποίο μεταλλικά κουτιά με επιφάνειες διαφορετικού

Διαβάστε περισσότερα

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι αυτό που προϋποθέτει την ύπαρξη μιας συνεχούς προσανατολισμένης ροής ηλεκτρονίων; Με την επίδραση διαφοράς δυναμικού ασκείται δύναμη στα ελεύθερα ηλεκτρόνια του μεταλλικού

Διαβάστε περισσότερα

Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε λ [10-9 -10-12 m] (ή 0,01-10Å) και ενέργεια φωτονίων kev.

Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε λ [10-9 -10-12 m] (ή 0,01-10Å) και ενέργεια φωτονίων kev. Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε λ [10-9 -10-12 m] (ή 0,01-10Å) και ενέργεια φωτονίων kev. To ορατό καταλαµβάνει ένα πολύ µικρό µέρος του ηλεκτροµαγνητικού φάσµατος: 1,6-3,2eV. Page 1

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ. Η πειραματική διάταξη που χρησιμοποιείται στην άσκηση φαίνεται στην φωτογραφία του σχήματος 1:

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ. Η πειραματική διάταξη που χρησιμοποιείται στην άσκηση φαίνεται στην φωτογραφία του σχήματος 1: ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ 1. Πειραματική Διάταξη Η πειραματική διάταξη που χρησιμοποιείται στην άσκηση φαίνεται στην φωτογραφία του σχήματος 1: Σχήμα 1 : Η πειραματική συσκευή για τη μελέτη της απόδοσης φωτοβολταϊκού

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 ΚΕΦΑΛΑΙΟ 2ο ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Σκοπός Στο δεύτερο κεφάλαιο θα εισαχθεί η έννοια του ηλεκτρικού ρεύματος και της ηλεκτρικής τάσης,θα μελετηθεί ένα ηλεκτρικό κύκλωμα και θα εισαχθεί η έννοια της αντίστασης.

Διαβάστε περισσότερα

ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ: ΘΕΡΜΑΝΣΗ ΑΕΡΑ

ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ: ΘΕΡΜΑΝΣΗ ΑΕΡΑ ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ: ΘΕΡΜΑΝΣΗ ΑΕΡΑ Χρήσεις: Ξήρανση γεωργικών προϊόντων Θέρµανση χώρων dm Ωφέλιµη ροή θερµότητας: Q = c Τ= ρ qc( T2 T1) dt ΕΠΙΦΑΝΕΙΑ ΕΠΙΚΑΛΥΨΗΣ ΗΛΙΑΚΗ ΨΥΧΡΟΣ ΑΕΡΑΣ ΘΕΡΜΟΣ ΑΕΡΑΣ Τ 1 Τ 2 ΣΥΛΛΕΚΤΙΚΗ

Διαβάστε περισσότερα

Φωτοβολταϊκά Συστήματα

Φωτοβολταϊκά Συστήματα Φωτοβολταϊκά Συστήματα 2 ο Γενικό Λύκειο Ναυπάκτου Ερευνητική Εργασία(Project) 1 ου τετραμήνου Υπεύθυνοι Καθηγητές : Κριαράς Νικόλαος Ιωάννου Μαρία 26/01/2012 Φωτοβολταϊκά Συστήματα Ο όρος φωτοβολταϊκό

Διαβάστε περισσότερα