ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. της Ευθυμίας- Βικτωρίας Σιούτα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. της Ευθυμίας- Βικτωρίας Σιούτα"

Transcript

1 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Μεταπτυχιακή Ειδίκευση Καθηγητών Φυσικών Επιστημών Διπλωματική Εργασία της Ευθυμίας- Βικτωρίας Σιούτα Σύμβουλος Καθηγητής: ΣΠΥΡΟΣ ΕΥΣΤ. ΤΖΑΜΑΡΙΑΣ Μηχανικά και Κλασσικά Ανάλογα της Σύγχρονης Φυσικής Πάτρα 009

2 Μηχανικά και Κλασικά Ανάλογα της Σύγχρονης Φυσικής Στα κβαντομηχανικάφαινόμενα μικρόκοσμο που εμφανίζονται στον μικρόκοσμο δεν έχουμε εποπτεία, οπότε ως εκπαιδευτικός-επιστήμονας, προσπαθώ να απομονώσω την ύλη που θα διδάξω και να τη συνδυάσω με φαινόμενα στα οποία υπάρχει εποπτεία. Επειδή αυτή υπάρχει στον κόσμο της κλασικής φυσικής, θα πρέπει να αναζητήσουμε κλασικά ανάλογα, κάτι που εκ πρώτης όψεως φαίνεται παράλογο. Θα αναζητήσουμε τα κλασικά ανάλογα από το πεδίο της κλασικής κυματικής θεωρίας.

3 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΥΜΑΤΙΚΗ ΦΥΣΙΚΗ ΚΥΜΑΤΙΚΗ ΚΙΝΗΣΗ ΕΠΑΛΛΗΛΙΑ (ΥΠΕΡΘΕΣΗ) ΚΑΙ ΣΥΜΒΟΛΗ ΑΡΜΟΝΙΚΩΝ ΚΥΜΑΤΩΝ ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ - ΠΡΟΥΠΟΘΕΣΕΙΣ ΓΙΑ ΣΥΜΒΟΛΗ Η ΕΝΕΡΓΕΙΑ ΠΟΥ ΜΕΤΑΦΕΡΟΥΝ ΤΑ ΑΡΜΟΝΙΚΑ ΚΥΜΑΤΑ ENOΣ ΝΗΜΑΤΟΣ (ΜΙΑΣ ΧΟΡΔΗΣ)

4 Με σφαίρες ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΠΕΙΡΑΜΑ YOUNG Θα περιγράψουμε τα αποτελέσματα όμοιων πειραμάτων διπλής σχισμής τα οποία διεξήχθησαν με χρήση σφαιρών πολυβόλου, υδάτινων κυμάτων και ηλεκτρονίων. Συγκρίνοντας και αντιπαραβάλλοντας τα αποτελέσματα που προέκυψαν με αυτά τα τρία διαφορετικά υλικά, θα μπορέσουμε να δώσουμε μια ιδέα των βασικών χαρακτηριστικών της κβαντομηχανικής συμπεριφοράς. Σε αυτό το πείραμα και μόνο μπορούν να αναδειχθούν όλα τα προβλήματα και τα παράδοξα της κβαντικής φυσικής. Η πιθανότητα άφιξης μιας σφαίρας μεταβάλλεται ανάλογα με τη θέση του κουτιού-ανιχνευτή. Το σύνολο τον σφαιρών σε κάθε κουτί όταν και οι δύο σχισμές είναι ανοικτές ισούται με το άθροισμα των σφαιρών : Π 1 = Π 1 + Π. Συνοψίζοντας, μπορούμε να πούμε ότι στο πείραμα με τις σφαίρες το αποτέλεσμα με τις δυο οπές ανοιχτές είναι το άθροισμα των αποτελεσμάτων με την μια οπή ανοιχτή, ή όπως λέγεται, δεν παρατηρείται συμβολή.

5 Με μηχανικά κύματα Αντίθετα απ' ό,τι στο πείραμα με τις σφαίρες, βλέπουμε ότι η ενέργεια των κυμάτων δεν φτάνει στον ανιχνευτή κατά ορισμένη ποσότητα όπως οι σφαίρες που έφταναν σε μία μόνο θέση (μεταφέροντας ενέργεια) κάθε χρονική στιγμή. Εδώ βλέπουμε ότι η ενέργεια του αρχικού κύματος κατανέμεται κατά μήκος του ανιχνευτή, αφού το ύψος του κύματος που προκύπτει από τα δύο ανοίγματα στον ανιχνευτή μεταβάλλεται ομαλά από μηδέν μέχρι κάποια μέγιστη τιμή. Η καμπύλη Ε 1 εκφράζει το τετράγωνο της διαταραχής που προκαλείται από το κύμα το οποίο διέρχεται από το άνοιγμα 1: Ε 1= h1 Με τον ίδιο τρόπο, η καμπύλη Ε αναπαριστά την ένταση στην περίπτωση όπου το άνοιγμα είναι ανοικτό και το άνοιγμα 1 κλειστό, οπότε, Ε = h θα ισχύει: Η συνολική διαταραχή του νερού σε κάθε θέση κατά μήκος του ανιχνευτή δίνεται από το άθροισμα των διαταραχών τις οποίες προκαλούν τα κύματα που προέρχονται από τα ανοίγματα 1 και. Αν συμβολίσουμε το ύψος του κύματος από το άνοιγμα 1 με h 1, το ύψος του κύματος από το άνοιγμα με h, και το συνολικό ύψος που παίρνουμε και από τα δύο ανοίγματα με h 1, μπορούμε να γράψουμε την εξίσωση:h 1 = h 1 + h. Η ένταση που προκύπτει είναι ακριβώς το τετράγωνο αυτού του ύψους (ή πλάτους με αυστηρότερη διατύπωση) του κύματος: Ε 1 = h1 Ε = (h + h ) 1 1 το οποίο προφανώς δεν ισούται με το άθροισμα των Ε 1 και Ε.

6 Με ηλεκτρόνια Τα ηλεκτρόνια φεύγουν από την πηγή ως «ολότητες» και φτάνουν στον ανιχνευτή επίσης ως «ολότητες» ωστόσο, από την εικόνα άφιξης των ηλεκτρονίων στον ανιχνευτή, φαίνεται ότι στον ενδιάμεσο χώρο κινήθηκαν ως κύματα! Η καμπύλη που παίρνουμε, είναι η χαρακτηριστική εικόνα συμβολής για κύματα, αν και κλασικά θεωρούμε ότι τα ηλεκτρόνια φτάνουν στον ανιχνευτή όπως ακριβώς οι σφαίρες! Δηλαδή, η Π 1 για τα ηλεκτρόνια, είναι σαν την Ε 1 για τα κύματα. Π1 Π1+ Π Συνοψίζοντας, τα ηλεκτρόνια φτάνουν στον ανιχνευτή σαν σωματίδια, αλλά η πιθανότητα να φτάσει ένα ηλεκτρόνιο κατανέμεται σαν την ένταση ενός κύματος. Με αυτή την έννοια, ένα ηλεκτρόνιο δεν είναι ούτε σωματίδιο ούτε κύμα. Σύμφωνα με το νέο τρόπο σκέψης που υπαγορεύεται από την εμπειρία του μικρόκοσμου, η σωματιδιακή και κυματική φύση της ύλης θεωρούνται συμπληρωματικές απόψεις και είναι αμφότερες ουσιαστικές για την πλήρη περιγραφή των φαινομένων (Complemetarity priciple). Πειράματα με ηλεκτρόνια έχουν πραγματοποιηθεί στη σύγχρονη εποχή, επιβεβαιώνοντας την κβαντομηχανική.

7 Το πείραμα των A. Toomura, J. Edo, T. Matsuda, T. Kawasaki, (America Joural of Physics, Feb. 1989). Το συγκεκριμένο πείραμα πραγματοποιήθηκε στα τέλη της δεκαετίας του 80 και από πλευράς παιδαγωγικής αποτελεί μία από τις καλύτερες επιδείξεις της κυματικής υφής των στοιχειωδών σωματιδίων. Λόγω του φαινομένου Bohm-Aharoov, τα ηλεκτρόνια που φθάνουν στον ανιχνευτή από τις δύο τροχιές έχουν διαφορετική φάση. Το βασικό πλεονέκτημα αυτού του πειράματος είναι ότι μπορούσαν να διοχετευθούν ηλεκτρόνια με τόσο αργούς ρυθμούς έτσι ώστε είτε ένα ή κανένα ηλεκτρόνιο ανά πάσα στιγμή εισέρχετο στον ανιχνευτή. Με άλλα λόγια, η πιθανότητα αλληλεπίδρασης ενός ηλεκτρονίου με ένα άλλο ηλεκτρόνιο και η συμβολή τους είχε αποκλειστεί. Κάθε χρονική στιγμή, μόνο ένα (ή κανένα) ηλεκτρόνιο ευρίσκεται μεταξύ των «οπών» και του πετάσματος. Συνεπώς: Τα ηλεκτρόνια δεν αλληλεπιδρούν μεταξύ τους για να παραχθεί η «περιθλαστική» εικόνα στο πέτασμα Οι εικόνες πάρθηκαν μετά την διέλευση από τις «οπές»: a) 10 ηλεκτρονίων, b) 100 ηλεκτρονίων, c) 3000 ηλεκτρονίων, d) ηλεκτρονίων και e) ηλεκτρονίων.

8 ΤΟ ΠΕΙΡΑΜΑ ΤΗΣ ΔΙΠΛΗΣ ΣΧΙΣΜΗΣ ΤΟΥ YOUNG ΜΕΣΩ ΤΗΣ ΚΥΜΑΤΙΚΗΣ ΚΛΑΣΙΚΗΣ ΦΥΣΙΚΗΣ Ο Thomas Youg το 1801 επέδειξε το φαινόμενο της συμβολής δύο φωτεινών κυμάτων. Αυτές οι δύο σχισμές παίζουν τον ρόλο ενός ζεύγους σύμφωνων πηγών φωτός, διότι τα κύματα που αναδύονται από αυτές προέρχονται από το ίδιο κυματικό μέτωπο (ισοφασική επιφάνεια) και επομένως η διαφορά φάσης τους είναι σταθερή. Τα φαινόμενα συμβολής που οφείλονται σε δύο πηγές δημιουργούνται εξαιτίας της διαφοράς φάσης ανάμεσα στα κύματα που εκπέμπονται από αυτές. Επειδή οι δύο αυτές πηγές είναι σύμφωνες και τα δύο κύματα που εκπέμπουν έχουν το ίδιο μήκος κύματος, η διαφορά φάσης τους εξαρτάται μόνο από την διαφορά διαδρομής των δύο κυμάτων. Εάν υποτεθεί ότι τα ηλεκτρομαγνητικά πεδία είναι παράλληλα και ότι τα δύο κύματα έχουν το ίδιο πλάτος Ε 0 : Ε 1=Ε0siωt Ε 1=Ε0si(ωt+φ)

9 Ε Ρ = Ε 1 + Ε = E 0 [si ωt + si(ωt + φ)] φ φ Ε Ρ = Ε0 cos( )si( ω t + ) Η ένταση των φωτεινών κυμάτων στο Ρ είναι ανάλογη προς το τετράγωνο του συνιστάμενου ηλεκτρικού πεδίου στο σημείο αυτό: φ φ Ι Ε Ρ=4Ε0cos ( )si (ωt+ ) Ι ( Ε 0+Ε 0) = ( Ε 0) = 4Ε0 Η ένταση του συνιστάμενου κύματος σε ένα σημείο είναι ανάλογη προς το τετράγωνο τού πλάτους τού συνισταμένου κύματος στο σημείο αυτό. Η ένταση, δηλαδή είναι ανάλογη προς το (Ε 1 + Ε ). Το κλασικό ανάλογο του πειράματος Yougμε ηλεκτρόνια είναι το φως.

10 ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ ΑΠΡΟΣΔΙΟΡΙΣΤΙΑ HEISENBERG Ας δείξουμε τι συμβαίνει με την αβεβαιότητα κατά την προσπάθειά μας να μετρήσουμε ταυτόχρονα τη θέση και την ορμή ενός σωματίου. Έστω ηλεκτρόνιο που προσπίπτει σε πέτασμα με οπή εύρους b. Εάν αντιμετωπίσουμε το ηλεκτρόνιο σαν κυματοπακέτο, επειδή η οπή δεν επιτρέπει να περάσει ολόκληρο το μέτωπο κύματος, αναμένουμε στα δεξιά του πετάσματος το χαρακτηριστικό φάσμα της περίθλασης. Για το ελάχιστο 1 ης τάξης έχουμε γωνιακή διεύθυνση: λ θ=± b Παρατηρούμε πως όσο «ανοίγει» το εύρος της οπής, τόσο στενεύει» ο κεντρικός κροσσός. Ας επιστρέψουμε στη σωματιδιακή εικόνα. Ηλεκτρόνιο προσπίπτει σε οπή και διέρχεται μέσω αυτής.η αβεβαιότητα στη διεύθυνση του ηλεκτρονίου στο δεξιά του πετάσματος χώρο θα είναι: και επειδή η Δθείναι πολύ μικρή, μπορούμε να πούμε: Από τη σχέση De Broglie έχουμε Άρα h x p h h λ h p = λ b b p = p si θ 0 λ p p0 θ p0 b

11 Η Αρχή της αβεβαιότητας Παρατηρήσιμα φαινόμενα Η σταθερότητα και το μέγεθος των ατόμων Ας εφαρμόσουμε την αρχή της απροσδιοριστίας για να κάνουμε μια εκτίμηση της τάξης μεγέθους του ατόμου, δηλαδή του α: h x p h p α Η αβεβαιότητα σε μία κατανομή τιμών είναι η διασπορά των τιμών γύρω από τη μέση τιμή: Δεχόμαστε πως: p p άρα ( ) ( h ) Ας δούμε τώρα την κινητική ενέργεια 1 p K= meυ = m p = p α e ( p) = p p Η ολική ενέργεια του ηλεκτρονίου θα είναι το άθροισμα της κινητικής του ενέργειας συν τη δυναμική ενέργεια Coulomb: p e E(α) = K + V = me α qe e= 4π = h ο e E(α) Μετά από τις αντικαταστάσεις καταλήγουμε πως m α α e 0 Η βασική κατάσταση του ατόμου θα είναι εκείνη που αντιστοιχεί σε κατάσταση ελαχίστης ενέργειας: h 10 de h e α = + = 0 0 = = m : ακτίνα Bohr 3 me e dα m α α e Παρατηρούμε πως για τιμές της ακτίνας μικρότερες της α 0 η συνάρτηση της ενέργειας είναι αύξουσα. Δηλαδή αν προσπαθήσουμε να συμπιέσουμε πιο πολύ το άτομο, φέρνοντας το ηλεκτρόνιο πιο κοντά στον πυρήνα, τότε αυξάνεται η ενέργεια. Επομένως, όσο πιο μικροσκοπική είναι η «φυλακή» του, τόσο πιο πολύ «αντιδρά» το σωματίδιο αυξάνοντας την ενέργειά του! Έτσι παρά το τεράστιο ενδοατομικό κενό, το άτομο συμπεριφέρεται ως μία συμπαγής και ασυμπίεστη σφαίρα.

12 Το μέγεθος των πυρηνικών ενεργειών Για την ενέργεια των σωματιδίων του πυρήνα στο άτομο του Bohr έχουμε: h h m α h m α Επ = m R m R m α m α m R e e p p e e p 6 7 Επ = (10 10 )Eατ Επ µερικά MeV Δυνάμεις από απόσταση και οι φορείς της αλληλεπίδρασης Η ενέργεια για α < α ο είναι αύξουσα συνάρτηση του μεγέθους του ατόμου, επομένως οι πυρηνικές ενέργειες είναι κατά ένα εκατομμύριο φορές μεγαλύτερες από τις ατομικές (ενέργειες των ηλεκτρονίων στα άτομα). Ο πυρήνας είναι ένας γίγαντας ενέργειας ακριβώς επειδή είναι ένας νάνος μεγέθους! Τα πυρηνικά σωματίδια «κινούνται σαν τρελά» ακριβώς επειδή είναι στριμωγμένα σε έναν τόσο μικρό χώρο. Στην κβαντική μηχανική μπορούμε να περιγράψουμε αυτή την αλληλεπίδραση μέσω εκπομπής και απορρόφησης φωτονίων. Η ηλεκτρομαγνητική αλληλεπίδραση μεταξύ δύο φορτισμένων σωματιδίων μεταδίδεται με τα φωτόνια, που μεσολαβούν μεταξύ των φορτισμένων σωματιδίων. Δt: χρόνος διάδοσης της αλληλεπίδρασης (φωτονίου) Αβεβαιότητα στην ορμή: Δp=p(ορμή του φωτονίου) Αβεβαιότητα στη θέση: Δx=r (απόσταση των φορτίων) h p x = p r h p r p h hc 1 F = F ~ = ~ t r t r r r c= t

13 Αν οι αλληλεπιδράσεις των φορτισμένων σωματιδίων μεταδίδονται με φωτόνια, από πού προέρχεται η απαιτούμενη ενέργεια για τη δημιουργία των φωτονίων; Από την αρχή της αβεβαιότητας έχουμε ότι μια κατάσταση, που υπάρχει για ένα μικρό χρονικό διάστημα Ε t ħ Δt, έχει αβεβαιότητα ενέργειας ΔΕ τέτοια ώστε: (1) Αυτή η αβεβαιότητα επιτρέπει τη δημιουργία φωτονίου με ενέργεια ΔΕ, με την προϋπόθεση πως αυτό δεν ζει περισσότερο χρόνο από τον Δt. Ένα φωτόνιο, που μπορεί να υπάρχει για πολύ λίγο χρόνο εξαιτίας αυτής της αβεβαιότητας στην ενέργεια, ονομάζεται πλασματικό(ή δυνητικό) φωτόνιο. Είναι σαν να υπήρχε μια τράπεζα ενέργειας μπορούμε να δανειστούμε ενέργεια ΔΕ, αρκεί να την επιστρέψουμε μέσα στο χρονικό όριο Δt. Σύμφωνα με την Εξ. (1), όσο περισσότερα δανειστούμε, τόσο συντομότερα πρέπει να τα επιστρέψουμε.

14 Μεσόνια Υπάρχει σωματίδιο που είναι φορέας της πυρηνικής δύναμης; Το 1935 ο Ιάπωνας φυσικός Hideki Yukawa πρότεινε ότι ένα υποθετικό σωματίδιο, που ονόμασε μεσόνιο, θα μπορούσε να δράσει σαν μεσολαβητής της πυρηνικής δύναμης. Το σωματίδιο πρέπει να ζει αρκετό χρόνο Δt, ώστε να διανύει αποστάσεις συγκρίσιμες με την εμβέλεια της πυρηνικής δύναμης, που είναι της τάξης του r 0 = 1,5 x m = 1,5 fm. Υποθέτοντας ότι η ταχύτητα του σωματιδίου είναι 4 συγκρίσιμη με την ταχύτητα του φωτός στο κενό c, η διάρκεια του Δtπρέπει να είναι της τάξης του: t= = 5, 0x10 s c r 0 Η απαραίτητη αβεβαιότητα ενέργειας είναι: ħ Ε= = 130MeV tt Η μάζα που αντιστοιχεί σε αυτή την ενέργεια είναι: Ε = = c 8 m,3x10 kg Το 1947 ανακαλύφθηκε μια κατηγορία τριών σωματιδίων, που ονομάζονται μεσόνια π ή πιόνια. Τα φορτία τους είναι + e, -e, και μηδέν και οι μάζες τους είναι περίπου 70 φορές η μάζα του ηλεκτρονίου. Τα πιόνια αλληλεπιδρούν ισχυρά με τους πυρήνες, και είναιτα σωματίδια που πρόβλεψε ο Yukawa.

15 Η σχέση μεταξύ της ενέργειας και της ορμής αυτού του νέου σωματιδίου θα είναι η σχετικιστική έκφραση: 4 E = p c + m c Επειδή η ενέργεια Ε είναι ίση με το μηδέν (ή τουλάχιστον αμελητέα σε σχέση με τη μάζα m) η ορμή προκύπτει φανταστική: p= imc,οπότε για την περίπτωση της πυρηνικής διεργασίας θα πάρουμε ένα πλάτος ανταλλαγής, το οποίο για μεγάλες τιμές της απόστασης θα πρέπει να μεταβάλλεται ως: e mc R ħ R Επομένως, η δύναμη μεταξύ δύο νουκλεονίων θα μπορούσε να περιγραφεί από μια δυναμική ενέργεια U(r) με τη γενική μορφή: (πυρηνικό δυναμικό). U(r) = f r/r 0 e r

16 Η ΑΠΡΟΣΔΙΟΡΙΣΤΙΑ HEISENBERG ΜΕΣΩ ΤΗΣ ΚΥΜΑΤΙΚΗΣ ΚΛΑΣΙΚΗΣ ΦΥΣΙΚΗΣ Ταχύτητες στην κυματική κίνηση Κυματομάδες και ομαδική ταχύτητα Κυματοπακέτα Κυματομάδα με πολλές συνιστώσες. Το θεώρημα εύρους ζώνης Για την περίπτωση μιας ομάδας με πολλές συνιστώσες συχνότητες, που κείνται μέσα στο στενό εύρος συχνοτήτων Δω, καθεμιά με πλάτος α, το πλάτος που προκύπτει από την επαλληλία των συνιστωσών συχνοτήτων 1 R= α cos( ω t+ δ) 0 si α R(t) A cos ωt α ω t α= α = όπου Α=α και,όπου δ ήταν η σταθερή διαφορά φάσης μεταξύ διαδοχικών συνιστωσών Όταν t= 0, siα/α 1 και όλες οι συνιστώσες προστίθενται με μηδενική διαφορά φάσης, δίνοντας το μέγιστο πλάτος R(t)=Α =α. Μετά από κάποιο χρονικό διάστημα Δt, όταν οι φάσεις μεταξύ των συνιστωσών συχνοτήτων είναι τέτοιες ώστε ω t α= =π το προκύπτον πλάτος R(t) να είναι μηδέν. Άρα ΔfΔt=1, όπου Δω = πδf. Το θεώρημα λέει ότι οι συνιστώσες ενός παλμού με εύρος συχνοτήτων Δω συμβάλλουν με τη δημιουργία σημαντικού πλάτους R(t) μόνο για ένα διάστημα Δt, προτού ο παλμός εξασθενίσει εξ αιτίας τυχαίων διαφορών φάσης. Όσο μεγαλύτερο είναι το εύρος Δω, τόσο συντομότερο είναι το διάστημα Δt.

17 Η αρχή της αβεβαιότητας του Heiseberg Σύμφωνα με αυτό, μια ομάδα κυμάτων με ομαδική ταχύτητα υ g, και σε μια περιοχή συχνοτήτων Δfπροστίθεται δίνοντας σημαντικό πλάτος μόνο για ένα χρονικό διάστημα Δt, όπου ΔfΔt 1. Ομοίως, μια ομάδα στην περιοχή κυματαριθμών Δk επιπροστίθεται στο χώρο σε μια απόσταση Δx, όπου ΔxΔk π. Αλλά η ταχύτητα του υλικού κύματος de Broglie ουσιαστικά είναι μια ομαδική ταχύτητα και αντιστοιχεί σε ορμή h h p= = k= ħk λ π Επειδή h E= hf = ω= ħω ππ ħ h = p = k π, προκύπτει ότι και το θεώρημα εύρους ζώνης γίνεται η αρχή της ħ αβεβαιότητας του Heiseberg: Ε = Ε t h f και Ε ħ ω x p h, είναι επίσης εκφράσεις της αρχής της αβεβαιότητας του Heiseberg. Καταλήγουμε πως η απροσδιοριστία των σωματίων στην κλασική κυματική αντιστοιχεί στη συμπεριφορά των κυματοπακέτων στην κβαντομηχανική.

18 ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΦΑΙΝΟΜΕΝΟ ΣΗΡΑΓΓΑΣ Διαπέραση φράγματος Δυναμική ενέργεια - διατήρηση ενέργειας φ φ 1 Υποθέτουμε πως οι περιοχές με τα διαφορετικά δυναμικά ήταν πολύ κοντά η μία στην άλλη, έτσι ώστε η δυναμική ενέργεια να άλλαζε ξαφνικά από την τιμή V 1 στην τιμή V. λ 1 λ r Θεωρούμε την κατάσταση της Εικόνας η οποία περιέχει δύο κουτιά που διατηρούνται σε σταθερές τιμές δυναμικού φ 1 και φ καθώς και μία περιοχή ανάμεσα τους για την οποία θα υποθέσουμε πως το δυναμικό μεταβάλλεται με ομαλό τρόπο καθώς μεταβαίνουμε από το ένα κουτί στο άλλο. Υπάρχει κάποια πιθανότητα να παρατηρηθεί το σωματίδιο στη δεύτερη περιοχή -στην οποία κλασικά δεν θα μπορούσε να βρεθεί με κανένα τρόπο-ωστόσο, το πλάτος για αυτό είναι πάρα πολύ μικρό, εκτός από περιοχές που βρίσκονται σχεδόν πάνω στο όριο.

19 Η διείσδυση του πλάτουςπιθανότητας δια μέσου ενός φράγματος δυναμικού. Αυτό το φαινόμενο είναι γνωστό ως η κβαντομηχανική «διείσδυση ενός φράγματος». Εάν υπάρχει κάποια στενή περιοχή που βρίσκεται σε δυναμικό με τιμή ίση με V η οποία είναι τόσο μεγάλη ώστε η κλασική κινητική ενέργεια να ήταν αρνητική, το σωματίδιο, από την κλασική σκοπιά του θέματος δεν πρόκειται ποτέ να διέλθει μέσα από αυτή. Αλλά από την πλευρά της κβαντομηχανικής, το εκθετικά ελαττούμενο πλάτος πιθανότητας μπορεί να περάσει μέσα από αυτή την περιοχή και να δώσει μία μικρή πιθανότητα να παρατηρηθεί το σωματίδιο στο άλλο άκρο, στο οποίο η κινητική ενέργεια θα εξακολουθεί να είναι αρνητική. Αν η περιοχή υψηλού δυναμικού είναι επαρκώς στενή (1 με λ) υπάρχει μικρή, αλλά σημαντική πιθανότητα το σωματίδιο να ξεπεράσει την περιοχή και να μεταδοθεί παραπέρα (φαινόμενο σήραγγας).

20 Εφαρμογές του κβαντικού φαινομένου σήραγγας Δίοδοι σήραγγας (tuel diode) Επαφή Josephso(Josephso juctio) Σαρωτικό μικροσκόπιο σήραγγας Πυρηνική φυσική και διάσπαση α

21 Σαρωτικό μικροσκόπιο σήραγγας Σε ένα απλουστευμένο μοντέλο της δομής των μετάλλων, μπορούμε να φανταζόμαστε τα ηλεκτρόνια να κινούνται μέσα σε ένα ελκτικό «φρέαρ δυναμικού», το οποίο οφείλεται στο πλέγμα των θετικών ιόνιων του μετάλλου. Εφόσον απαιτείται ενέργεια για να απομακρυνθούν τα ηλεκτρόνια από το μέταλλο, θα πρέπει να υπάρχουν κάποια ηλεκτρικά «τοιχώματα», ή φράγματα, στα άκρα του που να τους απαγορεύουν να διαφύγουν (Εικόνα(α)). Αν, τώρα, εκθέσουμε το μέταλλο σε ένα ισχυρό ηλεκτρικό πεδίο, τότε το ηλεκτρικό δυναμικό θα τροποποιηθεί και θα αποκτήσει τη μορφή που φαίνεται στην Εικόνα(β). Όπως παρατηρούμε, ενώ εξακολουθεί να υπάρχει ένα φράγμα δυναμικού που αποτρέπει τα ηλεκτρόνια να εγκαταλείψουν ανεμπόδιστα το μέταλλο, αυτά μπορούν πλέον να το διαπεράσουν και να διαφύγουν. Για την επιφάνεια ενός μετάλλου το φαινόμενο σήραγγας αντιστοιχεί στην ύπαρξη πεπερασμένης πιθανότητας να βρίσκονται ηλεκτρόνια και έξω από τα όρια της επιφάνειας. Στο STMέχουμε ένα μέταλλο ή ημιαγωγό και την ακίδα, η οποία είναι μεταλλική, όπου εμφανίζεται μια διαρροή ηλεκτρονίων και από τις δύο πλευρές και μπορεί να υπάρξει αλληλοεπικάλυψη μεταξύ των ηλεκτρονιακών νεφών. kd I V e, k = mφ όπου d η απόσταση μεταξύ δείγματος-ακίδας, φ είναι το τοπικό φράγμα δυναμικού μεταξύ ακίδαςδείγματος ή μία μέση τιμή των έργων εξόδου ακίδαςδείγματος, mη μάζα του ηλεκτρονίου ħ Η επιβολή δυναμικού V μεταξύ ακίδας και δείγματος έχει ως αποτέλεσμα την εμφάνιση ροής ηλεκτρονίων από το δείγμα προς την ακίδα ή αντίστροφα(tuelig curret). Αν καταστεί δυνατόν να ελεγχθεί με πολύ μεγάλη ακρίβεια η απόσταση της αιχμής της ακίδας από την επιφάνεια, τότε μπορούμε να χρησιμοποιήσουμε την ένταση του ρεύματος για να μετρήσουμε το μέγεθος διάφορων χαρακτηριστικών πάνω στη μεταλλική επιφάνεια. Το 1986, οι Biigκαι Rohrerτιμήθηκαν με το βραβείο Νόμπελ φυσικής.

22 Πυρηνική φυσική και διάσπαση α Οι ισχυρές πυρηνικές δυνάμεις ανάμεσα στα νουκλεόνια μπορεί να θεωρηθεί ότι δημιουργούν ένα ελκτικό φρέαρ δυναμικού που τα κρατά όλα μαζί μέσα στον πυρήνα, σχεδόν όπως συγκρατούνται μέσα στο μέταλλο τα ηλεκτρόνια. Μέσα στον πυρήνα, όμως, δύο πρωτόνια και δύο νετρόνια ενίοτε ενώνονται και σχηματίζουν ένα σωματίδιο α. Το προκύπτον δυναμικό, το οποίο «αισθάνεται» το σωματίδιο α, φαίνεται στην Εικόνα. Αυτό το πυρηνικό δυναμικό μοιάζει τώρα πολύ με εκείνο το οποίο «αισθάνεται» ένα ηλεκτρόνιο μέσα σε ένα μέταλλο παρουσία ισχυρού ηλεκτρικού πεδίου. Αν και το ύψος του φράγματος είναι περίπου 30 MeV, το σωματίδιο α μπορεί να διαφύγει από τον πυρήνα και να εμφανιστεί ως ελεύθερο σωματίδιο με ενέργεια μόλις 4 MeV! Αυτό συμβαίνει επειδή ξεκίνησαν με ενέργεια Ε από το εσωτερικό του πυρήνα και «δραπέτευσαν» δια μέσου του φράγματος δυναμικού. Το πλάτος πιθανότητας μεταβάλλεται χοντρικά έτσι όπως φαίνεται στο τμήμα (β) της Εικόνας. Ο εκθετικός όρος δίνει ένα τρομακτικά μικρό παράγοντα με τιμή ίση με e -45, που οδηγεί με τη σειρά του σε μία εξαιρετικά μικρή, αλλά παρόλα αυτά συγκεκριμένη πιθανότητα διαφυγής.

23 ΤΟ ΦΑΙΝΟΜΕΝΟ ΣΗΡΑΓΓΑΣ ΜΕΣΩ ΤΗΣ ΚΥΜΑΤΙΚΗΣ ΚΛΑΣΙΚΗΣ ΦΥΣΙΚΗΣ Κυματικό φαινόμενο σήραγγας si(θ ) = si(θ ) 1 i t Αυξάνοντας σταδιακά τη γωνία πρόσπτωσης θ i θα αυξηθεί αντίστοιχα και η γωνία διάθλασης θ t, σύμφωνα με τη σχέση si(θ t ) = ( / 1 ) si(θ i ). Ωστόσο, το ημίτονο μιας γωνίας θ t δεν γίνεται να ξεπεράσει τη μονάδα! Αυτό αντιστοιχεί σε μια κρίσιμη γωνία πρόσπτωσης θ i =θ κ τέτοια ώστε : si(θ κ ) = si(90 ) = Σε μια τέτοια γωνία πρόσπτωσης, θ t =90, δηλαδή η διαθλώμενη δέσμη είναι εφαπτομενικήτης διαχωριστικής επιφάνειας. Για θ i > θ κ το κύμα στο αραιό μέσο λέγεται αποσβενόμενο ή διαφεύγον κύμα (evaescet wave), το οποίο πολύ γρήγορα, μέσα στο λεγόμενο επιδερμικό βάθος, εξασθενίζει εκθετικά, και έτσι δεν διαδίδεται στο αραιό μέσο καθόλου ενέργεια. Το κύμα ανακλάται ολικά, και έχουμε το φαινόμενο της Ολικής Εσωτερικής Ανάκλασης (Total Iteral Reflectio), που ανακαλύφθηκε από τον Johaes Kepler. Επομένως το κλασικό ανάλογο του κβαντομηχανικού φαινόμενου σήραγγας είναι το φαινόμενο της Ολικής Εσωτερικής Ανάκλασης του φωτός.

24 ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΕΠΑΛΛΗΛΙΑ ΚΑΤΑΣΤΑΣΕΩΝ Άτομα σε ηρεμία - στάσιμες καταστάσεις Για ένα σωματίδιο που βρίσκεται σε κατάσταση κάποιας συγκεκριμένης ενέργειας E ο, το πλάτος πιθανότητας εύρεσης του σωματιδίου στο σημείο (χ, ψ,z) τη χρονική στιγμή tείναι ίσο με -i(ε ο/h)t αe, όπου α είναι κάποια σταθερά. Κβαντικό σύστημα σε ηρεμία πλάτος δεν εξαρτάται από θέση πιθανότητα να το βρω στο χώρο παντού η ίδια! Ε καθορισμένη ορμή καθορισμένη, Δp=0, Δx= Παρόλο που τα πλάτηπιθανότητας μεταβάλλονται με το χρόνο, εάν η ενέργεια είναι συγκεκριμένη, αυτά μεταβάλλονται ως ένα φανταστικό εκθετικό και επομένως το απόλυτο τετράγωνο τους δεν μεταβάλλεται καθόλου. Ένα άτομο που διαθέτει κάποια συγκεκριμένη ενέργεια βρίσκεται σε μία στάσιμη κατάσταση. Εάν έχουμε μία "κατάσταση" η οποία αποτελείται από ένα μίγμα δύο διαφορετικών καταστάσεων με διαφορετικές ενέργειες, τότε, το πλάτος για κάθε μία από τις δύο καταστάσεις θα είναι: i(e 1 / )t και e ħ i(e / )t e ħ

25 Το μοριακό ιόν του υδρογόνου Κυματοσυναρτήσεις Ερμηνεία της κυματοσυνάρτησης Φυσικά μεγέθη ως μέσες τιμές τελεστών Σωματίδιο σε κουτί Η συνάρτηση U(x) (το δυναμικό αλληλεπίδρασης) είναι 0 όταν 0<x<L U(x) = όταν x 0 ή x L Μέσα στο κιβώτιο η εξίσωση του Schrodigerγίνεται: επειδή είναι: V=0. ψ= Α si kx+ Bcos kx me k = ħ d ψ m Eψ 0 dx + ħ = Με βάση τις συνοριακές συνθήκες ψ=0 για x=0 και x=l, θα έχουμε: ψ(0) = Α 0+ Β 1= 0 Β= 0 ψ= A si kx ψ(l) = A si kl= 0 kl= π με =1,, k me π = = ħ L E π = ħ ml

26 πx ψ = A si, =1,,... L + L L πx L ψ dx= ψ dx= A si dx= A 0 0 L 0 L ψ dx= 1 A= L Οι ιδιοσυναρτήσεις για αυτό το σωμάτιο θα είναι: ψ πx si L L = με =1,,. και με ιδιοτιμές για την ενέργεια: E π = ħ ml

27 ΣΤΑΣΙΜΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΚΥΜΑΤΙΚΗΣ ΚΛΑΣΙΚΗΣ ΦΥΣΙΚΗΣ Στάσιμα κύματα σε χορδή σταθερού μήκους Μια χορδή με σταθερό μήκος lκαι με σταθερά τα δύο της άκρα παρουσιάζει άπειρη αντίσταση και στα δύο άκρα. Θα εξετάσουμε τώρα τη συμπεριφορά κυμάτων σε μια τέτοια χορδή. Ας θεωρήσουμε την περίπτωση ενός μονοχρωματικού κύματος με συχνότητα ω και με μία συνιστώσα με πλάτος α που οδεύει κατά τη θετική κατεύθυνση x και μία άλλη με πλάτος b που οδεύει κατά την αρνητική κατεύθυνση x. Η μετατόπιση της χορδής σε οποιοδήποτε σημείο θα δίνεται τότε από την έκφραση: i(ωt kx) i(ωt+ kx) ψ αe be = + με τη συνοριακή συνθήκη ότι ψ = 0 στο x= 0 και x=l, κάθε χρονική στιγμή. iωt ikx ikx iωt ψ= αe (e e ) = ( i)αe si kx Η συνθήκη ψ = 0 στο x= 0 δίνει 0 = (α + b)e iωt για κάθε t, οπότε a= -b. μια έκφραση για το ψ που ικανοποιεί τη χρονικά ανεξάρτητη μορφή στάσιμου κύματος της κυματικής εξίσωσης: x ψ + kψ = 0 Η συνθήκη ότι ψ = 0 στο x=l για κάθε tαπαιτεί: ωl si kl= si = 0 c ω l = π c περιορίζοντας τις επιτρεπόμενες τιμές συχνοτήτων στις πc c c λ ω = f = = l= l l λ ω x x π si = si Οι συχνότητες αυτές είναι οι κανονικές συχνότητες ή τρόποι ταλάντωσης c l

28 Σωματίδιο σε κουτί (κυματική θεώρηση) Θα μελετήσουμε το σύστημα το οποίο αποτελείται από ένα σωματίδιο, που ανακλάται ελαστικά μεταξύ δύο ακλόνητων τοίχων σε απόσταση L. Θεωρούμε το πρόβλημα μονοδιάστατο με το σωματίδιο να κινείται κατά μήκος του άξονα xκαι οι τοίχοι να βρίσκονται στις θέσεις x= 0 και x= L. Οι συγκρούσεις είναι τελείως ελαστικές και επομένως το σωματίδιο ποτέ δεν αποκτά επιπλέον ενέργεια ούτε χάνει η ενέργεια του και το μέτρο της ορμής του pπαραμένουν σταθερά. Το σύστημα αυτό περιγράφεται σαν «σωματίδιο σε κουτί». Επειδή το σωματίδιο είναι περιορισμένο στο διάστημα 0 < x< L, αναμένουμε να μηδενίζεται η κυματοσυνάρτηση του έξω από το παραπάνω διάστημα. Επιπλέον, η συνάρτηση ψ να είναι συνεχήςσυνάρτηση του x. Θα πρέπει να μηδενίζεται στα σημεία x= 0 και x= L. ψ(x) = Α si kx όπου k είναι ο κυματαριθμόςk =π/λ. Η Εξ. (1) ικανοποιεί την απαίτηση του μηδενισμού της ψ (x) στο x= 0. Είναι επίσης μηδέν στο x= L αν επιλέξουμε τιμές για τον k τέτοιες ώστε kl= ηπ, ( =1,, 3,...). Οι δυνατές τιμές του kκαι του λ είναι, επομένως: k = π λ λ = π L k = p h = = λ h L E p m h 8mL = = Αυτές είναι όλες οι επιτρεπτές ενεργειακές στάθμες ενός σωματιδίου σε κουτί. Σε κάθε τιμή του η αντιστοιχεί μία κυματοσυνάρτηση, την οποία συμβολίζουμε με ψ. Καταλήγουμε στη σχέση: πx ψ (x) = A si L

29 Στην παρούσα μονοδιάστατη περίπτωση, η ποσότητα (με το ψ υπολογισμένο για μία συγκεκριμένη τιμή του x) είναι η πιθανότητα να βρίσκεται το σωματίδιο στο μικρό διάστημα dx κοντά στο x. ψ dx Στην περίπτωση μας: πx ψ dx= A si dx L ψ (x) = πx A si L Η αβεβαιότητα ως προς τη θέση είναι Δx= L (το πλάτος του κουτιού). Το μέτρο της ορμής pστην κατάσταση είναιp= h/l. Μία λογική εκτίμηση της αβεβαιότητας στην ορμή είναι η διαφορά στην ορμή μεταξύ δύο καταστάσεων, που διαφέρουν κατά μία μονάδα στις τιμές του, δηλαδή Δp=h/L. Το γινόμενο, τότε, ΔxΔpπου εμφανίζεται στην αρχή της αβεβαιότητας, είναι ΔxΔp=h/. Αυτό είναι όμοιο με το όριο που επιβάλλεται από την αρχή της αβεβαιότητας. Επομένως, το κλασικό ανάλογο των στάσιμων καταστάσεων της κβαντομηχανικής, είναι τα στάσιμα κύματα.

30 ΒΙΒΛΙΟΓΡΑΦΙΑ Webcast της ΘΕ ΚΦΕ 61του Ε.Α.Π.: Θέματα Σύγχρονης Φυσικής, Διαλέξεις Κβαντομηχανικής. S.E. Tzamarias, Lifelog educatio for educators, Quatum descriptio of the world. S.E. Tzamarias, Lifelog educatio for educators, Lectures i moder physics. Serway R. A.: Physics for scietists ad egieers, third editio. Hey T., Walters P.: The ew quatum uiverse, 003 Cambridge uiversity press. The Feyma lectures o Physics, Volume III, 009 Εκδόσεις Τζιόλα. Jim Al-Khalili: Quatum A guide for the perplexed, 003. A. P. Frech: Vibratios ad waves, 1971 Norto. A. P. Frech, E. F. Taylor: A Itroductio to Quatum Physics, 1978 Norto. Ασημέλλης Γ., Μαθήματα Οπτικής, Θεσσαλονίκη, 006 Εκδόσεις Ανίκουλα Ταμβάκης, Κ., Κβαντική Μηχανική, Αθήνα 1990, Εκδόσεις Συμεών. Youg H.D.: Πανεπιστημιακή Φυσική, όγδοη έκδοση. Pai, H. J., Φυσική των ταλαντώσεων και των κυμάτων, 1991Εκδόσεις Συμμετρία, Αθήνα.

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Διαβάστε περισσότερα

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Κβαντική µηχανική Τύχη ή αναγκαιότητα Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Ηφυσικήστόγύρισµα του αιώνα «Όλοι οι θεµελιώδεις νόµοι και δεδοµένα της φυσικής επιστήµης έχουν ήδη ανακαλυφθεί και

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p University of Ioannina Deartment of Materials Science & Engineering Comutational Materials Science τική Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π1, 7146, elidorik@cc.uoi.gr cmsl.materials.uoi.gr/elidorik

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ Συζευγμένα ηλεκτρικά και μαγνητικά πεδία τα οποία κινούνται με την ταχύτητα του φωτός και παρουσιάζουν τυπική κυματική συμπεριφορά Αν τα φορτία ταλαντώνονται περιοδικά οι διαταραχές

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 3 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α. Στις

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή φράση, η οποία

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΘΕΜΑ A ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Παρασκευή, 0 Μαΐου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ Στις ερωτήσεις Α -Α να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 2-1 Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης Εδάφια: 2.a. Η σύσταση των ατόμων 2.b. Ατομικά φάσματα 2.c. Η Θεωρία του Bohr 2.d. Η κυματική συμπεριφορά των σωμάτων: Υλικά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.. Το έτος 2005 ορίστηκε ως έτος Φυσικής

Διαβάστε περισσότερα

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15 Διάλεξη 14: Μεσόνια και αντισωματίδια Μεσόνια Όπως αναφέρθηκε προηγουμένως (διάλεξη 13) η έννοια των στοιχειωδών σωματίων άλλαξε πολλές φορές μέχρι σήμερα. Μέχρι το 1934 ο κόσμος των στοιχειωδών σωματιδίων

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 13 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ 1. ύο µονοχρωµατικές ακτινοβολίες Α και Β µε µήκη κύµατος στο κενό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ 05 2 0 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30

ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30 ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30 Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s.

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s. Κεφάλαιο 1 Το Φως Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s. Το φως διαδίδεται στο κενό με ταχύτητα περίπου 3x10 8 m/s. 3 Η ταχύτητα του φωτός μικραίνει, όταν το φως

Διαβάστε περισσότερα

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας το r με r n, έχουμε: Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας n=1, βρίσκουμε την τροχιά με τη μικρότερη ακτίνα n: Αντικαθιστώντας την τελευταία εξίσωση στη 2.6, παίρνουμε: Αν

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Θέµα Α ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 0 ΜΑΪΟΥ 013 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Hideki Yukawa and the Nuclear Force Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής πυρηνική δύναμη Η πυρηνική δύναμη (ή αλληλεπίδραση νουκλεονίουνουκλεονίου, ή NN forces,

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 204 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΕΞΗΓΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ ΜΕ ΤΗΝ ΣΩΜΑΤΙΔΙΑΚΗ ΘΕΩΡΙΑ ΤΟΥ ΦΩΤΟΣ

ΕΞΗΓΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ ΜΕ ΤΗΝ ΣΩΜΑΤΙΔΙΑΚΗ ΘΕΩΡΙΑ ΤΟΥ ΦΩΤΟΣ ΕΞΗΓΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ ΜΕ ΤΗΝ ΣΩΜΑΤΙΔΙΑΚΗ ΘΕΩΡΙΑ ΤΟΥ ΦΩΤΟΣ ΑΝΑΤΡΟΠΗ ΤΗΣ ΚΥΜΑΤΙΚΗΣ ΘΕΩΡΙΑΣ Του Αλέκου Χαραλαμπόπουλου Η συμβολή και η περίθλαση του φωτός, όταν περνά λεπτή σχισμή ή μικρή

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Δεύτερη Φάση) Κυριακή, 13 Απριλίου 2014 Ώρα: 10:00-13:00 Οδηγίες: Το δοκίμιο αποτελείται από έξι (6) σελίδες και έξι (6) θέματα. Να απαντήσετε

Διαβάστε περισσότερα

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 Ο : ΚΡΟΥΣΕΙΣ ΦΑΙΝΟΜΕΝΟ DOPPLER ENOTHT 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ Κρούση: Κρούση ονομάζουμε το φαινόμενο κατά το οποίο δύο ή περισσότερα σώματα έρχονται σε επαφή για πολύ μικρό χρονικό διάστημα κατά

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 ΚίνησηΚυµάτων ΠεριεχόµεναΚεφαλαίου 15 Χαρακτηριστικά Κυµατικής Είδη κυµάτων: ιαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της ιάδοσης κυµάτων ΗΕξίσωσητουΚύµατος Κανόνας

Διαβάστε περισσότερα

Tι είναι η κβαντική Φυσική

Tι είναι η κβαντική Φυσική Tι είναι η κβαντική Φυσική Η κβαντική Θεωρία είναι η μεγαλύτερη πνευματική δημιουργία του ανθρώπου αλλά συγχρόνως και η πιο παράξενη θεωρία η οποία αντιβαίνει σε πολλά από τη καθημερινή μας εμπειρία. Στη

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή:

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή: 54 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ 2014 ΘΕΜΑ Α Α1. Πράσινο και κίτρινο φως

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΑ ΚΥΜΑΤΑ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΑ ΚΥΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΑ ΚΥΜΑΤΑ Θέμα 1 ο Στις ερωτήσεις 1-4 να γράψετε στην κόλλα σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή πρόταση, χωρίς δικαιολόγηση. 1. Α) Φορτία που κινούνται

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή φράση η οποία συμπληρώνει σωστά την ημιτελή

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΤΕΛΟΣ 2ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 2ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ 1 ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 20 ΔΕΚΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) Α) Για κάθε μία

Διαβάστε περισσότερα

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Φυσικών της Ώθησης ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Ομάδα Φυσικών της Ώθησης 1 Τετάρτη, 20 Μα ου 2015 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 25 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 25 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 5 ΑΠΡΙΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε

Διαβάστε περισσότερα

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής αρκεί να γράψετε

Διαβάστε περισσότερα

Κβαντομηχανική σε μία διάσταση

Κβαντομηχανική σε μία διάσταση vrsy of Io Dr of Mrls Scc & grg Couol Mrls Scc κή Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 76 ldor@cc.uo.gr csl.rls.uo.gr/ldor σταση Μία ιάσ ανική σε Μ κή Θεωρ ρία της Ύλης: Κβα αντομηχα Κβαντομηχανική

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2002 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ

Διαβάστε περισσότερα

Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα, που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα, που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα, που αντιστοιχεί στη σωστή απάντηση.. Μια δέσµη φωτός προσπίπτει στην επιφάνεια

Διαβάστε περισσότερα

Κβαντοφυσική. 3 ο Μέρος : ΠΡΑΚΤΙΚΕΣ ΔΡΑΣΤΡΙΟΤΗΤΕΣ. Περίθλαση Ηλεκτρονίων. Η φυσική των πολύ μικρών στοιχείων με τις μεγάλες εφαρμογές

Κβαντοφυσική. 3 ο Μέρος : ΠΡΑΚΤΙΚΕΣ ΔΡΑΣΤΡΙΟΤΗΤΕΣ. Περίθλαση Ηλεκτρονίων. Η φυσική των πολύ μικρών στοιχείων με τις μεγάλες εφαρμογές 1 Κβαντοφυσική Η φυσική των πολύ μικρών στοιχείων με τις μεγάλες εφαρμογές 3 ο Μέρος : ΠΡΑΚΤΙΚΕΣ ΔΡΑΣΤΡΙΟΤΗΤΕΣ Περίθλαση Ηλεκτρονίων Το Quantum Spin-Off χρηματοδοτείται από την Ευρωπαϊκή Ένωση υπό το πρόγραμμα

Διαβάστε περισσότερα

Κβαντομηχανική εικόνα του ατομικού μοντέλου

Κβαντομηχανική εικόνα του ατομικού μοντέλου Κβαντομηχανική εικόνα του ατομικού μοντέλου 1. Ερώτηση: Τι είναι η κβαντομηχανική; H κβαντομηχανική, είναι η σύγχρονη αντίληψη μιας νέας μηχανικής που μπορεί να εφαρμοστεί στο μικρόκοσμο του ατόμου. Σήμερα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το

Διαβάστε περισσότερα

r r r r r r r r r r r

r r r r r r r r r r r ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ Η ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ ΚΑΙ ΚΑΤΗΓΟΡΙΕΣ ΚΥΜΑΤΩΝ

Γ ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ Η ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ ΚΑΙ ΚΑΤΗΓΟΡΙΕΣ ΚΥΜΑΤΩΝ ΕΙΣΑΓΩΓΗ Όταν πηγαίνετε στην ακρογιαλιά για να απολαύσετε τα κύματα της θάλασσας, βιώνετε μια κυματική κίνηση. Οι κυματισμοί σε μια λίμνη, οι μουσικοί ήχοι, ήχοι που δεν ακούμε, οι παλινδρομήσεις ενός

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

ΕΠΑ.Λ. Β ΟΜΑ ΑΣ ΦΥΣΙΚΗ I ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑ.Λ. Β ΟΜΑ ΑΣ ΦΥΣΙΚΗ I ΕΚΦΩΝΗΣΕΙΣ 1 ΕΠΑ.Λ. Β ΟΜΑ ΑΣ ΦΥΣΙΚΗ I ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1- και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σχετικά µε τις ιδιότητες

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 14 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Παρασκευή, 13 Ιουνίου 14 8:

Διαβάστε περισσότερα

δ. εξαρτάται µόνο από το υλικό του οπτικού µέσου. Μονάδες 4

δ. εξαρτάται µόνο από το υλικό του οπτικού µέσου. Μονάδες 4 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 7 ΙΟΥΛΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-5 να

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ Θέμα1: Α. Η ταχύτητα διάδοσης ενός ηλεκτρομαγνητικού κύματος: α. εξαρτάται από τη συχνότητα ταλάντωσης της πηγής β. εξαρτάται

Διαβάστε περισσότερα

6.10 Ηλεκτροµαγνητικά Κύµατα

6.10 Ηλεκτροµαγνητικά Κύµατα Πρόταση Μελέτης Λύσε απο τον Α τόµο των Γ. Μαθιουδάκη & Γ.Παναγιωτακόπουλου τις ακόλουθες ασκήσεις : 11.1-11.36, 11.46-11.50, 11.52-11.59, 11.61, 11.63, 11.64, 1.66-11.69, 11.71, 11.72, 11.75-11.79, 11.81

Διαβάστε περισσότερα

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005 ΑΤΜΟΦ Απαντησεις στις ερωτησεις της εξετασης της 4 ης Ιουνιου 005. Ερωτηση που αφορα στις ασκησεις του εργαστηριου. Α) Με βάση τη σχέση που συνδέει τις αποστάσεις α και b με την εστιακή απόσταση του σφαιρικού

Διαβάστε περισσότερα

2. Οι ενεργειακές στάθµες του πυρήνα ενός στοιχείου είναι της τάξης α)µερικών ev γ)µερικών MeV

2. Οι ενεργειακές στάθµες του πυρήνα ενός στοιχείου είναι της τάξης α)µερικών ev γ)µερικών MeV ΙΑΓΩΝΙΣΜΑ Γ ΓΕΝΙΚΗΣ ΘΕΜΑ 1 ο 1. Αν ένα οπτικό µέσο Α µε δείκτη διάθλασης n Α είναι οπτικά πυκνότερο από ένα άλλο οπτικό µέσο Β µε δείκτη διάθλασης n Β και τα µήκη κύµατος του φωτός στα δυο µέσα είναι λ

Διαβάστε περισσότερα

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. + 1) με Ν=0,1,2,3..., όπου d το μήκος της χορδής. 4 χορδή με στερεωμένο το ένα άκρο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ. ,στο κενό (αέρα) co

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. + 1) με Ν=0,1,2,3..., όπου d το μήκος της χορδής. 4 χορδή με στερεωμένο το ένα άκρο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ. ,στο κενό (αέρα) co ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ Κύματα που t x t x σχηματίζουν το y1 = A. hm2 p ( - ), y2 = A. hm2 p ( + ) T l T l στάσιμο Εξίσωση στάσιμου c κύματος y = 2 A. sun 2 p. hm2p t l T Πλάτος ταλάντωσης c A = 2A sun 2p l Κοιλίες,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Δύο χορδές μιας κιθάρας Χ1, Χ2

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ 1 Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 015 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ Ερωτήσεις Πολλαπλής επιλογής 1. To βάθος µιας πισίνας φαίνεται από παρατηρητή εκτός της πισίνας µικρότερο από το πραγµατικό, λόγω του φαινοµένου της: α. ανάκλασης β. διάθλασης γ. διάχυσης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Νόμος του Coulomb Έστω δύο ακίνητα σημειακά φορτία, τα οποία βρίσκονται σε απόσταση μεταξύ τους. Τα φορτία αυτά αλληλεπιδρούν μέσω δύναμης F, της οποίας

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ Σχολικό έτος 2012-2013 Πελόπιο, 23 Μαΐου 2013 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ ΘΕΜΑ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ 2005 - Γ' ΛΥΚΕΙΟΥ 7/6/2005 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΣΕΙΣ 2005 - Γ' ΛΥΚΕΙΟΥ 7/6/2005 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ 2005 - Γ' ΛΥΚΕΙΟΥ 7/6/2005 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Να γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο : 1. Ένας ομογενής δίσκος περιστρέφεται γύρω από σταθερό άξονα με στροφορμή μέτρου L. Αν διπλασιάσουμε το μέτρο της στροφορμής

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ 1 ο ΘΕΜΑ Α. Ερωτήσεις πολλαπλής επιλογής ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ 1. Μια ακτίνα φωτός προσπίπτει στην επίπεδη διαχωριστική επιφάνεια δύο µέσων. Όταν η διαθλώµενη ακτίνα κινείται παράλληλα προς τη διαχωριστική

Διαβάστε περισσότερα

Μην ξεχνάµε την διαπεραστική µατιά του Λυγκέα.

Μην ξεχνάµε την διαπεραστική µατιά του Λυγκέα. Η φύση του φωτός Το ρήµα οράω ορώ ( βλέπω ) είναι ενεργητικής φωνής. Η όραση θεωρείτο ενεργητική λειτουργία. Το µάτι δηλαδή εκπέµπει φωτεινές ακτίνες( ρίχνει µια µατιά ) οι οποίες σαρώνουν τα αντικείµενα

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÎÕÓÔÑÁ

Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÎÕÓÔÑÁ 1 Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1- και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση 1. Ο ραδιενεργός

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Θέµα ο ΚΕΦΑΛΑΙΟ 2 ο : ΚΥΜΑΤΑ Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες; α Η υπέρυθρη ακτινοβολία έχει µήκη κύµατος µεγαλύτερα από

Διαβάστε περισσότερα

7α Γεωμετρική οπτική - οπτικά όργανα

7α Γεωμετρική οπτική - οπτικά όργανα 7α Γεωμετρική οπτική - οπτικά όργανα Εισαγωγή ορισμοί Φύση του φωτός Πηγές φωτός Δείκτης διάθλασης Ανάκλαση Δημιουργία ειδώλων από κάτοπτρα Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/katsiki Ηφύσητουφωτός

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα Φυσική Γ Λυκείου Κατεύθυνσης Προτεινόμενα Θέματα Θέμα ο Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Η φάση της ταλάντωσης μεταβάλλεται με το χρόνο όπως δείχνει το παρακάτω σχήμα : φ(rad) 2π π 6

Διαβάστε περισσότερα

Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης

Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης 3 Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης Μέθοδος Σε σώμα διαφανές ημικυλινδρικού σχήματος είναι εύκολο να επιβεβαιωθεί ο νόμος του Sell και να εφαρμοστεί

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 5.4 Η ταχύτητα υ διάδοσης του κύματος, η περίοδός του Τ και το μήκος κύματος λ, συνδέονται με τη σχέση:

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 5.4 Η ταχύτητα υ διάδοσης του κύματος, η περίοδός του Τ και το μήκος κύματος λ, συνδέονται με τη σχέση: Αρμονικό κύμα ΚΕΦΑΛΑΙΟ 2 51 Κατά τη διάδοση ενός κύματος σε ένα ελαστικό μέσο: α μεταφέρεται ύλη, β μεταφέρεται ενέργεια και ύλη, γ όλα τα σημεία του ελαστικού μέσου έχουν την ίδια φάση την ίδια χρονική

Διαβάστε περισσότερα

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ 2-1 Ένας φύλακας του ατομικού ρολογιού καισίου στο Γραφείο Μέτρων και Σταθμών της Ουάσιγκτον. 2-2 Άτομα στην επιφάνεια μιας μύτης βελόνας όπως φαίνονται μεηλεκτρονικόμικροσκό 2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ

Διαβάστε περισσότερα

1. Κατά μήκος μιας χορδής μεγάλου μήκους, η οποία ταυτίζεται με τον άξονα x Ox, διαδίδονται ταυτόχρονα

1. Κατά μήκος μιας χορδής μεγάλου μήκους, η οποία ταυτίζεται με τον άξονα x Ox, διαδίδονται ταυτόχρονα ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ 1. Κατά μήκος μιας χορδής μεγάλου μήκους, η οποία ταυτίζεται με τον άξονα x Ox, διαδίδονται ταυτόχρονα δύο αρμονικά κύματα που έχουν εξισώσεις y 1 = 0,1ημπ(5t,5x) (S.I.) και y = 0,1ημπ(5t

Διαβάστε περισσότερα

NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr

NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr Έστω µάζα m. Στη µάζα κάποια στιγµή ασκούνται δυο δυνάµεις. ( Βλ. σχήµα:) Ποιά η διεύθυνση και ποιά η φορά κίνησης της µάζας; F 1 F γ m F 2 ιατυπώστε αρχή επαλληλίας. M την της Ποιό φαινόµενο ονοµάζουµε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Θέμα Α Στις ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 015 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 6 Απριλίου 015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ. Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ

ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ. Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ Ένα επαναλαμβανόμενο περιοδικά φαινόμενο, έχει μία συχνότητα επανάληψης μέσα στο χρόνο και μία περίοδο. Επειδή κάθε

Διαβάστε περισσότερα

δ. διπλάσιος του αριθµού των νετρονίων του πυρήνα του ατόµου.

δ. διπλάσιος του αριθµού των νετρονίων του πυρήνα του ατόµου. 1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 MAΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω

Διαβάστε περισσότερα

ΘΕΜΑ 1 0. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικό διαγώνισµα Φυσικής Κατεύθυνσης Γ λυκείου 009 ΘΕΜΑ 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σώµα

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

Είδη κυµάτων. Ηλεκτροµαγνητικά κύµατα. Σε κάποιο φυσικό µέσο προκαλείται µια διαταραχή. Το κύµα είναι η διάδοση της διαταραχής µέσα στο µέσο.

Είδη κυµάτων. Ηλεκτροµαγνητικά κύµατα. Σε κάποιο φυσικό µέσο προκαλείται µια διαταραχή. Το κύµα είναι η διάδοση της διαταραχής µέσα στο µέσο. Κεφάλαιο T2 Κύµατα Είδη κυµάτων Παραδείγµατα Ένα βότσαλο πέφτει στην επιφάνεια του νερού. Κυκλικά κύµατα ξεκινούν από το σηµείο που έπεσε το βότσαλο και αποµακρύνονται από αυτό. Ένα σώµα που επιπλέει στην

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 3 Μαΐου 015 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ A Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Το πλάτος της ταλάντωσης του σημείου Σ, μετά τη συμβολή των δυο. α. 0 β. Α γ. 2Α δ. Μονάδες 5

Το πλάτος της ταλάντωσης του σημείου Σ, μετά τη συμβολή των δυο. α. 0 β. Α γ. 2Α δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 04-01-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ-ΠΟΥΛΗ Κ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα