ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1"

Transcript

1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 Βασίλης Μάγκλαρης 15/3/2017

2 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ POISSON (επανάληψη) Η τυχαία εμφάνιση παλμών περιγράφεται σαν μια Στοχαστική Ανέλιξη Απαρίθμησης (Counting Process) N(t) που καταμετρά τυχαία γεγονότα (αφίξεις πελατών) στο διάστημα (0, t). Ο αριθμός εμφανίσεων στο διάστημα t, t + T είναι διακριτή τυχαία μεταβλητή ν = N t + T N(t). Κάτω από συνθήκες απρόβλεπτης εξέλιξης της ανέλιξης (τα γεγονότα εμφανίζονται ανεξάρτητα από το παρελθόν και χωρίς να επηρεάζουν το μέλλον), η ν ακολουθεί την κατανομή Poisson με μέσο αριθμό εμφανίσεων ανάλογο του διαστήματος T: E T ν = λt. Η σταθερά λ ορίζει τον μέσο ρυθμό (rate) εμφανίσεων (γεγονότα ανά μονάδα χρόνου) 2

3 Η ΚΑΤΑΝΟΜΗ POISSON (1/3) (επανάληψη) Διακριτή Τυχαία Μεταβλητή ν = N t + T N(t) απαρίθμησης γεγονότων σε χρονικό διάστημα παρατήρησης T που εμφανίζονται τυχαία και ανεξάρτητα από παρελθούσες ή μελλοντικές εμφανίσεις γεγονότων στο δείγμα (υλοποίηση) της Στοχαστικής Ανέλιξης μετρητή N(t) στο οποίο συνεισφέρουν (ιδιότητα έλλειψης μνήμης Markov) Ο μέσος όρος εμφανίσεων γεγονότων στο διάστημα T είναι E T ν = λt Εφαρμογές σε ανεξάρτητες εμφανίσεις τυχαίων γεγονότων: Τυχαίες εκρήξεις που προκαλούν τον ΘΟΡΥΒΟ ΒΟΛΗΣ σε ηλεκτρονικές συσκευές επικοινωνών Ανεξάρτητες τυχαίες αφίξεις πελατών σε ΣΥΣΤΗΜΑΤΑ ΟΥΡΩΝ ΑΝΑΜΟΝΗΣ με απαιτήσεις εξυπηρέτησης όπως: Διεκπεραίωση Τηλεφωνικών Κλήσεων Διακίνηση Πακέτων Δεδομένων στο Internet Κυκλοφορία Αυτοκίνητων σε Οδικά Συστήματα Αγορές και Πληρωμές σε Καταστήματα Επεξεργασία Δεδομένων σε Κοινές Υπολογιστικές Υποδομές 3

4 Η ΚΑΤΑΝΟΜΗ POISSON (2/3) (επανάληψη) Η Κατανομή Poisson σαν Όριο Διωνυμικής Κατανομής Ανεξάρτητες εμφανίσεις {N t = k} γεγονότων (σημείων) Poisson στο διάστημα (0, t) με ρυθμό λ σημεία/sec ορίζουν Διακριτή Τυχαία Μεταβλητή (Discrete Random Variable) {ν = k} με Κατανομή Μάζας Πιθανότητας k λt P t [ν = k] P N t = k = e λt, k = 0,1,2, k! Απόδειξη Διαιρώ το διάστημα t σε n υποδιαστήματα, t = nδt Πραγματοποιώ n ανεξάρτητες δοκιμές Bernouilli, μια σε κάθε υποδιάστημα, με δύο εναλλακτικές: Εμφάνιση (επιτυχία) με πιθανότητα p = λδt, μη εμφάνιση (αποτυχία) με 1 p Η πιθανότητα k επιτυχιών σε n ανεξάρτητες δοκιμές δίνεται από την Διωνυμική Κατανομή: P N t = k = n k pk 1 p n k, k = 0,1,, n P N t = k = n k λδt k 1 λδt n k = n k Στο όριο Δt 0, n, t = nδt έχουμε P N t = k = n! k! n k! n! n k! nk, k λt 1 λt n n λt n 1 λt n n k k n k 1 λt n n k e λt και λt k k! e λt 4

5 Η ΚΑΤΑΝΟΜΗ POISSON (3/3) (επανάληψη) Κατανομή Poisson για Διαφορετικές Τιμές του λt = E N(T) (μέσος αριθμός εμφανίσεων γεγονότων σε διάστημα T) λt Οι συνεχείς καμπύλες στο σχήμα είναι οι περιβάλλουσες των Συναρτήσεων Μάζας Πιθανότητας (Ιστογράμματος) της Διακριτής Τυχαίας Μεταβλητής Poisson P T [ν = k] P N T = k = λt k k! e λt Ιδιότητες της Στοχαστικής Ανέλιξης Poisson 2 E N t = σ N t = λt Ο συνολικός αριθμός σημείων Στοχαστική Ανέλιξης Poisson ρυθμού λ σε μη υπερ-καλυπτόμενα χρονικά διαστήματα T 1, T 2 είναι διακριτή τυχαία μεταβλητή Poisson με μέση τιμή λ(t 1 + T 2 ) Υπέρθεση δυο ανεξαρτήτων Ανελίξεων Poisson N 1 t, N 2 t με ρυθμούς λ 1, λ 2 δίνει Ανέλιξη Poisson N t με ρυθμό λ = λ 1 + λ 2 Διάσπαση Ανέλιξης Poisson ρυθμού λ μέσω ανεξαρτήτων τυχαίων επαναλήψεων Bernoulli με πιθανότητες p, q = 1 p (π.χ. τυχαία δρομολόγηση χωρίς μνήμη) δημιουργεί ανεξάρτητες ανελίξεις (διαδικασίες) Poisson με μέσους ρυθμούς λ 5 1 = pλ, λ 2 = qλ

6 Η ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ (1/2) Ορισμοί, Συνάρτηση Αθροιστικής Κατανομής - Cumulative Distribution Function (CDF) & Συνάρτηση Πυκνότητας Πιθανότητας - Probability Density Function (PDF) Το χρονικό διάστημα τ μεταξύ διαδοχικών εμφανίσεων σημείων Poisson είναι Συνεχής Τυχαία Μεταβλητή (Continuous Random Variable) με Εκθετική Κατανομή (Exponential Distribution): CDF: F τ t = P τ t = 1 e λt, t 0 0, t < 0 και PDF: f τ t = df τ(t) = λe λt, t 0 0, t < 0 Απόδειξη 1 F τ t 1 = 1 P τ t 1 = P τ > t 1 = P t1 ν = 0 = λt 1 0 e λt 1 = e λt 1 0! https://en.wikipedia.org/wiki/exponential_distribution CDF: F τ t = P τ t PDF: f t = df τ(t) 6

7 Η ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ (2/2) Ιδιότητες Εκθετικής Κατανομής E τ = t=0 λte λt = 1/λ E τ 2 = λt 2 e λt = 2/λ 2, t=0 σ τ 2 = E τ 2 E τ 2 = 1/λ 2 Ιδιότητα έλλειψης μνήμης: P[τ > t + s, τ > s] P τ > t + s τ > s = P[τ > s] = 1 F τ t = P[τ > t + s] P[τ > s] = e λt = P τ > t Η εκθετική κατανομή είναι η μόνη κατανομή συνεχούς μεταβλητής με την ιδιότητα αυτή (Memoryless, Markov Property). Την ίδια ιδιότητα έχει η διακριτή γεωμετρική κατανομή της οποίας το όριο σε συνεχές πεδίο ορισμού είναι η εκθετική κατανομή 7

8 ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ ΘΑΝΑΤΩΝ (1/4) Birth Death Processes Παραδοχές: o Ανεξαρτησία γεννήσεων-θανάτων o Εξέλιξη της κατάστασης - πληθυσμού n(t) βασισμένη μόνο στο παρόν (Ιδιότητα Markov) Σύστημα Διαφορικών εξισώσεων Διαφορών Κατάσταση ισορροπίας (steady state) Την χρονική στιγμή t το σύστημα καταλήγει σε πληθυσμό n(t) = k Μπορεί να έχουν προηγηθεί οι ακόλουθες μεταβάσεις από την χρονική στιγμή t Δt, Δt 0 : Μία άφιξη στο διάστημα Δt, με πιθανότητα λ k 1 Δt αν k > 0 Μια αναχώρηση, με πιθανότητα μ k+1 Δt αν υπάρχει η k + 1 (σε περίπτωση περιορισμού μέγιστου πληθυσμού K μπορούμε να θεωρήσουμε μ k+1 = 0) Τίποτα από τα δύο, με πιθανότητα 1 (λ k + μ k )Δt αν k > 0 ή 1 λ 0 Δt αν k = 0 Οι εξισώσεις μετάβασης (Chapman - Kolmogorov) προκύπτουν από τον τύπο συνολικής πιθανότητας: P k t = λ k 1 ΔtP k 1 t Δt + μ k+1 ΔtP k+1 t Δt + 1 λ k + μ k Δt P k t Δt P 0 (t) = μ 1 Δt P 1 (t Δt) + (1 λ 0 Δt) P 0 (t Δt) με αρχικές συνθήκες P k 0 και οριακές συνθήκες P k t = 1, t k 8

9 ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ ΘΑΝΑΤΩΝ (2/4) Στο όριο, Δt 0, P k t P k (t Δt) Δt εξισώσεων διαφορών: Birth Death Processes dp k(t) και προκύπτει το γραμμικό σύστημα διαφορικών dp k(t) dp 0(t) = λ k 1 P k 1 t + μ k+1 P k+1 t λ k + μ k P k t, k > 0 = μ 1 P 1 t λ 0 P 0 t με αρχικές συνθήκες P k 0 και οριακές συνθήκες P k t = 1, t k Όταν t και κάτω από ορισμένες συνθήκες το σύστημα συγκλίνει σε σταθερή κατάσταση. Το μεταβατικό φαινόμενο παρέρχεται για καταστάσεις n t = k απείρως επισκέψιμες - positive recurrent, ξεχνιέται η αρχική συνθήκη P k 0 και οι πιθανότητές P k t συγκλίνουν στις οριακές πιθανότητες P k > 0 : Για t, dp k(t) = 0, P k t P k > 0 : Εργοδικές Οριακές Πιθανότητες Σημείωση: Ισχύει η εργοδική ιδιότητα και οι οριακές πιθανότητες μπορούν να προσεγγισθούν σαν P k = lim { T k } όπου T T T k είναι το σχετικό συνολικό χρονικό διάστημα T k όταν n t = k σε μεγάλο χρονικό ορίζοντα T μιας καταγραφής της ανέλιξης n t σε ισορροπία. Οι εργοδικές οριακές πιθανότητες προκύπτουν από τις γραμμικά ανεξάρτητες Εξισώσεις Ισορροπίας: λ k + μ k P k = λ k 1 P k 1 + μ k+1 P k+1, k > 1 λ 0 P 0 = μ 1P 1 P 0 + P P k + = 1 9

10 ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ ΘΑΝΑΤΩΝ (3/4) Birth Death Processes Εφαρμογή σε Απλή Ουρά Μ/Μ/1 Αφίξεις Poisson με μέσο ρυθμό λ αφίξεις/sec: λ k = λ, k = 0,1,2,3, Χρόνοι εξυπηρέτησης εκθετικοί με μέση τιμή E s = 1 μ sec: μ k = μ, k = 1,2,3, ρ = λ < 1 Erlang (συνθήκη για οριακή ισορροπία εργοδικότητα) μ H εξέλιξη των πιθανοτήτων P n t = k = P k (t) προκύπτει από το σύστημα διαφορικών εξισώσεων: dp k(t) dp 0(t) = λp k 1 t + μp k+1 t λ + μ P k t, k > 0 = μp 1 t λp 0 t με αρχικές συνθήκες P k 0 και οριακές συνθήκες k=0 P k t = 1 t 0 Στο όριο t, dp k(t) = 0, P k t P k > 0, τις εργοδικές πιθανότητες που προκύπτουν από τις εξισώσεις ισορροπίας: λp 0 = μp 1 ή P 1 = λ μ P 0 = ρp 0 λ + μ P 1 = λp 0 + μp 2 ή P 2 = ρ 2 P 0 και γενικά P k = ρ k P 0, k > 0 P 0 + P P k + = 1 = P ρ + ρ 2 + ρ 3 + Εφόσον 0 < ρ < 1 η άπειρη δυναμοσειρά 1 + ρ + ρ 2 + ρ ρ P 0( 1 1 ρ ) = 1 και P 0 = 1 ρ, P k = 1 ρ ρ k, k > 0 Μέσο μήκος ουράς Μ/Μ/1 σε ισορροπία: E n t kp k = ρ k=1 1 ρ 10

11 ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ ΘΑΝΑΤΩΝ (4/4) Birth Death Processes Χρονική Εξέλιξη Πιθανοτήτων Κατάστασης Απλής Ουράς Μ/Μ/1 ρ = λ = 0.5 Erlangs μ Αρχικές Συνθήκες: P 0 0 = 1, P k 0 = 0 Οριακές Εργοδικες Πιθανότητες: lim 0(t) = P 0 = 1 ρ = t lim 1(t) = P 1 = t 1 ρ ρ = lim 2(t) = P 2 = t 1 ρ ρ 2 =

12 ΟΥΡΑ Μ/Μ/1 Αφίξεις Poisson με μέσο ρυθμό λ αφίξεις/sec: λ k = λ = γ, k = 0,1,2,3, Χρόνοι εξυπηρέτησης εκθετικοί με μέση τιμή E s = 1 sec: μ μ k = μ, k = 1,2,3, ρ = u = λ < 1 Erlang (συνθήκη για οριακή ισορροπία εργοδικότητα) μ Οι εργοδικές πιθανότητες προκύπτουν από τις εξισώσεις ισορροπίας: E[n t ] λp = μp 0 1 ή P 1 = λ P μ 0 = ρp 0 λ + μ P 1 = λp 0 + μp 2 ή P 2 = ρ 2 P 0 και P k = ρ k P 0, k > 0 P 0 + P P k + = 1 = P ρ + ρ 2 + ρ 3 + Με 0 < ρ < 1 η άπειρη δυναμοσειρά συγκλίνει, P ρ = 1 P 0 = 1 ρ, P k = 1 ρ ρ k, k > 0 και P n t > 0 = 1 P 0 = ρ Μέση κατάσταση συστήματος Μ/Μ/1 σε ισορροπία: E T ρ E n t = kp k = ρ 1 ρ k=1 Μέσος χρόνος καθυστέρησης: Τύπος Little E T = E n t γ = E n t λ = 1/μ 1 ρ Μέσο μήκος ουράς & μέσος χρόνος αναμονής Μ/Μ/1: E n q t = E n t ρ, E W = E T 1/μ 12 ρ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 8/3/2017 ΠΑΡΑΜΕΤΡΟΙ (1/4) (Επανάληψη) Ένταση φορτίου (traffic intensity)

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Η Ουρά Μ/Μ/1/N Σφαιρικές & Τοπικές Εξισώσεις Ισορροπίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 22/3/2017 ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ ΘΑΝΑΤΩΝ (1/4) Birth Death Processes

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 23/3/2016 Άδεια Χρήσης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 9/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10: Θόρυβος (Πηγές Θορύβου, Κατανομή Poisson, Λευκός Θόρυβος, Ισοδύναμο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: 1. Διαγράμματα Μεταβάσεων Εργοδικών Καταστάσεων 2. Εξισώσεις Ισορροπίας 3. Προσομοιώσεις Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Ουράς Αναμονής M/G/1 Αρχές Ανάλυσης Ουράς M/G/1 Ενσωματωμένη Αλυσίδα Markov (Embedded Markov Chain) Τύποι Pollaczeck - Khinchin (P-K) για Ουρές M/G/1 Μέσες Τιμές

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 Απόδειξη Τύπου Little Ιδιότητα PASTA (Poisson Arrivals See Time Averages) Βασικοί

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10 Θόρυβος (Noise) καθ. Βασίλης Μάγκλαρης maglaris@etmode.tua.gr www.etmode.tua.gr

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 1/3/2017 ΠΕΡΙΕΧΟΜΕΝΑ (1/3) http://www.netmode.ntua.gr/main/index.php?option=com_content&task=view& id=130&itemid=48

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 26/4/2017 ΠΡΟΣΟΜΟΙΩΣΗ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: Ουρά Μ/Μ/2 Σύστημα Μ/Μ/Ν/Κ, Erlang-C Σύστημα Μ/Μ/c/c, Erlang-B Ανάλυση & Σχεδιασμός Τηλεφωνικών Κέντρων Βελτιστοποίηση Μέσου Μήκους

Διαβάστε περισσότερα

Διαδικασίες Markov Υπενθύμιση

Διαδικασίες Markov Υπενθύμιση Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Διαδικασίες Markov Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr Χρύσα Παπαγιάννη chrisap@noc.ntua.gr 24/2/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών Β. Μάγκλαρης, Σ. Παπαβασιλείου 10-7-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Β. Μάγκλαρης, Σ. Παπαβασιλείου 8-5-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 2/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 5.1: Εισαγωγή 5.2: Πιθανότητες 5.3: Τυχαίες Μεταβλητές καθ. Βασίλης Μάγκλαρης

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

P (M = n T = t)µe µt dt. λ+µ

P (M = n T = t)µe µt dt. λ+µ Ουρές Αναμονής Σειρά Ασκήσεων 1 ΑΣΚΗΣΗ 1. Εστω {N(t), t 0} διαδικασία αφίξεων Poisson με ρυθμό λ, και ένα χρονικό διάστημα η διάρκεια του οποίου είναι τυχαία μεταβλητή T, ανεξάρτητη της διαδικασίας αφίξεων,

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης

Θεωρία Τηλεπικοινωνιακής Κίνησης Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 1 2 (Εισαγωγή Θεμελιώδεις σχέσεις) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα 1.

Διαβάστε περισσότερα

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου 200-04-25. ιαδικασίες γεννήσεων-θανάτων. Ορισµός Οι διαδικασίες γεννήσεων-θανάτων (birth-death rocesses) αποτελούν µια σπουδαία κλάση αλυσίδων Markov (διακριτού ή συνεχούς χρόνου). Η ιδιαίτερη συνθήκη

Διαβάστε περισσότερα

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ). ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov Θεώρημα Gordon Newell Αλγόριθμος Buzen Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 10/5/2017 ΚΛΕΙΣΤΟ ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ Μ = 2 Ουρές,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών - Παραδείγματα Β. Μάγκλαρης, Σ. Παπαβασιλείου 17-7-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov Γ. Κορίλη, Αλυσίδες Markov 3- http://www.seas.upe.edu/~tcom5/lectures/lecture3.pdf Αλυσίδες Markov Αλυσίδες Markov ιακριτού Χρόνου Υπολογισµός Στάσιµης Κατανοµής Εξισώσεις Ολικού Ισοζυγίου Εξισώσεις Λεπτοµερούς

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εφαρμογές Θεωρήματος Jackson: (i) Δίκτυα Μεταγωγής Πακέτου (ii) Υπολογιστικά Μοντέλα Πολυεπεξεργασίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 3/5/2017 ΑΝΟΙΚΤΑ ΔΙΚΤΥΑ

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή βασικών μοντέλων τηλεπικοινωνιακής

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 7: Ουρά Μ/Μ/1 Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εφαρμογές Κλειστών Δικτύων Ουρών Markov: 1. Ανάλυση Window Flow Control σε Δίκτυα Υπολογιστών 2. Αξιολόγηση Συστημάτων Πολύ-προγραμματισμού (Multitasking) Γενίκευση Μοντέλων

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης, Σ. Παπαβασιλείου 5-6-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τοµέας Επικοινωνιών, Ηεκτρονικής & Συστηµάτων Πηροφορικής Εργαστήριο ιαχείρισης & Βετίστου Σχεδιασµού ικτύων - NETMODE Πουτεχνειούποη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης & Συνδιασποράς 5.7: Μετάδοση Στοχαστικής

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

Μοντέλα Αναμονής σε Δίκτυα Επικοινωνιών. Ανάλυση Ουρών. Λάζαρος Μεράκος Τμήμα Πληροφορικής &Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών

Μοντέλα Αναμονής σε Δίκτυα Επικοινωνιών. Ανάλυση Ουρών. Λάζαρος Μεράκος Τμήμα Πληροφορικής &Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μοντέλα Αναμονής σε Δίκτυα Επικοινωνιών Ανάλυση Ουρών Λάζαρος Μεράκος Τμήμα Πληροφορικής &Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μενού 1. Εισαγωγή 2. Θεώρημα του Little 3. Σύστημα M/M/1 System 4. Συστήματα

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

H επίδραση των ουρών στην κίνηση ενός δικτύου

H επίδραση των ουρών στην κίνηση ενός δικτύου H επίδραση των ουρών στην κίνηση ενός δικτύου Ηεπίδραση των ριπών δεδοµένων Όταν οι αφίξεις γίνονται κανονικά ή γίνονται σε απόσταση η µία από την άλλη, τότε δεν υπάρχει καθυστέρηση Arrival s 1 2 3 4 1

Διαβάστε περισσότερα

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Διάλεξη 6: Εισαγωγή στην Ουρά M/G/1 Δρ Αθανάσιος Ν Νικολακόπουλος ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής 18 Νοεμβρίου 2016

Διαβάστε περισσότερα

ίκτυα Επικοινωνίας Υπολογιστών

ίκτυα Επικοινωνίας Υπολογιστών ίκτυα Επικοινωνίας Υπολογιστών Ενότητα: Ασκήσεις για την ενότητα 5 (Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα

Διαβάστε περισσότερα

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός: ΕΤΥ: Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Χειμερινό Εξάμηνο 2014-15 Τελική Εξέταση 28/02/15 Διάρκεια Εξέτασης: 3 Ώρες Ονοματεπώνυμο: Αριθμός Μητρώου: Υπογραφή: Ερώτημα: 1 2 3 4 5 6 Σύνολο Μονάδες:

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ Τέλεια δέσµη: όλες οι γραµµές της είναι προσπελάσιµες από οποιαδήποτε είσοδο. Ατελής δέσµη: όλες οι γραµµές της δεν είναι προσπελάσιµες από οποιαδήποτε είσοδο

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Σκοποί ενότητας Κατά τη διάρκεια των καθημερινών μας

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης (Correlation) & Συνδιασποράς (Covariance)

Διαβάστε περισσότερα

Γ. Κορίλη, Μοντέλα Εξυπηρέτησης

Γ. Κορίλη, Μοντέλα Εξυπηρέτησης Γ. Κορίλη, Μοντέλα Εξυπηρέτησης 2-1 hp://www.seas.upenn.edu/~com501/lecures/lecure3.pdf Καθυστερήσεις στα ίκτυα Πακέτων Εισαγωγή στη Θεωρία Ουρών Ανασκόπηση Θεωρίας Πιθανοτήτων ιαδικασία Poisson Θεώρηµα

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 25 Νοεµβρίου 2009 Ορισµός Εστω X µια διακριτή τυχαία µεταβλητή µε συνάρτηση πιθανότητας f(x) = e λ λx, x = 0, 1,..., (1) x! όπου 0 < λ

Διαβάστε περισσότερα

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή Γεώργιος Ζιούτας Άδειες

Διαβάστε περισσότερα

II. Τυχαίες Μεταβλητές

II. Τυχαίες Μεταβλητές II. Τυχαίες Μεταβλητές τυχαία μεταβλητή (τ.μ.) Χ : Αναφέρεται πάνω σε μία μετρούμενη ποσότητα του τυχαίου πειράματος Εκφράζει μία συνάρτηση (απεικόνιση) από τον δειγματικό χώρο (Ω) σε έναν αριθμητικό χώρο

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές Στατιστική Επιχειρήσεων Ι Βασικές διακριτές κατανομές 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα Το ένα ονομάζεται

Διαβάστε περισσότερα

Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών

Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών Δίκτυα Επικοινωνιών ΙΙ Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών Διδάσκων: Λάζαρος Μεράκος Δίκτυα Επικοινωνιών

Διαβάστε περισσότερα

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές) 07/11/2016 Στατιστική Ι 6 η Διάλεξη (Βασικές διακριτές κατανομές) 1 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4 5.9 Η Στοχαστική Ανέλιξη Gauss (οι διαφάνειες ακολουθούν διαφορετική

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0 Στοχαστικές Διαδικασίες ΙΙ Ιανουάριος 07 Διαδικασίες Markov σε Συνεχή Χρόνο - Παραδείγματα Μ. Ζαζάνης Πρόβλημα. Εστω ένα σύστημα M/M//3 στο οποίο οι αφίξεις είναι Poisson με ρυθμό λ και οι δύο υπηρέτες

Διαβάστε περισσότερα

Στοχαστικά Μοντέλα Επιχειρησιακών Ερευνών Συστήματα αναμονής Ι Ιωάννης Δημητρίου Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών, idimit@math.upatras.gr Δ.Π.Μ.Σ. «Μαθηματικά των Υπολογιστών και των Αποφάσεων» Περιεχόμενα

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 5 η : Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ)

Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ) Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ) Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 8 ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Στις ενότητες που ακολουθούν εξετάζουμε συνεχείς κατανομές με ευρεία χρήση στις εφαρμογές. Σε αυτές περιλαμβάνονται η ομοιόμορφη, η εκθετική, η Γάμμα και η

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

Επεξεργασία Στοχαστικών Σημάτων

Επεξεργασία Στοχαστικών Σημάτων Επεξεργασία Στοχαστικών Σημάτων Τυχαίες μεταβλητές Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Η απεικόνιση των εκβάσεων ενός πειράματος

Διαβάστε περισσότερα

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Α Α Π Σ Δ 11: Ε Σ Α M/G/1 Καθ Γιάννης Γαροφαλάκης ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Το σύστημα αναμονής M/G/1 I Θεωρούμε ένα σύστημα στο οποίο οι πελάτες φθάνουν

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές (τ.µ.)

Τυχαίες Μεταβλητές (τ.µ.) Τυχαίες Μεταβλητές (τ.µ.) Τυχαία Μεταβλητή (τ.µ.) : συνάρτηση Χ (.) µε πεδίο ορισµού τον δειγµατικό χώρο Ω και πεδίο τιµών ένα σύνολο πραγµατικών αριθµών. X (.) : Ω D ιακριτές τ.µ. Συνεχείς τ.µ. Η πιθανοτική

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 5: Μαρκοβιανό σύστημα αναμονής Μ/Μ/s

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 5: Μαρκοβιανό σύστημα αναμονής Μ/Μ/s Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 5: Μαρκοβιανό σύστημα αναμονής Μ/Μ/s Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις :

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,

Διαβάστε περισσότερα

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαροφαλάκης Αν. Καθηγητής ιατύπωση του προβλήματος (1) Τα συστήματα αναμονής (queueing systems), βρίσκονται

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1

Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1 Εργαστηριακή Άσκηση 2011-2012 Το σύστημα αναμονής M/G/1 Γιάννης Γαροφαλάκης, Καθηγητής Αθανάσιος Ν.Νικολακόπουλος, Υποψ. Διδάκτορας Σκοπός της παρούσας εργασίας είναι η εξερεύνηση των βασικών ιδιοτήτων

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 6: Θεωρία Ουρών Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Κατανομές. Κολοβού Αθανασία

Κατανομές. Κολοβού Αθανασία Κατανομές Κολοβού Αθανασία http://users.uoa.gr/~akolovou/ Bernoulli Trials-Binomial Distribution Bernoulli πείραμα Περιγράφει ένα τυχαίο πείραμα με δυο πιθανά αποτελέσματα (επιτυχία - αποτυχία) και με

Διαβάστε περισσότερα

Σημειώσεις : Πιθανότητες και Στοχαστικές Διαδικασίες

Σημειώσεις : Πιθανότητες και Στοχαστικές Διαδικασίες Γιάννης Γαροϕαλάκης, Καθηγητής Αθανάσιος Ν.Νικολακόπουλος, Υποψ.Διδάκτωρ Σημειώσεις : Πιθανότητες και Στοχαστικές Διαδικασίες Συνοπτική Παρουσίαση Χρήσιμων Εννοιών 18 Οκτωβρίου 2011 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

Δίκτυα Επικοινωνιών ΙΙ. Ενότητα 2: Μοντέλα Συστηµάτων Αναµονής σε Δίκτυα Επικοινωνιών

Δίκτυα Επικοινωνιών ΙΙ. Ενότητα 2: Μοντέλα Συστηµάτων Αναµονής σε Δίκτυα Επικοινωνιών Δίκτυα Επικοινωνιών ΙΙ Ενότητα 2: Μοντέλα Συστηµάτων Αναµονής σε Δίκτυα Επικοινωνιών Διδάσκων: Λάζαρος Μεράκος Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό & Καποδιστριακό Πανεπιστήµιο Αθηνών Δίκτυα Επικοινωνιών

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Εισαγωγή Συλλογή

Διαβάστε περισσότερα

Μαρκοβιανές Αλυσίδες

Μαρκοβιανές Αλυσίδες Μαρκοβιανές Αλυσίδες { θ * } Στοχαστική Ανέλιξη είναι μια συλλογή τ.μ. Ο χώρος Τ (συνήθως είναι χρόνος) μπορεί να είναι είτε διακριτός είτε συνεχής και καλείται παραμετρικός χώρος. Το σύνολο των δυνατών

Διαβάστε περισσότερα

P (M = 9) = e 9! =

P (M = 9) = e 9! = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης 5ο Φροντιστήριο Ασκηση 1. ύο ποµποί ο Α και ο Β στέλνουν ανεξάρτητα

Διαβάστε περισσότερα

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Διαστασιοποίηση Ασύρματου Δικτύου Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Τηλεπικοινωνιακή κίνηση στα κυψελωτά συστήματα Βασικός στόχος

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Κλήσεις σε εξέλιξη 22/6/2013 ΘΕΩΡΙΑ ΚΙΝΗΣΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ Θ. ΣΦΗΚΟΠΟΥΛΟΣ 1 ΓΕΝΙΚΑ ΠΕΡΙ ΚΙΝΗΣΗΣ

Διαβάστε περισσότερα

Υπόστρωμα Ελέγχου Πρόσβασης Μέσου. Medium Access Control Sub-layer.

Υπόστρωμα Ελέγχου Πρόσβασης Μέσου. Medium Access Control Sub-layer. Υπόστρωμα Ελέγχου Πρόσβασης Μέσου Medium Access Control Sub-layer. Πρόβλημα Υπάρχει ένα κανάλι το οποίο «μοιράζονται» πολλοί κόμβοι. Πρόβλημα: Ποίος μεταδίδει και πότε; Περίληψη Κανάλια πολλαπλής πρόσβασης

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Στοχαστικές Διαδικασίες 2 Στοχαστική Διαδικασία Στοχαστικές Ανελίξεις Α. Αλεξίου 3 Στοχαστική Διαδικασία ως συλλογή από συναρτήσεις χρόνου

Διαβάστε περισσότερα

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

p B p I = = = 5

p B p I = = = 5 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 17/3/2011

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Κατανομές Πιθανότητας Ως τυχαία μεταβλητή ορίζεται το σύνολο των τιμών ενός χαρακτηριστικού

Διαβάστε περισσότερα

Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών Η ενότητα αυτή θα αρχίσει παρουσιάζοντας την δυνατότητα ενός κυψελωτού ράδιοσυστήματος να εξασφαλίζει την υπηρεσία σε έναν μεγάλο αριθμό

Διαβάστε περισσότερα

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 4: Αλυσίδες Markov. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 4: Αλυσίδες Markov. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 4: Αλυσίδες Markov Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

N Sm+t = max{k N : S k S m + t} = max{k N : E j t} E j+m t} = m + max{r N : Poisson.

N Sm+t = max{k N : S k S m + t} = max{k N : E j t} E j+m t} = m + max{r N : Poisson. Κεφάλαιο 8 Διαδικασίες Poisson 8.1 Εισαγωγή Σ αυτό το κεφάλαιο θα ορίσουμε τις διαδικασίες Poisson και θα μελετήσουμε τις βασικές τους ιδιότητες. Οι διαδικασίες αυτές είναι ίσως οι απλούστερες μη τετριμμένες

Διαβάστε περισσότερα

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Α Α Π Σ Δ 10: Δ Γ -Θ Καθ Γιάννης Γαροφαάκης ΜΔΕ Επιστήης και Τεχνοογίας Υποογιστών Τήα Μηχανικών Η/Υ & Πηροφορικής Διαδικασίες Γεννήσεων-Θανάτων Defini on (Birth-Death-Process (BDP)) Μία στοχαστική διαδικασία

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q 7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

ίκτυα Κινητών και Προσωπικών Επικοινωνιών Βασικές αρχές των κυψελωτών συστημάτων κινητών επικοινωνιών

ίκτυα Κινητών και Προσωπικών Επικοινωνιών Βασικές αρχές των κυψελωτών συστημάτων κινητών επικοινωνιών ίκτυα Κινητών και Προσωπικών Επικοινωνιών Βασικές αρχές των κυψελωτών συστημάτων κινητών επικοινωνιών Περίληψη Κυψελωτή δομή Επαναχρησιμοποίηση συχνοτήτων Μονοδιάστατα κυψελωτά συστήματα Κυψελωτά συστήματα

Διαβάστε περισσότερα

Απλα Συστήματα Αναμονής Υπενθύμιση

Απλα Συστήματα Αναμονής Υπενθύμιση Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Απλα Συστήματα Αναμονής Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα