REAKCIJE ADICIJE. Karakteristične reakcije adicije su adicije na alkene

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "REAKCIJE ADICIJE. Karakteristične reakcije adicije su adicije na alkene"

Transcript

1 Karakteristične reakcije adicije su adicije na alkene REAKIJE ADIIJE + A B A B

2 syn-ad Adicija i anti-adi Adicija syn addition anti addition

3 Eleketrofilna adicija hidrogen halida na alkene

4 pšti pšti primjer elektrofilne adicije δ+ δ + E Y E Y

5 Kada Kada je je EY EY hidrogen halid halid δ+ δ + H X H X

6 Primjer: H 3 H 2 H H 2 H 3 H HBr Hl 3, -30 H 3 H 2 H 2 HH 2 H 3 Br (76%)

7 Mehanizam Elektrofilna adicija hidrogen halida na alkene dešava se uz formiranje karbokationa kao meñuprodukta

8 Mehanizam Elektroni π veze iz alkena (mjesto bogato elektronima) su usmjereni prema pozitivno polariziranom protonu hidrogen halida

9 Mehanizam + H :X : H X :

10 Mehanizam + H :X : H X : : X H

11 Regioselektivnost adicije hidrogen halida: Markovnikovo pravilo

12 Markovnikovo pravilo H 3 H 2 H H 2 HBr acetatna atna kiselina H 3 H 2 HH 3 Br (80%) Primjer 1

13 Markovnikovo pravilo H 3 H 3 H H HBr H 3 Acetatna kiselina H 3 Br H 3 (90%) Primjer 2

14 snova Markovnikova pravila Protoniranje dvostruke veze dešava se u pravcu nastajanja stabilnijeg karbokationa

15 Markovnikovo Pravilo: Primjer 1 H 3 H 2 H H 2 HBr acetatna atna kiselina H 3 H 2 HH 3 Br

16 Mehanizam za Primjer 1: + H 3 H 2 H H 3 + Br HBr H 3 H 2 H H 2 H 3 H 2 HH 3 Br

17 Mehanizam Markovnikovo pravilo: Primjer 1 + H 3 H 2 H 2 H 2 primarni karbokationation je manje stabilan bilan: ne formira se HBr + H 3 H 2 H H 3 + Br H 3 H 2 H H 2 H 3 H 2 HH 3 Br

18 Karbokationska premiještanja kod adicije halida na alkene

19 Ponekad se se dešavaju premiještanja H 2 HH(H 3 ) 2 Hl,, 0 + H 3 HH(H 3 ) 2 H + H 3 H(H 3 ) 2 H 3 HH(H 3 ) 2 H 3 H 2 (H 3 ) 2 l (40%) (60%) l

20 Adicija slobodnih radikala, HBr na alkene peroksidni efekat

21 Markovnikovo pravilo H 3 H 2 H H 2 HBr H 3 H 2 HH 3 Acetatna kiselina Br (80%)

22 Adicija HBr na 1-Buten H 3 H 2 H H 2 HBr H 3 H 2 HH 3 Br Jedini produkt, bez peroksida H 3 H 2 H 2 H 2 Br Jedini produkt kada je peroksid dodat smjesi

23 Adicija HBr na 1-Buten H 3 H 2 H H 2 HBr Adicija suprotno Markovnikovom om pravilu H 3 H 2 H 2 H 2 Br Jedini produkt kada je peroksid prisutan u reakcionoj smjesi

24 Fotohemijska adicija HBr H 2 + HBr hν H 2 Br H (60%) Adicija HBr suprotno Markovnikovom om pravilu se takoñer dešava uz uticaj svjetla, sa ili bez peroksida

25 Mehaniza zam Adicija HBr koja se dešava suprotno Markovnikovom om pravilu: dešava se po slobodno-radikalskom mehanizmu 1. Homolitičko raskidanje slabe R---R veze 2. Drugi korak: reakcija nagrañenog alkoksi-radikala sa bromovodikom R Ọ..Ọ R R. +. R R. + H Br : R H +. Br :

26 Propagirajuci stepen en: Mehaniza zam H 3 H 2 H H 2 +. Br :. H 3 H 2 H H 2 Br: H 3 H 2 H. H H 2 Br : Br: H 3 H 2 H 2 H +. Br : H Br 2 :

27 Adicija sulfatne kiseline na alkene

28 Adicija H 2 S 4 H 3 H H 2 HS 2 H H 3 HH 3 S 2 H Isopropil hidrogen sulfat podliježe Markovnikovom om pravilu: dobiva se alkil l hidrogenh sulfat

29 H 3 H H 2 + H sporo S 2 H Mehani anizam + H 3 H H 3 + : S 2 H brzo H 3 HH 3 : S 2 H

30 Alkil l hidrogenh sulfati podliježu hidrolizi u toploj vodi H 3 HH 3 + H H S 2 H grijanje H 3 HH 3 + H S 2 H H

31 Primjena: Konverzija alkena u alkohol ohole 1. H 2 S 4 H 2. H 2, grijanje (75%)

32 Kiselinom katalizirana hidratacija alkena

33 Kiselinom katalizirana hidratacijaacija alkena + H H H H Reakcija je katalizirana kiselinom; tipični hidratacioni medij je 50% H 2 S 4-50% H 2

34 Podliježe Markovnikovom om pravilu H 3 H 3 H H 3 50% H 2 S 4 50% H 2 H 3 H 3 H H 2 H 3 (90%)

35 Mehaniza zam Uključuje uje karbokationation kao meñuprodukt Reakcija je reverzibilna H 3 H 2 + H 2 H + H 3 H 3 H 3 H 3 H

36 Mehaniza zam Korak (1): protoniranje dvostruke veze H 3 H 2 + H + H : H 3 H sporo H 3 + H 3 + : : H H 3 H

37 Korak (2): vezivanje vode na karbokation H 3 + Mehaniza zam H 3 + : : H H 3 brzo H H 3 H 3 H + : H 3 H

38 Mehaniza zam Korak (3): deprotoniranje oksonijum jona H 3 H H H 3 + : + : : H 3 H H brzo H 3 H 3 : + H + H : H 3 H H

39 Relativne brzine kiselo- katalizirane hidratacije eten propen 2-metilpropen H 2 =H 2 1,0 H 3 H=H 2 1,66 x 10 6 (H 3 ) 2 =H 2 2,55 x Što je stabilniji karbokation, brže e se formira i reakcija teče e brže

40 Adicija halogena na alkene

41 Uopšteno + X 2 X X Elektrofilna adicija na dvostruku vezu daje vicinalne dihalide

42 Primjer H 3 H HH(H H(H 3 ) 2 Br 2 Hl 3 0 H 3 HHH(H H(H 3 ) 2 Br Br (100%)

43 Limitirano na l 2 i Br 2 F 2 adicija je previše burna I 2 adicija je endotermna: vicinalni dijodidi disocira na alkene i I 2

44 Stereohemija adicije halogena

45 Primjer H Br 2 H Br H Br H trans-1,2 1,2-dibromciklopentan 80% prinos; jedini produkt

46 Mehanizam adicije halogena na alkene: Halonijum jon

47 Mehaniza zam je elektrofilna adicija Br 2 nije polarna, ali je polarizabilna molekula Dva koraka (1) Formiranje bromonijum jona (2) nukleofilni napad bromidnog jona na bromonijum meñuprodukt

48 Relativne brzine bromiranja eten propen 2-metilpropen 2,3-dimet dimetil-2-buten H 2 =H 2 1 H 3 H=H 2 61 (H 3 ) 2 =H (H 3 ) 2 =(H 3 ) 2 920,000 Dvostruka veza sa više e supstituenata reaguje brže. Alkilne grupe na dvostrukim vezama čine je bogatijom elektronima Alkilne grupe su elektrondonorne

49 Mehaniza zam? H 2 H 2 + Br 2 BrH 2 H 2 Br? + + : Br : : Br :

50 Mehaniza zam H 2 H 2 + Br 2 BrH 2 H 2 Br : Br : + + : Br : iklički ki bromonijum jon

51 Formiranje bromonijum jona Br Polarizacija i raspodjela elektron trona Br 2 i alkena Br

52 Formiranje bromonijum jona Elektroni alkena idu u pravcu Br 2 Br Br δ δ+ δ+

53 Formiranje bromonijum jona Br π elektron troni alkena razdvajaju Br od Br + Br

54 : Br : Stereohemija Br + : Br : napad Br sa suprotne strane Br veze bromonijum jona čini anti adiciju Br :

55 iklopenten +Br 2

56 Bromonijum jon

57 Bromidni jon napada bromonijum jon sa suprotne strane -Br veze

58 trans-stereohemi tereohemija vicinalnih dibromida

59 Konverzija alkena u vicinalne halohidrine

60 + X 2 X X alkeni reaguju sa X 2 i formiraju se vicinalni ni dihalidi

61 + X 2 X X alkeni reaguju sa X 2 i formiraju vicinalne ne dihalide Alkeni reaguju sa X 2 u vodenim rastvorima dajući vicinalne ne halohidrin drine e (haloalkohole) (u prisustvu drugih nukleofila postoji konkurencija) + X 2 + H 2 X H + H X

62 Mehaniza zam : Br + + bromonij ijum jon je meñuprodukt Voda je nukleo leofil koji napada bromonijum jon Br :

63 zonoliza alkena zonoliza ima i sintetičke i analitičke aplikacije. sinteza aldehida i ketona identifikacija supstituenata na dvostrukoj vezi alkena

64 zonoliza alkena Prvi stepen je reakcija alkena sa ozonom. Produkt koji nastaje je ozonid. + 3

65 zonoliza alkena Drugi korak je hidroliza ozonida. Produkti mogu biti dva d aldehida, dva ketona ili aldehid i keton + 3 H 2, Zn +

66 Alternativa hidrolizi: zonoliza alkena ozonid može e biti tretiran sa dimetil sulfidom om (H 3 ) 2 S

67 Primjer: H 3 H 2 H 3 H H 2 H H 2, Zn H 3 H 2 H 3 + H H 2 H 3 (38%) (57%)

68 REAKIJA SA ZNM M Ph H 3 3 Ph H 3 H 3 H 3 H 3 H 3 Dvostruka veza je zamijenjena sa ozonidnim prstenom

69 FRMIRANJE ZNIDA - MEHANIZA ZAM - Dešava se adicija : : : + ozon H 2 l 2 0o : NESTABILN : molozonid : ozonid : : : + oksid + karbonil : : - - : keton ili aldehid

70 zonoliza FRMIRANJE ZNIDA R 1 R 3 R 2 R 4 3 R 1 R 3 R 2 R 4 spontano premiještanje nestabilno R 1 R 2 R 3 R 4 molozonid (1,2,3-trioksolan) ozonid (1,2,4-trioksolan) HIDRLIZA ZNIDA R 1 R 2 R 3 R 1 Zn R + 4 H 3 H R 2 R 3 R 4 Aldehidi ili ketoni

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

Alkeni ili olefini C n H 2n. sp 2 hibridne orbitale

Alkeni ili olefini C n H 2n. sp 2 hibridne orbitale Alkeni ili olefini C n 2n sp 2 hibridne orbitale 1 sp 2 hibridne orbitale Struktura etilena (etena) 2 Struktura etilena (etena) Alkeni ili olefini C n 2n C C C C C3 Eten Propen Nomenklatura može i etilen

Διαβάστε περισσότερα

IMENOVANJE ALKENA Trivijalna imena se dobijaju tako što se sufiks an alkana zamenjuje sufiksom ilen.

IMENOVANJE ALKENA Trivijalna imena se dobijaju tako što se sufiks an alkana zamenjuje sufiksom ilen. ALKENI n n Nezasićeni ugljovodonici podležu rjama adicije Funkcionalna grupa: = veza Eten 4 Eten je planaran sa trigonalna atoma i uglovima veza od 10º ba atoma su sp hibridizovana Tipovi veza: : σveza

Διαβάστε περισσότερα

ОРГАНСКA ХЕМИЈA АЛКЕНИ

ОРГАНСКA ХЕМИЈA АЛКЕНИ ОРГАНСКA ХЕМИЈA Предавања АЛКЕНИ Др Весна Антић, ванредни професор Др Малиша Антић, ванредни професор ALKENI C C Ugljovodonici sa dvostrukom vezom C=C Opšta formula alkena: C n H 2n Ugljenikovi atomi povezani

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

ОСНОВИ ОРГАНСКЕ ХЕМИЈЕ АЛДЕХИДИ И КЕТОНИ

ОСНОВИ ОРГАНСКЕ ХЕМИЈЕ АЛДЕХИДИ И КЕТОНИ ОСНОВИ ОРГАНСКЕ ХЕМИЈЕ Предавања АЛДЕХИДИ И КЕТОНИ Др Весна Антић, ванредни професор Др Малиша Антић, ванредни професор ALDEIDI I KETNI Metanal Aldehid Keton Metanal Etanal Propanon 1-buten μ = 0,3 D Propanal

Διαβάστε περισσότερα

Organska kemija. Predavanje 2

Organska kemija. Predavanje 2 Organska kemija Predavanje 2 I. Klasifikacija organskih spojeva Podjela ugljikovodika ugljikovodici Alifatski ili aciklički Ciklički i aromatski alkani alkeni alkini ALKANI Sadrže samo C i H Opća formula

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Aldehidi i ketoni organska jedinjenja koja u svojoj strukturi sadrže karbonilnu grupu karbonilna jedinjenja:

Aldehidi i ketoni organska jedinjenja koja u svojoj strukturi sadrže karbonilnu grupu karbonilna jedinjenja: ALDEIDI I KETI Aldehidi i ketoni organska jedinjenja koja u svojoj strukturi sadrže karbonilnu grupu karbonilna jedinjenja: ALDEID strukturna formula:. opšta formula: = alkilgrupa arilgrupa KET strukturna

Διαβάστε περισσότερα

ALDEHIDI I KETONI. Značaj aldehida i ketona

ALDEHIDI I KETONI. Značaj aldehida i ketona ALDEIDI I KETNI Značaj aldehida i ketona Sinteza polimera formaldehid fenolformaldehidne smole Sinteza plastifikatora butiraldehid etil1heksanol Sinteza sirćetne kiseline acetaldehid Sinteza alkohola Sastojci

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Organska kemija. Organski spojevi s kisikom i derivati

Organska kemija. Organski spojevi s kisikom i derivati Organska kemija Organski spojevi s kisikom i derivati KARBONILNI SPOJEVI klase opća formula klase opća formula ketoni karboksilne kiseline esteri aldehidi kiselinski kloridi amidi ALDEHIDI I KETONI - dvije

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

Funkcionalna grupa alkohola je hidroksilna grupa ( OH) odreñuje njihove fizičke i hemijske osobine. Opšta formula:

Funkcionalna grupa alkohola je hidroksilna grupa ( OH) odreñuje njihove fizičke i hemijske osobine. Opšta formula: ALKLI (po IUPAu alkanoli) Funkcionalna grupa alkohola je hidroksilna grupa ( ) odreñuje njihove fizičke i hemijske osobine. pšta formula: Podela prema vrsti sp hibridizovanog atoma za koga je vezana grupa:

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Karboksilne kiseline

Karboksilne kiseline Karboksilne kiseline Značaj Sinteza polimera akrilna i metakrilna k., adipinska k., maleinska k., tereftalna k. Sinteza rastvarača estri Industrija tekstila, kože, graf. boja. mravlja k. Aditivi hrane

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Derivati alkohola ili fenola kod kojih je H-atom OH grupe zamenjen alkil- ili aril-grupom. Opšta formula: NOMENKLATURA ETARA Trivijalna nomenklatura:

Derivati alkohola ili fenola kod kojih je H-atom OH grupe zamenjen alkil- ili aril-grupom. Opšta formula: NOMENKLATURA ETARA Trivijalna nomenklatura: ETI (po IUPAu alkoksialkani) Derivati alkohola ili fenola kod kojih je atom grupe zamenjen alkil ili arilgrupom. pšta formula: NMENKLATUA ETAA Trivijalna nomenklatura: Ar Ar ' Ar simetricni nesimetricni

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

Hemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze:

Hemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze: Hemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze: Jonska, Kovalentna i Metalna Luisovi simboli veoma zgodan

Διαβάστε περισσότερα

ОСНОВИ ОРГАНСКЕ ХЕМИЈЕ АЛКОХОЛИ

ОСНОВИ ОРГАНСКЕ ХЕМИЈЕ АЛКОХОЛИ ОСНОВИ ОРГАНСКЕ ХЕМИЈЕ Предавања АЛКОХОЛИ Др Весна Антић, ванредни професор Др Малиша Антић, ванредни професор ALKOHOLI Alkoholi su jedinjenja opšte formule R-OH. Funkcionalna grupa alkohola je hidroksilna

Διαβάστε περισσότερα

C CH. U prisustvu Lewis-ove kiseline 1 (FeBr 3 ), kao katalizatora, benzen podleže reakciji supstitucije H-atom biva zamenjen bromom:

C CH. U prisustvu Lewis-ove kiseline 1 (FeBr 3 ), kao katalizatora, benzen podleže reakciji supstitucije H-atom biva zamenjen bromom: ARMATIČNI UGLJVDNII iklična jedinjenja koja imaju različita svojstva od cikloalkana i alifatičnih jedinjenja Naziv su dobili u XIX veku: ARMATIČNA jedinjenja, jedinjenja karakterističnog (prijatanog) mirisa,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA III RAČUNSE VEŽBE RAVNOTEŽE U RASTVORIMA ISELINA I BAZA U izračunavanju karakterističnih veličina u kiselinsko-baznim sistemima mogu se slediti Arenijusova (Arrhenius, 1888) teorija elektrolitičke disocijacije

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 7: Η χρήση των πτώσεων στον σχηματισμό προτάσεων. Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 7: Η χρήση των πτώσεων στον σχηματισμό προτάσεων. Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 7: Η χρήση των πτώσεων στον σχηματισμό προτάσεων Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU

KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU ИНФОРМАТОР 29 UNIVERZITET U BEOGRADU jun 2005. godine KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU Šifra zadatka: 51501 Test ima 20 pitanja. Netačan odgovor donosi

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Χηµεία Θετικής Κατεύθυνσης Γ Λυκείου 2001

Χηµεία Θετικής Κατεύθυνσης Γ Λυκείου 2001 Χηµεία Θετικής Κατεύθυνσης Γ Λυκείου 001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1.1 έως 1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1.

Διαβάστε περισσότερα

Metan CH 4 C H. 0,110 nm. 109,5 o

Metan CH 4 C H. 0,110 nm. 109,5 o 1 2 ALKANI Zasićeni (aciklični) ugljovodonici ili parafini neaktivni (nedovoljno afiniteta, lat parum affinis) Pokazuju slabu reaktivnost Nemaju funkcionalnu grupu! Svi -atomi su sp 3 hibridizovani Opšta

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

FIZIČKE OSOBINE HALOGENALKANA Polarna jedinjenja. Fizičke osobine im se veoma razlikuju od fizičkih osobina alkana što je rezultat:

FIZIČKE OSOBINE HALOGENALKANA Polarna jedinjenja. Fizičke osobine im se veoma razlikuju od fizičkih osobina alkana što je rezultat: ALGEALKAI (alkilhalogenidi) astaju supstitucijom (zamenom) jednog ili više atoma atomom halogena (X = F, l,, I) Funkcionalna grupa atom halogena pšta formula X Podela prema vrsti atoma na kome se nalazi

Διαβάστε περισσότερα

Organska kemija i Biokemija. Predavanje 1

Organska kemija i Biokemija. Predavanje 1 Organska kemija i Biokemija Predavanje 1 Povijesni pregled XVIII. st. IZOLACIJA čistih organskih spojeva 1807. Berzelius ''vis vitalis' 1828. Friedrich Wöhler: iz amonij cijanata sintetizirao ureu 1848.

Διαβάστε περισσότερα

PRIRUČNIK ZA PRIJEMNI ISPIT

PRIRUČNIK ZA PRIJEMNI ISPIT PRIRUČNIK ZA PRIJEMNI ISPIT 1 OPŠTA I NEORGANSKA HEMIJA Visoka škola strukovnih studija Aranđelovac PRIRUČNIK ZA POLAGANJE PRIJEMNOG ISPITA IZ HEMIJE ARANĐELOVAC, 2017. 2 PRIRUČNIK ZA PRIJEMNI ISPIT PREDGOVOR

Διαβάστε περισσότερα

Geometrija molekula Lusiove formule su dvodimezione i ne daju nam nikakve informacije o geometriji molekula Srećom postoje razvijene eksperimentalne

Geometrija molekula Lusiove formule su dvodimezione i ne daju nam nikakve informacije o geometriji molekula Srećom postoje razvijene eksperimentalne Geometrija molekula Lusiove formule su dvodimezione i ne daju nam nikakve informacije o geometriji molekula Srećom postoje razvijene eksperimentalne metode (rentgenska kristalografija, NMR spektroskopija...)

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

MEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE

MEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE MEĐUMLEKULSKE SILE JN-DIPL VDNIČNE NE VEZE DIPL-DIPL JN-INDUKVANI DIPL DIPL-INDUKVANI INDUKVANI DIPL DISPERZNE SILE MEĐUMLEKULSKE SILE jake JNSKA VEZA (metal-nemetal) KVALENTNA VEZA (nemetal-nemetal) METALNA

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju

Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju Prijemni ispit za upis na Osnovne akademske studije hemije na PMF-u u Nišu školske 2014/15. godine Test se popunjava zaokruživanjem

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Rastvori i osobine rastvora

Rastvori i osobine rastvora Rastvori i osobine rastvora U srpskom jeziku reč rasvor predstavlja homogenu tečnu smešu. U engleskom reč solution predstavlja više od toga smešu dva gasa, legure (homogene smeše dva metala)... Na ovom

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 004 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις. -.4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση... Τι είδους

Διαβάστε περισσότερα

Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014

Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014 Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina Predavanja iz opšte biohemije Školska 2014/2015. godina Aminokiseline 1 Metabolizam aminokiselina Proteini iz

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

RASTVORLJIVOST LEKOVA

RASTVORLJIVOST LEKOVA FIZIČK-HEMIJSKA KARAKTERIZACIJA LEKVA RASTVRLJIVST LEKVA Rastvorljivost leka u GIT-u Portalna vena Krvna plazma Enterociti Aktivni transport Tableta Raspadanje tablete Pasivna difuzija Rastvaranje Lek

Διαβάστε περισσότερα

Proteini. Naziv PROTEINI potiče od Grčke reči proteios, što znači PRVI

Proteini. Naziv PROTEINI potiče od Grčke reči proteios, što znači PRVI Proteini Uvod aziv PRTEII potiče od Grčke reči proteios, što znači PRVI čine osnovu života, ulaze u sastav svih živih bića emijski, proteini ili belančevine, su prirodni makromolekuli To su poliamidi izgrañeni

Διαβάστε περισσότερα

AMINI. Značaj amina. Sinteza boja i pigmenata. Sinteza lekova

AMINI. Značaj amina. Sinteza boja i pigmenata. Sinteza lekova AMII Značaj amina Sinteza boja i pigmenata posebno azo boja i pigmenata Sinteza lekova efedrin, amfetamin Uklanjanje ugljen(iv)oksida i vodoniksulfida iz prirodnog gasa (stvaranje soli) Alkaloidi Podela

Διαβάστε περισσότερα

BANKA PITANJA IZ HEMIJE

BANKA PITANJA IZ HEMIJE BANKA PITANJA IZ HEMIJE NEORGANSKA HEMIJA PUFERI 1. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće acidoze. 2. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr . Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται

Διαβάστε περισσότερα

I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI

I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI dr Ljiljana Vojinović-Ješić I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI ZAKON STALNIH MASENIH ODNOSA (I stehiometrijski zakon, Prust, 1799) Maseni odnos elemenata u datom jedinjenju je stalan, bez obzira na

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 01 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Δίνονται τα ιόντα Mg 2+, 2, F, Na + και Al + και οι τιμές ιοντικών ακτίνων 16 pm, 95 pm, 50 pm, 140 pm και 65 pm. Βρείτε ποια ακτίνα ταιριάζει σε καθένα από τα ιόντα

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 28 ΜΑΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 28 ΜΑΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Από το 1975 στο Μαρούσι ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 28 ΜΑΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΠΑΝΤΗΣΕΙΣ ΓΙΩΡΓΟΣ ΜΑΥΡΟΓΕΩΡΓΗΣ, ΑΡΙΣΤΕΙΔΗΣ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A1. β Α. β. Α3. β. Α. γ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 013 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α5. α) Το κύριο προϊόν της αντίδρασης καθορίζεται

Διαβάστε περισσότερα

HEMIJSKA VEZA ŠTA DRŽI STVARI (ATOME) ZAJEDNO?

HEMIJSKA VEZA ŠTA DRŽI STVARI (ATOME) ZAJEDNO? HEMIJSKA VEZA ŠTA DRŽI STVARI (ATOME) ZAJEDNO? U OKVIRU OVOG POGLAVLJA ĆEMO RADITI Jonska i kovalentna veza. Metalna veza. Elektronska teorija hemijske veze. Struktura molekula. Međumolekulske interakcije.

Διαβάστε περισσότερα

Prisustvo azota menja osobine osnovnog prstena. 1,3-heteroazoli. Azoli nastaju zamenom =CH- grupe azotom u tiofenu, furanu ili pirolu. N PREDAVANJE 9.

Prisustvo azota menja osobine osnovnog prstena. 1,3-heteroazoli. Azoli nastaju zamenom =CH- grupe azotom u tiofenu, furanu ili pirolu. N PREDAVANJE 9. PDAVAJ 9. Azoli nastaju zamenom =- grupe azotom u tiofenu, furanu ili pirolu. imidazol pirazol izotiazol izoksazol tiazol oksazol Prof. dr Mirjana Abramović Prisustvo azota menja osobine osnovnog prstena

Διαβάστε περισσότερα

Drugi zakon termodinamike

Drugi zakon termodinamike Drugi zakon termodinamike Uvod Drugi zakon termodinamike nije univerzalni prirodni zakon, ne važi za sve sisteme, naročito ne za neobične sisteme (mikrouslovi, svemirski uslovi). Zasnovan je na zajedničkom

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

STRUKTURA I VEZE UVOD

STRUKTURA I VEZE UVOD UVOD Šta je organska hemija i zašto je vi treba da proučavate? Odgovori su svuda oko nas. Svaki živi organizam je sačinjen od organskih hemikalija. Proteini koji izgrađuju našu kosu, kožu i mišiće su organske

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

ΒΙΟΧΗΜΕΙΑ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΒΙΟΧΗΜΕΙΑ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΒΙΟΧΗΜΕΙΑ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ Α4. Α5. ΘΕΜΑ Α Α. γ Α. γ Α. α-λ: Η Ka των ασθενών οξέων εξαρτάται από τη φύση του διαλύτη, τη φύση του ηλεκτρολύτη και τη θερμοκρασία. Ο διαλύτης HO

Διαβάστε περισσότερα

HALOGENI ELEMENTI HALOGENI ELEMENTI. Elektronska konfiguracija ns 2 np 5

HALOGENI ELEMENTI HALOGENI ELEMENTI. Elektronska konfiguracija ns 2 np 5 17. grupa Periodnog sistema elemenata. Zajednički simbol X. Ne nalaze se u prirodi u elementarnom stanju (zbog velike reaktivnosti), već u obliku: F minerala fluorita (CaF 2 ) Cl minerala halita (NaCl)

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE **** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga

Διαβάστε περισσότερα

PRAKTIKUM IZ HEMIJE ZA STUDENTE MEDICINE

PRAKTIKUM IZ HEMIJE ZA STUDENTE MEDICINE PRAKTIKUM IZ EMIJE ZA STUDENTE MEDICINE Saradnik Bigović Miljan Saradnik Kosović Milica Demonstrator Roganović Milovan Vježba 1 Pravljenje rastvora određene koncentracije Rastvor je homogen sistem sastavljen

Διαβάστε περισσότερα

BIOTRANSFORMACIJA (METABOLIZAM) LEKOVA

BIOTRANSFORMACIJA (METABOLIZAM) LEKOVA BITRASFRMACIJA (METABLIZAM) LEKVA PRVA FAZA DRUGA FAZA IZLUČIVAJE REAKCIJE METABLIZMA I FAZA funkcionalizacija uvoñenje novih funkcionalnih grupa zamena postojećih funkcionalnih grupa demaskiranje postojećih

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

Primeri test pitanja iz hemije za polaganje prijemnog ispita iz hemije - ORGANSKA HEMIJA -

Primeri test pitanja iz hemije za polaganje prijemnog ispita iz hemije - ORGANSKA HEMIJA - OMEGA MS PHARMACY Fakultet za farmaciju i menadžment u farmaciji 21.000 Novi Sad, Mite Ružića 1 tel: (+381 21) 44 75 77; (+381 65) 306 8310 fax: (+381 21) 44 75 77 www.omegams-pharmacy.com office@omegams-pharmacy.com

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A4 και δίπλα

Διαβάστε περισσότερα

Χηµεία Θετικής Κατεύθυνσης Γ Λυκείου δ. NaOH - CH 3 COONa. Μονάδες 5

Χηµεία Θετικής Κατεύθυνσης Γ Λυκείου δ. NaOH - CH 3 COONa. Μονάδες 5 Χηµεία Θετικής Κατεύθυνσης Γ Λυκείου 001 Ζήτηµα 1ο Στις ερωτήσεις 1.1 έως 1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1. Το πλήθος

Διαβάστε περισσότερα

Kovalentna veza , CO 2. U molekulima H 2

Kovalentna veza , CO 2. U molekulima H 2 Kovalentna veza U molekulima H 2, N 2, O 2, CO 2, NH 3, H 2 O,... ili molekulima organskih jedinjenja ne postoje joni. To je veza između atoma i ona se bitno razlikuje od jonske veze a naziva se kovalentnom

Διαβάστε περισσότερα

SREDNJA ŠKOLA HEMIJA

SREDNJA ŠKOLA HEMIJA SREDNJA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 6 2. 10 3. 12 4. 8 5. 6 6. 10 7. 8 8. 8 9. 4 10. 10 11. 8 12. 10 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti

Διαβάστε περισσότερα

1s 2 2s 2 2p 2. C-atom. Hibridne atomske orbitale. sp 3 hibridizacija. sp 3. Elektronska konfiguracija ugljenika: aktivacija. ekscitovano stanje

1s 2 2s 2 2p 2. C-atom. Hibridne atomske orbitale. sp 3 hibridizacija. sp 3. Elektronska konfiguracija ugljenika: aktivacija. ekscitovano stanje PREAVAJE 2. Ugljenik je u organskim jedinjenjima četvorovalentan. Elektronska konfiguracija ugljenika: 1s 2 2 2p 2 dva nesparena elektrona -atom oc.dr Mirjana Abramović 2p osnovno stanje aktivacija 2p

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα