Διάχυση και εφαρμογές. Αυτο-διάχυση (self-diffusion), π.χ. διάχυση ραδιενεργών ισοτόπων.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διάχυση και εφαρμογές. Αυτο-διάχυση (self-diffusion), π.χ. διάχυση ραδιενεργών ισοτόπων."

Transcript

1 Διάχυση και εφαρμογές. Βαθμίδα συγκέντρωσης φαινόμενα μεταφοράς μάζης ή διάχυσης Αυτο-διάχυση (self-diffusion), π.χ. διάχυση ραδιενεργών ισοτόπων. Στην τεχνολογία υλικών οι βαθμίδες συγκέντρωσης χρησιμοποιούνται για την μεταβολή της χημικής σύστασης των υλικών κοντά στην επιφάνειά. Σημαντικές εφαρμογές της διάχυσης είναι: Η εισαγωγή C ή N σε μαλακά ατσάλια με σκοπό την σκλήρυνσή τους Η διάχυση προσμείξεων σε ημιαγωγούς (π.χ. Β και P σε Si για κατσκευή βάσεων, εκπομπών, αντιστάσεων κλπ). Οξείδωση (π.χ. ανάπτυξη SiO στην τεχνολογία Si) Η μεταλλουργία κόνεως που στηρίζεται σε φαινόμενα μεταφοράς μάζης για την "συγκόλληση" (bonding or sintering) κόνεων. Η εφαρμογή της διάχυσης για εισαγωγή προσμείξεων σε ημιαγωγούς με στόχο την αλλαγή της αγωγιμότητας τους κατοχυρώθηκε στον Pfann με δίπλωμα ευρισιτεχνίας το

2 Τρόποι εισαγωγής προσμείξεων: 1. Διάχυση σε υψηλές θερμοκρασίες από αέριο πηγή. Διάχυση από οξείδιο εμπλουτισμένο σε προσμείξεις 3. Διάχυση και ανόπτηση από εμφυτευμένο υμένιο. Η ανόπτηση που χρησιμοποιείται για την αποκατάσταση της κρυσταλλικότητας και την ενεργοποίηση των προσμείξεων διάχυση. Θεωρίες που περιγράφουν τη διάχυση: Θεωρία της συνέχειας του Fick περιγράφει το φαινόμενο χρησιμοποιώντας κατάλληλους συντελεστές διάχυσης. Οι νόμοι του Fick περιγράφουν ικανοποιητικά τις κατανομές των προσμείξεων όταν οι συγκεντρώσεις είναι χαμηλές και D σταθ.. Ατομιστική θεωρία : αλληλεπίδραση των προσμείξεων με ατέλειες δομής. Ανάλυση Boltzmann-Matano: χρησιμοποιείται όταν ο συντελεστής διάχυσης εξαρτάται από τη συγκέντρωση των προσμείξεων.

3 Μαθηματική περιγραφή της διάχυσης J = D dc 1 ος νόμος του Fick dx όπου J είναι η ροή (άτομα/cm s), C είναι η συγκέντρωση (άτομα/cm 3 ) και D είναι ο συντελεστής διάχυσης (cm /s). Η βαθμίδα συγκέντρωσης και η κατεύθυνση της διάχυσης. Η ποσότητα dc/dt 0 όταν J x J x+dx Αρχή διατήρησης της ύλης: η χρονική μεταβολή της συγκέντρωσης της πρόσμειξης πρέπει να ισούται με την τοπική μείωση της ροής διάχυσης, δηλ. C(x, t) t C(x, t) = D x x Εάν η συγκέντρωση της πρόσμειξης είναι μικρή τότε ο συντελεστής διάχυσης θεωρείται σταθερός και επομένως: C(x, t) t C(x, t) = D x ος νόμος του Fick 3

4 Περιγράφει τη διάχυση κάτω από συνθήκες non-steady-state και υπό την υπόθεση ότι ο συντελεστής διάχυσης D είναι σταθερός. Steady-state διάχυση C (x, t) t = 0, δηλαδή η κατανομή της συγκέντρωσης είναι γραμμική και το J (ροή μάζας) είναι σταθερό σε κάθε επίπεδο (τομή) του συστήματος. Οι συνηθέστερες λύσεις για D=σταθερό είναι για τις συνθήκες: σταθερής επιφανειακής συγκέντρωσης. σταθερής συνολικής συγκέντρωσης S της πρόσμειξης. Σταθερή επιφανειακή συγκέντρωση αρχική συνθήκη: C(x,0)=0 (για t=0) οριακή συνθήκη: C(0,t)=C s και C(,t)=0 C(x, t) = Cs erfc x Dt όπου C s είναι η σταθερή συγκέντρωση στην επιφάνεια (άτομα/cm 3 ) και erfc είναι η συμπληρωματική συνάρτηση σφάλματος (complementary error function) που ορίζεται από τη σχέση: erfc x Dt ( x 4Dt ) = 1 exp( z )dz π 0 Για μικρές τιμές του ορίσματος ισχύει: erfc( x 4Dt ) 1 x 4Dt 4

5 Η χρονική εξέλιξη της κανονικοποιημένης κατανομής πρόσμειξης που περιγράφεται από erfc. Σταθερή συνολική συγκέντρωση πρόσμειξης (predepostion diffusion). αρχική συνθήκη: οριακές συνθήκες: C(x,0)=0 C (x, t)dx = S και C(x, )=0 0 Η κατανομή περιγράφεται από την Gaussian : C(x, t) = S x exp πdt 4Dt Η συγκέντρωση στην επιφάνεια C s (x=0): C s = C(0, t) = S πdt Η χρονική εξέλιξη της κανονικοποιημένης κατανομή πρόσμειξης που περιγράφεται από gaussian. 5

6 Οι διαφορές μεταξύ των Gaussian και erfc κατανομών σε λογαριθμική και γραμμική κλίμακα. x = Dt Συνδέει τα τρία βασικά μεγέθη x, t και Τ. Η εξάρτηση από τη θερμοκρασία εισάγεται από τη σχέση D = Do exp( ΔED RT). 6

7 Η μικροσκοπική θεωρία της διάχυσης-ο συντελεστής διάχυσης. Η κίνηση των ατόμων μεταξύ γειτονικών επιπέδων είναι εφικτή όταν : 1. Υπάρχει κατάλληλη γειτονική θέση, π.χ. πλεγματικό κενό.. Το μετακινούμενο άτομο έχει αρκετή ενέργεια για να ξεπεράσει το φράγμα δυναμικού ΔΕ D που βάζουν τα γειτονικά του άτομα. Η μετακίνηση του ατόμου προκαλεί την αντίθετη μετακίνηση του πλεγματικού κενού, που καταλαμβάνει πλέον την "αρχική" θέση του διαχεόμενου ατόμου. C 1 C C(x) C 1 C S 1 α Ισοπίθανα ατομικά άλματα α Ροή διάχυσης αντίθετα στη βαθμίδα συγκέντρωσης. x Υποθέσεις: 1. Τα άτομα των επιπέδων 1 και κάνουν ατομικά άλματα με συχνότητα ν.. Τα άτομα κινούνται δεξιά και αριστερά των επιπέδων 1 και με την ίδια πιθανότητα, επομένως τείνουν να διασχίσουν την επιφάνεια S μόνον κατά το ήμισυ του πλήθους των κινήσεών τους. 7

8 Πρότυπο για την ατομική διάχυση. Το μετακινούμενο άτομο πρέπει να έχει ικανή ενέργεια για να υπερπηδήσει το φράγμα δυναμικού ΔΕ D. Ατομικό κινητικό πρότυπο. Το ρεύμα διάχυσης J δίδεται από τη σχέση: 1 1 J = n1ν n ν Αν η απόσταση μεταξύ των επιπέδων είναι α, τότε η επιφανειακή συγκέντρωση n i (cm - ) και η συγκέντρωση κατ' όγκο c i (cm -3 ) συνδέονται με τη σχέση: n i =αc i. 1 Επομένως : J = αν( ) c 1 c Η βαθμίδα συγκέντρωσης 1 c J = να x c x : c c c 1 = α x όπου το αρνητικό πρόσημο δηλώνει ότι η διάχυση γίνεται αντίθετα στη βαθμίδα συγκέντρωσης. και 8

9 Νόμος του Fick : J c D x 1 = D = να 1 c J = να x 1 D = να. 6 Η θερμοκρασιακή εξάρτηση του συντελεστή διάχυσης. Πειραματικά αποδεικνύεται ότι : E D = D exp D o kt όπου D o είναι σταθερά, και E D είναι η ενέργεια ενεργοποίησης για τη διάχυση.. Οι μηχανισμοί διάχυσης εισάγουν τάσεις στο πλέγμα=>φράγμα δυναμικού στην κίνηση των ατόμων. Διάχυση με αμοιβαία ανταλλαγή ατόμων του πλέγματος Διάχυση με μετακίνηση/hopping ενδοθέτων ατόμων Διάχυση με μετανάστευση πλεγματικών κενών. Εάν το άτομο ταλαντούται με συχνότητα ν ο γύρω από τη θέση ισορροπίας του (δηλ. κάνει ν ο προσπάθειες στη μονάδα του χρόνου να υπερβεί το φράγμα δυναμικού), η πιθανότητα να υπερβεί το φράγμα δυναμικού δίδεται από τον παράγοντα Boltzmann: exp(-e m /kt). Αρα η συχνότητα αλλαγής θέσης είναι : E ν = ν ο exp m kt 9

10 Το άτομο μπορεί να μεταναστεύσει σε μία από τις κενές θέσεις των Ζ πρώτων γειτόνων. Η πιθανότητα να υπάρχει μία κενή πλεγματική θέση, είναι ανάλογη του παράγοντα exp(-e v /kt), όπου Ε v είναι η ενέργεια σχηματισμού του κενού. Αρα η πιθανότητα διάχυσης ενός ατόμου από μία πλεγματική θέση στη διπλανή είναι: E ν = Z ν ο exp kt Επομένως: 1 D = Z ν ο α 6 E E exp v = Z ν ο exp D kt kt m, όπου E D =E m +E v. E E exp D = D exp D o kt kt, όπου Do 1 = Zνο α. 6 Διάγραμμα Arrhenius (logd-1/t) D o και E D D(T) για Fe:Ni. O D μεταβάλλεται κατά 16 τάξεις μεγέθους για ΔΤ = o C. 10

11 Πειραματικά γενικά συμπεράσματα: 1. Στα στερεά : ΔΕ D = 0. - ev ανά άτομο.. Σε πολλά υλικά ΔΕ D Τ m 3. Στα υγρά ο D δεν εξαρτάται ισχυρά από τη Τ ( cm s -1 ) 4. Ο D σε επιφάνειες, grain boundaries και εξαρμώσεις το ½ των αντιστοίχων τιμών στον όγκο του υλικού. Εξωγενής διάχυση Οταν η συγκέντρωση της πρόσμειξης είναι > της ενδογενούς συγκέντρωσης φορέων η τιμή του D μεταβάλλεται με το n i. Αντιπροσωπευτικές τιμές: στους 1000 o C, n i (Si)= 5x10 18 cm -3 και n i (GaAs)= 5x10 17 cm -3. Η μεταβολή του D συναρτήσει της συγκέντρωσης των φορέων n οφείλεται στο γεγονός ότι αυξανομένου του n μεταβάλλονται τόσο η θέση της E F όσο και η συγκέντρωση των πλεγματικών κενών που συμβάλλουν στη διάχυση. Η μεταβολή της συγκέντρωσης των πλεγματικών κενών C V συναρτήσει της θερμοκρασίας δίνεται από τη σχέση C V = C i E exp E kt όπου C i και E i είναι η συγκέντρωση των πλεγματικών κενών και η στάθμη Fermi για τον ενδογενή ημιαγωγό, αντίστοιχα. F i 11

12 Οταν η διάχυση ελέγχεται από τα πλεγματικά κενά, η τιμή του D θα εξαρτάται από τη συγκέντρωση τους. Για μικρές τιμές της συγκέντρωσης φορέων οι E F και E i συμπίπτουν. Όταν όμως ο ημιαγωγός γίνει εξωγενής, η E F μετακινείται μέσα στο χάσμα και ο εκθετικός όρος exp( E E kt) F συγκέντρωση των πλεγματικών κενών και η τιμή του D. i >1. αυξάνεται και η Σχήμα ΙΙΙ.8 : Μεταβολή της τιμής του συντελεστή διάχυσης D συναρτήσει της συγκέντρωσης φορέων. Όταν η τιμή του D εξαρτάται από την συγκέντρωση των προσμείξεων C η διάχυση περιγράφεται από τη σχέση t C της t = D F = = x C στην οποία ο D θεωρείται σταθερός. x C D αντί x x Η σχέση που περιγράφει την μεταβολή του D συναρτήσει της γ C συγκέντρωσης C είναι της μορφής D = D S όπου D S και C S C S είναι ο συντελεστής διάχυσης και η συγκέντρωση της πρόσμειξης στην επιφάνεια, αντίστοιχα. 1

13 Σε αυτή την περίπτωση η εξίσωση που περιγράφει τη διάχυση λύνεται αριθμητικά. Κανονικοποιημένες κατανομές προσμείξεων στην περίπτωση που ο D εξαρτάται από τη συγκέντρωση των προσμείξεων. Αρχική συνθήκη: σταθερή συγκέντρωση στην επιφάνεια. Οταν γ>0 το D μειώνεται όταν ελαττώνεται η συγκέντρωση των προσμείξεων οι κατανομές έχουν σχήμα τετραγωνικού παλμού (abrupt junction) «απότομες» (abrupt) επαφές κατασκευάζονται όταν η διάχυση γίνεται σε υπόστρωμα με προσμείξεις αντίθετου τύπου. 13

14 Συστήματα για διάχυση. Ανοιχτοί οριζόντιοι ή κατακόρυφοι αντιδραστήρες χαλαζίου ο C. Πηγές : στερεές, υγρές ή αέριες (καλύτερος έλεγχος προσμείξεων. Προσοχή στις θερμοβαθμίδες που προκαλούν ακτινικές θερμικές τάσεις (stress) και ατέλειες δομής (π.χ. εξαρμώσεις, παραμόρφωση σχήματος του wafer κλπ). Τυπική τιμή της θερμοβαθμίδος : 3-10 ο C/min ενώ στο κέντρο του συστήματος (μήκους cm) η ακρίβεια στον έλεγχο της θερμοκρασίας είναι ±0.5 o C. Σχηματικό διάγραμμα συστήματος για διάχυση προσμείξεων από αέριο πηγή. 14

15 Εφαρμογές της διάχυσης. Σκλήρυνση μετάλλων. εισαγωγή C (carburization) στο ατσάλι είναι η πλέον διαδεδομένη μέθοδος κατεργασίας επιφάνειας που στηρίζεται σε φαινόμενο διάχυσης και συμβάλει στην σκλήρυνση της επιφάνειας του ατσαλιού. H carburization: ανόπτηση ατσαλιού στους 900 ο C σε ατμόσφαιρα αερίων που περιέχουν C, π.χ. CH 4 -CO-H. Η πυρόληση των αερίων στην επιφάνεια του ατσαλιού ελευθερώνει στοιχειακό C που διαχέεται σε γ-fe ή austenite Fe σε συγκεντρώσεις που φθάνουν το 1.5% wt στη θερμοκρασία της ανόπτησης. Το πάχος του υμενίου που έχει εμπλουτισθεί με C αυξάνεται με ταχύτητα ανάλογη του t. Όταν το πάχος φθάσει το 1mm, το μέταλλο ψύχεται απότομα και το εμπλουτισμένο σε C υμένιο μετασχηματίζεται σε martnesite. 15

16 Σκλήρυνση με εισαγωγή Ν ή συνδυασμού N και C. Η οξείδωση. διάχυση του οξυγόνου ή/και του μετάλλου μέσα από το υπάρχον οξείδιο ανεπιθύμητη, t-εξαρτώμενη & μη-ελεγχόμενη αλλοίωση ιδιοτήτων της επιφάνειας. Το SiO διηλεκτρικό πύλης και μάσκα στην μικροηλεκτρονική. δεσμεύει ΕΔΣ στην επιφάνεια του Si, μειώνοντας την πυκνότητα των επιφανειακών καταστάσεων στο χάσμα και την πυκνότητα του σταθερού (χωρικώς) φορτίου. Το ενδογενές SiO 15-40Å, ασυνεχές, εφαρμογές??? Η οξείδωση του Si: ο C σε ξηρό Ο ή υδρατμούς: Ξηρή οξείδωση: Si+O SiO (πυκνότητα.5gr/`cm 3 ) Υγρή οξείδωση: Si+H O SiO +H (πυκνότητα.15gr/cm 3 ) 1. Το οξυγόνο μεταφέρεται από την κύρια ροή των αερίων, μέσω ενός stagnant layer, στην επιφάνεια του SiO.. Το οξυγόνο (Ο ή Ο) διαχέεται στο SiO διεπιφάνεια Si-SiO. 16

17 κατανάλωση Si του υποστρώματος. Εάν το πάχος του Si είναι x τότε το πάχος του SiO που αναπτύσσεται είναι.7x. 3. Οξείδωση του Si. Τα βήματα μεταφοράς μάζας και της αντίδρασης: J N D x ( N ) D N o x i =, (νόμος του Henry) όπου Ν o και Ν i είναι οι συγκεντρώσεις του οξυγόνου στις διεπιφάνειες Ο /SiO and SiO /Si, αντίστοιχα, x είναι το (χρονικά εξαρτώμενο) πάχος του SiO, και J 3 =kν i όπου η ροή J 3 περιγράφει την ποσότητα του οξειδίου που αναπτύσσεται ανά μονάδα χρόνου και επιφάνειας και k είναι η σταθερά της αντίδρασης. Ανάπτυξη υπό θερμοδυναμική ισορροπία (steady-state), J =J 3 j = DN o x + D k Η ταχύτητα μεταβολής του πάχους του SiO : dx dt = j n DN n = o x + D k όπου n είναι το πλήθος των μορίων του οξυγόνου στον μοναδιαίο όγκο του SiO (n=.x10 cm -3 για O και 4.4x10 cm -3 για H O). 17

18 Επιλύοντας την εξίσωση για την οριακή συνθήκη x=0 για t=0: x D + x = k DN n o t x 1/ D N k t = 1 + o 1 k Dn 18

19 Ακραίες περιπτώσεις: 1. Για μικρούς χρόνους η ανάπτυξη του οξειδίου περιορίζεται από την ταχύτητα της αντίδρασης (η διάχυση μέσω του οξειδίου είναι ταχεία ενώ η σταθερά της αντίδρασης k παίρνει μικρές τιμές) : x = Nok t n = B A t Η συνθήκη ισχύει για x 40Å (Ο ) και για x 1000Å (Η Ο). Για μεγάλους χρόνους η ανάπτυξη του οξειδίου περιορίζεται από τη διάχυση (διάχυση του οξυγόνου μέσω του SiO είναι βραδεία αλλά η ταχύτητα αντίδρασης του οξυγόνου με το Si είναι ταχεία) η ταχύτητα ανάπτυξης δίδεται από τη σχέση: 1/ NoD 1/ 1/ 1/ x = t = B t n Β/Α : γραμμική σταθερά ανάπτυξης (linear rate constant) και Β : παραβολική σταθερά ανάπτυξης (parabolic rate constant) του SiO. 19

20 Ρυθμός οξείδωσης ο C. Στικτή & διακεκομμένη γραμμή θεωρία. Τα μεγέθη Α και Β δίδονται από τις σχέσεις A=D/k και B=N o D/n, αντίστοιχα. Για μικρούς χρόνους οξείδωσης (μικρή τιμή του x) ο ρυθμός οξείδωσης εξαρτάται γραμμικά από τον t περιορισμός από τη σταθερά της αντίδρασης. Για μεγαλύτερες τιμές του x η ανάπτυξη είναι παραβολική, δηλ. περιορισμός από τη διάχυση. Η ενέργεια ενεργοποίησης για την οξείδωση Ε ox υπολογίζεται από τα διαγράμματα lnx-1000/t. Αποδεικνύεται ότι η Ε ox στην γραμμική περιοχή είναι -.05 ev/μόριο για ξηρή και υγρή οξείδωση, αντίστοιχα ( 1.83eV/μόριο για το σπάσιμο δεσμών Si-Si). Στην παραβολική περιοχή η Ε ox για ξηρή οξείδωση ισούται προς 1.3eV/μόριο ( 1.18eV/μόριο για τη διάχυση του οξυγόνου στο 0

21 SiO ). (υγρή οξείδωση : E ox =0.78eV/μόριο και E d =0.79eV/μόριο για διάχυση H O στο SiO ). Η υγρή οξείδωση είναι ταχύτερη της ξηρής κατά 3 τάξεις μεγέθους λόγω της σημαντικά μεγαλύτερης διαλυτότητας του Η Ο στο SiO, που υπερκεράζει τον χαμηλότερο συντελεστή διάχυσης. H οξείδωση του Si: σε οριζόντιους αντιδραστήρες από χαλαζία, το O ρέει // προς τον άξονα του κυλίνδρου( ο C). Tροποποιήσεις της θερμικής οξείδωσης:rto, εισαγωγή αλογόνων Ανακατανομή των προσμείξεων κατά την διάρκεια της οξείδωσης. Κατά την οξείδωση του Si οι προσμείξεις που βρίσκονται κοντά στην επιφάνεια του υποστρώματος ανακατανέμονται λόγω : (1) της βαθμίδας συγκέντρωσης μεταξύ υποστρώματος και αναπτυσσόμενου οξειδίου και () της διαφορετικής συγκέντρωσης ισορροπίας της πρόσμειξης ανάμεσα στο Si και το SiO. Το φαινόμενο είναι ανάλογο της αποβολής πρόσμειξης από κρύσταλλο που αναπτύσσεται από το τήγμα. 1

22 Ορίζεται ο συντελεστής k που περιγράφει την διαφορά της συγκέντρωσης ισορροπίας στο Si και το SiO : συγκέντρωση ισορροπίας της πρόσμειξης στο Si k =. συγκέντρωση ισορροπίας της πρόσμειξης στο SiO Ένας άλλος μηχανισμός που συμβάλλει στην ανακατανομή της πρόσμειξης απαντάται όταν ο συντελεστής διάχυσης της πρόσμειξης στο οξείδιο είναι μεγάλος οπότε είναι δυνατόν τα άτομα της πρόσμειξης να φτάσουν στην επιφάνεια του οξειδίου και να διαφύγουν στην αέριο φάση. Τέλος ανακατανομή της πρόσμειξης συμβαίνει λόγω του μεγαλύτερου όγκου του αναπτυσσόμενου SiO σε σύγκριση με τον όγκο του Si που καταναλώνεται (V SiO V Si ή d Si =0.44d SiO ).

23 Σχήμα ΙΙΙ.1: Ανακατανομή των προσμείξεων κατά την οξείδωση του Si. Στις περιπτώσεις (α) & (β) : k<1 το Si αποβάλλει πρόσμειξη στο SiO. Ειδικότερα στο (β) η πρόσμειξη διαχέεται γρήγορα μέσω του SiO ο βαθμός μείωσης της συγκέντρωσης της πρόσμειξης στο Si είναι μεγάλος. Στις περιπτώσεις ( c) & (d): k>1 το οξείδιο αποβάλλει πρόσμειξη στο Si. Ειδικότερα, όταν η πρόσμειξη διαχέεται βραδέως μέσα στο SiO, όπως στο ( c), εμφανίζεται συσσώρευση της πρόσμειξης στην επιφάνεια του Si. Αντίθετα όταν η πρόσμειξη διαχέεται γρήγορα μέσα στο SiO, συμβαίνει απώλεια στην αέριο φάση και εκκένωση της επιφάνειας του Si από πρόσμειξη. 3

24 Η επίδραση του κρυσταλλογραφικού προσανατολισμού στην ταχύτητα οξείδωσης. Παραβολική περιοχή: η ταχύτητα οξείδωσης είναι ανεξάρτητη του κρυσταλλογραφικού προσανατολισμού του Si (η ανάπτυξη περιορίζεται από την διάχυση των οξειδωτικών ριζών μέσα από το αναπτυσσόμενο οξείδιο). Στην γραμμική περιοχή η ταχύτητα οξείδωσης εξαρτάται από την ταχύτητα ενσωμάτωσης των ατόμων του Si στο πλέγμα του SiO εξαρτάται από την επιφανειακή πυκνότητα του Si και τον προσανατολισμό του υποστρώματος. 1 η προσέγγιση: Η ταχύτητα οξείδωσης του Si (111) >> του Si (100) Si Si κατά ( B A) (111) : ( B A) (100) 1.16:1. Ακριβέστερη προσέγγιση: 3D πλέγμα του Si και το σχετικό μέγεθος των ατόμων του Si και του οξυγόνου η πειραματική τιμή ( B A) Si (111) : ( B A) Si (100) 1.68:1. 4

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Περιληπτική θεωρητική εισαγωγή α) Τεχνική zchralski Η πιο συχνά χρησιμοποιούμενη τεχνική ανάπτυξης μονοκρυστάλλων πυριτίου (i), αρίστης ποιότητας,

Διαβάστε περισσότερα

Mετασχηματισμοί διάχυσης στα στερεά / Πυρηνοποίηση στην στερεά κατάσταση. Ομογενής πυρηνοποίηση στα στερεά/μετασχηματισμοί διάχυσης.

Mετασχηματισμοί διάχυσης στα στερεά / Πυρηνοποίηση στην στερεά κατάσταση. Ομογενής πυρηνοποίηση στα στερεά/μετασχηματισμοί διάχυσης. Mετασχηματισμοί διάχυσης στα στερεά / Πυρηνοποίηση στην στερεά κατάσταση Ομογενής πυρηνοποίηση στα στερεά/μετασχηματισμοί διάχυσης. Το πρόβλημα: Ιζηματοποίηση φάσης β (πλούσια στο στοιχείο Β) από ένα υπέρκορο

Διαβάστε περισσότερα

ΙΑΧΥΣΗ. Σχήµα 1: Είδη διάχυσης

ΙΑΧΥΣΗ. Σχήµα 1: Είδη διάχυσης ΙΑΧΥΣΗ ΟΡΙΣΜΟΣ - ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ιάχυση (diffusin) είναι ο µηχανισµός µεταφοράς ατόµων (όµοιων ή διαφορετικών µεταξύ τους) µέσα στη µάζα ενός υλικού, λόγω θερµικής διέγερσής τους. Αποτέλεσµα της διάχυσης

Διαβάστε περισσότερα

Διαδικασίες Υψηλών Θερμοκρασιών

Διαδικασίες Υψηλών Θερμοκρασιών Διαδικασίες Υψηλών Θερμοκρασιών Θεματική Ενότητα 4: Διαδικασίες σε υψηλές θερμοκρασίες Τίτλος: Διάχυση Ονόματα Καθηγητών: Κακάλη Γλυκερία, Ρηγοπούλου Βασιλεία Σχολή Χημικών Μηχανικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Κεφάλαιο 6 ο : Θερμοδυναμική των επιφανειών και διεπιφανειών.

Κεφάλαιο 6 ο : Θερμοδυναμική των επιφανειών και διεπιφανειών. Κεφάλαιο 6 ο : Θερμοδυναμική των επιφανειών και διεπιφανειών. Τα άτομα των επιφανειών έχουν λιγότερους γεωμετρικούς περιορισμούς από τα άτομα του όγκου και τείνουν να αντιδράσουν ευκολότερα. Έτσι υπάρχει

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 6: Διάχυση. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 6: Διάχυση. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 6: Διάχυση Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 2016

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 2016 Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak

ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak 1 ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ Διάχυση Συναγωγή Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak Μεταφορά μάζας Κινητήρια δύναμη: Διαφορά συγκέντρωσης, ΔC Μηχανισμός: Διάχυση (diffusion)

Διαβάστε περισσότερα

Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης.

Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης. Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Αντικείμενο Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης. Ομογενής πυρηνοποίηση: αυθόρμητος σχηματισμός

Διαβάστε περισσότερα

Τα αρχικά στάδια της επιταξιακής ανάπτυξης

Τα αρχικά στάδια της επιταξιακής ανάπτυξης Τα αρχικά στάδια της επιταξιακής ανάπτυξης 1 Bulk versus epitaxial growth Η κύριες διαφορές μεταξύ της ανάπτυξης από το τήγμα και της επιταξιακής ανάπτυξης προκύπτουν από την παρουσία του υποστρώματος

Διαβάστε περισσότερα

Τα αρχικά στάδια της επιταξιακής ανάπτυξης

Τα αρχικά στάδια της επιταξιακής ανάπτυξης Τα αρχικά στάδια της επιταξιακής ανάπτυξης Η κύριες διαφορές μεταξύ της ανάπτυξης από το τήγμα και της επιταξιακής ανάπτυξης προκύπτουν από την παρουσία του υποστρώματος και ειδικότερα τις εξής παραμέτρους:

Διαβάστε περισσότερα

Τα αρχικά στάδια της επιταξιακής ανάπτυξης

Τα αρχικά στάδια της επιταξιακής ανάπτυξης Τα αρχικά στάδια της επιταξιακής ανάπτυξης Η κύριες διαφορές μεταξύ της ανάπτυξης από το τήγμα και της επιταξιακής ανάπτυξης προκύπτουν από την παρουσία του υποστρώματος και ειδικότερα τις εξής παραμέτρους:

Διαβάστε περισσότερα

Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ασκήσεις Μικροηλεκτρονικής

Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ασκήσεις Μικροηλεκτρονικής Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ασκήσεις Μικροηλεκτρονικής Αραπογιάννη Αγγελική Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Σελίδα 2 1. Εισαγωγή... 4 2. Ανάπτυξη Κρυστάλλων... 4 3. Οξείδωση του πυριτίου...

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Ημιαγωγοί Θεωρία ζωνών Ενδογενής αγωγιμότητα Ζώνη σθένους Ζώνη αγωγιμότητας Προτεινόμενη βιβλιογραφία 1) Π.Βαρώτσος Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης» 2) C.Kittl, «Εισαγωγή

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

Φυσική Στερεάς Κατάστασης η ομάδα ασκήσεων Διδάσκουσα Ε. Κ. Παλούρα

Φυσική Στερεάς Κατάστασης η ομάδα ασκήσεων Διδάσκουσα Ε. Κ. Παλούρα Φυσική Στερεάς Κατάστασης -05 η ομάδα ασκήσεων. Έστω ημιαγωγός με συγκέντρωση προσμείξεων Ν>> i. Όλες οι προσμείξεις είναι ιονισμένες και ισχύει =, p= i /. Η πρόσμειξη είναι τύπου p ή? : Όλες οι προσμείξεις

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ Θεωρητικη αναλυση μεταλλα Έχουν κοινές φυσικές ιδιότητες που αποδεικνύεται πως είναι αλληλένδετες μεταξύ τους: Υψηλή φυσική αντοχή Υψηλή πυκνότητα Υψηλή ηλεκτρική και θερμική

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική 1 Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική Οµοιοπολικοί δεσµοί στο πυρίτιο Κρυσταλλική δοµή Πυριτίου ιάσταση κύβου για το Si: 0.543 nm Εισαγωγή στη Μικροηλεκτρονική

Διαβάστε περισσότερα

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος 2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος Όπως είναι γνωστό από την καθημερινή εμπειρία τα περισσότερα σώματα που χρησιμοποιούνται στις ηλεκτρικές ηλεκτρονικές

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 3: ΑΤΕΛΕΙΕΣ ΔΟΜΗΣ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 3: ΑΤΕΛΕΙΕΣ ΔΟΜΗΣ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 3: ΑΤΕΛΕΙΕΣ ΔΟΜΗΣ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς Required Text: Microelectronic Devices, Keith Leaver (1 st Chapter) Μέτρηση του μ e και προσδιορισμός του προσήμου των φορέων φορτίου Πρόβλημα: προσδιορισμός

Διαβάστε περισσότερα

Οι ηµιαγωγοι αποτελουν την πλεον χρησιµη κατηγορια υλικων απο ολα τα στερεα για εφαρµογες στα ηλεκτρονικα.

Οι ηµιαγωγοι αποτελουν την πλεον χρησιµη κατηγορια υλικων απο ολα τα στερεα για εφαρµογες στα ηλεκτρονικα. Οι ηµιαγωγοι αποτελουν την πλεον χρησιµη κατηγορια υλικων απο ολα τα στερεα για εφαρµογες στα ηλεκτρονικα. Οι ηµιαγωγοι εχουν ηλεκτρικη ειδικη αντισταση (ή ηλεκτρικη αγωγιµοτητα) που κυµαινεται µεταξυ

Διαβάστε περισσότερα

Γραπτή «επί πτυχίω» εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιανουάριος 2017

Γραπτή «επί πτυχίω» εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιανουάριος 2017 Ερώτηση 1 (10 μονάδες) - ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Σε μια διεργασία ενανθράκωσης

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς Ορισμοί. Ενεργός διατομή 3. Ενεργός διατομή στο μοντέλο των σκληρών σφαιρών

Διαβάστε περισσότερα

Κεφάλαιο 3 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ημιαγωγοί - ίοδος Επαφής 2

Κεφάλαιο 3 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ημιαγωγοί - ίοδος Επαφής 2 ΗΛΕΚΤΡΟΝΙΚΗ Πανεπιστήμιο Ιωαννίνων Ημιαγωγοί Δίοδος Επαφής Κεφάλαιο 3 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας SI Techology ad Comuter Architecture ab ΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση 1. Φράγμα δυναμικού.

Διαβάστε περισσότερα

Ορθή πόλωση της επαφής p n

Ορθή πόλωση της επαφής p n Δύο τρόποι πόλωσης της επαφής p n Ορθή πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ορθή πόλωση p n Άνοδος Κάθοδος Ανάστροφη πόλωση p n Άνοδος Κάθοδος

Διαβάστε περισσότερα

Επαφές μετάλλου ημιαγωγού

Επαφές μετάλλου ημιαγωγού Δίοδος Schottky Επαφές μετάλλου ημιαγωγού Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Τι είναι Ημιαγωγός Κατασκευάζεται με εξάχνωση μετάλλου το οποίο μεταφέρεται στην επιφάνεια

Διαβάστε περισσότερα

Κεφάλαιο 3 ο. Γ. Τσιατούχας. VLSI systems and Computer Architecture Lab. Ημιαγωγοί - ίοδος Επαφής 2

Κεφάλαιο 3 ο. Γ. Τσιατούχας. VLSI systems and Computer Architecture Lab. Ημιαγωγοί - ίοδος Επαφής 2 ΗΛΕΚΤΡΟΝΙΚΗ Πανεπιστήμιο Ιωαννίνων Ημιαγωγοί Δίοδος Επαφής Κεφάλαιο 3 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας SI systems ad Comuter Architecture ab ΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Φράγμα δυναμικού.

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 www.pmoiras.weebly.om ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς στα αέρια. Μηχανισμοί διάδοσης θερμότητας 3. Διάδοση θερμότητας

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Επαφή p- Στάθμη Fermi Χαρακτηριστική ρεύματος-τάσης Ορθή και ανάστροφη πόλωση Περιεχόμενο της άσκησης Οι επαφές p- παρουσιάζουν σημαντικό ενδιαφέρον επειδή βρίσκουν εφαρμογή στη

Διαβάστε περισσότερα

Διατάξεις ημιαγωγών. Δίοδος, δίοδος εκπομπής φωτός (LED) Τρανζίστορ. Ολοκληρωμένο κύκλωμα

Διατάξεις ημιαγωγών. Δίοδος, δίοδος εκπομπής φωτός (LED) Τρανζίστορ. Ολοκληρωμένο κύκλωμα Δίοδος, δίοδος εκπομπής φωτός (LED) Διατάξεις ημιαγωγών p n Άνοδος Κάθοδος Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Άνοδος Κάθοδος dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Η επαφή p n. Η επαφή p n. Υπενθύμιση: Ημιαγωγός τύπου n. Υπενθύμιση: Ημιαγωγός τύπου p

Η επαφή p n. Η επαφή p n. Υπενθύμιση: Ημιαγωγός τύπου n. Υπενθύμιση: Ημιαγωγός τύπου p Η επαφή p n Τι είναι Που χρησιμεύει Η επαφή p n p n Η διάταξη που αποτελείται από μία επαφή p n ονομάζεται δίοδος. Άνοδος Κάθοδος Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων

Διαβάστε περισσότερα

Σκοπός: Περιγραφή της συμπεριφοράς των νευρικών κυττάρων και ποσοτικά και ποιοτικά.

Σκοπός: Περιγραφή της συμπεριφοράς των νευρικών κυττάρων και ποσοτικά και ποιοτικά. Σκοπός: Περιγραφή της συμπεριφοράς των νευρικών κυττάρων και ποσοτικά και ποιοτικά. Τα νευρικά κύτταρα περιβάλλονται από μία πλασματική μεμβράνη της οποίας κύρια λειτουργία είναι να ελέγχει το πέρασμα

Διαβάστε περισσότερα

Διαδικασίες Υψηλών Θερμοκρασιών

Διαδικασίες Υψηλών Θερμοκρασιών Διαδικασίες Υψηλών Θερμοκρασιών Θεματική Ενότητα 4: Διαδικασίες σε υψηλές θερμοκρασίες Τίτλος: Διαδικασίες μετασχηματισμού των φάσεων Ονόματα Καθηγητών: Κακάλη Γλυκερία, Ρηγοπούλου Βασιλεία Σχολή Χημικών

Διαβάστε περισσότερα

Σφαιρικές συντεταγμένες (r, θ, φ).

Σφαιρικές συντεταγμένες (r, θ, φ). T T r e r 1 T e r Σφαιρικές συντεταγμένες (r, θ, φ). 1 T e. (2.57) r sin u u e u e u e, (2.58) r r οπότε το εσωτερικό γινόμενο u.t γίνεται: T u T u T u. T ur. (2.59) r r r sin 2.5 Η ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ

Διαβάστε περισσότερα

Diffusion and its applications.

Diffusion and its applications. Diffusion and its applications. Concentration gradient diffusion In materials technology concentration gradients are used in order to change the surface composition. Self-diffusion: diffusion of isotopes.

Διαβάστε περισσότερα

ηλεκτρικό ρεύμα ampere

ηλεκτρικό ρεύμα ampere Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

Μάθημα 23 ο. Μεταλλικός Δεσμός Θεωρία Ζωνών- Ημιαγωγοί Διαμοριακές Δυνάμεις

Μάθημα 23 ο. Μεταλλικός Δεσμός Θεωρία Ζωνών- Ημιαγωγοί Διαμοριακές Δυνάμεις Μάθημα 23 ο Μεταλλικός Δεσμός Θεωρία Ζωνών- Ημιαγωγοί Διαμοριακές Δυνάμεις Μεταλλικός Δεσμός Μοντέλο θάλασσας ηλεκτρονίων Πυρήνες σε θάλασσα e -. Μεταλλική λάμψη. Ολκιμότητα. Εφαρμογή δύναμης Γενική και

Διαβάστε περισσότερα

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1)

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1) 1)Συνήθως οι πτήσεις των αεροσκαφών γίνονται στο ύψος των 15000 m, όπου η θερμοκρασία του αέρα είναι 210 Κ και η ατμοσφαιρική πίεση 10000 N / m 2. Σε αεροδρόμιο που βρίσκεται στο ίδιο ύψος με την επιφάνεια

Διαβάστε περισσότερα

Ανάστροφη πόλωση της επαφής p n

Ανάστροφη πόλωση της επαφής p n Ανάστροφη πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή p n Ανάστροφη πόλωση Πολώνουμε

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ

ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ Παράγοντας Αποτελεσματικότητας Ειδικά για αντίδραση πρώτης τάξης, ο παράγοντας αποτελεσματικότητας ισούται προς ε = C

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Σε μια διεργασία ενανθράκωσης κάποιου

Διαβάστε περισσότερα

Θεωρία του Sommerfeld ή jellium model (συνέχεια από το 1 ο μάθημα).

Θεωρία του Sommerfeld ή jellium model (συνέχεια από το 1 ο μάθημα). MA8HMA _08.doc Θεωρία του Sommerfeld ή jellium model (συνέχεια από το ο μάθημα). Τα e καταλαμβάνουν ενεργειακές στάθμες σύμφωνα με την αρχή του Pauli και η κατανομή τους για Τ0 δίδεται από τη συνάρτηση

Διαβάστε περισσότερα

Ορθή πόλωση της επαφής p n

Ορθή πόλωση της επαφής p n Δύο τρόποι πόλωσης της επαφής p n Ορθή πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ορθή πόλωση p n Άνοδος Κάθοδος Ανάστροφη πόλωση p n Άνοδος Κάθοδος

Διαβάστε περισσότερα

Ανάστροφη πόλωση της επαφής p n

Ανάστροφη πόλωση της επαφής p n Ανάστροφη πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή p n Ανάστροφη πόλωση Πολώνουμε

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ Στην αρχική περιοχή

Διαβάστε περισσότερα

ηλεκτρικό ρεύµα ampere

ηλεκτρικό ρεύµα ampere Ηλεκτρικό ρεύµα Το ηλεκτρικό ρεύµα είναι ο ρυθµός µε τον οποίο διέρχεται ηλεκτρικό φορτίο από µια περιοχή του χώρου. Η µονάδα µέτρησης του ηλεκτρικού ρεύµατος στο σύστηµα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής

Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Ατέλειες, διαταραχές και σχέση τους με τις μηχανικές ιδιότητες των στερεών (μεταλλικά στερεά) μικτή διαταραχή διαταραχή κοχλία

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ Ενότητα:

ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ Ενότητα: ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ Ενότητα: ΦΡΟΝΤΙΣΤΗΡΙΟ Επιμέλεια: ΧΑΡΑΛΑΜΠΟΣ ΔΡΙΒΑΣ Τμήμα: ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΤΡΑΣ 1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ 1. Τι τάξη μεγέθους είναι οι ενδοατομικές αποστάσεις και ποιες υποδιαιρέσεις του

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Coons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ομογενή Χημικά Συστήματα

Ομογενή Χημικά Συστήματα Ομογενή Χημικά Συστήματα 1. Πειραματικός Προσδιορισμός Τάξης Αντιδράσεων 2. Συνεχείς Αντιδραστήρες (Ι) Πειραματική Μελέτη Ρυθμού Αντίδρασης Μέθοδοι Λήψης και Ερμηνείας Δεδομένων (ΙΙ) Τύποι Συνεχών Αντιδραστήρων:

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12

Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12 Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12 Πως αντιδρά ένα υλικό στην θερμότητα. Πως ορίζουμε και μετράμε τα ακόλουθα μεγέθη: Θερμοχωρητικότητα Συντελεστή

Διαβάστε περισσότερα

XHMIKH KINHTIKH & ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Γλυκόζη + 6 Ο 2 6CO 2 + 6H 2 O ΔG o =-3310 kj/mol

XHMIKH KINHTIKH & ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Γλυκόζη + 6 Ο 2 6CO 2 + 6H 2 O ΔG o =-3310 kj/mol XHMIKH KINHTIKH XHMIKH KINHTIKH & ΘΕΡΜΟΔΥΝΑΜΙΚΗ Θερμοδυναμική: Εξετάζει και καθορίζει το κατά πόσο μια αντίδραση ευνοείται ενεργειακά (ΔG

Διαβάστε περισσότερα

ΜΕΤΑΛΛΟΥΡΓΙΑ ΣΙΔΗΡΟΥ Ι Μεταλλουργία Σιδήρου Χυτοσιδήρου Θεωρία και Τεχνολογία Τμήμα Μηχανικών Μεταλλείων - Μεταλλουργών

ΜΕΤΑΛΛΟΥΡΓΙΑ ΣΙΔΗΡΟΥ Ι Μεταλλουργία Σιδήρου Χυτοσιδήρου Θεωρία και Τεχνολογία Τμήμα Μηχανικών Μεταλλείων - Μεταλλουργών ΜΕΤΑΛΛΟΥΡΓΙΑ ΣΙΔΗΡΟΥ Ι Μεταλλουργία Σιδήρου Χυτοσιδήρου Θεωρία και Τεχνολογία Τμήμα Μηχανικών Μεταλλείων - Μεταλλουργών ΔΡ. Α. ΞΕΝΙΔΗΣ ΔΙΑΛΕΞΗ 7. ΚΙΝΗΤΙΚΗ ΑΝΤΙΔΡΑΣΕΩΝ ΑΝΑΓΩΓΗΣ ΑΔΕΙΑ ΧΡΗΣΗΣ 2 Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα: 2 Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα: 2 Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα: Η επαφή Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commos. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ Ταχύτητα αντίδρασης και παράγοντες που την επηρεάζουν Διδάσκοντες: Αναπλ. Καθ. Β. Μελισσάς, Λέκτορας Θ. Λαζαρίδης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VLSI T echnol ogy ogy and Computer A r A chitecture Lab Γ Τσ ιατ α ο τ ύχ ύ α χ ς ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VLSI T echnol ogy ogy and Computer A r A chitecture Lab Γ Τσ ιατ α ο τ ύχ ύ α χ ς ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VSI Techology ad Comuter Archtecture ab Ηµιαγωγοί Γ. Τσιατούχας ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Φράγμα δυναμικού. Ενεργειακές ζώνες Ημιαγωγοί

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ ΧΑΛΥΒΩΝ

ΘΕΡΜΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ ΧΑΛΥΒΩΝ ΘΕΡΜΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ ΧΑΛΥΒΩΝ ΑΝΟΠΤΗΣΗ - ΒΑΦΗ - ΕΠΑΝΑΦΟΡΑ ΓΕΝΙΚΑ Στο Σχ. 1 παρουσιάζεται µια συνολική εικόνα των θερµικών κατεργασιών που επιδέχονται οι χάλυβες και οι περιοχές θερµοκρασιών στο διάγραµµα

Διαβάστε περισσότερα

ΠΑΡΟΡΑΜΑΤΑ ΜΗΧΑΝΙΚΗ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ,

ΠΑΡΟΡΑΜΑΤΑ ΜΗΧΑΝΙΚΗ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ, ΠΑΡΟΡΑΜΑΤΑ ΜΗΧΑΝΙΚΗ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ, Octave Levenspiel ΚΕΦΑΛΑΙΟ : Εισαγωγή στις Χημικές Διεργασίες Σελίδα Λανθασμένη Έκφραση Σωστή Έκφραση 2 6 Σχήμα 2 Μοντέλο ροής η κατάσταση συσσώρευσης Σχήμα 3 Εκθέτης:

Διαβάστε περισσότερα

Χαρακτηρισμός και μοντέλα τρανζίστορ λεπτών υμενίων βιομηχανικής παραγωγής: Τεχνολογία μικροκρυσταλλικού πυριτίου χαμηλής θερμοκρασίας

Χαρακτηρισμός και μοντέλα τρανζίστορ λεπτών υμενίων βιομηχανικής παραγωγής: Τεχνολογία μικροκρυσταλλικού πυριτίου χαμηλής θερμοκρασίας Χαρακτηρισμός και μοντέλα τρανζίστορ λεπτών υμενίων βιομηχανικής παραγωγής: Τεχνολογία μικροκρυσταλλικού πυριτίου χαμηλής θερμοκρασίας Υποψήφιος Διδάκτορας: Α. Χατζόπουλος Περίληψη Οι τελευταίες εξελίξεις

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Θερμική αγωγιμότητα στα στερεά Ηλεκτρική αγωγιμότητα μετάλλων Νόμος Wiedemann-Franz Αριθμός Lorenz Eιδική θερμότητα Προτεινόμενη βιβλιογραφία 1) Π. Βαρώτσος,

Διαβάστε περισσότερα

Ηλεκτρονική δομή ημιαγωγών-περίληψη. Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα-

Ηλεκτρονική δομή ημιαγωγών-περίληψη. Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα- E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc Ηλεκτρονική δομή ημιαγωγών-περίληψη Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα- Η κυματοσυνάρτηση ψ(r) του ελεύθερου e είναι λύση της Schrödinger:

Διαβάστε περισσότερα

Ισορροπία στη σύσταση αέριων συστατικών

Ισορροπία στη σύσταση αέριων συστατικών Ισορροπία στη σύσταση αέριων συστατικών Για κάθε αέριο υπάρχουν μηχανισμοί παραγωγής και καταστροφής Ρυθμός μεταβολής ενός αερίου = ρυθμός παραγωγής ρυθμός καταστροφής Όταν: ρυθμός παραγωγής = ρυθμός καταστροφής

Διαβάστε περισσότερα

7.a. Οι δεσμοί στα στερεά

7.a. Οι δεσμοί στα στερεά ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 7-1 Κεφάλαιο 7. Στερεά Εδάφια: 7.a. Οι δεσμοί στα στερεά 7.b. Η θεωρία των ενεργειακών ζωνών 7.c. Νόθευση ημιαγωγών και εφαρμογές 7.d. Υπεραγωγοί 7.a. Οι δεσμοί στα στερεά Με

Διαβάστε περισσότερα

Μηχανικές ιδιότητες υάλων. Διάγραμμα τάσης-παραμόρφωσης (stress-stain)

Μηχανικές ιδιότητες υάλων. Διάγραμμα τάσης-παραμόρφωσης (stress-stain) Μηχανικές ιδιότητες υάλων Η ψαθυρότητα των υάλων είναι μια ιδιότητα καλά γνωστή που εύκολα διαπιστώνεται σε σύγκριση με ένα μεταλλικό υλικό. Διάγραμμα τάσης-παραμόρφωσης (stress-stain) E (Young s modulus)=

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών.

Εργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 944 Εργαστηριακή Άσκηση 3 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών. Συνεργάτες:

Διαβάστε περισσότερα

ΗΜΙΑΓΩΓΟΙ. Σπύρος Νικολαΐδης Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΗΜΙΑΓΩΓΟΙ. Σπύρος Νικολαΐδης Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΜΙΑΓΩΓΟΙ Σπύρος Νικολαΐδης Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Ηλεκτρονικοί φλοιοί των ατόμων Σθένος και ομοιοπολικοί δεσμοί Η πρώτη ύλη με την οποία κατασκευάζονται τα περισσότερα ηλεκτρονικά

Διαβάστε περισσότερα

Φασματοσκοπία SIMS (secondary ion mass spectrometry) Φασματοσκοπία μάζης δευτερογενών ιόντων

Φασματοσκοπία SIMS (secondary ion mass spectrometry) Φασματοσκοπία μάζης δευτερογενών ιόντων Φασματοσκοπία SIMS (secondary ion mass spectrometry) Φασματοσκοπία μάζης δευτερογενών ιόντων Ιόντα με υψηλές ενέργειες (συνήθως Ar +, O ή Cs + ) βομβαρδίζουν την επιφάνεια του δείγματος sputtering ουδετέρων

Διαβάστε περισσότερα

ΕΠΙΠΕΔΗ ΤΕΧΝΟΛΟΓΙΑ. αρχικό υλικό. *στάδια επίπεδης τεχνολογίας. πλακίδιο Si. *ακολουθία βημάτων που προσθέτουν ή αφαιρούν υλικά στο πλακίδιο Si

ΕΠΙΠΕΔΗ ΤΕΧΝΟΛΟΓΙΑ. αρχικό υλικό. *στάδια επίπεδης τεχνολογίας. πλακίδιο Si. *ακολουθία βημάτων που προσθέτουν ή αφαιρούν υλικά στο πλακίδιο Si ΕΠΙΠΕΔΗ ΤΕΧΝΟΛΟΓΙΑ αρχικό υλικό + *στάδια επίπεδης τεχνολογίας πλακίδιο Si *ακολουθία βημάτων που προσθέτουν ή αφαιρούν υλικά στο πλακίδιο Si οξείδωση εναπόθεση διάχυση φωτολιθογραφία φωτοχάραξη Παραγωγή

Διαβάστε περισσότερα

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΣΩΤΕΡΙΚΗ ΡΟΗ ΣΕ ΑΓΩΓΟ Σκοπός της άσκησης Σκοπός της πειραματικής

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

Διατύπωση μαθηματικών εκφράσεων για τη περιγραφή του εγγενούς ρυθμού των χημικών αντιδράσεων.

Διατύπωση μαθηματικών εκφράσεων για τη περιγραφή του εγγενούς ρυθμού των χημικών αντιδράσεων. 25/9/27 Εισαγωγή Διατύπωση μαθηματικών εκφράσεων για τη περιγραφή του εγγενούς ρυθμού των χημικών αντιδράσεων. Οι ρυθμοί δεν μπορούν να μετρηθούν απευθείας => συγκεντρώσεις των αντιδρώντων και των προϊόντων

Διαβάστε περισσότερα

Η βαθμίδα του ηλεκτρικού πεδίου της μεμβράνης τείνει να συγκρατήσει τα θετικά φορτισμένα ιόντα.

Η βαθμίδα του ηλεκτρικού πεδίου της μεμβράνης τείνει να συγκρατήσει τα θετικά φορτισμένα ιόντα. Τα ιόντα χλωρίου βρίσκονται σε πολύ μεγαλύτερη πυκνότητα στο εξωτερικό παρά στο εσωτερικό του κυττάρου, με αποτέλεσμα να εμφανίζεται παθητικό ρεύμα εισόδου τους στο κύτταρο. Τα αρνητικά φορτισμένα ιόντα

Διαβάστε περισσότερα

Θερμοδυναμική του ατμοσφαιρικού αέρα

Θερμοδυναμική του ατμοσφαιρικού αέρα 6 Θερμοδυναμική του ατμοσφαιρικού αέρα 6. Θερμοδυναμικό σύστημα Κάθε ποσότητα ύλης που περιορίζεται από μια κλειστή (πραγματική ή φανταστική) επιφάνεια. Ανοικτό σύστημα: Αν από την οριακή αυτή επιφάνεια

Διαβάστε περισσότερα

Κβαντικά σύρματα, κβαντικές τελείες, νανοτεχνολογία Nucleation of a Si nanowire

Κβαντικά σύρματα, κβαντικές τελείες, νανοτεχνολογία Nucleation of a Si nanowire Ετερογενής πυρηνοποίηση Ομογενής πυρηνοποίηση συμβαίνει σπάνια γιατί σχεδόν πάντα υπάρχουν διαθέσιμες ετερογενείς θέσεις για πυρηνοποίηση (π.χ. τοιχώματα, σωματίδια προσμείξεων) που μειώνουν τη ΔG. Στόχος

Διαβάστε περισσότερα

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6-1 6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6.1. ΙΑ ΟΣΗ ΤΗΣ ΘΕΡΜΟΤΗΤΑΣ Πολλές βιοµηχανικές εφαρµογές των πολυµερών αφορούν τη διάδοση της θερµότητας µέσα από αυτά ή γύρω από αυτά. Πολλά πολυµερή χρησιµοποιούνται

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας. Διάχυση Νόμος Fick

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας. Διάχυση Νόμος Fick ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας. Διάχυση Νόμος Fck Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Φυσική Συμπυκνωμένης Ύλης (Ενότητα: Ημιαγωγοί) Ασκήσεις Ι. Ράπτης

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Φυσική Συμπυκνωμένης Ύλης (Ενότητα: Ημιαγωγοί) Ασκήσεις Ι. Ράπτης Q ολικό () ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 016-17 Φυσική Συμπυκνωμένης Ύλης (Ενότητα: Ημιαγωγοί) Ασκήσεις Ι. Ράπτης 1. Κρύσταλλος πυριτίου ( g 1.17 1170 ) νοθεύεται με προσμίξεις αρσενικού ( 40

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 4-5 (Α. Χημική Θερμοδυναμική) η Άσκηση Από τα δεδομένα του πίνακα που ακολουθεί και δεχόμενοι ότι όλα τα αέρια είναι ιδανικά, να υπολογίσετε: α)

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 10: ΗΜΙΑΓΩΓΟΙ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 10: ΗΜΙΑΓΩΓΟΙ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 10: ΗΜΙΑΓΩΓΟΙ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ε. Κ. ΠΑΛΟΎΡΑ Ημιαγωγοί 1. Ημιαγωγοί. Το 1931 ο Pauli δήλωσε: "One shouldn't work on. semiconductors, that is a filthy mess; who knows if they really

Ε. Κ. ΠΑΛΟΎΡΑ Ημιαγωγοί 1. Ημιαγωγοί. Το 1931 ο Pauli δήλωσε: One shouldn't work on. semiconductors, that is a filthy mess; who knows if they really Ημιαγωγοί Ανακαλύφθηκαν το 190 Το 191 ο Pauli δήλωσε: "Oe should't work o semicoductors, that is a filthy mess; who kows if they really exist!" Πιο ήταν το πρόβλημα? Οι ανεπιθύμητες προσμείξεις Το 1947

Διαβάστε περισσότερα

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιούνιος 2016

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιούνιος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Δοκίμιο από PMMA (Poly Methyl MethAcrylate)

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ 16111 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση

Διαβάστε περισσότερα

Physical vapor deposition (PVD)-φυσική εναπόθεση ατμών

Physical vapor deposition (PVD)-φυσική εναπόθεση ατμών Physical vapor deposition (PVD)-φυσική εναπόθεση ατμών Μηχανισμός: Το υμένιο αναπτύσσεται στην επιφάνεια του υποστρώματος με διαδικασία συμπύκνωσης από τους ατμούς του. Στις μεθόδους PVD υπάγονται: Evaporation,

Διαβάστε περισσότερα

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στις Διεργασίες και Τεχνολογία Προηγμένων Υλικών ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ B ΕΞΑΜΗΝΟΥ ( )

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στις Διεργασίες και Τεχνολογία Προηγμένων Υλικών ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ B ΕΞΑΜΗΝΟΥ ( ) Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στις Διεργασίες και Τεχνολογία Προηγμένων Υλικών ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ B ΕΞΑΜΗΝΟΥ (206-207) Συντονιστής: Διδάσκοντες: Μάθημα: ΠΡΟΗΓΜΕΝΑ ΚΕΡΑΜΙΚΑ - Ιούνιος 207

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΧΩΡΟ-ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΤΑΛΑΝΤΟΥΜΕΝΩΝ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΕ ΔΙΑΜΟΡΦΩΣΕΙΣ ΔΥΟ ΚΑΙ ΤΡΙΩΝ ΗΛΕΚΤΡΟΔΙΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΧΩΡΟ-ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΤΑΛΑΝΤΟΥΜΕΝΩΝ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΕ ΔΙΑΜΟΡΦΩΣΕΙΣ ΔΥΟ ΚΑΙ ΤΡΙΩΝ ΗΛΕΚΤΡΟΔΙΩΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΧΩΡΟ-ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΤΑΛΑΝΤΟΥΜΕΝΩΝ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΕ ΔΙΑΜΟΡΦΩΣΕΙΣ ΔΥΟ ΚΑΙ ΤΡΙΩΝ ΗΛΕΚΤΡΟΔΙΩΝ Παναγιώτης Σταματόπουλος, Αντώνης Καραντώνης Τομέας Επιστήμης και Τεχνικής

Διαβάστε περισσότερα

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό.

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό. Βασικές Εξισώσεις Σχεδιασμού (ΣΔΟΥΚΟΣ 2-, 2-) t = n i dn i V n i R και V = n i dn i t n i R Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 6: ΞΗΡΑΝΣΗ ΣΕ ΡΕΥΜΑ ΑΕΡΑ

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 6: ΞΗΡΑΝΣΗ ΣΕ ΡΕΥΜΑ ΑΕΡΑ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Σχεδιασμού, Ανάλυσης & Ανάπτυξης Διεργασιών και Συστημάτων ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Διευθυντής: Ι.

Διαβάστε περισσότερα

dq dt μεταβολή θερμοκρασίας C = C m ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ J mole Θερμικές ιδιότητες Θερμοχωρητικότητα

dq dt μεταβολή θερμοκρασίας C = C m ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ J mole Θερμικές ιδιότητες Θερμοχωρητικότητα ΥΛΙΚΑ Ι ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ 7 κές Ιδιότητες ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ κές ιδιότητες Θερμοχωρητικότητα κή διαστολή κή αγωγιμότητα γμ κή τάση Θερμοχωρητικότητα Η θερμοχωρητικότητα

Διαβάστε περισσότερα

Χημικές Διεργασίες: Εισαγωγή

Χημικές Διεργασίες: Εισαγωγή : Εισαγωγή Ορολογία Μοναδιαίες Διεργασίες ( Unit Processes ) - Οξείδωση - Υδρογόνωση - Αφυδρογόνωση - Πυρόλυση - Ενυδάτωση κλπ Ορολογία Μοναδιαίες Διεργασίες ( Unit Processes ) - Οξείδωση - Υδρογόνωση

Διαβάστε περισσότερα

ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ. Εισαγωγή. 3.1 Γενικά για τη χημική κινητική και τη χημική αντίδραση - Ταχύτητα αντίδρασης

ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ. Εισαγωγή. 3.1 Γενικά για τη χημική κινητική και τη χημική αντίδραση - Ταχύτητα αντίδρασης 3 ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ 3 ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ Εισαγωγή Στην μέχρι τώρα γνωριμία μας με τη χημεία υπάρχει μια «σημαντική απουσία»: ο χρόνος... Είναι λοιπόν «καιρός» να μπει και ο χρόνος ως παράμετρος στη μελέτη ενός

Διαβάστε περισσότερα

Από τα Κουάρκ μέχρι το Σύμπαν Tελική Eξέταση 7/2/2014 B 1. Την εποχή της υλοκρατίας η εξάρτηση του R από το χρόνο είναι: (α)

Από τα Κουάρκ μέχρι το Σύμπαν Tελική Eξέταση 7/2/2014 B 1. Την εποχή της υλοκρατίας η εξάρτηση του R από το χρόνο είναι: (α) Από τα Κουάρκ μέχρι το Σύμπαν Tελική ξέταση 7//04. Την εποχή της υλοκρατίας η εξάρτηση του από το χρόνο είναι: / t. Η εντροπία της Γης με είναι ανώτερη από: 5 S / k, 0 S / k, 0 75 / t x( H t / t 0 5 N,6

Διαβάστε περισσότερα

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3 ΑΛΛΑΓΗ ΤΗΣ ΘΕΡΜΟΚΡΑΣΙΑΣ ΤΟΥ ΑΕΡΑ ΜΕ ΤΟ ΥΨΟΣ, ΣΤΑΘΕΡΟΤΗΤΑ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ KAI ΡΥΠΑΝΣΗ ΤΟΥ ΑΕΡΑ Στην κατακόρυφη κίνηση του αέρα οφείλονται πολλές ατμοσφαιρικές διαδικασίες, όπως ο σχηματισμός των νεφών και

Διαβάστε περισσότερα

Αναγωγή Οξειδίων με Άνθρακα, Μονοξείδιο του Άνθρακα και Υδρογόνο

Αναγωγή Οξειδίων με Άνθρακα, Μονοξείδιο του Άνθρακα και Υδρογόνο Μάθημα Αναγωγή Οξειδίων με Άνθρακα, Μονοξείδιο του Άνθρακα και Υδρογόνο Εξαγωγική Μεταλλουργία Καθ. Ι. Πασπαλιάρης Εργαστήριο Μεταλλουργίας ΕΜΠ Αναγωγικά μέσα Πως μπορεί να απομακρυνθεί το O 2 (g) από

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 2: Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 2: Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα 2: Η επαφή Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα ενότητας (1από2) Η δομή του ημιαγωγού Ενδογενής ημιαγωγός Οπές και ηλεκτρόνια Ημιαγωγός με προσμίξεις:

Διαβάστε περισσότερα