riptografie şi Securitate

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "riptografie şi Securitate"

Transcript

1 riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti

2 Cuprins 1. Schemă de criptare CCA sigură - construcţie 2. Schemă de criptare CCA sigură - demonstraţie Criptografie şi Securitate 2/10,

3 Securitate CCA In cursul precedent am introdus noţiunile de securitate CPA şi securitate CCA; Criptografie şi Securitate 3/10,

4 Securitate CCA In cursul precedent am introdus noţiunile de securitate CPA şi securitate CCA; Multe dintre schemele prezentate până acum sunt CPA sigure (sistemele bloc împreună cu modurile de utilizare CBC, OFB şi CTR); Criptografie şi Securitate 3/10,

5 Securitate CCA In cursul precedent am introdus noţiunile de securitate CPA şi securitate CCA; Multe dintre schemele prezentate până acum sunt CPA sigure (sistemele bloc împreună cu modurile de utilizare CBC, OFB şi CTR); Insă nici una din schemele prezentate nu este CCA sigură; Criptografie şi Securitate 3/10,

6 Securitate CCA In cursul precedent am introdus noţiunile de securitate CPA şi securitate CCA; Multe dintre schemele prezentate până acum sunt CPA sigure (sistemele bloc împreună cu modurile de utilizare CBC, OFB şi CTR); Insă nici una din schemele prezentate nu este CCA sigură; In acest curs vom folosi MAC-uri împreună cu scheme CPA sigure pentru a construi scheme CCA sigure; Criptografie şi Securitate 3/10,

7 Securitate CCA In cursul precedent am introdus noţiunile de securitate CPA şi securitate CCA; Multe dintre schemele prezentate până acum sunt CPA sigure (sistemele bloc împreună cu modurile de utilizare CBC, OFB şi CTR); Insă nici una din schemele prezentate nu este CCA sigură; In acest curs vom folosi MAC-uri împreună cu scheme CPA sigure pentru a construi scheme CCA sigure; Incepem prin a reaminti noţiunea de schemă CCA sigură; Criptografie şi Securitate 3/10,

8 Experimentul Priv cca A,π (n) Pe toată durata experimentului, A are acces la oracolul de criptare Enc k ( ) şi la oracolul de decriptare Dec k ( ) cu restricţia că nu poate decripta c! Criptografie şi Securitate 4/10,

9 Experimentul Priv cca A,π (n) Definiţie O schemă de criptare π = (Enc, Dec) este CCA-sigură dacă pentru orice adversar PPT A există o funcţie neglijabilă negl aşa încât Pr[Priv cca A,π (n) = 1] negl(n). Criptografie şi Securitate 5/10,

10 Schemă de criptare CCA sigură Cele două părţi comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură şi încă una pentru un cod de autentificare a mesajelor (MAC). Criptografie şi Securitate 6/10,

11 Schemă de criptare CCA sigură Cele două părţi comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură şi încă una pentru un cod de autentificare a mesajelor (MAC). Pentru criptarea unui mesaj m, Alice procedează astfel: Criptografie şi Securitate 6/10,

12 Schemă de criptare CCA sigură Cele două părţi comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură şi încă una pentru un cod de autentificare a mesajelor (MAC). Pentru criptarea unui mesaj m, Alice procedează astfel: criptează m folosind schema CPA sigură, rezultând textul criptat c Criptografie şi Securitate 6/10,

13 Schemă de criptare CCA sigură Cele două părţi comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură şi încă una pentru un cod de autentificare a mesajelor (MAC). Pentru criptarea unui mesaj m, Alice procedează astfel: criptează m folosind schema CPA sigură, rezultând textul criptat c calculează un tag MAC t pe textul criptat c Criptografie şi Securitate 6/10,

14 Schemă de criptare CCA sigură Cele două părţi comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură şi încă una pentru un cod de autentificare a mesajelor (MAC). Pentru criptarea unui mesaj m, Alice procedează astfel: criptează m folosind schema CPA sigură, rezultând textul criptat c calculează un tag MAC t pe textul criptat c rezultatul final al criptării este c, t Criptografie şi Securitate 6/10,

15 Schemă de criptare CCA sigură Cele două părţi comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură şi încă una pentru un cod de autentificare a mesajelor (MAC). Pentru criptarea unui mesaj m, Alice procedează astfel: criptează m folosind schema CPA sigură, rezultând textul criptat c calculează un tag MAC t pe textul criptat c rezultatul final al criptării este c, t Pentru un text criptat c, t, Bob verifică validitatea tag-ului înainte de a decripta; Criptografie şi Securitate 6/10,

16 Schemă de criptare CCA sigură Cele două părţi comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură şi încă una pentru un cod de autentificare a mesajelor (MAC). Pentru criptarea unui mesaj m, Alice procedează astfel: criptează m folosind schema CPA sigură, rezultând textul criptat c calculează un tag MAC t pe textul criptat c rezultatul final al criptării este c, t Pentru un text criptat c, t, Bob verifică validitatea tag-ului înainte de a decripta; Un text criptat c, t este valid daca t este un tag valid pentru c. Criptografie şi Securitate 6/10,

17 O schemă de criptare CCA sigură Construcţie Fie Π E = (Enc, Dec) o schemă de criptare cu cheie secretă şi Π M = (Mac, Vrfy) un cod de autentificare a mesajelor. Definim schema de criptare (Enc, Dec ) astfel: Enc: pentru o cheie (k 1, k 2 ) şi un mesaj m, calculează c = Enc k1 (m) şi t = Mac k2 (c) şi întoarce textul criptat c, t ; Dec: pentru o cheie (k 1, k 2 ) şi un text criptat c, t, verifică dacă Vrfy k2 (c, t) = 1. In caz afirmativ, întoarce Dec k1 (c), altfel întoarce. Simbolul indică eşec; Corectitudinea schemei cere ca Dec k1,k 2 (Enc k1,k 2 (m)). Spunem că (Mac, Vrfy) are tag-uri unice dacă m k un unic tag t a.î. Vrfy k (m, t) = 1. Criptografie şi Securitate 7/10,

18 O schemă de criptare CCA sigură Teoremă Dacă schema de criptare Π E este CPA-sigură şi Π M este un MAC sigur cu tag-uri unice, atunci construcţia precedentă reprezintă o schemă de criptare CCA-sigură. Criptografie şi Securitate 8/10,

19 Demonstraţie intuitivă Un text criptat c, t este valid (în raport cu o cheie (k 1, k 2 )) daca Vrfy k2 (c, t) = 1; Criptografie şi Securitate 9/10,

20 Demonstraţie intuitivă Un text criptat c, t este valid (în raport cu o cheie (k 1, k 2 )) daca Vrfy k2 (c, t) = 1; Mesajele pe care adversarul A le trimite către oracolul de decriptare sunt de 2 feluri: Criptografie şi Securitate 9/10,

21 Demonstraţie intuitivă Un text criptat c, t este valid (în raport cu o cheie (k 1, k 2 )) daca Vrfy k2 (c, t) = 1; Mesajele pe care adversarul A le trimite către oracolul de decriptare sunt de 2 feluri: texte criptate pe care A le-a primit de la oracolul de criptare (ştie deja textul clar, deci nu îi sunt de folos); Criptografie şi Securitate 9/10,

22 Demonstraţie intuitivă Un text criptat c, t este valid (în raport cu o cheie (k 1, k 2 )) daca Vrfy k2 (c, t) = 1; Mesajele pe care adversarul A le trimite către oracolul de decriptare sunt de 2 feluri: texte criptate pe care A le-a primit de la oracolul de criptare (ştie deja textul clar, deci nu îi sunt de folos); texte criptate pe care nu le-a primit de la oracolul de criptare; Criptografie şi Securitate 9/10,

23 Demonstraţie intuitivă Un text criptat c, t este valid (în raport cu o cheie (k 1, k 2 )) daca Vrfy k2 (c, t) = 1; Mesajele pe care adversarul A le trimite către oracolul de decriptare sunt de 2 feluri: texte criptate pe care A le-a primit de la oracolul de criptare (ştie deja textul clar, deci nu îi sunt de folos); texte criptate pe care nu le-a primit de la oracolul de criptare; Insă, cum Π M este un MAC sigur, cu probabilitate foarte mare textele criptate care nu au fost obţinute de la oracolul de criptare sunt invalide, iar oracolul de decriptare va întoarce în acest caz; Criptografie şi Securitate 9/10,

24 Demonstraţie intuitivă Un text criptat c, t este valid (în raport cu o cheie (k 1, k 2 )) daca Vrfy k2 (c, t) = 1; Mesajele pe care adversarul A le trimite către oracolul de decriptare sunt de 2 feluri: texte criptate pe care A le-a primit de la oracolul de criptare (ştie deja textul clar, deci nu îi sunt de folos); texte criptate pe care nu le-a primit de la oracolul de criptare; Insă, cum Π M este un MAC sigur, cu probabilitate foarte mare textele criptate care nu au fost obţinute de la oracolul de criptare sunt invalide, iar oracolul de decriptare va întoarce în acest caz; Cum oracolul de decriptare este inutil, securitatea schemei (Enc, Dec ) se reduce la securitatea CPA a schemei Π E. Criptografie şi Securitate 9/10,

25 Important de reţinut! Schemă de criptare CPA-sigură + MAC sigur = schemă de criptare CCA sigură Criptografie şi Securitate 10/10,

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Prelegerea 11. Securitatea sistemului RSA Informaţii despre p şi q

Prelegerea 11. Securitatea sistemului RSA Informaţii despre p şi q Prelegerea 11 Securitatea sistemului RSA Vom trece în revistă câteva modalităţi de atac ale sistemelor de criptare RSA. Ca o primă observaţie, RSA nu rezistă la un atac de tipul meet-in-the middle, strategia

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Noţiuni de bază ale criptografiei

Noţiuni de bază ale criptografiei Prelegerea 1 Noţiuni de bază ale criptografiei 1.1 Definiţii şi notaţii preliminare Criptografia este o componentă a unui domeniu mult mai larg, numit securitatea informaţiei. Obiectivele urmărite de acesta

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Prelegerea 10. Sistemul de criptare RSA Descrierea sistemului RSA

Prelegerea 10. Sistemul de criptare RSA Descrierea sistemului RSA Prelegerea 10 Sistemul de criptare RSA 10.1 Descrierea sistemului RSA Sistemul de criptare RSA (Rivest - Shamir - Adlema este în acest moment cel mai cunoscut şi uzitat sistem cu cheie publică 1. Aceasta

Διαβάστε περισσότερα

Curs 7. Definiţia II Un grup G este o mulţime, împreună cu o operaţie binară

Curs 7. Definiţia II Un grup G este o mulţime, împreună cu o operaţie binară Curs 7 II.3 Grupuri II.3.1 Definiţie. Exemple Definiţia II.3.1.1. Un grup G este o mulţime, împreună cu o operaţie binară pe G, notată : G G G, (x, y) x y, astfel încât: (G1) (Asociativitate) (x y) z =

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Tehnici criptografice

Tehnici criptografice Criptare Criptografia = ştiinţa creării şi menţinerii mesajelor secrete, în sensul imposibiltăţii citirii lor de către neautorizaţi M = mesaj (text) în clar (plain / clear text) C = mesaj cifrat (criptograma,

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Coduri detectoare/corectoare de erori. Criptarea informaţiei

Coduri detectoare/corectoare de erori. Criptarea informaţiei 2 Coduri detectoare/corectoare de erori. Criptarea informaţiei 1. Prezentare teoretică În cadrul acestei lucrări de laborator se vor prezenta algotimii CRC şi Reed-Solomon folosiţi la detectarea şi corectarea

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Sisteme mecanice de criptare

Sisteme mecanice de criptare Prelegerea 3 Sisteme mecanice de criptare Sistemele de criptare pot fi aduse la un grad mai mare de complexitate şi securitate dacă se folosesc mijloace mecanice de criptare. Astfel de mecanisme special

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

V5433A vană rotativă de amestec cu 3 căi

V5433A vană rotativă de amestec cu 3 căi V5433A vană rotativă de amestec cu 3 căi UTILIZARE Vana rotativă cu 3 căi V5433A a fost special concepută pentru controlul precis al temperaturii agentului termic în instalațiile de încălzire și de climatizare.

Διαβάστε περισσότερα

Funcţii Ciudate. Beniamin Bogoşel

Funcţii Ciudate. Beniamin Bogoşel Funcţii Ciudate Beniamin Bogoşel Scopul acestui articol este construcţia unor funcţii neobişnuite din punct de vedere intuitiv, care au anumite proprietăţi interesante. Construcţia acestor funcţii se face

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g. II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Προσωπική Αλληλογραφία Επιστολή

Προσωπική Αλληλογραφία Επιστολή - Διεύθυνση Andreea Popescu Str. Reşiţa, nr. 4, bloc M6, sc. A, ap. 12. Turnu Măgurele Jud. Teleorman 06102. România. Ελληνική γραφή διεύθυνσης: Όνομα Παραλήπτη Όνομα και νούμερο οδού Ταχυδρομικός κώδικας,

Διαβάστε περισσότερα

Capitolul 14. Asamblari prin pene

Capitolul 14. Asamblari prin pene Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o anumită țară

Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o anumită țară - General Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

13. Grinzi cu zăbrele Metoda izolării nodurilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...

13. Grinzi cu zăbrele Metoda izolării nodurilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate... SEMINAR GRINZI CU ZĂBRELE METODA IZOLĂRII NODURILOR CUPRINS. Grinzi cu zăbrele Metoda izolării nodurilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele

Διαβάστε περισσότερα

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

Asist. Dr. Oana Captarencu. otto/pn.html.

Asist. Dr. Oana Captarencu.  otto/pn.html. Reţele Petri şi Aplicaţii p. 1/45 Reţele Petri şi Aplicaţii Asist. Dr. Oana Captarencu http://www.infoiasi.ro/ otto/pn.html otto@infoiasi.ro Reţele Petri şi Aplicaţii p. 2/45 Evaluare Nota finala: 40%

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 32 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Forme normale pentru schemele de relaţie prof. dr. ing. Mircea Petrescu

Forme normale pentru schemele de relaţie prof. dr. ing. Mircea Petrescu Forme normale pentru schemele de relaţie prof. dr. ing. Mircea Petrescu Folosirea formelor normale conduce la eliminarea multora din problemele de redondanţe şi anomalii enunţate anterior. Fie o schemă

Διαβάστε περισσότερα

Corectură. Motoare cu curent alternativ cu protecție contra exploziei EDR * _0616*

Corectură. Motoare cu curent alternativ cu protecție contra exploziei EDR * _0616* Tehnică de acționare \ Automatizări pentru acționări \ Integrare de sisteme \ Servicii *22509356_0616* Corectură Motoare cu curent alternativ cu protecție contra exploziei EDR..71 315 Ediția 06/2016 22509356/RO

Διαβάστε περισσότερα

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui - Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

2CP Electropompe centrifugale cu turbina dubla

2CP Electropompe centrifugale cu turbina dubla 2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

cercului circumscris triunghiului ABE.

cercului circumscris triunghiului ABE. Concursul Gazeta Matematică și ViitoriOlimpici.ro Ediția a IV-a 2012-2013 Problema 1. Rezolvaţi în mulţimea numerelor reale ecuaţia (x 2 + y 2 ) 3 = (x 3 y 3 ) 2. Soluţie. Ecuaţia se scrie echivalent x

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

14. Grinzi cu zăbrele Metoda secţiunilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

14. Grinzi cu zăbrele Metoda secţiunilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR GRINZI CU ZĂBRELE METODA SECŢIUNILOR CUPRINS. Grinzi cu zăbrele Metoda secţiunilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele Metoda secţiunilor

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

a. 0,1; 0,1; 0,1; b. 1, ; 5, ; 8, ; c. 4,87; 6,15; 8,04; d. 7; 7; 7; e. 9,74; 12,30;1 6,08.

a. 0,1; 0,1; 0,1; b. 1, ; 5, ; 8, ; c. 4,87; 6,15; 8,04; d. 7; 7; 7; e. 9,74; 12,30;1 6,08. 1. În argentometrie, metoda Mohr: a. foloseşte ca indicator cromatul de potasiu, care formeazǎ la punctul de echivalenţă un precipitat colorat roşu-cărămiziu; b. foloseşte ca indicator fluoresceina, care

Διαβάστε περισσότερα

Curs 4. RPA (2017) Curs 4 1 / 45

Curs 4. RPA (2017) Curs 4 1 / 45 Reţele Petri şi Aplicaţii Curs 4 RPA (2017) Curs 4 1 / 45 Cuprins 1 Analiza structurală a reţelelor Petri Sifoane Capcane Proprietăţi 2 Modelarea fluxurilor de lucru: reţele workflow Reţele workflow 3

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB = Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului

Διαβάστε περισσότερα

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs Aritmetică în domenii de integritate şi teoria modulelor Note de curs În prima parte a cursului, vom prezenta câteva clase remarcabile de domenii de integritate şi legăturile dintre acestea A doua parte

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

Curs 6 Relatii de cointegrare

Curs 6 Relatii de cointegrare Curs 6 Relatii de cointegrare Intuitie: Doua serii de timp sunt in relatie de cointegrare daca nu sunt neaparat corelate, dar o combinatie liniara a lor este de medie si varianta constante: mai devreme

Διαβάστε περισσότερα

2. CALCULE TOPOGRAFICE

2. CALCULE TOPOGRAFICE . CALCULE TOPOGRAFICE.. CALCULAREA DISTANŢEI DINTRE DOUĂ PUNCTE... CALCULAREA DISTANŢEI DINTRE DOUĂ PUNCTE DIN COORDONATE RECTANGULARE Distanţa în linie dreaptă dintre două puncte se poate calcula dacă

Διαβάστε περισσότερα

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X Prelegerea 13 Coduri Reed - Solomon 13.1 Definirea codurilor RS O clasă foarte interesantă de coduri ciclice a fost definită în 1960 de Reed şi Solomon. Numite în articolul iniţial coduri polinomiale,

Διαβάστε περισσότερα

3 Distribuţii discrete clasice

3 Distribuţii discrete clasice 3 Distribuţii discrete clasice 3.1 Distribuţia Bernoulli Probabil cel mai simplu tip de variabilă aleatoare discretă, variabila aleatoare Bernoulli modelează efectuareaunui experiment în care poate apare

Διαβάστε περισσότερα

页面

页面 订单 - 配售 Εξετάζουμε την αγορά...luăm în considerare posibi 正式, 试探性 Είμαστε στην ευχάριστη Suntem θέση να încântați δώσουμε την să plasăm παραγγελία μας στην εταιρεία comandă σας pentru... για... Θα θέλαμε

Διαβάστε περισσότερα

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

Subiecte Clasa a VI-a

Subiecte Clasa a VI-a Clasa a VI Lumina Math Intrebari (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns

Διαβάστε περισσότερα

Probleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare:

Probleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare: Pobleme P Pentu cicuitul din fig P, ealizat cu amplificatoae opeaţionale ideale, alimentate cu ±5V, să se detemine: a) elaţia analitică a tensiunii de ieşie valoile tensiunii de ieşie dacă -V 0V +,8V -V

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

Coduri detectoare şi corectoare de erori

Coduri detectoare şi corectoare de erori Coduri detectoare şi corectoare de erori Adrian Atanasiu Editura Universităţii BUCUREŞTI Prefaţă Vă uitaţi la televizor care transmite imagini prin satelit? Vorbiţi la telefon (celular)? Folosiţi Internetul?

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

3 FUNCTII CONTINUE Noţiuni teoretice şi rezultate fundamentale Spaţiul euclidian R p. Pentru p N *, p 2 fixat, se defineşte R

3 FUNCTII CONTINUE Noţiuni teoretice şi rezultate fundamentale Spaţiul euclidian R p. Pentru p N *, p 2 fixat, se defineşte R 3 FUNCTII CONTINUE 3.. Noţiuni teoretice şi rezultate fundamentale. 3... Saţiul euclidian R Pentru N *, fixat, se defineşte R = R R R = {(x, x,, x : x, x,, x R} de ori De exemlu, R = {(x, y: x, yr} R 3

Διαβάστε περισσότερα