OREKA KIMIKOA GAIEN ZERRENDA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "OREKA KIMIKOA GAIEN ZERRENDA"

Transcript

1 GAIEN ZERRENDA Nola lortzen da oreka kimikoa? Oreka konstantearen formulazioa Kc eta Kp-ren arteko erlazioa Disoziazio-gradua Frakzio molarrak eta presio partzialak Oreka kimikoaren noranzkoa Le Chatelier-en printzipioa Gibsen energia eta oreka 1.-NOLA LORTZEN DA OREKA KIMIKOA? Oreka prozesu dinamikoa da non konposizioa (substantzia bakoitzaren mol-kopuruak) ez da aldatzen, nahiz eta maila mikroskopikoan erreakzioak jarraitu: erreakzioaren abiadura berdina da bi noranzkoetan (noranzko zuzena, produktuak emateko, eta alderantzizkoa, erreaktiboak lortzeko). Hasieran erreakzioaren abiadurak (zuzena eta alderantzizkoa) ezberdinak izango dira gehienetan, baino erreakzioak bidea egin ahala, bi abiadurak berdintzen joango dira. Berdintzen direnean, oreka kimikoa lortu da Eta hortik aurrera ontziko konposizioa (molkopuruak) ez da aldatuko. Kasu honetan alderantzizko erreakzioaren hasierako abiadura nulua da zeren produkturik ez dugu alderantzizko prozesu hori emateko, baina produktua lortu ahala (sufre trioxidoa) abiadura handitzen joango da, abiadurak berdindu arte. Oreka lortu da Parte hartzen duten substantzien kontzentrazioak behin oreka lortuta konstanteak mantentzen dira. Oreka kimikoa DINAMIKOA da behin oreka lortuta erreakzioa bi noranzkotan etengabe gertatzen delako. Oreka lortu da 1

2 2.-OREKA KONSTANTEAREN FORMULAZIOA Oreka konstantearen espresioa ekuazio kimikoaren araberakoa da. Hau da, ekuazio kimikoa ezagutu behar dugu oreka konstantearen espresioa ezagutzeko. Oreka konstantearen espresioa bi eratan eman daiteke: (a) kontzentrazio eratan, Kc eta (b) presio partzialen eratan, Kp. 2.1-Kc (MASEN EKINTZAREN LEGEA) OREKA HOMOGENEOA bada, hau da, substantzia guztiak GAS EGOERAN daude, Kc horrela da: aa(g)+bb(g) cc(g) + dd(g) Orekan erreakzio zuzenaren abiadura eta alderantzikoa berdinak direnez: 1.-Tenperaturaren menpe dago. 2.- A,B,C,D substantzien kontzentrazioak mol/l= = mol.l-1 3,.Kc-ren unitateak desberdinak dira erreakzioaren koefiziente estekiometrikoen menpe dagoelako. 4.-Kc ekuazio kimikoaren idazkeraren araberakoa da. Kc = [SO 3 ] 2 /[ SO 2 ] 2 x [O 2 ] = 282,2 Lx mol -1 Oreka konstantearen espresioa koefiziente estekiometrikoen menpe dagoenez, ekuazio kimikoa eman behar da. 2

3 Oreka baten konstantea ezagutzean posiblea da beste erreakzioaren orekakonstantearen balioa ezagutzea: Kc balioaren arabera posible da jakitea norantz dagoen desplazatuta oreka: o Kc>1 oreka desplazatuta (produktu baino erreaktibo gehiago) o Kc<1 oreka desplazatuta (erreaktibo baino produktu gehiago) IDATZI HURRENGO ERREAKZIOEN Kc EXPRESIOA ETA HALABER AZALDU NORANTZ DESPLAZATUTA DAGOEN OREKA BAKOITZA. a) 2NO 2 (g) N 2 O 4 (g) Kc (25ºC) = 216 b) I 2 (g) 2I(g) Kc (727ºc) =3, OREKA HETEROGENEOA bada, hau da, substantziak egoera fisiko desberdinetan badaude GAS EGOERAN bakarrik daudenek, Kc-n (masa ekintzaren legea ) parte hartzen dute. aa(l) bb(s)+ cc(g) Kc=[ C] c 3

4 Kc KALKULOAK. Aurreko ariketetan datuak zuzenean orekan ezagutzen genituen, baina batzuetan kalkulatu behar ditugu. Horretarako hurrengoa planteatzen da: aa(g) + bb(g) cc(g) + dd(g) hasierako molak (n 0 ) n0 n0 0 0 aldaketa ( n) -ax - bx +cx +dx oreka- molak (n e ) n0-ax n0 -bx cx dx Oreka- molak. desagertzen diren molak(-) Erreaktiboentzat:hasierako molak erreakzionatu duena. agertzen diren molak(+) Produktuentzat : 0+agertzen dena Estekiometria kontuan hartzen da = [cx] c.[dx] d [n 0 -ax] a.[n 0 -bx] b Mol kopuru totala orekan: n T = n0-ax + n0 -bx + cx + dx 4

5 DISOZIAZIO-GRADUA (ALFA, ) Erreakzioa gertatu den proportzioa neurtzeko beste era bat erabiltzen da: Erreaktibo bakarreko erreakzioetan Bi edo produktu gehiagotan disoziatzen dena. Mol batetik abiatzen bada Disoziatzen den molaren zatia (1eko zenbat) da. α = n/n 0 =erreakzionatzen duen mol kopurua / hasierako molak (ehunekotan adierazten da) Adibidea. N 2 O 4 disoziatuta dago %20an. Honek esan nahi du mol bakoitzeko 0,2 disoziatu dela. Hots: α=0,2 Erreaktibo batek bi edo produktu gehiago ematen dituenean, erreaktibo horren disoziazio-gradua (alfa) zer mol-proportzio kontsumitu den adierazten du. a) Eskatzen badigute disoziazio-maila kalkulatzea planteatuko dugu beti bezala eta gero α = n/n 0 kalkulatuko dugu. aa(g) cc(g) + dd(g) hasierako molak (n 0 ) n0 0 0 aldaketa n -ax +cx +dx oreka- molak (n e ) n0-ax cx dx n =ax= mol disoziatuen kopurua n 0 = hasierako molen kopurua α = n/n 0 b) α ezgutzen badugu batzuetan planteamendua egiten da hori kontuan hartuta: aa(g) cc(g) + dd(g) KONTUZ!!!! hasierako molak n0 0 0 aldaketa n - n0α + c/a n0α +d/a n0α oreka- molak n0 - n0α c/a n0α d/a n0α MOL-ALDAKETA PLANTEATZEAN KONTUAN HARTU BEHAR DUGU α DEFINITUTA DAGOELA 1mol A DISOZIATZEN DENEAN. Mol kopuru totala orekan: n T = n0 - n0α + c/a n0α + d/a n0α 5

6 2.2-Kp (PRESIO OREKA-KONSTANTEA) FRAKZIO MOLARRAK ETA PRESIO PARTZIALAK Substantzia gaseoso baten frakzio molarra (X) substantzia horren molen edo molekulen proportzioa da. X A = n A / n T ; n T = n A +n B +n C +n D = n i Frakzio molarra substantzia horren presio partzialarekin erlazionatuta dago. Presio partziala osagai batek egiten duen presioa da. A, B eta C osagai gaseosoak baldin baditugu ontzi batean, presio partzialak eta presio totala honela erlazionatzen dira: presio totala = presio partziala (A) + presio partziala (B) + presio partziala (C) P T = P A + P B + P C = P i Gas nahasketa baten presio totala, osagai baten presio partziala eta osagai horren frakzio molarra era honetan erlazionatzen dira: presio partziala (A osagaia) = frakzio molarra (A) x presio totala P A = X A x P T non frakzio molarra den: frakzio molarra (A) = mol (A) / mol-kopuru totala X A = n A / n T n T = n A +n B +n C +n D = n i Aurreko guztia aplikatzen da oreka erreakzioetan gas egoeran daudenean, baina kontuan hartuta datu guztiak orekakoak direla. aa(g)+ bb(g) cc(g) + dd(g) 1.- P = presio partzialak oreka egoeran (atm) 2.-Tenperaturaren menpe dago. 3,.Kp-ren unitateak desberdinak dira erreakzioaren koefiziente estekiometrikoen menpe dagoelako. 4.-Kp ekuazio kimikoaren idazkeraren araberakoa da. GAS IDEALAK DIRENEAN ere kontuan hartzen da presioak, molak.kalkulatzeko: P.V=n RT P T.V=n T RT P i.v=n i RT 6

7 3.-Kp ETA Kc-REN ARTEKO ERLAZIOA Gas idealen ekuazioak (PxV= nxrxt; P= n/v xrxt = CxRxT) bi konstanteen arteko erlazioa ezagutzea ahalbideratzen du: Kp = Kc (RT) n non n produktu gaseosoen koefiziente estekiometriakoak ken erreaktiboenak den. 4.-OREKA KIMIKOAREN NORANZKOA:ERREAKZIOAREN ZATIDURA(Qc) Hasieran erreaktiboak eta produktuak baldin badaude, norantz joango da prozesua, erreaktibo gehiago edo produktu gehiago aldera? Hori jakiteko erreakzioaren zatidura (Q) eta oreka-konstantearen (Kc) balioak alderatu egin behar dira. aa(g)+bb(g) cc(g) + dd(g) KONTZENTRAZIOAK OREKAKO KONTZENTRAZIOAK EDOZEIN UNETAN Q C Q<Kc baldin bada, erreakzioa ezkerrerantz desplazaturik egongo da,erreaktibo gehiegi dago, eta oreka lortzeko, eskuinerantz joko du erreakzioak produktu gehiago sortuz. Q>Kc bada, erreakzioa eskuinerantz desplazaturik egongo da,produktu gehiegi dago, eta oreka lortzeko, ezkerrerantz joko du erreakzioak erreaktibo gehiago sortuz. Q=Kc bada, sistema orekan dago. 7

8 5.-LE CHÂTELIER-EN PRINTZIPIOA Oreka bat apurtzen denean (kanpotik zenbait faktore aldatuz) sistemak oreka berriaren aldera joko du. Oreka bat apur daiteke era honetan: (1) erreaktibo edo produktuen molkopuruak aldatuz (ontzitik substantziaren bat kenduz edo ontzian substantzia gehiago sartuz); (2) presioa aldatuz (ontziaren bolumena aldatuz, esate baterako) edo (3) tenperatura aldatuz (eta ondorioz oreka konstantearen balioa aldatuz). Bestalde, oreka ez da apurtzen (1) katalizatzaile bat gehituz, zeren katalizatzaileak du eragina erreakzioaren abiaduran baino ez orekako konposizioan eta (2) substantzia inerteren bat( gas geldoa) sartuz (presio totala alda daiteke baino erreaktibo eta produktuen presio partzialak ez dira aldatzen). 8

9 o o Oreka batean aldaketak izan daitezke kontzentrazioak, presioak eta tenperatuta, baina bakarrik aldatzen duena orekaren konstantearen balioa tenperatura da. Oreka aldatzean sistema eboluzionatuz doa beste oreka-egoera berria lortu arte.sistemaren noranzkoa zein izango den aurresateko Le Chatelier-en printzipioa erabiltzen da. Honek dio sistemak kanpotik egindako aldaketaren aurka (hau da, oreka apurtzeko egin den ekintzaren aurka) jokatzen duela, oreka egoera berreskuratu arte KONTZENTRAZIOEN ALDAKETA a) Substantzia baten kontzentrazioa HANDIAGOTZEN BADA sistema substantzia hori kontsumitzeko noranzkoan desplazatuko da. b) Substantzia baten kontzentrazioa TXIKIAGOTZEN BADA sistema substantzia hori ekoizteko noranzkoan desplazatuko da. ADIBIDEZ Adibidean :Qc = [NH 3 ] 2 / [ N 2 ] [H 2 ] 3 [H 2 ] gehitzen bada Qc<Kc bilakatzen da. Oreka birlortzeko eskubirantz mugituko da amoniakoaren kontzentrazioa handituz Qc=Kc lortu arte. [NH 3 ] handitzen bada Qc>Kc bilakatzen da. Oreka birlortzeko ezkerrerantz desplazatuko da hidrogeno eta nitrogeno kontzentrazioak handituz Qc=Kc lortu arte 9

10 5.2.- PRESIO ALDAKETAK BOLUMENAREN ALDAKUNTZAREN ONDORIOZ Orekan dagoen sistema baten gasen presio totala aldatu egin daiteke sistemak betetzen duen bolumena aldatuz (adibidez ontziaren pistoi higikor bat desplazatuz, edota nahasketa pasatuz bolumen desberdina duen beste ontzi P=n/V x R x T a) Presioa HANDIAGOTZEN BADA sistema gasen molen kopurua gutxitzen deneko noranzkoan desplazatuko da.(molekula gutxiago dagoen noranzkoan) batera). b) Presioa TXIKIAGOTZEN BADA sistema gasen molen kopurua handiagotzen deneko noranzkoan desplazatuko da (molekula gehiago dagoen noranzkoan). Ekuazioaren bi ataletan n=0 bada bolumenaren aldaketek ez dute eragiten orekan. Qc = [NH 3 ] 2 / [ N 2 ] [H 2 ] 3 = (n/v) 2 NH3/ (n/v) N2 (n/v) 3 H2 = =n 2 NH3 /n N2 n 3 H2 x V 2 Presioa HANDITZEN bada V gutxitu egiten du eta Qc<Kc ; Qc=Kc lortzeko Qc handitu behar da beraz sistema desplazatuko da (mol gutxiago dagoen lekura 2 mol) Presioa TXIKITZEN bada V handitu egiten du eta Qc>Kc ; Qc=Kc lortzeko Qc txikitu behar da beraz sistema desplazatuko da.(mol gehiago dagoen lekura 3+1=4 mol) Gas geldoa gehitzen badugu, sistemaren presioa handitzen da, baina ez da bere bolumena aldatzen, ezta kontzentrazioak ere. Ez da oreka aldatzen TENPERATURA ALDAKETAK Aurrean aipatu den bezala tenperaturaren aldaketak oreka konstantearen balioa aldatzea suposatzen du. Hala ere egoeraren azterketa kualitatiboa egin dezakegu: Sistema baten TENPERATURA IGOTZEN badugu, sistema igoera konpentsatzeko, erreakzio endotermikoa den noranzkoan desplazatzen da. Horrela, bero-kantitate bat kontsumitzen da eta tenperatura jaisten da. Sistema baten TENPERATURA JAISTEN badugu, sistema igoera konpentsatzeko, erreakzio exotermiko den noranzkoan desplazatzen da. Horrela, bero-kantitate bat sortzen da eta tenperatura jaitsiera konpentsatzen da. 10

11 ADIBIDEZ: exotermikoa H=-96,2Kj (exotermikoa) endotermikoa T handitu oreka desplazatuko da endotermikoaren alderantz,beroa kontsumitzeko. T txikitu oreka desplazatuko da exotermikoaren alderantz, beroa osatzeko. 1.-KONTZENTRAZIOA LE CHATELIER LABURPENA Substantzia baten kontzentrazioa HANDIAGOTZEN BADA sistema substantzia hori kontsumitzeko noranzkoan desplazatuko da Substantzia baten kontzentrazioa TXIKIAGOTZEN BADA sistema substantzia hori ekoizteko noranzkoan desplazatuko da. 2.-PRESIOA Presioa HANDITZEN bada V gutxitu egiten da oreka desplazatzen da mol gutxiago dagoen lekura Presioa TXIKITZEN bada V handitu egiten da oreka desplazatzen da mol gehiago dagoen lekura Gas geldoa gehitzen badugu, sistemaren presioa handitzen da, baina ez da bere bolumena aldatzen, ezta kontzentrazioak ere. Ez da oreka aldatzen. Katalizatzaileek ez dute eragiten, bakarrik oreka azkarrago lortuko da. 3.-TENPERATURA Oreka konstantearen balioa aldatu egiten da,baina KUALITATIBOKI gertatuko dena: T handitu oreka desplazatuko da endotermikoaren alderantz. T txikitu oreka desplazatuko da exotermikoaren alderantz 11

12 Ariketa 0,25 litroko ontzi batean 2 mol N 2O 4 sartu dira eta 240ºC-ko tenperaturan, oreka lortu da: N 2O 4 (g) 2 NO 2 (g) Prozesua endotermikoa da. N 2O 4 (g)-aren disoziazio-gradua %55-koa da.: A. Esan zer eragina duen tenperatura handitzeak orekaren gainean B. Esan zer egin behar den presioarekin (handitu, txikitu) produktu gehiago lortzeko C. Esan zer eragina duen katalizatzailea gehitzeak Kc konstantean D. Esan zer eragina duen orekarengan produktua eliminatzea, ontzitik kenduz Lehen zutabean agertzen da nola apurtu den oreka: tenperatura handituz, presioa gutxituz, katalizatzailea gehituz (ez du eraginik) eta nitrogeno dioxidoaren mol-kopurua gutxituz. Bigarren zutabean agertzen dira sistemaren jokaera: beroa gutxitu (alde endotermikora joanez), gasen mol-kopurua handituz (nitrogeno dioxido gehiago sortuz), 6.-ENERGIA ASKEA eta OREKA KONSTANTEA K KALKULATZEKO Ln K= ΔG 0 /-RT K= e (ΔG 0 /-RT) R=8,31J/mol.K ΔG 0 0 =>K>1 oreka => produktuen eraketarantz desplazatuta izateko joera du ΔG 0 >0 =>K 1 oreka = erreaktiboen eraketarantz desplazatuta izateko joera du. 12

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma)

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Termodinamika Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Erreakzio kimikoetako transformazio energetikoak. Espontaneotasuna 1. Energia eta erreakzio kimikoa. Prozesu exotermikoak

Διαβάστε περισσότερα

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x

Διαβάστε περισσότερα

Solido zurruna 2: dinamika eta estatika

Solido zurruna 2: dinamika eta estatika Solido zurruna 2: dinamika eta estatika Gaien Aurkibidea 1 Solido zurrunaren dinamikaren ekuazioak 1 1.1 Masa-zentroarekiko ekuazioak.................... 3 2 Solido zurrunaren biraketaren dinamika 4 2.1

Διαβάστε περισσότερα

1. Oinarrizko kontzeptuak

1. Oinarrizko kontzeptuak 1. Oinarrizko kontzeptuak Sarrera Ingeniaritza Termikoa deritzen ikasketetan hasi berri den edozein ikaslerentzat, funtsezkoa suertatzen da lehenik eta behin, seguru aski sarritan entzun edota erabili

Διαβάστε περισσότερα

1 Aljebra trukakorraren oinarriak

1 Aljebra trukakorraren oinarriak 1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,

Διαβάστε περισσότερα

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA 1. JARDUERA. KORRONTE ELEKTRIKOA. 1 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA Material guztiak atomo deitzen diegun partikula oso ttipiez osatzen dira. Atomoen erdigunea positiboki kargatua egon ohi da eta tinkoa

Διαβάστε περισσότερα

4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK

4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK 4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK GAI HAU IKASTEAN GAITASUN HAUEK LORTU BEHARKO DITUZU:. Sistema ireki eta itxien artea bereiztea. 2. Masa balantze sinpleak egitea.. Taula estekiometrikoa

Διαβάστε περισσότερα

2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK

2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK 2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK 1. DISOLUZIOAK Disoluzioa (def): Substantzia baten partikulek beste substantzia baten barnean egiten duten tartekatze mekanikoa. Disolbatzaileaz eta solutuaz

Διαβάστε περισσότερα

Oxidazio-erredukzio erreakzioak

Oxidazio-erredukzio erreakzioak Oxidazio-erredukzio erreakzioak Lan hau Creative Commons-en Nazioarteko 3.0 lizentziaren mendeko Azterketa-Ez komertzial-partekatu lizentziaren mende dago. Lizentzia horren kopia ikusteko, sartu http://creativecommons.org/licenses/by-ncsa/3.0/es/

Διαβάστε περισσότερα

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK 1.-100 m 3 aire 33 Km/ordu-ko abiaduran mugitzen ari dira. Zenbateko energia zinetikoa dute? Datua: ρ airea = 1.225 Kg/m 3 2.-Zentral hidroelektriko batean ur Hm

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 95i 10 cm-ko aldea duen karratu baten lau erpinetako hirutan, 5 μc-eko karga bat dago. Kalkula itzazu: a) Eremuaren intentsitatea laugarren erpinean. 8,63.10

Διαβάστε περισσότερα

1. MATERIAREN PROPIETATE OROKORRAK

1. MATERIAREN PROPIETATE OROKORRAK http://thales.cica.es/rd/recursos/rd98/fisica/01/fisica-01.html 1. MATERIAREN PROPIETATE OROKORRAK 1.1. BOLUMENA Nazioarteko Sisteman bolumen unitatea metro kubikoa da (m 3 ). Hala ere, likido eta gasen

Διαβάστε περισσότερα

Jose Miguel Campillo Robles. Ur-erlojuak

Jose Miguel Campillo Robles. Ur-erlojuak HIDRODINAMIKA Hidrodinamikako zenbait kontzeptu garrantzitsu Fluidoen garraioa Fluxua 3 Lerroak eta hodiak Jarraitasunaren ekuazioa 3 Momentuaren ekuazioa 4 Bernouilli-ren ekuazioa 4 Dedukzioa 4 Aplikazioak

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,

Διαβάστε περισσότερα

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea. Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia

Διαβάστε περισσότερα

KIMIKA 2008 Ekaina. Behar den butano masa, kj (1 mol butano / 2876,3 kj) (58 g butano/1mol butano) = 193,86 g butano

KIMIKA 2008 Ekaina. Behar den butano masa, kj (1 mol butano / 2876,3 kj) (58 g butano/1mol butano) = 193,86 g butano KIMIKA 008 Ekaina A-1.- Formazio-enta pia estandar hauek emanda (kj/mol-etan): C (g) =-393,5 ; H 0 (l) = -85,4 ; C 4 H 10 (g) = -14,7 a) Datu hauek aipatzen dituzten erreakzioak idatzi eta azaldu. b) Kalkulatu

Διαβάστε περισσότερα

1 GEOMETRIA DESKRIBATZAILEA...

1 GEOMETRIA DESKRIBATZAILEA... Aurkibidea 1 GEOMETRIA DESKRIBATZAILEA... 1 1.1 Proiekzioa. Proiekzio motak... 3 1.2 Sistema diedrikoaren oinarriak... 5 1.3 Marrazketarako hitzarmenak. Notazioak... 10 1.4 Puntuaren, zuzenaren eta planoaren

Διαβάστε περισσότερα

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2 Fisika BATXILEGOA Irakaslearen gidaliburua Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena,

Διαβάστε περισσότερα

KIMIKA UZTAILA. Ebazpena

KIMIKA UZTAILA. Ebazpena KIMIKA 009- UZTAILA A1.- Hauspeatze-ontzi batean kobre (II) sulfatoaren ur-disoluzio urdin bat dugu, eta haren barruan zink-xafla bat sartzen dugu. Kontuan hartuta 5 C-an erredukzio-- potentzialak E O

Διαβάστε περισσότερα

ALKENOAK (I) EGITURA ETA SINTESIA

ALKENOAK (I) EGITURA ETA SINTESIA ALKENOAK (I) EGITURA ETA SINTESIA SARRERA Karbono-karbono lotura bikoitza agertzen duten konposatuak dira alkenoak. Olefina ere deitzen zaiete, izen hori olefiant-ik dator eta olioa ekoizten duen gasa

Διαβάστε περισσότερα

6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana

6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana 6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana GAITASUNAK Gai hau bukatzerako ikaslea gai izango da: - Batezbestekoaren estimazioa biztanlerian kalkulatzeko. - Proba parametrikoak

Διαβάστε περισσότερα

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia 1. MAKROEKONOMIA: KONTZEPTUAK ETA TRESNAK. 1.1. Sarrera Lehenengo atal honetan, geroago erabili behar ditugun oinarrizko kontzeptu batzuk gainbegiratuko ditugu, gauzak nola eta zergatik egiten ditugun

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren

Διαβάστε περισσότερα

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 1. AKTIBITATEA Lan Proposamena ARAZOA Zurezko oinarri baten gainean joko elektriko bat eraiki. Modu honetan jokoan asmatzen dugunean eta ukitzen dugunean

Διαβάστε περισσότερα

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu)

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu) UNIBERTSITATERA SARTZEKO HAUTAPROBAK 2004ko EKAINA ELEKTROTEKNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 2004 ELECTROTECNIA 1-A eta 1-8 ariketen artean bat aukeratu (2.5 1-A ARIKETA Zirkuitu elektriko

Διαβάστε περισσότερα

Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du.

Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du. Korronte zuzena 1 1.1. ZIRKUITU ELEKTRIKOA Instalazio elektrikoetan, elektroiak sorgailuaren borne batetik irten eta beste bornera joaten dira. Beraz, elektroiek desplazatzeko egiten duten bidea da zirkuitu

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: OPTIKA

SELEKTIBITATEKO ARIKETAK: OPTIKA SELEKTIBITATEKO ARIKETAK: OPTIKA TEORIA 1. (2012/2013) Argiaren errefrakzioa. Guztizko islapena. Zuntz optikoak. Azaldu errefrakzioaren fenomenoa, eta bere legeak eman. Guztizko islapen a azaldu eta definitu

Διαβάστε περισσότερα

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 AURKIBIDEA Or. I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 1.1. MAGNITUDEAK... 7 1.1.1. Karga elektrikoa (Q)... 7 1.1.2. Intentsitatea (I)... 7 1.1.3. Tentsioa ()... 8 1.1.4. Erresistentzia elektrikoa

Διαβάστε περισσότερα

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK Zenbaki errealak ZENBAKI ERREALAK ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK ZENBAKI IRRAZIONALAK HURBILKETAK LABURTZEA BIRIBILTZEA GEHIAGOZ ERROREAK HURBILKETETAN Lagun ezezaguna Mezua premiazkoa zirudien

Διαβάστε περισσότερα

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a 1. Partziala 2009.eko urtarrilaren 29a ATAL TEORIKOA: Azterketaren atal honek bost puntu balio du totalean. Hiru ariketak berdin balio dute. IRAUPENA: 75 MINUTU. EZ IDATZI ARIKETA BIREN ERANTZUNAK ORRI

Διαβάστε περισσότερα

Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9

Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9 Magnetismoa manak eta imanen teoriak... 2 manaren definizioa:... 2 manen arteko interakzioak (elkarrekintzak)... 4 manen teoria molekularra... 4 man artifizialak... 6 Material ferromagnetikoak, paramagnetikoak

Διαβάστε περισσότερα

0.Gaia: Fisikarako sarrera. ARIKETAK

0.Gaia: Fisikarako sarrera. ARIKETAK 1. Zein da A gorputzaren gainean egin behar dugun indarraren balioa pausagunean dagoen B-gorputza eskuinalderantz 2 m desplazatzeko 4 s-tan. Kalkula itzazu 1 eta 2 soken tentsioak. (Iturria: IES Nicolas

Διαβάστε περισσότερα

Mikroekonomia I. Gelan lantzeko ikasmaterialak.

Mikroekonomia I. Gelan lantzeko ikasmaterialak. Mikroekonomia I. Gelan lantzeko ikasmaterialak. Egilea(k) Andoni Maiza Larrarte* * Eduki gehienak Zurbanok (1989), eta Ansa, Castrillón eta Francok (2011) prestatutako ikasmaterialetatik hartu dira. Egileak

Διαβάστε περισσότερα

Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula

Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula Fisika BATXILERGOA 2 Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena, legeak aurrez ikusitako

Διαβάστε περισσότερα

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin:

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1 Tentsio gorakada edo pikoa errele batean: Ikertu behar dugu

Διαβάστε περισσότερα

9. GAIA: ZELULAREN KITZIKAKORTASUNA

9. GAIA: ZELULAREN KITZIKAKORTASUNA 9. GAIA: ZELULAREN KITZIKAKORTASUNA OHARRA: Zelula kitzikatzea zelula horretan, kinada egokiaren bidez, ekintza-potentziala sortaraztea da. Beraz, zelula kitzikatua egongo da ekintza-potentziala gertatzen

Διαβάστε περισσότερα

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK GORAKORTASUNA ETA BEHERAKORTASUNA MAIMOAK ETA MINIMOAK

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA

FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA FISIKA ZINEMATIKA KONTZEPTUAK: 1. Marraz itzazu txakurraren x/t eta v/t grafikoak, txakurrraren higidura ondoko taulan ageri diren araberako higidura zuzena dela

Διαβάστε περισσότερα

1. GAIA PNEUMATIKA. Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da.

1. GAIA PNEUMATIKA. Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da. 1. GAIA PNEUMATIKA Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da. Pneumatika hitza grekoek arnasa eta haizea izendatzeko erabiltzen zuten. Pneumatikaz

Διαβάστε περισσότερα

Ordenadore bidezko irudigintza

Ordenadore bidezko irudigintza Ordenadore bidezko irudigintza Joseba Makazaga 1 Donostiako Informatika Fakultateko irakaslea Konputazio Zientziak eta Adimen Artifiziala Saileko kidea Asier Lasa 2 Donostiako Informatika Fakultateko ikaslea

Διαβάστε περισσότερα

BIZIDUNEN OSAERA ETA EGITURA

BIZIDUNEN OSAERA ETA EGITURA BIZIDUNEN OSAERA ETA EGITURA 1 1.1. EREDU ATOMIKO KLASIKOAK 1.2. SISTEMA PERIODIKOA 1.3. LOTURA KIMIKOA 1.3.1. LOTURA IONIKOA 1.3.2. LOTURA KOBALENTEA 1.4. LOTUREN POLARITATEA 1.5. MOLEKULEN ARTEKO INDARRAK

Διαβάστε περισσότερα

5. GAIA Mekanismoen Analisi Dinamikoa

5. GAIA Mekanismoen Analisi Dinamikoa HELBURUAK: HELBURUAK: sistema sistema mekaniko mekaniko baten baten oreka-ekuazioen oreka-ekuazioen ekuazioen planteamenduei planteamenduei buruzko buruzko ezagutzak ezagutzak errepasatu errepasatu eta

Διαβάστε περισσότερα

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa.

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa. Atomoa 1 1.1. MATERIAREN EGITURA Elektrizitatea eta elektronika ulertzeko gorputzen egitura ezagutu behar da; hau da, gorputz bakun guztiak hainbat partikula txikik osatzen dituztela kontuan hartu behar

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa Analisia eta Kontrola Materialak eta entsegu fisikoak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): HOSTEINS UNZUETA, Ana Zuzenketak:

Διαβάστε περισσότερα

6. Errodamenduak 1.1. DESKRIBAPENA ETA SAILKAPENAK

6. Errodamenduak 1.1. DESKRIBAPENA ETA SAILKAPENAK 2005 V. IOL 6. Errodamenduak 1.1. ESKRIPEN ET SILKPENK Errodamenduak biziki ikertu eta garatu ziren autoak, abiadura handiko motorrak eta produkzio automatikorako makineria agertu zirenean. Horren ondorioz,

Διαβάστε περισσότερα

LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz.

LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. - 1-1. JARDUERA. LAN PROPOSAMENA. 1 LAN PROPOSAMENA Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. BALDINTZAK 1.- Bai memoria (txostena),

Διαβάστε περισσότερα

FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia)

FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia) FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia) 1.- Proiektuaren zergatia eta ezaugarri orokorrak Indarrean dagoen curriculumean zehazturiko Batxilergoko zientzietako jakintzagaiei dagozkien lanmaterialak

Διαβάστε περισσότερα

Oinarrizko mekanika:

Oinarrizko mekanika: OINARRIZKO MEKANIKA 5.fh11 /5/08 09:36 P gina C M Y CM MY CY CMY K 5 Lanbide Heziketarako Materialak Oinarrizko mekanika: mugimenduen transmisioa, makina arruntak eta mekanismoak Gloria Agirrebeitia Orue

Διαβάστε περισσότερα

EIB sistemaren oinarriak 1

EIB sistemaren oinarriak 1 EIB sistemaren oinarriak 1 1.1. Sarrera 1.2. Ezaugarri orokorrak 1.3. Transmisio teknologia 1.4. Elikatze-sistema 1.5. Datuen eta elikatzearen arteko isolamendua 5 Instalazio automatizatuak: EIB bus-sistema

Διαβάστε περισσότερα

MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):...

MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):... Makina Elektrikoak MAKINA ELEKTRIKOAK... 3 Motak:... 3 Henry-Faradayren legea... 3 ALTERNADOREA:... 6 DINAMOA:... 7 Ariketak generadoreak (2010eko selektibitatekoa):... 8 TRANSFORMADOREAK:... 9 Ikurrak...

Διαβάστε περισσότερα

Dokumentua I. 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago:

Dokumentua I. 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago: Dokumentua I Iruzkin orokorrak 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago: 1. BOE. 1467/2007ko azaroaren 2ko Errege Dekretua. (Batxilergoaren

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa ELEKTROTEKNIA Makina elektriko estatikoak eta birakariak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak LANBIDE HEZIKETAKO ZUZENDARITZA DIRECCION DE FORMACION

Διαβάστε περισσότερα

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA Datu orokorrak: Elektroiaren masa: 9,10 10-31 Kg, Protoiaren masa: 1,67 x 10-27 Kg Elektroiaren karga e = - 1,60 x 10-19 C µ ο = 4π 10-7 T m/ampere edo 4π

Διαβάστε περισσότερα

ARIKETAK (1) : KONPOSATU ORGANIKOEN EGITURA KIMIKOA [1 3. IKASGAIAK]

ARIKETAK (1) : KONPOSATU ORGANIKOEN EGITURA KIMIKOA [1 3. IKASGAIAK] 1. Partzialeko ariketak 1 ARIKETAK (1) : KNPSATU RGANIKEN EGITURA KIMIKA [1 3. IKASGAIAK] 1.- ndorengo konposatuak kontutan hartuta, adierazi: Markatutako atomoen hibridazioa. Zein lotura diren kobalenteak,

Διαβάστε περισσότερα

ENERGIA ARIKETAK Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z= ,47 J.

ENERGIA ARIKETAK Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z= ,47 J. ENERGIA ARIKETAK OINARRIZKO KONTZEPTUAK 1.- 1000 Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z=385.802,47 J.) 2.- 500Kg.tako eta 10m-tara zintzilik dagoen masa

Διαβάστε περισσότερα

Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua.

Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua. Elektronika Analogikoa 1 ELEKTRONIKA- -LABORATEGIKO TRESNERIA SARRERA Elektronikako laborategian neurketa, baieztapen eta proba ugari eta desberdinak egin behar izaten dira, diseinatu eta muntatu diren

Διαβάστε περισσότερα

Lan honen bibliografia-erregistroa Eusko Jaurlaritzako Liburutegi Nagusiaren katalogoan aurki daiteke: http://www.euskadi.net/ejgvbiblioteka ARGITARATUTAKO IZENBURUAK 1. Prototipo elektronikoen garapena

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa PROGRAMAZIO-TEKNIKAK Programazio-teknikak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak LANBIDE HEZIKETAKO ZUZENDARITZA DIRECCION DE FORMACION PROFESIONAL Hizkuntz

Διαβάστε περισσότερα

NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ

NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ 2006-VI-19 J.R. Etxebarria Gure inguruko hizkuntzetan, neurri-izenen eta neurri-esamoldeen normalizazioa XIX. mendearen bigarren erdialdean abiatu zela esan

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4 DBH Lana eta energia

FISIKA ETA KIMIKA 4 DBH Lana eta energia 5 HASTEKO ESKEMA INTERNET Edukien eskema Energia Energia motak Energiaren propietateak Energia iturriak Energia iturrien sailkapena Erregai fosilen ustiapena Energia nuklearraren ustiapena Lana Zer da

Διαβάστε περισσότερα

BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1)

BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1) BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1) Altitudea 600 km 80 km 50 km 12 km -100 C -50 C 0 C 50 C 100 C NOLAKOA DA LIBURU HAU? Unitateen egitura Unitatearen hasiera 3 Elikadura Elikadura osasuntsua

Διαβάστε περισσότερα

4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA. 20 urte euskal hezkuntza ospatuz

4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA. 20 urte euskal hezkuntza ospatuz 4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA hh hik hasi 193 20 urte euskal hezkuntza ospatuz REGGIO EMILIAKO ESPERIENTZIA JESUS MARI MUJIKA LOMCE-RI EZ ANTZERKHIZKUNTZA PROIEKTUA HIK HASI OSPAKIZUNETAN

Διαβάστε περισσότερα

Makroekonomiarako sarrera

Makroekonomiarako sarrera Makroekonomiarako sarrera Galder Guenaga Garai Segundo Vicente Ramos EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA Aurkibidea Hitzaurrea. 1. GAIA: Makroekonomiaren ikuspegi orokorra. 1.1. Makroekonomia:

Διαβάστε περισσότερα

Giza eta Gizarte Zientziak Matematika I

Giza eta Gizarte Zientziak Matematika I Gia eta Giarte Zietiak Matematika I. eta. ebaluaioak Zue erreala Segida errealak Ekuaio espoetialak Logaritmoak Ekuaio lieale sistemak ESTATISTIKA Aldagai diskretuak eta jarraiak Parametro estatistikoak

Διαβάστε περισσότερα

KOSMOLOGIAREN HISTORIA

KOSMOLOGIAREN HISTORIA KOSMOLOGIAREN HISTORIA Historian zehar teoria asko garatu dira unibertsoa azaltzeko. Kultura bakoitzak bere eredua garatu du, unibertsoaren hasiera eta egitura azaltzeko. Teoria hauek zientziaren aurrerapenekin

Διαβάστε περισσότερα

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA eman ta zabal zazu Euskal Herriko Unibertsitatea Informatika Fakultatea Konputagailuen Arkitektura eta Teknologia saila KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA KTL'2000-2001 Oinarrizko dokumentazioa lehenengo

Διαβάστε περισσότερα

Laborategiko materiala

Laborategiko materiala Laborategiko materiala Zirkuitu elektronikoak muntatzeko, bikote bakoitzaren laborategiko postuan edo mahaian, besteak beste honako osagai hauek aurkituko ditugu: Mahaiak berak dituen osagaiak: - Etengailu

Διαβάστε περισσότερα

IRAKASKUNTZA GIDA: MATEMATIKARAKO SARRERA

IRAKASKUNTZA GIDA: MATEMATIKARAKO SARRERA IRAKASKUNTZA GIDA: MATEMATIKARAKO SARRERA 1. HELBURUAK Kurtso honetarako prestatu den materialarekin, irakurlearentzat ohikoak diren matematikako sinboloak, notazioak, lengoaia matematikoa eta aritmetikako

Διαβάστε περισσότερα

ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak

ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak ELEKTRIZITATEA D.B.H. 1 Joseba Arruabarrena 2007ko Otsaila ren atalak: 1. Karga elektrikoa 2. Korronte elektrikoa 3. Zirkuitu elektrikoa 4. Magnitudeak: : Ohmen legea 5. Irudikapena eta ikurrak 6. Korronte

Διαβάστε περισσότερα

6. GAIA: Txapa konformazioa

6. GAIA: Txapa konformazioa II MODULUA: METALEN KONFORMAZIO PLASTIKOA 6. GAIA: Txapa konformazioa TEKNOLOGIA MEKANIKOA INGENIARITZA MEKANIKO SAILA Universidad del País s Vasco Euskal Herriko Unibertsitatea 6. Gaia: Txapa konformazioa

Διαβάστε περισσότερα

KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ

KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ eman ta zabal zazu Universidad del País Vasco Euskal Herriko Unibertsitatea BILBOKO INGENIARIEN GOI ESKOLA TEKNIKOA KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ I EGILEA: Jesus-Mari Romo Uriarte (hirugarren

Διαβάστε περισσότερα

MARRAZKETA TEKNIKOA. Batxilergoa 1. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein

MARRAZKETA TEKNIKOA. Batxilergoa 1. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein MRRZKET TEKNIKO atxilegoa 1 Rafael Ciiza Robeto Galaaga Mª ngeles Gacía José ntonio Oiozabala eein Eusko Jaulaitzako Hezkuntza, Unibetsitate eta Ikeketa sailak onetsia (2003-09-25) zalaen diseinua: Itui

Διαβάστε περισσότερα

Ezaugarriak: Gaitasunak: Ikasgaia: KIMIKA ORGANIKOAREN OINARRIAK,

Ezaugarriak: Gaitasunak: Ikasgaia: KIMIKA ORGANIKOAREN OINARRIAK, Ikasgaia: KIMIKA GANIKAEN INAIAK, Urte Akademikoa: 2008-09 Titulazioa: Licenciatura en Química, Ingeniero Químico. Irakaslea: Jose Luis Vicario, (Kimika rganikoa II Saila) Ezaugarriak: Ikasgai honetan

Διαβάστε περισσότερα

Teknologia Elektrikoa I Laborategiko Praktikak ISBN:

Teknologia Elektrikoa I Laborategiko Praktikak ISBN: Teknologia Elektrikoa I Laborategiko Praktikak ISBN: 978-84-9860-669-0 Agurtzane Etxegarai Madina Zigor Larrabe Uribe EUSKARA ETA ELEANIZTASUNEKO ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko

Διαβάστε περισσότερα

ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA

ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA Informatika Fakultatea / Facultad de Informática ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA Ikaslea: Hurko Mendiguren Quevedo Zuzendaria: Txelo Ruiz Vázquez Karrera Amaierako Proiektua, 2013-ekaina

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΧλΘ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 8 Απριλίου

Διαβάστε περισσότερα

Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ. 2NH + 3Cl N + 6HCl. 3 (g) 2 (g) 2 (g) (g) 2A + B Γ + 3. (g) (g) (g) (g) ποια από τις παρακάτω εκφράσεις είναι λανθασµένη;

Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ. 2NH + 3Cl N + 6HCl. 3 (g) 2 (g) 2 (g) (g) 2A + B Γ + 3. (g) (g) (g) (g) ποια από τις παρακάτω εκφράσεις είναι λανθασµένη; Επαναληπτικά Θέµατα ΟΕΦΕ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ ο ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις..4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Giza eta Gizarte Zientziak Matematika II

Giza eta Gizarte Zientziak Matematika II Giza eta Gizarte Zietziak Matematika II 3. ebaluazioa Probabilitatea Baaketa Normala eta Biomiala Lagi estatistikoak Iferetzia estatistikoa Hipotesiak Igacio Zuloaga B.H.I. (Eibar) 1 PROBABILITATEA Igazio

Διαβάστε περισσότερα

Oscar Wilde. De profundis

Oscar Wilde. De profundis Oscar Wilde De profundis Izenburua: De profundis Egilea: Oscar Wilde Itzulpena: Aitor Arana Argitaratzea: Txalaparta argitaletxea e.m. Nabaz-Bides karrika, 1-2 78. posta-kutxa 31300 Tafalla NAFARROA Tel.

Διαβάστε περισσότερα

Enbriologia Orokorra eta Bereziko buruxka

Enbriologia Orokorra eta Bereziko buruxka Enbriologia Orokorra eta Bereziko buruxka Medikuntzako Ikasleen Elkartea Irakasgaieko irakaslea: Amale Caballero Lasquibar Ikasle-egilea: Adrian H. Llorente Aginagalde Oharra Apunte buruxka hau AEM/MIB

Διαβάστε περισσότερα

ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK

ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK Ikasmaterialen Aholku Batzordea Estilo-liburuaren seigarren atala 22 Euskara Zerbitzua Hizkuntza Prestakuntza ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO

Διαβάστε περισσότερα

ÖñïíôéóôÞñéï Ì.Å ÅÐÉËÏÃÇ ÊÁËÁÌÁÔÁ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1

ÖñïíôéóôÞñéï Ì.Å ÅÐÉËÏÃÇ ÊÁËÁÌÁÔÁ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 ΘΕΜΑ 1 Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΧΗΜΕΙΑ Για τις ερωτήσεις 1.1 1. να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

2 Lanaren etekinak. Gipuzkoako Foru Aldundia

2 Lanaren etekinak. Gipuzkoako Foru Aldundia 2 Lanaren etekinak 2.1 Zer dira lanaren etekinak? 2.1.1 Zein prestazio sartzen dira lan etekinen barruan? 2.2 Joan-etorriko dietak eta bidai gastuak lan etekinak al dira? 2.2.1 Arau orokorrak 2.2.2 Arau

Διαβάστε περισσότερα

Ekonomiarako Sarrera II: Makroekonomiaren Oinarriak Ariketa ebatziak

Ekonomiarako Sarrera II: Makroekonomiaren Oinarriak Ariketa ebatziak Ekonomiarako Sarrera II: Makroekonomiaren Oinarriak Ariketa ebatziak Andoni Maiza Larrarte 1 Cip. Unibertsitateko Biblioteka Maiza Larrarte, José Antonio Ekonomiarako sarrera II [Recurso electrónico]:

Διαβάστε περισσότερα

KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik:

KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik: KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik: BBVA Fundazioa Bilbao Bizkaia Kutxa BBK Gipuzkoa Donostia Kutxa

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ÎÕÓÔÑÁ. . γ) Μετατόπιση δεξιά, συνολικά µείωση της ποσότητας του Cl. . στ) Καµία µεταβολή.

ΑΠΑΝΤΗΣΕΙΣ ÎÕÓÔÑÁ. . γ) Μετατόπιση δεξιά, συνολικά µείωση της ποσότητας του Cl. . στ) Καµία µεταβολή. Επαναληπτικά Θέµατα ΟΕΦΕ 0 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ α γ γ 4 β 5 α) Σ β) Λ γ) Σ δ) Λ ε) Λ ΘΕΜΑ ο α) Μετατόπιση αριστερά, µείωση της ποσότητας του Cl β) Μετατόπιση δεξιά, αύξηση

Διαβάστε περισσότερα

PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA. II. Itemen adibideak irakasleak erabiltzeko. 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua

PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA. II. Itemen adibideak irakasleak erabiltzeko. 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua 2009 PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA II. Itemen adibideak irakasleak erabiltzeko 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua w w www.pisa.oecd.org ISEI-IVEIk argitaratuta: Irakas-Sistema

Διαβάστε περισσότερα

XX. mendeko olerkari greziarrak

XX. mendeko olerkari greziarrak XX. mendeko olerkari greziarrak R Ko l d o Ru i z d e Az u a Matónoo aditzak odolustu esan nahi du grekoz. Odolustu egin zen Grezia ia bi mendez. Lehenik, mende bat baino gehiago iraun zuen independentzia

Διαβάστε περισσότερα

Χηµεία Θετικής Κατεύθυνσης Β Λυκείου 2001

Χηµεία Θετικής Κατεύθυνσης Β Λυκείου 2001 Χηµεία Θετικής Κατεύθυνσης Β Λυκείου 001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1 ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

DIABETEAREN DIETOTERAPIA

DIABETEAREN DIETOTERAPIA DIABETEAREN DIETOTERAPIA DIABETEAREN DIETOTERAPIA DEFINIZIOA ETA DIAGNOSTIKOA SAILKAPENA ETA ETIOLOGIA SEINALE KLINIKOAK ETA FISIOPATOLOGIA TRATAMENDUA DEFINIZIOA ETA DIAGNOSTIKOA Diabetes mellitus izena

Διαβάστε περισσότερα

INGURUGIRO TEKNOLOGIA. Luis M. Camarero Estela M. Arritokieta Ortuzar Iragorri Natalia Villota Salazar

INGURUGIRO TEKNOLOGIA. Luis M. Camarero Estela M. Arritokieta Ortuzar Iragorri Natalia Villota Salazar INGURUGIRO TEKNOLOGIA Luis M. Camarero Estela M. Arritokieta Ortuzar Iragorri Natalia Villota Salazar OCW 2013 6. ISURI GASEOSOEN TRATAMENDUA II: PARTIKULA ELIMINAZIOA GARBITZAILE ETA JAULKITZAILE ELEKTROSTATIKOEN

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ. 3. Σε κλειστό δοχείο εισάγεται μείγμα των αερίων σωμάτων Α και Β, τα οποία αντιδρούν στους θ 0 C

ΚΕΦΑΛΑΙΟ 4ο ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ. 3. Σε κλειστό δοχείο εισάγεται μείγμα των αερίων σωμάτων Α και Β, τα οποία αντιδρούν στους θ 0 C ΚΕΦΑΛΑΙΟ 4ο ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ 4.1. Ερωτήσεις πολλαπλής επιλογής 1. Μία χημική αντίδραση είναι μονόδρομη όταν: α. πραγματοποιείται μόνο σε ορισμένες συνθήκες β. πραγματοποιείται μόνο στο εργαστήριο γ. μετά

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 3 Απριλίου 04 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Ε_3.ΧλΘ(α) Α. γ Α. γ Α3. δ Α4. β Α5. α) Πρόκειται

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x 2 + 1 = 0 N = {1, 2, 3....}, Z Q a, b a, b N c, d c, d N a + b = c, a b = d. a a N 1 a = a 1 = a. < > P n P (n) P (1) n = 1 P (n) P (n + 1) n n + 1 P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + 1)

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα 1: Α. Να επιλέξετε τη σωστή απάντηση σε κάθε µια από τις επόµενες ερωτήσεις: 1) Η τάση ατµών ενός υγρού εξαρτάται από : α. Τη φύση του υγρού και τη θερµοκρασία

Διαβάστε περισσότερα

Οδηγίες χρήσης του προσοµοιωτή emu8086 (Για τους φοιτητές του εργαστηρίου της Αρχιτεκτονικής Υπολογιστών).

Οδηγίες χρήσης του προσοµοιωτή emu8086 (Για τους φοιτητές του εργαστηρίου της Αρχιτεκτονικής Υπολογιστών). Οδηγίες χρήσης του προσοµοιωτή emu8086 (Για τους φοιτητές του εργαστηρίου της Αρχιτεκτονικής Υπολογιστών). Αστέριος Τούτιος, Νοέµβριος 2004 Ξεκινώντας το πρόγραµµα-προσοµοιωτή emu8086 βλέπουµε την οθόνη:

Διαβάστε περισσότερα

Χηµική κινητική - Ταχύτητα αντίδρασης. 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας

Χηµική κινητική - Ταχύτητα αντίδρασης. 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας 5 ο Μάθηµα: Χηµική κινητική - Ταχύτητα αντίδρασης 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας 95 5 o Χηµική κινητική Ταχύτητα αντίδρασης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Χηµική κινητική: Χηµική κινητική

Διαβάστε περισσότερα

Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ)

Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ) Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ) Διαλύματα Εκφράσεις περιεκτικότητας α λ% w/v: Σε 100 ml Διαλύματος περιέχονται λ g διαλυμένης ουσίας β λ% w/w: Σε 100 g Διαλύματος περιέχονται λ g διαλυμένης ουσίας

Διαβάστε περισσότερα

Για τις παρακάτω προτάσεις 1.1 και µέχρι 1.3 να σηµειώσετε ποιες είναι οι σωστές.

Για τις παρακάτω προτάσεις 1.1 και µέχρι 1.3 να σηµειώσετε ποιες είναι οι σωστές. Θέµα ο Για τις παρακάτω προτάσεις και µέχρι να σηµειώσετε ποιες είναι οι σωστές Η ισχύς του δεσµού Η : Α Βρίσκεται µεταξύ της ισχύος του δεσµού διπόλου-διπόλου και του δεσµού ιόντος-διπόλου Β είναι µεγαλύτερη

Διαβάστε περισσότερα