Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο."

Transcript

1 Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ας μελετήσουμε τι συμβαίνει, όταν ένα υγρό περιέχεται σε ένα ακίνητο δοχείο. Τι δυνάμεις ασκεί στο δοχείο; Τι σχέση έχουν αυτές με το βάρος του υγρού; Εφαρμογή η : Ένα κυλινδρικό δοχείο περιέχει υγρό μέχρι ύψος. i) Πόση δύναμη ασκεί το υγρό στην βάση του δοχείου, εμβαδού Α; ii) Πόση δύναμη ασκεί το υγρό στην παράπλευρη επιφάνεια του δοχείου; Η ατμοσφαιρική πίεση να μην ληφθεί υπόψη. πολλά «τέτοια στεφάνια» (πείτε αν προτιμάτε ότι έχουμε κόψει τον κύλινδρο σε πολλές φέτες, παίρνο Απάντηση: i) Η πίεση στον πυθμένα του δοχείου είναι ίση: p ρg Οπότε το υγρό ασκεί στον πυθμένα κατακόρυφη δύναμη με φορά προς τα κάτω, μέτρου: F p A ρg A ρgv Ίση δηλαδή με το βάρος του υγρού που περιέχεται στο δοχείο. Στην πραγματικότητα η βάση δέχεται σε κάθε σημείο της πιεστικές δυνάμεις, μέτρου df=p dα η συνισταμένη των οποίων έχει το μέτρο που υπολογίσαμε παραπάνω και λόγω συμμετρίας, ο φορέας της περνά από το κέντρο της βάσης. w F df ii) Ας πάρουμε μια κυκλική περιοχή της παράπλευρης επιφάνειας, η οποία σχηματίζει μια στεφάνη σε βάθος, ύψους d όπως στο σχήμα. Στο παρακάτω σχήμα η στεφάνη σε κάτοψη. Αν πάρουμε ένα στοιχειώδες τόξο ds της στεφάνης, τότε στο στοιχειώδες εμβαδόν dα, θα ασκηθεί από το υγρό μια οριζόντια δύναμη df, μέτρου: d df =p dα =ρg d ds. Αλλά όμως υπάρχει και το συμμετρικό τόξο όπου σε αντίστοιχη επιφάνεια εμβαδού dα =dα θα ασκείται η δύναμη df, του ίδιου μέτρου και αντίθετης φοράς, οπότε η συνισταμένη των δύο αυτών δυνάμεων, είναι μηδενική. Χωρίζοντας λοιπόν τη στεφάνη αυτή σε πολλά αντίστοιχα τόξα d s, ds θα υπάρχουν πάντα αντίστοιχα συμμετρικά τόξα, για τα οποία ΣdF=, οπότε και συνολικά η δύναμη στη στεφάνη από το υγρό, θα είναι μηδενική. Αλλά επειδή η συνολική παράπλευρη επιφάνεια, δεν είναι τίποτα άλλο από da d df F da

2 ντας πολλούς κυλίνδρους μικρού ύψους ) και η συνολική δύναμη σε όλη την παράπλευρη επιφάνεια θα είναι μηδενική. Εφαρμογή η : Ένα δοχείο σχήματος ορθογωνίου παραλληλεπιπέδου με βάση τετράγωνο ακμής α, περιέχει υγρό μέχρι ύψος. Να υπολογιστεί η δύναμη που ασκεί το υγρό στη δεξιά κατακόρυφη πλευρά του δοχείου, λόγω υδροστατικής πίεσης. Απάντηση: Προφανώς η ασκούμενη δύναμη, κάθετη στην επιφάνεια, θα είναι οριζόντια. Η δύναμη F διέρχεται από κάποιο σημείο Μ, όπως στο σχήμα. Για να την υπολογίσουμε, δεν έχουμε παρά να χωρίσουμε την παράπλευρη έδρα, σε λε- F F πτές οριζόντιες λωρίδες πλάτους d. Έστω μια τέτοια λωρίδα σε βάθος (το =, είναι στην επιφάνεια του υγρού). Η α- σκούμενη δύναμη στην λωρίδα αυτή, θα είναι κάθετη και θα περνάει από το μέσον της, έχοντας μέτρο df g( ad ) g z( ad ) όπου z η απόστασή της από d το γεωμετρικό κέντρο Κ του ορθογωνίου, με μπλε χρώμα, που είναι το μέρος της πλαϊνής έδρας που έρχεται σε επαφή με το υγρό. Αλλά αν πάρουμε μια συμμετρική λωρίδα, σε απόσταση z κάτω από το κέντρο Κ, τότε θα δέχεται από το υγρό δύναμη df g( ad ) g z( ad ). Αλλά τότε η συνισταμένη τους θα έχει μέτρο: df, =df +df = g z( ad ) g z( ad ) df, =df +df = g ( ad ) g ( ad ) Δηλαδή η συνολική δύναμη, είναι ίδια, ωσάν και οι δύο λωρίδες βρισκόταν σε βάθος ίσο με ½. Αλλά τότε χωρίζοντας όλη την επιφάνεια σε λεπτές τέτοιες λωρίδες και προσθέτοντας τις αντίστοιχες δυνάμεις, θα έ- χουμε ότι η συνολική δύναμη που ασκεί το υγρό στην παράπλευρη έδρα, θα διέρχεται από κάποιο σημείο της κατακόρυφης ΒΓ, η οποία συνδέει τα μέσα των δύο απέναντι πλευρών του ορθογωνίου και θα έχει μέτρο: F g A ga Θα μπορούσαμε να δουλέψουμε με λίγα περισσότερα Μαθηματικά: B a K

3 Αν στην λωρίδα σε βάθος ασκείται δύναμη df g( ad ) τότε η συνολική δύναμη στην επιφάνεια θα είναι: F gad ga ga Παραπάνω είπαμε ότι η συνολική δύναμη περνά από κάποιο σημείο της ΒΓ. Αλλά ποιο είναι αυτό; Σε ποιο βάθος ; Αν εφαρμόσουμε το θεώρημα των ροπών (Η ροπή της δύναμης F ως προς ένα σημείο Β ισούται με το ά- θροισμα των ροπών των συνιστωσών της δύναμης ως προς το ίδιο σημείο), για τις συνιστώσες και τη συνισταμένη ως προς το σημείο Β, παίρνουμε: τ F/Β =τ F/Β + τ F/Β +. τ Fν/Β Ή αν επιστρέψουμε στο παραπάνω σχήμα και χρησιμοποιήσουμε τις λωρίδες πλάτους d σε βάθος, θα έχουμε: F df gad ga d ga F ga d ga Συμπέρασμα: ga g F g Στην κατακόρυφη παράπλευρη έδρα ενός δοχείου, ασκείται δύναμη, λόγω υδροστατικής πίεσης (αφήνουμε στην άκρη της συνεισφορά της ατμοσφαιρικής πίεσης, αφού αυτή υ- πάρχει και στην εξωτερική περιοχή της πλευράς) με μέτρο ίσο με το εμβαδόν της πλευράς επί την πίεση που υπάρχει σε βάθος ½, δηλαδή F=p Κ Α, ενώ ο φορέας της περνάει από M K F ένα σημείο Μ σε βάθος. Εφαρμογή η : Σε δοχείο όπως στο παρακάτω σχήμα, εμβαδού βάσης Α, όπου οι πλαϊνές πλευρές σχηματίζουν γωνία θ με την οριζόντια διεύθυνση, περιέχεται νερό, μέχρι ύψος. Να υπολογιστούν οι δυνάμεις που ασκεί το νερό:

4 i) Στη βάση του δοχείου. ii) στο δοχείο, αν οι δυο κεκλιμένες έδρες έχουν εμβαδά Α. Στις απαντήσεις να μην ληφθεί υπόψη η ατμοσφαιρική πίεση. Απάντηση. i) Στο διπλανό σχήμα έχουν σχεδιαστεί οι δυνάμεις που ασκεί το νερό, στη βάση, καθώς και στις δυο κεκλιμένες πλευρές. Για τη βάση έχουμε: F pa ga ii) Στις δύο κατακόρυφες παράπλευρες έδρες, αυτή προς τον αναγνώστη και η πίσω από τη σελίδα, οι ασκούμενες δυνάμεις είναι οριζόντιες και αντίθετες, οπότε η συνισταμένης τους είναι μηδενική. Απομένουν οι δύο κεκλιμένες έ- δρες. Λόγω συμμετρίας, οι δύο έδρες δέχονται δυνάμεις ίσου μέτρου F =F, όπου με βάση την προηγούμενη εφαρμογή έχουμε ότι: F F pk A g A F F F Αν αναλύσουμε τις δυνάμεις F και F σε μια οριζόντια και μια κατακόρυφη συνιστώσα, παίρνουμε: Fx F x Fx F F F F x F F F x F F F F F F F F F F F F ga ga ( ) () ( ) Τι ακριβώς μας δίνει το παραπάνω άθροισμα; A είναι ο όγκος () στο παραπάνω σχήμα, οπότε ga είναι το βάρος του νερού στον () όγκο. A είναι ο όγκος (), ίσος με τον όγκο (), οπότε ga είναι το βάρος του νερού, που περιέχεται στους όγκους () και (). Συνεπώς η συνισταμένη όλων των δυνάμεων, που ασκεί το νερό σε όλα τα τοιχώματα του δοχείου, είναι κατακόρυφη και με μέτρο ίσο με το βάρος του νερού. Προφανώς όμως η δύναμη που ασκεί το νερό στον πυθμένα, είναι μικρότερη από το βάρος του νερού! Αν πάρουμε το νερό, αυτό δέχεται δύο δυνάμεις. Το βάρος και η δύναμη f από το δοχείο. f w 4

5 Από την ισορροπία του έχουμε ότι ΣF= ή f=w. Αλλά τότε το νερό ασκεί στο δοχείο την αντίδραση της f, ας την ονομάσουμε f με μέτρο επίσης f =w. Εφαρμογή 4 η : Σε δοχείο όπως στο διπλανό σχήμα, εμβαδού βάσης Α, όπου οι πλαϊνές πλευρές σχηματίζουν γωνία θ με την οριζόντια διεύθυνση, περιέχεται νερό, μέχρι ύψος. Να υπολογιστούν οι δυνάμεις που ασκεί το νερό: i) Στη βάση του δοχείου. ii) στο δοχείο, αν οι δυο κεκλιμένες έδρες έχουν εμβαδά Α. Στις απαντήσεις να μην ληφθεί υπόψη η ατμοσφαιρική πίεση. Απάντηση. Στην εφαρμογή αυτή δεν σχεδιάστηκε τρισδιάστατο το δοχείο, αλλά αφού η κατάσταση είναι παρόμοια με την προηγούμενη, περιοριστήκαμε σε τομή του δοχείου. i) Στο διπλανό σχήμα έχουν σχεδιαστεί οι δυνάμεις που ασκεί το νερό, στη βάση, καθώς και στις δυο κεκλιμένες πλευρές. F F Για τη βάση έχουμε: F pa ga F ii) Και εδώ, στις δύο κατακόρυφες παράπλευρες έδρες, αυτή προς τον αναγνώστη και η πίσω από τη σελίδα, οι ασκούμενες δυνάμεις είναι οριζόντιες και αντίθετες, οπότε η συνισταμένης τους είναι μηδενική. Απομένουν οι δύο κεκλιμένες έδρες. Λόγω συμμετρίας, οι δύο έδρες δέχονται δυνάμεις ίσου μέτρου F =F, όπου με βάση την προηγούμενη εφαρμογή έχουμε ότι: F F pk A g A Αναλύοντας ξανά τις δυνάμεις F και F σε μια οριζόντια και μια κατακόρυφη συνιστώσα, παίρνουμε: Fx F x Fx F F F F x F F F F x F F F F F F F F F F F ga ga Τι ακριβώς μας δίνει το παραπάνω άθροισμα; A είναι ο όγκος του παραλληλεπιπέδου, η τομή του οποίου είναι το ορθογώνιο ΑΒΓΔ στο παραπάνω σχήμα, οπότε 5 A ( ) ( ) B

6 ga είναι το βάρος του νερού (αν υπήρχε) στον αντίστοιχο όγκο. A είναι ο όγκος (), ίσος με τον όγκο (), οπότε ga είναι το βάρος του νερού, που περιέχεται στους όγκους () και (). Αλλά τότε η παράσταση ga ga είναι ίση με το βάρος του νερού που περιέχεται πραγματικά στο δοχείο. Συνεπώς η συνισταμένη όλων των δυνάμεων, που ασκεί το νερό σε όλα τα τοιχώματα του δοχείου, είναι κατακόρυφη και με μέτρο ίσο με το βάρος του νερού. Προφανώς όμως η δύναμη που ασκεί το νερό στον πυθμένα, είναι τώρα μεγαλύτερη από το βάρος του νερού! Οι περιπτώσεις των εφαρμογών και 4 αναφέρονται συνήθως ως το υδροστατικό παράδοξο. Η παραπάνω ανάλυση, νομίζω ανέδειξε ότι δεν υπάρχει κάποιο «σοβαρό παράδοξο», αφού το νερό ασκεί στα τοιχώματα συνολικά δύναμη ίση με το βάρος. Το «παράδοξο εμφανίζεται» όταν ξεχάσουμε, κακώς, το δοχείο και α- σχολούμαστε με τη βάση του δοχείου! 6

Μερικές εισαγωγικές ερωτήσεις στα ρευστά.

Μερικές εισαγωγικές ερωτήσεις στα ρευστά. Μερικές εισαγωγικές ερωτήσεις στα ρευστά. Αρχίζοντας τη μελέτη των ρευστών, ας δούμε εισαγωγικά μερικές έννοιες. Ερώτηση 1 η : Όταν σε δοχείο περιέχεται ένα αέριο, τότε σε κάθε σημείο υπάρχει πίεση. Αν

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

Θ1.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν:

Θ1.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: 1. Υγρά σε ισορροπία ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Θ1.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: α. Η πίεση στο εσωτερικό ενός υγρού και στα.. του δοχείου που το περιέχει οφείλεται ή στο.. του υγρού ή σε

Διαβάστε περισσότερα

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΥΔΡΑΥΛΙΚΩΝ ΕΡΓΩΝ

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΥΔΡΑΥΛΙΚΩΝ ΕΡΓΩΝ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡ. ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΥΔΡΑΥΛΙΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ» ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΥΔΡΑΥΛΙΚΩΝ ΕΡΓΩΝ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 10 ΥΔΡΟΣΤΑΤΙΚΗ

Διαβάστε περισσότερα

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας 3.2.. 3.2.1. Ροπές και ισορροπία. Πάνω σε λείο οριζόντιο επίπεδο βρίσκεται μια ράβδος μήκους l=4m, η οποία μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος διέρχεται από το μέσον της Ο. Ασκούμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/02/7 ΕΠΙΜΕΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μηχανική Ρευστών Κεφάλαιο Λυμένα Προβλήματα Πρόβλημα Για το κλειστό δοχείο του παρακάτω σχήματος, όλα τα ρευστά είναι

Διαβάστε περισσότερα

Ενδεικτικό Φύλλο Εργασίας 1. Ορθογώνιο Παραλληλεπίπεδο - Κύβος

Ενδεικτικό Φύλλο Εργασίας 1. Ορθογώνιο Παραλληλεπίπεδο - Κύβος Διδακτική των Μαθηματικών με Τ.Π.Ε Σελίδα 1 από 6 Ενδεικτικό Φύλλο Εργασίας 1. Ορθογώνιο Παραλληλεπίπεδο - Κύβος Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:... Κάντε κλικ στο URL https://www.geogebra.org/m/msrbdbc5.

Διαβάστε περισσότερα

Συνισταμένη, κοίλη σφαίρα και μερικές άλλες εφαρμογές

Συνισταμένη, κοίλη σφαίρα και μερικές άλλες εφαρμογές Συνισταμένη, κοίλη σφαίρα και μερικές άλλες εφαρμογές Καλοκαιρινές. Ας ξεκινήσουµε µε ένα γνωστό παράδειγµα. Παράδειγµα 1 ο : Η λεπτή οµογενής ράβδος ΑΒ του διπλανού σχήµατος έχει βάρος =100Ν, µήκος l=4m

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος - Κύλιση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://phsicscourses.wordpress.com/ Θεωρία Υπάρχουν κάποιες περιπτώσεις μελέτης τις οποίες

Διαβάστε περισσότερα

Σύνθεση ανάλυση δυνάμεων

Σύνθεση ανάλυση δυνάμεων Σύνθεση ανάλυση δυνάμεων 1. Δυο δυνάμεις μέτρου 4 Ν και 3 Ν έχουν κάθετες διευθύνσεις και ασκούνται στο ίδιο υλικό σημείο. Ποια από τις παρακάτω προτάσεις είναι η σωστή; Η συνισταμένη δύναμη των δυο αυτών

Διαβάστε περισσότερα

Μην ξεχνάμε τον άξονα περιστροφής.

Μην ξεχνάμε τον άξονα περιστροφής. Μην ξεχνάμε τον άξονα περιστροφής. Έχουμε πάρα πολλά προβλήματα, όπου ένα στερεό, όπως μια ράβδος, στρέφεται γύρω από έναν σταθερό άξονα. Συνήθως στις περιπτώσεις αυτές επιλύουμε το πρόβλημα, «αφήνοντας

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως αποδεικνύουμε ότι ένα σώμα εκτεί απλή αρμονική ταλάντωση Μεθοδολογία i) Βρίσκουμε την θέση ισορροπίας του σώματος και σχεδιάζουμε το σώμα σε αυτή την θέση. ii) Σχεδιάζουμε τις δυνάμεις που ενεργούν

Διαβάστε περισσότερα

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του. 1 ΑΣΚΗΣΕΙΣ 1. Ένα παραλληλόγραμμο ΑΒΓΔ έχει μια πλευρά ίση με 48 και το αντίστοιχο σε αυτή την πλευρά ύψος είναι 4,5 dm. Να βρείτε το εμβαδό του παραλληλογράμμου 2. Ένα παραλληλόγραμμο έχει εμβαδό 72 2

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Αγγελίδης Π., Αναπλ. Καθηγητής

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Αγγελίδης Π., Αναπλ. Καθηγητής ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 10 ΥΔΡΟΣΤΑΤΙΚΗ ΠΙΕΣΗ ΚΑΙ ΔΥΝΑΜΗ ΣΕ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ ΥΔΡΟΣΤΑΤΙΚΗ

Διαβάστε περισσότερα

Τι δεν είναι η πίεση!!!

Τι δεν είναι η πίεση!!! Τι δεν είναι η πίεση!!! Η πρώτη «θερινή» ανάρτησή μου στα ρευστά ήταν η Μερικές εισαγωγικές ερωτήσεις στα ρευστά. Μια προσπάθεια, μέσω κάποιων ερωτημάτων, να τεθεί ένα πλαίσιο αρχικών βασικών γνώσεων όσον

Διαβάστε περισσότερα

MATHematics.mousoulides.com

MATHematics.mousoulides.com ΣΤΕΡΕΟΜΕΤΡΙΑ Ενδεικτικές Επαναληπτικές Δραστηριότητες 1 1. Να χαρακτηρίσετε με ΟΡΘΟ ή ΛΑΘΟΣ τις πιο κάτω προτάσεις, βάζοντας σε κύκλο τον αντίστοιχο χαρακτηρισμό. (α) Ο κύλινδρος είναι πολύεδρο. ΟΡΘΟ /

Διαβάστε περισσότερα

ΟΜΑΔΑ Α. ΠΡΟΣΟΧΗ!! Τα αποτελέσματα να γραφούν με 3 σημαντικά ψηφία. ΤΥΠΟΛΟΓΙΟ. Τριβή κύλισης σε οριζόντιο δρόμο: f

ΟΜΑΔΑ Α. ΠΡΟΣΟΧΗ!! Τα αποτελέσματα να γραφούν με 3 σημαντικά ψηφία. ΤΥΠΟΛΟΓΙΟ. Τριβή κύλισης σε οριζόντιο δρόμο: f ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 03 Μαρούσι 04-0-03 ΟΜΑΔΑ Α ΘΕΜΑ ο (βαθμοί 3,5) Η μέγιστη δύναμη με την οποία ένα κινητήρας ωθεί σε κίνηση ένα sport αυτοκίνητο

Διαβάστε περισσότερα

Στροφορμή. Μερικές όψεις

Στροφορμή. Μερικές όψεις Στροφορμή. Μερικές όψεις Ένα φυλλάδιο θεωρίας και μερικών εφαρμογών. Με βάση το σχολικό μας βιβλίο, ορίζουμε τη στροφορμή ενός υλικού σημείου το οποίο εκτελεί κυκλική κίνηση κέντρου Ο, το διάνυσμα το οποίο

Διαβάστε περισσότερα

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 06/0/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i Κέντρο μάζας Ασκήσεις κέντρου μάζας και ροπής αδράνειας Η θέση κέντρου μάζας ορίζεται ως r r i i αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας i και θέσης r i. Συμβολίζουμε

Διαβάστε περισσότερα

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ 1 Οι δυνάμεις μπορούν να χωριστούν σε δυο κατηγορίες: Σε δυνάμεις επαφής, που ασκούνται μόνο ανάμεσα σε σώματα που βρίσκονται σε επαφή, και σε δυνάμεις

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΘΕΜΑ 1 Ο : Α1. Σε ένα υλικό σημείο ενεργούν τέσσερις δυνάμεις. Για να ισορροπεί το σημείο θα πρέπει: α. Το άθροισμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης

Διαβάστε περισσότερα

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ Α 1. Η συνισταμένη δύο δυνάμεων με μέτρα Fı = 1N και F 2 = 2N μπορεί να έχει μέτρο 3 Ν. 2. Τα βαρύτερα σώματα πέφτουν πιο γρήγορα στο έδαφος. 3. Για να κινείται ένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 10 ο, Τμήμα Α Ορθογώνιο παραλληλόγραμμο 3 cm 5 cm Ο τύπος όπως είναι γραμμένος δείχνει ότι μπορούμε να πολλαπλασιάσουμε δύο μήκη. Ε=3cm x 5cm=15cm 2. Πώς καταλαβαίνετε

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΚΕΝΤΡΟΥ ΠΙΕΣΗΣ ΣΕ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΚΕΝΤΡΟΥ ΠΙΕΣΗΣ ΣΕ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΜΟΣ ΚΕΝΤΡΟΥ ΠΙΕΣΗΣ ΣΕ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Αντικείμενο αυτής της άσκησης είναι ο προσδιορισμός

Διαβάστε περισσότερα

Ασκήσεις στις δυνάμεις

Ασκήσεις στις δυνάμεις 0 Ασκήσεις στις δυνάμεις Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 1) «Κατά τη σύγκρουση ενός φορτηγού με ένα αυτοκίνητο, το αυτοκίνητο δέχεται δύναμη μεγαλύτερου μέτρου

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή. Στροφορµή Έστω ένα υλικό σηµείο που κινείται µε ταχύτητα υ και έστω ένα σηµείο Ο. Ορίζουµε στροφορµή του υλικού σηµείου ως προς το Ο, το εξωτερικό γινόµενο: L= r p= m r υ Όπου r η απόσταση του υλικού σηµείου

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΘΕΜΑ 1 Ο : Α1. Σε ένα υλικό σημείο ενεργούν τέσσερις δυνάμεις. Για να ισορροπεί το σημείο θα πρέπει: α. Το άθροισμα

Διαβάστε περισσότερα

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2

Διαβάστε περισσότερα

Περί κύλισης και τριβής.

Περί κύλισης και τριβής. Περί κύλισης και τριβής. Με αφορμή ένα τεθέν ερώτημα, ας δούμε λίγο αναλυτικά τι σημαίνει κύλιση ενός τροχού και τι συμβαίνει με την ασκούμενη δύναμη τριβής. Ας δούμε αρχικά, τι γράφει το σχολικό βιβλίο:

Διαβάστε περισσότερα

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του ΣΤΕΡΕΑ ΜΑΘΗΜΑ 10 Δίεδρες γωνίες Δύο επίπεδα α και β που τέμνονται, χωρίζουν τον χώρο σε τέσσερα μέρη, που λέγονται τεταρτημόρια. Ορίζουν επίσης σχήματα ανάλογα των γωνιών που ορίζουν δύο τεμνόμενες ευθείες

Διαβάστε περισσότερα

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΠΝΛΗΠΤΙΚΟ ΙΓΩΝΙΣΜ ΣΤΗ ΜΗΧΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΤΟΣ ΘΕΜ Για να απαντήσετε στις παρακάτω ερωτήσεις 1-4 πολλαπλής επιλογής, αρκεί να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δεξιά απ αυτόν, μέσα σε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση.

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση. ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή δράνειας) Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 Ο : )Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση. 1. Για ένα ζεύγος δυνάμεων Η ροπή του, εξαρτάται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

κάθετη δύναμη εμβαδόν επιφάνειας Σύμβολο μεγέθους Ορισμός μεγέθους Μονάδα στο S.I.

κάθετη δύναμη εμβαδόν επιφάνειας Σύμβολο μεγέθους Ορισμός μεγέθους Μονάδα στο S.I. 4.1 Η πίεση ονομάζουμε το μονόμετρο φυσικό μέγεθος που ορίζεται ως το πηλίκο του μέτρου της συνολικής δύναμης που ασκείται κάθετα σε μια επιφάνεια προς το εμβαδόν της επιφάνειας αυτής. πίεση = κάθετη δύναμη

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΛΙΝΟΠΕΤΡΑΣ Σχολική χρονιά 008 009 ΛΕΜΕΣΟΣ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 009 στη ΦΥΣΙΚΗ Ηµεροµηνία : 09/06/009 ιάρκεια : 90 λεπτά Τάξη : Γ Τµήµα : Γ.. Όνοµα :.. Αριθµός :. ίνονται οι σταθερές

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

Για τις επόμενες τέσσερες ερωτήσεις ( 1η έως και 4η)) να επιλέξετε την σωστή πρόταση, χωρίς δικαιολόγηση

Για τις επόμενες τέσσερες ερωτήσεις ( 1η έως και 4η)) να επιλέξετε την σωστή πρόταση, χωρίς δικαιολόγηση ΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Σχολικό έτος 2014-14 Πέμπτη 21/5/2015 ΡΑΠΤΕΣ ΠΡΟΑΩΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 2015 Στο μάθημα της ΦΥΣΙΚΗΣ ΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α ια τις επόμενες τέσσερες

Διαβάστε περισσότερα

Μεθοδολογίες στην Μηχανική των Ρευστών

Μεθοδολογίες στην Μηχανική των Ρευστών Μεθοδολογίες στην Μηχανική των Ρευστών η Μεθοδολογία: «Ανυψωτήρας» Το υγρό του δοχείου κλείνεται με δύο έμβολα που βρίσκονται στην ίδια οριζόντιο. Στο έμβολο με επιφάνεια Α ασκείται δύναμη F. ον Η F ασκεί

Διαβάστε περισσότερα

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014 Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία Ιωάννης Γκιάλας 7 Μαρτίου 14 Άσκηση: Ηλεκτρικό πεδίο διακριτών φορτίων Δύο ίσα θετικά φορτία q βρίσκονται σε απόσταση α μεταξύ τους. Να βρεθεί η ακτίνα του κύκλου,

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίου, 2013 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από πέντε (5) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε σε

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Εισαγωγή Ο νόµος του Gauss: Μπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού της έντασης του ηλεκτρικού πεδίου. Βασίζεται

Διαβάστε περισσότερα

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ ΗΜΕΡΟΜΗΝΙΑ: 06/0/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ - ΜΕΡΟΣ Α

ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ - ΜΕΡΟΣ Α ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ - ΜΕΡΟΣ Α ΣΤΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΙΚΑ Ως ρευστά θεωρούµε τα σώµατα εκείνα, τα οποία δεν έχουν δικό τους σχήµα, αλλά παίρνουν το σχήµα του δοχείου που τα περιέχει, τέτοια είναι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ Α Σε κάθε κουτάκι που βρίσκεται δεξιά από τον αριθµό, να σηµειώσετε το γράµµα Σ αν η αντίστοιχη πρόταση είναι σωστή ή το γράµµα Λ αν είναι λανθασµένη.

Διαβάστε περισσότερα

Συμβολή κυμάτων και σύνθεση ταλαντώσεων.

Συμβολή κυμάτων και σύνθεση ταλαντώσεων. Συμβολή κυμάτων και σύνθεση ταλαντώσεων. Δύο σύγχρονες πηγές κυμάτων Π και Π αρχίζουν τη χρονική στιγμή t = 0 να εκτελούν στην αρχικά ήρεμη επιφάνεια υγρού αρμονική ταλάντωση της μορφής 0,4 4 t, (SI).

Διαβάστε περισσότερα

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ ΜΕΡΟΣ Α 1.4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 59 1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Πολλαπλασιασμός μονωνύμου με πολυώνυμο Ο πολλαπλασιασμός μονώνυμου με πολυώνυμο γίνεται ως εξής: Πολλαπλασιάζουμε το μονώνυμο με

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 206-207 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/03/207 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ.

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2.21. Έργο και µέγιστη Κινητική Ενέργεια. Ένα σώµα µάζας 2kg κινείται σε οριζόντιο επίπεδο και σε µια στιγµή περνά από την θέση x=0 έχοντας ταχύτητα υ 0 =8m/s,

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

3 ώρες Πέντε [5] σελίδες 1. Τζιάνου Μαρία 2. Παπέλης Γιώργος

3 ώρες Πέντε [5] σελίδες 1. Τζιάνου Μαρία 2. Παπέλης Γιώργος ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Ι. Στοιχεία Εξεταζόμενου Εξέτασης Ονοματεπώνυμο Μαθητή Ημερομηνία Εξέτασης Κυριακή, 27 Μαρτίου 2016 Εξεταζόμενο Μάθημα Φυσική Προσανατολισμού

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α Λυκείου

Διαγώνισμα Φυσικής Α Λυκείου Διαγώνισμα Φυσικής Α Λυκείου Δυναμιική.. Θέμα 1 ο 1. Συμπληρώστε την παρακάτω πρόταση. H αρχή της αδράνειας λέει ότι όλα ανεξαιρέτως τα σώματα εκδηλώνουν μια τάση να διατηρούν την... 2. Ένα αυτοκίνητο

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ -- ΠΕΙΡΑΙΑΣ -- 853 -- ΤΗΛ. 0-75, 3687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ. Γ ΛΥΚΕΙΟΥ Α. Σε μια απλή αρμονική ταλάντωση, κατά τη διάρκεια μιας περιόδου η κινητική ενέργεια Κ

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1 1. Ένα βλήμα μάζας 0,1 kg που κινείται οριζόντια με ταχύτητα 100 m/s σφηνώνεται σε ακίνητο ξύλο μάζας 1,9 kg. Να βρεθεί η απώλεια ενέργειας που οφείλεται στην κρούση, όταν το ξύλο είναι: α. πακτωμένο στο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ- ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/02/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ- ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/02/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ- ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/02/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος ΘΕΜΑ Α Να γράψετε στην κόλα σας τον αριθμό καθεμιάς από τις παρακάτω

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Ροπή Δύναμης Θα έχετε παρατηρήσει πως κλείνετε ευκολότερα μια πόρτα, αν την σπρώξετε σε μια θέση που βρίσκεται σχετικά μακρύτερα από τον άξονα περιστροφής της (τους μεντεσέδες

Διαβάστε περισσότερα

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Κανάρη 36, Δάφνη Τηλ. 10 9713934 & 10 9769376 ΘΕΜΑ Α ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Γκύζη 14-Αθήνα Τηλ :

Γκύζη 14-Αθήνα Τηλ : Γκύζη 14-Αθήνα Τηλ : 10.64.5.777 ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 10 ΙΟΥΝΙΟΥ 014 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε.

L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 Μαρούσι 06-0-0 ΘΕΜΑ ο (βαθμοί ) ΟΜΑΔΑ Α Μια οριζόντια ράβδος που έχει μάζα είναι στερεωμένη σε κατακόρυφο τοίχο. Να αποδείξετε

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών.

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών. Γρηγόρης Δρακόπουλος Φυσικός Ελληνογαλλική Σχολή Καλαμαρί Επιλεγμένες ασκήσεις στη Μηχανική Ρευστών Έ ν ω σ η Ε λ λ ή νω ν Φυσικών Θεσσαλονίκη 06 Ισορροπία υγρού Α. Στο διπλανό σχήμα, φαίνεται δοχείο που

Διαβάστε περισσότερα

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας.

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας. ΣΤΕΡΕΑ ΜΑΘΗΜΑ 12 ΑΝΑΚΕΦΑΛΑΙΩΣΗ 1. Αν τυχαία πυραμίδα τμηθεί με επίπεδο παράλληλο στη βάση της, έχουμε: KA/KA' = KB/KB' = ΚΓ/ΚΓ' = ΚΗ/Κ'Η' = λ και ΑΒΓ Α'Β'Γ' με λόγο ομοιότητας λ. 2. Μέτρηση κανονικής πυραμίδας:

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΘΕΩΡΙΑ : Μήκος κύκλου: L = Εμβαδόν κύκλου: Ε = ( όπου π = 3,14) Γνωρίζοντας ότι σε γωνία 360 0 αντιστοιχεί κύκλος με μήκος L και εμβαδόν Ε έχουμε : α) ημικύκλιο

Διαβάστε περισσότερα

Διαγώνισμα Μηχανική Στερεού Σώματος

Διαγώνισμα Μηχανική Στερεού Σώματος Διαγώνισμα Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔ. Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/11/2016 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔ. Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/11/2016 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝ ΠΑΙΔ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/11/2016 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος ΘΕΜΑ Α Να γράψετε στην κόλα σας τον αριθμό

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.

Διαβάστε περισσότερα