ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] )

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] )"

Transcript

1 ATSITIKTINIAI PROCESAI (paskaitų konspektas 2014[1] ) Alfredas Račkauskas Vilniaus universitetas Matematikos ir Informatikos fakultetas Ekonometrinės analizės katedra Vilnius, 2014 Iš dalies rėmė Projektas VP1-2.2-ŠMM-07-K

2

3 Turinys 1 Mato teorijos elementai Aibės ir funkcijos Mačios erdvės ir erdvės su matu Mačios funkcijos Mačių realiųjų funkcijų integravimas Pratimai Atsitiktiniai dydžiai Apibrėžimai Pasiskirstymo funkcija ir kitos charakteristikos Atsitiktiniai vektoriai Nepriklausomumas Sąlyginis vidurkis Naudingi tikimybių teorijos faktai Pratimai Atsitiktiniai procesai Apibrėžimai Atsitiktinių procesų skirstiniai Klasifikavimas pagal skirstinius Klasifikavimas pagal trajektorijas Pratimai Martingalai Diskretaus laiko martingalo apibrėžimas, pavyzdžiai Paprasčiausios savybės Martingalų konvergavimas Tolydaus laiko martingalai Kai kurie taikymai ekonomikoje Pratimai Puasono procesas Apibrėžimas ir modeliavimas Puasono procesų suma ir išskaidymas Sudėtinis Puasono procesas

4 5.4 Nehomogeniškas Puasono procesas Pratimai Brauno judesio procesas Apibrėžimas ir paprasčiausios savybės Atsitiktiniai procesai susiję su Brauno judesiu Vynerio proceso modeliavimas Trajektorijų savybės Stochastinis integralas Pratimai Literatūros sąrašas

5 Įvadas Teorija be praktikos - sausa Praktika be teorijos - akla. (E. Kantas) Su neapibrėžtumais susiduriame nuolatos. Koks bus rytoj oras? Kaip keisis JAV dolerio kursas Euro atžvilgiu? Kiek kitą mėnesį išleisime maistui? Didės ar mažės kitais metais Lietuvos bendrasis vidaus produktas (BVP)? Tokie ir panašūs klausimai domina kiekvieną. Aišku, tikslaus atsakymo į juos negali pasakyti niekas. Todėl dažnai į pagalbą pasitelkiame tikimybių teoriją, kuri tiria neapibrėžtumus, jų pobūdį, dėsningumus ir gali pasiūlyti įvairių priemonių jiems nustatyti bei modeliuoti. Sistemos būsenai vienu kuriuo nors laiko momentu aprašyti paprastai naudojami atsitiktiniai dydžiai. Norėdami suprasti sistemos kitimą (evoliuciją) laike, atsitiktinį dydį turime priskirti kiekvienam laiko momentui. Gautas atsitiktinių dydžių rinkinys yra atsitiktinis procesas (terminas stochastinis procesas yra lygiavertis). Jų pagalba sukonstruoti matematiniai modeliai sutinkami įvairiose srityse: economikoje, finansuose, fizikoje, klimatologijoje, telekomunikacijoje, biologijoje ir t.t. Atsitiktinių procesų teorija yra labai turininga ir gerai išvystyta, o jos užuomazgos siekia net 1827 metus, kai Anglų botanikas R. Brown as stebėjo žiedadulkės chaotišką judėjimą skystyje (vėliau pavadint1 Brauno judesiu). 1 pav. Chaotiškas dalelės judėjimas skystyje Šį nereguliarų tolydų judėjimą Einstein as 1905 metais paaiškino šilumine molekulių osciliacija ir pirmasis jį aprašė matematiškai. Pagal jo modelį dalelės pozicija kiekvienu laiko momentu yra atsitiktinis dydis, o jos trajektorija turi būti nagrinėjama kaip atsitiktinės laiko funkcijos grafikas. Dabar tai plačiai žinomas ir daug pritaikymų sulaukęs Brauno judesio procesas. Vėliau Einstein o 5

6 modelį apibendrino Wiener is. Todėl dažnai Brauno judesio procesas dar vadinamas Wiener io vardu. Šis procesas yra bene plačiausiai taikomas modeliuojant įvairias reiškinius. Modeliavimas yra neatsiejama bet kurio mokslo dalis - tiek socialinio, tiek gamtos. Realaus pasaulio sistemos paprastai yra labai sudėtingos. Norėdami šias sistemas suprasti, prognozuoti jų elgesį ar kontroliuoti, turime jas supaprastinti, t.y. sukurti modelį. Modelis originalo atvaizdas, tapatus pasirinktu struktūros lygmeniu arba pasirinktomis funkcijomis (TŽŽ). Egzistuoja daug modelio formų: pavyzdžiui, verbaliniai/logistiniai (sistemų veiklos aiškinimas paradigmomis, kaip antai, nematomos rankos paradigma), fikiniai (sumažinto mastelio ir supaprastintos veiklos modeliai), geometriniai (lentelės, diagramos), algebriniai (algebrinės lygtys) ir pan. Sukurti matematinį modelį reiškia nagrinėjamai sistemai suteikti matematinę išraišką. Čia gali pasireikšti du kraštutinumai: realistinis ir idealistinis. Realistinis modelis paprastai gana tiksliai aprašo tiriamą sistemą, bet būna toks sudėtingas, kad neįmanoma jo nei ištirti, nei įvertinti. Idealistinis modelis, su kuriuo lengva dirbti, gali būti gerokai nutolęs nuo realaus tiriamo fenomeno. Todėl geras modelis yra tam tikras kompromisas tarp realaus ir idealaus. Rasti tinkamą kompromisą yra menas, kurio rezultatus nulemia žinios, įgūdžiai ir, be abejo, talentas. Matematiniai modeliai būna arba deterministiniai, arba stochastiniai. Pirmieji postuluoja tikslią nagrinėjamų sistemų funkcinę priklausomybę ir neatsižvelgia į galimus neapibrėžtumus. Taigi deterministiniai matematiniai modeliai nėra pats geriausias įrankis, pavyzdžiui, ekonominėms ar socialinėms sistemoms tirti. Modeliai aprašomi lygtimis, į kurias įeina atsitiktiniai procesai, vadinami stochastiniais. Ekonometristams jie yra pagrindinis įrankis tiriant ekonomines sistemas, finansų makleriams padeda spręsti atsargų problemas ar sekti finansinių biržų būseną, komunikacijų specialistams atskirti informatyvius signalus nuo natūralių ar dirbtinų triukšmų, atpažinti vaizdus, o biologams suprasti genų mutacijos principus, augmenijos ir gyvūnijos populiacijų pasiskirstymus, epidemijų plitimą ir t.t. Šios paskaitos apima įvadinį atsitiktinių procesų teorijos kursą. Jų tikslas yra ugdyti stochastinio modeliavimo, taikant atsitiktinius procesus, kompetencijas bei vystyti stochastinį mąstymą. Šiame kurse supažindinama su pagrindinėmis atsitiktinių procesų sąvokomis bei savybėmis. Tarp jų yra stacionarumas, ergodiškumas, reguliarumas. Pristatomos svarbiausios atsitiktinių procesų klasės: diskretaus ir tolydaus laiko Markovo procesai, diskretaus ir tolydaus laiko martingalai, Puasono, atstatymo bei Brauno judesio procesai. Pateikti įvairių pritaikymų pavyzdžiai padės pasinaudoti atsitiktinių procesų teorija identifikuojant, formuluojant ir sprendžiant įvairius taikomuosius uždavinius. 6

7 1 skyrius Mato teorijos elementai Intervalo I R (atviro, uždaro ar pusiau atviro), kurio kraštiniai taškai yra a < b R ilgis lygus l(i) = b a. O koks yra bet kurios kitos (ne intervalo) aibės A R ilgis l(a)? Kaip jį apskaičiuoti? Bandymai atsakyti į šiuos klausimus matematikams padovanojo Lebego matą (pavadintą Henri Lebesgue ( ) garbei). O poreikis pamatuoti dar sudėtingesnius objektus (ir ne tik plotą, tūrį ar pan.) išsivystė į turiningą mato teoriją. Šiame skyriuje jos pristatyta tiek, kiek reikės geresniam atsitiktinių procesų teorijos supratimui. Jei kam pasirodys, kad pateiktas žinių bagažas yra skurdokas, papildomam skaitymui rekomenduojame [5] vadovėlio bei [6], [2] knygų skyrius, skirtus mato teorijai. 1.1 Aibės ir funkcijos Veiksmai su aibėmis Aibe vadiname tam tikrų matematinių objektų rinkinį, visumą ir dažniausiai aprašome kokiu nors būdu nusakydami jos elementus. Raide R įprasta žymėti realiųjų skaičių aibę, C kompleksinių, N natūraliųjų, Z sveikųjų, Q racionaliųjų skaičių aibes, o N 0 = {0, 1, 2,... }. Jei A kažkokia aibė, tai x A reiškia, kad x yra tos aibės elementas, o x A elementas x nepriklauso aibei A. Norėdami išskirti aibės A elementus, turinčius savybę P, rašysime {x A : P } arba, jei aišku apie kokios aibės elementus kalbame, trumpiau {x : P }. Tuščia aibe vadiname aibę neturinčią nei vieno elemento. Ją žymėsime simboliu. Aibė, susidedanti iš vieno elemento x, žymima {x} (atkreipkite dėmesį, kad x ir {x} skiriasi, pvz., { } = ). Jei kiekvienas x A yra kartu ir aibės B elementas, tai sakome, kad A yra B poaibis (arba B yra aibės A viršaibis) ir rašome A B (arba B A). Jei A B ir B A, tai aibės A ir B sutampa: A = B. Aibė A yra tikrinis aibės B poaibis (arba B yra A tikrinis viršaibis) (žymime A B arba B A), jei A B ir A B. Aibė 2 A yra sudaryta iš visų aibės A poaibių: 2 A = {B : B A}. Atlikdami veiksmus su aibėmis neakivaizdžiai tariame, kad jos yra vienos kurios nors (universalios) aibės poaibiai. Dviejų aibių A ir B sankirta A B yra aibė {x : x A ir x B}, o sąjunga A B = {x : x A arba x B}. Analogiškai bet kokiai indeksų aibei I ir aibių sistemai 7

8 {A α, α I} apibrėžiame sąjungą A α = {x : x A α kuriam nors α I} ir sankirtą α I A α = {x : x A α su visais α I}. α I Jei aibės A i, i I poromis nesikerta, t.y. A i A j =, kai i j, tai vietoj sąjungos ženklo naudosime sumos, t.y. i I A i = i I A i, kai (A i ) yra poromis nesikertančių aibių šeima. Kiti svarbesni veiksmai su aibėmis yra aibių skirtumas bei simetrinis skirtumas A\B = {x : x A, x B} A B = (A\B) (B\A). Jei B A tai skirtumas A\B dar vadinamas aibės B papildiniu (iki aibės A) ir, tuo atveju, kai aibė A aiški iš konteksto, žymimas B c. Aibių sąjungai ir sankirtai galioja De Morgan o dėsniai: ( ) c ( ) c (1.1) A i = A c i; A i = i I i I Aibių A 1, A 2,..., A d Dekarto sandauga yra sudaryta iš sutvarkytų rinkinių (x 1, x 2,..., x d ), x 1 A 1, x 2 A 2,..., x d A d ir žymima i I i I A c i A 1 A 2 A d ; A d = A } {{ A }. d kartų Svarbus pavyzdys yra R d = {(x 1,..., x d ) : x i R, i = 1,..., d}. Aibę R d dar vadiname d-mate vektorine erdve, o jos elementus tuomet reiškiame vektoriais stulpeliais. Binariniai sąryšiai Aibės S elementų binariniu sąryšiu vadinamas bet kuris aibės S S poaibis E S S. Jei (x, y) E tai sakome, kad elementas x S susijęs su elementu y S sąryšiu. Norėdami tai pažymėti, rašome x y arba x E y, jei reikia pabrėžti aibę E. Aibės S elementų binarinis sąryšis yra refleksyvusis, jei x x su kiekvienu x S, asimetrinis, jei kartu x y ir y x gali būti tik tuomet, kai x = y, tranzityvusis, jei iš x y, y z gauname x z. Sąryšis E vadinamas simetriniu,jei y x, kai tik x y. Refleksyvus simetrinis tranzityvus sąryšis vadinamas ekvivalentumo sąryšiu. Štai porą paprasčiausių pavyzdžių. 1.1 pavyzdys. S = Z, n - duotas sveikasis skaičius. Sąryšis x y reiškia x = y(mod n). 1.2 pavyzdys. S = R. Sąryšis x y reiškia, kad x y yra sveikasis skaičius. 8

9 Jei aibės S ekvivalentumo sąryšis ir x S, tai aibė {y S : y x} vadinama elementą x atitinkančia ekvivalentumo klase ir dažnai žymima [x]. 1.1 teiginys. Dvi ekvivalentumo klasės yra arba lygios, arba nesikerta. Įrodymas. Tarkime, [x] ir [y] - dvi aibės S ekvivalentumo klasės, atitinkančios sąryšį. Jei [x] [y], tai [x] = [y]. Tikrai, tegu u [x] ir v [x] [y]. Tuomet u v ir v y. Remiantis tranzityvumo savybe, u y, taigi u [y]. Vadinasi, [x] [y]. Taip pat samprotaudami įsitikiname, kad [y] [x]. Šis teiginys leidžia aibę suskaidyti į ekvivalentumo klases, kurių šeima vadinama faktor-aibe atžvilgiu nagrinėjamo ekvivalentumo sąryšio arba tiesiog faktor-aibe ir žymima S/ : S/ = {[x] : x S}. Galima įsitikinti, kad 1.1 pavyzdyje R/ = {[0], [1],..., [n 1]}. Funkcijos Visur toliau terminai atvaizdis ir funkcija vartojami kaip sinonimai ir užrašas f : U V žymi vienareikšmę funkciją, apibrėžtą aibėje U su reikšmių sritimi aibėje V : kiekvienam elementui u U funkcija f priskiria vienintelį elementą f(u) = v V. Funkcija su reikšmėmis realiųjų skaičių aibėje R vadinama realiaja, o su reikšmėmis išplėstinėje skaičių tiesėje R = [, + ] skaitine. Įprasta V U žymėti aibę visų funkcijų f : U V, V U := {f : U V }. Svarbūs pavyzdžiai yra aibė R T = {f : T R}, kai T bet kuri aibė ir atskiras jos atvejis, intervale [a, b] apibrėžtų realiųjų funkcijų aibė R [a,b] = {f : [a, b] R}. Aibė G f = {(u, f(u)) : u U} U V vadinama funkcijos f grafiku. Jei A U, tai f(a) := {f(u) V : u A} yra aibės A vaizdas, o f 1 (B) = {u U : f(u) B}, vadinama aibės B V pirmavaizdžiu. Atvaizdis f : U V vadinamas siurjekcija arba aibės U atvaizdžiu į aibę V, jei f(u) = V ir injekcija, jei f(x 1 ) f(x 2 ), kai x 1 x 2. Atvaizdis f : U V vadinamas bijekcija, jei f yra ir injekcija, ir siurjekcija. Jei f : U V yra bijekcija, tai su kiekvienu v V egzistuoja tik vienas toks elementas u U, kad v = f(u). Šiuo atveju sakome, kad egzistuoja funkcijos f atvirkštinė funkcija, kuri žymima f 1 ir kuri aibę V atvaizduoja į aibę U pagal šią taisyklę: f 1 (v) = u, jei f(u) = v. 9

10 Atvaizdžio f apibrėžimo sritį ir reikšmių sritį įprasta žymėti atitinkamai D(f) ir R(f). Funkcija f vadinama funkcijos g tęsiniu, o g f siauriniu, jei D(g) D(f) ir f(x) = g(x), kai x D(g). Dvi funkcijos yra lygios, jei sutampa jų apibrėžimo sritys ir reikšmės: f = g, jei D(f) = D(g) ir f(x) = g(x) su visais x D(f). Jeigu f : U V, g : V Z, tai funkcija g f : U Z, g f(u) = g(f(u)), kai u U, vadinama funkcijų f ir g kompozicija, arba sudėtine funkcija. Jei A U, tai aibės A indikatorinė funkcija 1 A : U R yra apibrėžta šia formule: { 1, kai x A; 1 A (x) = 0, kai x A. Funkciją f : N V, kurios apibrėžimo sritis yra natūralieji skaičiai, vadiname aibės V elementų seka ir vietoj f(n) rašome f n. Sekas įprasta žymėti (f n, n N), (f n ) n N, (f 1, f 2,... ) arba trumpiau (f n ). Aibių A 1, A 2,... Dekarto sandaugą A 1 A 2 sudaro sekos (x i, i N), kai x i A i : A 1 A 2 = {(x 1, x 2,... ) : x 1 A 1, x 2 A 2,... }. Kai visos aibės A i yra lygios, tarkime, A i = A su visais i = 1, 2,..., begalinę sandaugą A 1 A 2 žymėsime A N arba A. Visų realiųjų skaičių sekų aibė yra R N : R N = {(x n, n N) : x n R su visais n N}. Aibė yra baigtinė, jei ji turi n elementų su kuriuo nors baigtiniu n N. Priešingu atveju aibė yra begalinė. Pavyzdžiui, natūraliųjų skaičių aibė N yra begalinė. Aibė B vadinama skaičia, jei egzistuoja funkcija f, atvaizduojanti B į N abipus vienareikšmiškai. Jei aibė nėra nei baigtinė nei skaiti, tai ji vadinama neskaičia. Pavyzdžiui, norint įsitikinti, kad N N yra skaiti aibė, užtenka pastebėti, kad f(n, m) = 2 m (2n+1) 1 atvaizduoja N N į N abipus vienareikšmiškai. Atvaizdis n 2n + 1, kai n 0 ir n 2 n, kai n < 0, nustato abipus vienareikšmę atitinkamybę tarp aibių Z ir N. Racionaliųjų skaičių aibė yra skaiti, o bet kuris netuščias atviras realiųjų skaičių intervalas neskaiti. Be to, galima įsitiktinti, kad skaiti skaičių aibių sąjunga yra skaiti aibė (žr. 1.6 pratimą). 1.2 Mačios erdvės ir erdvės su matu Mačios erdvės Tarkime, turime netuščią aibę S. Nagrinėsime jos poaibių šeimas, t.y. aibės 2 S poaibius. 1.1 apibrėžimas. Aibės S poaibių šeima S 2 S vadinama algebra, jeigu ji pasižymi šiomis savybėmis: 10

11 (i) S S; (ii) jei A S, tai ir A c S; (iii) jei A 1,..., A n S tai ir n i=1 A i S. Algebra S vadinama σ algebra, jei ji yra uždara skaičios sąjungos atžvilgiu, t.y., jei A 1, A 2, S tai ir i=1 A i S. Algebrai visada priklauso tuščia aibė = S c. Iš De Morgan o (1.1) tapatybių gauname, kad σ algebra (atitinkamai algebra) yra uždara skaičios (atitinkamai baigtinės) sankirtos atžvilgiu. Bet kuri σ algebra yra ir algebra, bet ne atvirkščiai (žr. 1.7 pratimą). 1.1 pavyzdžiai. (a) Trivialioji σ algebra yra S = {S, }. (b) Diskrečioji σ algebra yra S = 2 S. (c) Jei A S, tai S = {A, A c, S, } yra algebra. 1.2 teiginys. Bet kuriam aibės S poaibių rinkiniui A egzistuoja mažiausia σ algebra σ(a), kuriai priklauso A (ją vadinsime šeimos A generuota σ algebra). Įrodymas. Tegu I yra rinkinys visų σ algebrų, kurioms priklauso A. Kadangi diskrečioji σ algebra 2 S I, tai rinkinys I yra netuščias. Apibrėžkime σ(a) = F I F. Kadangi A F kiekvienai σ algebrai F I, tai A σ(a). Lieka patikrinti, kad σ(a) yra σ algebra. Kadangi S F kiekvienai F I, tai S σ(a). Jei A σ(a), tai A F kiekvienai F I. Kadangi F yra σ algebra, tai A c F. Taigi A c σ(a). Jei (A i, i 1) σ(a), tai (A i, i 1) F, ir i A i F kiekvienai F I. Taigi i A i σ(a). 1.2 apibrėžimas. Realiųjų skaičių aibės R Borelio σ algebra B R yra aibių šeimos generuota σ algebra: B R = σ(a). A := {[a, b), (, b), [a, ), (, ), a, b R} 1.3 apibrėžimas. Aibių rinkinys A 2 S yra π sistema, jei A 1 A 2 A, kai A 1, A 2 A; λ sistema, jei (i) S A; (ii) B \ A A, kai A, B A ir A B; (iii) skaiti poromis nesikertančių aibių iš A sąjunga priklauso A, t.y., jei A 1, A 2, A ir A i A j =, kai i j, tuomet i=1 A i A. Ekvivalenti (iii) savybei yra ši: (iii ) jei (A i ) A, A 1 A 2 tai i=1 A i A. 11

12 Įsitikinti ekvivalentumu paliekame vietoj pratimo. Akivaizdu, kad σ algebra yra tiek π sistema, tiek λ sistema. Teisingas ir atvirkščias teiginys. 1.3 teiginys. Aibės S poaibių šeima yra σ algebra, jei ji yra kartu ir π sistema, ir λ sistema. Įrodymas. Tarkime, E 2 S yra ir π sistema ir λ sistema. Pirmiausia pastebime, kad E yra uždara papildinio atžvilgiu: jei A E tai ir S \ A E, nes S E ir A E, o E yra λ sistema. Įsitikinkime, kad A B E, kai A, B ce. Taip yra, nes A B = (A c B c ) c, o E yra uždara atžvilgiu papildinio (λ sistema) ir sankirtos (π sistema) operacijų. Tegu (A n ) E. Įsitikinkime, kad k 1 A k E. Tegu B 1 = A 1, B 2 = A 2 A c 1,... B k = A k A c k 1 Ac 1,.... Aibės (B k ) nesikerta ir priklauso E. Be to, k=1 A k = k=1 B k. Teiginys pilnai įrodytas. 1.1 teorema. Tegu E 2 S yra λ sistema, o B 2 S yra π sistema. Jei E B tai E σ(b). Įrodymas. Tegu B yra mažiausia λ sistema, kuriai priklauso B. Įsitikinsime, kad B σ(b). Tam pakanka patikrinti, kad B yra σ algebra. O tam, savo ruožtu, pakanka patikrinti, kad λ sistema B yra kartu ir π sistema. Pasinaudosime šiuo teiginiu, kurio įrodymui pakanka žingsnis po žingsnio patikrinti λ sistemos apibrėžimą. 1.4 teiginys. Jei A yra λ sistema ir A A, tuomet ir A = {B A : B A A} yra λ sistema. Tęsdami teoremos įrodymą, fiksuokime B B ir nagrinėkime D 1 := {A B : A B B }. Kadangi B B tai, remiantis 1.4 teiginiu, D 1 yra λ sistema. Be to, jai priklauso B : jei A B tai A B B. Taigi D 1 B. Gauname, kad fiksuotai aibei A B, rinkinys D 2 := {B B : A B B } apima ir B. Remiantis 1.4 teiginiu D 2 yra λ sistema, taigi turi apimti B. Tai reiškia, kad A B B, kai A, B B. 1.4 apibrėžimas. Pora (S, S), kai S yra netuščia aibė, o S jos poaibių σ algebra, vadinama mačiąja erdve. Aibės A S vadinamos mačiosiomis. Matai Matai yra kaip tik ta matematinė priemonė, kuri padeda pamatuoti aibes (prisiminkime skyriaus pradžioje iškeltą klausimą), o mačios aibės yra tos, kurias galima pamatuoti. 1.5 apibrėžimas. Tarkime, A yra aibės S poaibių algebra. Funkcija µ: A [0, ] vadinama matu, jei teisingos šios aksiomos: (1) µ( ) = 0; 12

13 (2) jei A n A, n = 1, 2,..., A n A m =, kai n m, ir A = n A n A, tai µ(a) = µ(a k ). k=1 Matas µ, apibrėžtas algebroje A, vadinamas: baigtiniu, jei µ(s) < ; tikimybiniu, jei µ(s) = 1; σ-baigtiniu, jei egzistuoja tokia aibių seka (A n ) A, kad S = n A n ir µ(a n ) < su kiekvienu n N. 1.3 pavyzdys. (1) Tarkime, (S, S) - mati erdvė, x S - duotas aibės S elementas. Aibei A S apibrėžkime { 1, jei x A, µ(a) = δ x (A) = 0, jei x A. Galima įsitikinti, kad δ x yra erdvės (S, S) matas. Jis vadinamas Dirako matu taške x. (2) Tarkime, (S, S) - mati erdvė, D S skaiti mati aibė. Aibei A S apibrėžkime µ D (A) = x D δ x (A). Galima įsitikinti, kad taip apibrėžta aibių funkcija µ D yra erdvės (S, S) matas, kuris suskaičiuoja aibės A D elementus (jų gali būti ir begalo daug). (3) Tarkime, (S, S) - mati erdvė, D S skaiti mati aibė, m : D R kokia nors neneigiama funkcija. Aibei A S apibrėžkime µ D (A) = x D m(x)δ x (A). Galima įsitikinti, kad taip apibrėžta aibių funkcija µ D yra erdvės (S, S) matas. Jis vadinamas diskrečiuoju. Jei x D m(x) <, tai matas µ yra baigtinis. Jei x D m(x) = 1, tai matas µ yra tikimybinis. Svarbios mato savybės surinktos šiame teiginyje. 1.5 teiginys. Matas µ apibrėžtas algebroje A yra: (1) monotoniškas, t.y., jei A, B A, A B, tai µ(a) µ(b); (2) tolydus, t.y., jei seka (A n ) A yra monotoniškai didėjanti (t.y., A 1 A 2 ), tai ( ) (1.2) µ lim A n = lim µ(a n ); n n 13

14 (3) monotoniškai mažėjančiai sekai (A n ) (t.y., A 1 A 2 ) (1.2) galioja, jei µ(a n0 ) < kažkuriam n 0 1. (4) skaičiai subadityvus, t.y., jei (A n ) A ir n A n A, tai ( µ A n ) µ(a n ). n n Įrodymas. (1) Kadangi A B, tai B = A + B A c. Aibės A ir A B c nesikerta, todėl µ(b) = µ(a) + µ(b A c ) µ(a). (2) Tegu A 0 =. Tuomet n=1 A n = n=1 A n \ A n 1. Taigi ( µ n=1 ) ( ) A n = µ A n \ A n 1 = = lim n n=1 k=1 = lim n µ(a n ). µ(a n \ A n 1 ) n=1 n ( n ) µ(a k \ A k 1 ) = lim µ A k \ A k 1 n (3) Nagrinėkime monotoniškai mažėjančią seką (A n ). Nemažindami bendrumo tarkime, kad n 0 = 1, t.y., µ(a 1 ) <. Tegu B n = A 1 \ A n, n > 1. Seka (B n ) yra monotoniškai didėjanti. Taigi n=1 k=1 ( ) ( lim µ(b n ) = µ(lim B n ) = µ (A 1 A c n n n) = µ A 1 ( ( = µ A 1 n=1 = µ(a 1 ) µ(lim n A n ). ) c ) ( ) A n = µ(a 1 ) µ A n n=1 n=1 A c n ) Iš kitos pusės lim µ (B n ) = lim n (µ(a 1 ) µ(a n )) = µ(a 1 ) lim n µ(a n ). Kadangi µ(a 1 ) < šios lygybės reiškia, kad lim n µ(a n ) = µ(lim n A n ). (4) Tegu B 1 = A 1, B 2 = A 2 A c 1,..., B k = A k A c k 1 Ac 1. Aibės B 1,..., B n nesikerta ir n k=1 A k = n k=1 B k. Taigi ( n µ k=1 ) ( n ) A k = µ B k = k=1 n µ(a k ) k=1 n µ(b k ) k=1 µ(a k ). Lieka pereiti prie ribos, kai n ir pritaikyti mato tolydumo savybę. k=1 14

15 1.6 apibrėžimas. Trejetą (S, S, µ), kai S yra aibės S poaibių σ algebra ir µ yra σ baigtinis matas, apibrėžtas σ algebroje S, vadinsime erdve su matu. Jei µ yra tikimybinis matas, tai trejetas (S, S, µ) vadinamas tikimybine erdve. Abstrakti tikimybinė erdvė dažniausiai žymima (Ω, F, P ). 1.7 apibrėžimas. Aibė A S vadinama µ-nuline, jei egzistuoja tokia aibė E S, kad µ(e) = 0 ir A E. Erdvė su matu (S, S, µ) vadinama pilna, jei kiekviena µ-nulinė aibė A S yra mati. Dažnai pasitaikantis būdas sukonstruoti erdves su matu yra toks. Pirmiausia matas aprašomas kuriai nors patogiai duotos aibės poaibių klasei. Toliau patikrinama ar, išlaikant norimas savybes, galima jį apibrėžti tos aibių klasės generuotoje algebroje. Generuotas algebras, priešingai nei σ algebras galima aprašyti konstruktyviai (žr. 1.8 pratimą). Galiausiai paskutiniame žingsnyje remiamės mato pratęsimo teorema. Šį būdą kitame skyrelyje pritaikysime konstruodami realiųjų skaičių aibės Lebego bei Lebego-Stiltjeso matus (žr. 1.3 teoremą), o čia aptarsime labai svarbią mato pratęsimo teoremą. 1.2 teorema. ( Carathéodory teorema ) Tarkime, µ yra σ baitinis matas apibrėžtas aibės S poaibių algebroje A. Egzistuoja tokia σ algebra A A ir toks vienintelis mačios erdvės (S, A ) σ baigtinis matas µ, kad µ (A) = µ(a), kai A A. Be to, erdvė su matu (S, A, µ ) yra pilna. Įrodymas. Bet kuriai aibei A S apibrėžiame vadinamą jos išorinį matą: { } (1.3) µ (A) := inf µ(a n ) : A A n, A n A, n N. Apibrėžkime n=1 A := {A 2 S : µ (C) = µ (C A) + µ (C A c ), su visais C 2 S }. Taip sukonstruoti µ ir A ir yra ieškomieji matas bei σ algebra. Pilną teoremos įrodymą galima rasti [5] knygoje. n=1 1.1 pastaba. Išorinio mato µ apibrėžime galima nagrinėti tik poromis nesikertančias aibes A i, mato µ (A) reikšmė nuo to nepasikeis, t. y.: { } (1.4) µ (A) = inf µ(a n ) : A A n, A n A, n N. n=1 Tikrai, tegu A i A, i = 1, 2,... tokios aibės, kad i=1 A i A. Apibrėžkime B 1 = A 1, B i = A i \ n=1 i A i, i > 1. Aibės B 1, B 2,... nesikerta ir i=1 B i = i=1 A i A. Kadangi A yra algebra, tai jai priklauso visos aibės B i. Be to, B i A i. Todėl µ(b i ) µ(a i ). i=1 15 i=1 k=1

16 Toliau lieka pasinaudoti tiksliojo apatinio rėžio apibrėžimu. 1.2 pastaba. Kadangi σ(a) A, matą µ galime nagrinėti ir aibėms A σ(a). Mato µ siaurinys σ-algebroje σ(a) vadinamas mato µ tęsiniu į σ(a) ir dažnai žymimas tuo pačiu simboliu µ. Taigi µ(a) = µ (A), kai A σ(a). Erdvių su matu sandaugos Skyrelį baigsime apibrėždami erdvių su matu sandaugą. Nagrinėkime erdves su matu (S i, S i, µ i ), i = 1, 2,..., n. Dekarto sandaugos n i=1 S i σ algebra yra n S i = σ{a 1 A n : i=1 A i S i, i = 1,..., n}. Pora ( n i=1 S i, n i=1 S i) vadinama mačių erdvių (S i, S i ), i = 1,..., n sandauga. Imdami aibes A i S i, i = 1,..., n, apibrėžkime (1.5) µ(a 1 A n ) = m µ i (A i ). i=1 Galime įsitikinti (žr pratimą), kad µ yra matas algebroje (1.6) A = {A 1 A n : A i S i, i = 1,..., n}. Remdamiesi Carathéodory teorema, pratęskime matą µ į σ algebrą σ(a) = n i=1 S i. Gautą matą žymime µ 1 µ n ir vadiname sandaugos matu. Trejetas n ( S i, i=1 n S i, i=1 n µ i ) i=1 vadinamas erdvių su matu (S i, S i, µ i ), i = 1, 2,..., n tiesiogine sandauga. Kai (S i, S i, µ i ) = (S, S, µ) su kiekvienu i = 1,..., n, tai atitinkamą tiesioginę sandaugą žymėsime (S n, S n, µ n ). Lebego-Stiltjeso matai 1.3 teorema. Tegu F : R R yra monotoninė nemažėjanti tolydi iš dešinės funkcija. Egzistuoja toks Borelio σ algebroje B R apibrėžtas matas µ, kad (1.7) µ((a, b]) = F (b) F (a). Matas µ vadinamas Lebego Stiltjeso matu (atitinkančiu funkciją F ). Įrodymas. Tegu A I yra aibė visų realiųjų skaičių tiesės R intervalų, pavidalo (a, b], (, b], (a, + ), (, + ), a, b R. 16

17 Nagrinėkime rinkinį A, sudarytą iš visų baigtinių nesikertančių intervalų iš A I sąjungų: A A, jei A = m i=1i i, I 1,..., I m A I ir I i I j =, kai i j. Galime įsitikinti, kad šeima A yra algebra. Be to, jos generuota σ algebra sutampa su Borelio, σ(a) = B R (žr pratimą). Pirmiausia matą µ apibrėžiame algebroje A. Tuo tikslu bet kuriam intervalui (a, b], kai a b R, tegu µ((a, b]) = F (b) F (a). Be to, tegu kai a R ir. tegu µ((a, )) = lim [F (x) F (a)], x µ((, a]) = [F (a) F (x)], µ((, )) = lim x lim [F (x) F ( x)]. x + Jei A A ir A = m k=1 I k, I 1,..., I m A I, apibrėžkime µ(a) = m µ(i k ). k=1 Įsitikinkime, kad toks apibrėžimas yra korektiškas, tai yra µ(a) nepriklauso nuo aibės A reiškimo baigtine nesikertančių intervalų sąjunga. Tegu A = d k=1 J k. Pastebėkime, kad I k = I k A = d (I k J j ), J i = J i A = j=1 m (J i I l ), k = 1,..., m; j = 1,..., d. l=1 Kadangi funkcija µ yra adityvi algebroje A, tai µ(i k ) = d µ(i k J j ), µ(j i ) = j=1 n µ(j i I l ). l=1 Iš šių lygybių matome, kad m µ(i k ) = k=1 d µ(j l ). Tai ir įrodo funkcijos µ apibrėžimo vienareikšmiškumą. Taigi µ(a) 0 apibrėžėme kiekvienai aibei A A. Įrodykime, kad taip apibrėžta aibių funkcija µ yra algebros A matas. Tam pakanka patikrinti funkcijos µ skaitų adityvumą, nes µ( ) = µ((a, a]) = F (a) F (a) = 0. Tarkime, (a, b] = n=1 (a n, b n ] - skaiti nesikertnčių intervalų sąjunga. Tegu skaičiai ε > 0 ir δ > 0 yra laisvai pasirenkami. Kadangi funkcija F tolydi iš dešinės, egzistuoja tokie ε k > 0, kad (1.8) F (b k + ε k ) F (b k ) < ε/2 k, k 1. Uždarą intervalą [a+δ, b] dengia atvirieji intervalai (a k, b k +ε k ), k 1. Remiantis Heinės Borelio teorema (žr. [4]), egzistuoja toks svaikasis skaičius N, kad (a + δ, b] [a + δ, b] l=1 N (a k, b k + ε k ) k=1 17 N (a k, b k + ε k ]. k=1

18 Taigi F (b) F (a + δ) N [F (b k + ε k ) F (a k )] k=1 N [F (b k ) F (a k )] + k=1 N k=1 N [F (b k ) F (a k )] + ε. k=1 ε2 k Perėję prie ribos, kai δ 0 ir ε 0 bei pritaikę funkcijos F tolydumą iš dešinės, gauname (1.9) F (b) F (a) [F (b k ) F (a k )]. k=1 Kadangi (a, b] n k=1 (a k, b k ] su kiekvienu n, tai (1.10) F (b) F (a) [F (b k ) F (a k )]. k=1 Taigi skaitų adityvumą kai baigtinis intervalas yra nesikertančių intervalų sąjunga įrodo (1.9) ir (1.10) nelygybės. Galima įsitikinti, kad bet kuriam intervalui I, µ(i) = + n= µ(i (n, n + 1]). Jei dabar I = j=1 I j yra nesikertančių baigtinių intervalų sąjunga, tai pagal jau įrodytą dalį µ(ij ) = µ(i j (n, n + 1]) j = n n µ(i (n, n + 1]) = µ(i). Dabar jau nesudėtinga užbaigti teoremos įrodymą. Nemažėjanti tolydi iš dešinės funkcijs F : R R, tenkinanti sąlygas lim F (x) = 1, lim x + F (x) = 0, x vadinama pasiskirstymo funkcija. Lebego Stiltjeso matas µ = P F, kurį apibrėžia pasiskirstymo funkcija F, yra tikimybinis, t.y., P F (R) = 1. Be to, jei P yra tikimybinis matas, apibrėžtas realiųjų skaičių aibėje R, tuomet funkcija F (x) = P ((, x]), x R yra pasiskirstymo funkcja. 18

19 Lebego matas Nagrinėkime funkciją F (x) = x, x R. Ją atitinkantis Lebego Stiltjeso matas µ vadinamas Lebego matu ir toliau žymimas m. Dėl Lebego mato svarbos atskirai pateiksime jo apibrėžimą. Tuo tikslu, intervalo I R ilgį žymėkime l(i). 1.8 apibrėžimas. Aibės A R išoriniu Lebego matu m (A) vadinamas skaičius { m (A) = inf l(i k ) : {I k } yra toks atvirų intervalų rinkinys, kad E I i }. k=1 Akivaizdu, kad 0 m (A). 1.4 teorema. Išorinis Lebego matas m apibendrina ilgį, yra monotoninis ir invariantinis postūmiams. Be to, m (A) = 0, jei A yra skaiti aibė; bet kuriai aibių sekai A i R, i 1, i=1 ( ) m A i i=1 m (A i ). i=1 1.9 apibrėžimas. Aibė A R vadinama Lebego prasme mačia, jei su bet kuria aibe B R m (A) = m (A B) + m (A B c ) apibrėžimas. Lebego prasme mačios aibės A Lebego matas m(a) yra apibrėžiams kaip išorinis matas m (A), t.y. m(a) = m (A). Aibę visų Lebego prasme mačių R poaibių žymime A. Žemiau išrašytos savybės parodo, kad m yra matas σ-algebroje A. Be to, trejetas (R, A, m) yra pilna erdvė su matu. Bet dažniau nagrinėjame lebego mato siaurinį Borelio σ algebroje B R, kurį bėl gi žymime m ir vadiname Lebego matu. 1.5 teorema. Aibė A pasižymi šiomis savybėmis: 1. A ir R A ; 2. jei A A tai ir A c A ; 3. jei m (A) = 0, tai A A ; 4. jei A 1, A 2 A, tai A 1 A 2 A ir A 1 A 2 A ; 5. jei A A ir b R, tai A + b A ; 6. Bet kuris intervalas I A ir, be to, m(i) = m (I) = l(i); 19

20 7. jei A 1,..., A n A ir nesikerta, tai su bet kuria aibe B R n n n m ( B A i ) = m (B A i ) = m (B A i ); i=1 i=1 i=1 Atskiru atveju, imdami B = R, gauname n n m( A i ) = m(a i ). 8. Jei A i A, i = 1, 2,..., tai i=1 i=1 A i A i=1 9. Jei (A i, i = 1, 2,... ) A ir nesikerta, tai ir A i A ; i=1 ( ) m A i = i=1 m(a i ); i=1 10. Bet kuri atvira aibė ir bet kuri uždara aibė yra mačios Lebego prasme. 1.3 Mačios funkcijos Mačios funkcijos sąvoka Tarkime, (S, S) ir (V, V) yra dvi mačios erdvės apibrėžimas. Atvaizdis f : S V, vadinamas (S, V)-mačiuoju (mačiu σ algebrų S, V atžvilgiu arba tiesiog mačiuoju, kai atitinkamos σ algebros yra žinomos iš konteksto), jei f 1 (V) := {f 1 (A): A S} S. Norėdami pabrėžti f reikšmių aibę, sakysime, kad f yra V-reikšmis matus atvaizdis (arba, matus atvaizdis su reikšmėmis aibėje V). Svarbi yra sudėtinės funkcijos matumo teorema. 1.6 teorema. Tarkime, (S, S), (V, V) ir (E, E) mačios erdvės, f : S V, g : V E matūs atvaizdžiai. Tuomet kompozicija g f : S E (g f(s) = g(f(s)), s S) yra matus atvaizdis. Įrodymas. Paliekamas vietoj pratimo. 1.6 teiginys. Tegu f : S V. Su bet kokia aibės T poaibių klase A galioja lygybė σ ( f 1 (A) ) = f 1 (σ(a)). 20

21 Iš šio teiginio gauname, kad bet kuriai funkcijai f : S V, aibių šeima f 1 (V) yra σ algebra. Ji vadinama atvaizdžio f generuota σ algebra ir dažnai žymima σ f arba σ(f). Tai mažiausia σ algebra, kurios atžvilgiu yra mati funkcija f. 1.6 teiginio įrodyme pasiremsime funkcijos pirmavaizdžio savybėmis. Jos surinkos šioje lemoje, kurios įrodymą paliekame vietoj pratimo. 1.1 lema. Bet kuriai funkcijai f : S T, teisingos šios savybės: (a) f 1 ( ) = ; (b) f 1 (T) = S; (c) f 1 (A c ) = ( f 1 (A) ) c ; ( ) (d) f 1 i I A i = i I f 1 (A i ); ( ) (e) f 1 i I A i = i I f 1 (A i ); 1.6 teiginio įrodymas. Pirmiausia, pritaikę 1.1 lemą įsitikinkime, kad f 1 (σ(a)) yra σ algebra. Be to, f 1 (A) f 1 (σ(a)). Taigi σ ( f 1 (A) ) f 1 (σ(a)). Nagrinėkime A := {A T : f 1 (A ) σ ( f 1 (A) ) }. Pastebėkime, kad A yra σ algebra ir, be to, A A. Todėl ir A σ(a). Taigi f 1 (σ(a)) f 1 (A ) σ(f 1 (A)). Tai užbaigia įrodymą. Šis teiginys palengvina funkcijos matumo tikrinimą. 1.7 teiginys. Jei A yra tokia aibės T poaibių klasė, kad T = σ(a) ir f 1 (A) S, tai funkcija f : S T yra (S, T )-mati. Įrodymas. Kadangi f 1 (T ) = f 1 (σ(a)) = σ(f 1 (A)) S, nes f 1 (A) S ir S yra σ algebra. 21

22 Realios ir skaitinės mačios funkcijos Plačiau aptarsime realias mačias funkcijas. Tegu (S, S) yra bet kuri mati erdvė. Jei nepasakyta kitaip, realiųjų skaičių aibėje R nagrinėsime Borelio σ algebrą B R. Funkcija f : S R yra mati, jei f 1 (B) S su kiekviena Borelio aibe B R. Kadangi Borelio σ algebrą generuoja aibės pavidalo (a, + ), a R (žr pratimą), tai teisingas šis teiginys. 1.8 teiginys. Funkcija f : S R yra (S, B R )-mati tada ir tik tada, kai f 1 ((a, )) S, su visais a R. Be to, aibę (a, ) galime pakeisti bet kuria iš aibių (, a), (, a], [a, ). 1.4 pavyzdys. Nagrinėkime indikatorinę funkciją 1 A : S R, A S. Tegu B B R. Tuomet S, jei 0, 1 B 1 1 A (B) =, jei 0, 1 B c A, jei 1 B, 0 B c A c, jei 0 B, 1 B c. Taigi 1 1 A (B) S su bet kuria B B R, jei tik A S. Vadinasi, 1 A yra mati funkcija tada ir tik tada, kai A S apibrėžimas. Poromis nesikertančių mačių aibių rinkinys {A 1,..., A n } S vadinamas aibės S skaidiniu, jei S = n k=1 A k. Funkcija f : S R vadinama laiptine, jei n f = x k 1 Ak ; k=1 čia x 1,..., x n R, o {A 1,..., A n } yra aibės S skaidinys. Jei x 1,..., x n 0, tuomet f vadinama neneigiama laiptine funkcija. 1.9 teiginys. Laiptinės funkcijos yra mačios. Įrodymas. Tuomet Kadangi Tegu f = n k=1 x k1 Ak ; čia x 1,..., x n R, {A 1,..., A n } S yra aibės S skaidinys. f 1 ((a, ]) = {x S : f(x) > a} = = n {x A k : x k > a}. k=1 {x A k : x k > a} = n {x A k : f(x) > a} k=1 { A k, jeigu x k > a tai f 1 ((a, ]) yra mačių aibių sąjunga, todėl yra mati aibė. priešingu atveju, 22

23 1.10 teiginys. Tarkime, f, g : S R yra mačios funkcijos, a, b R. Tuomet yra teisingi šie teiginiai: (a) funkcijos f + c ir cf yra mačios su bet kuriuo c R; (b) su bet kuriais a, b R funkcija af + bg yra mati; (b) funkcija f g yra mati; (d) savo apibrėžimo srityje funkcija f/g yra mati; (e) funkcijos max{f, g} ir min{f, g} yra mačios; (f) funkcija f yra mati. Įrodymas. (a) Kadangi {x : f(x) + c > a} = {x : f(x) > a c} = f 1 (a c, ) S, nes f yra mati. Jei c = 0, tuomet {, kai a 0 {x : cf(x) > a} = S, kai a < 0. Taigi {x : cf(x) > a} S, kai c = 0. Jei c > 0, tuomet {x : cf(x) > a} = f 1 ((a/c, )) S. Galiausiai, jei c < 0, tuomet {x : cf(x) > a} = f 1 ((, a/c)) S, nes f yra mati. (b) Pakanka įrodyti, kad funkcija f + g yra mati. Turime {x S : f(x) + g(x) > a} = A c {x S : f(x) > a g(x)}. Pasinaudosime tuom, kad realiesiems skaičiams c, d nelygybė c > d teisinga tada ir tik tada, kai egzistuoja toks racionalus skaičius r, kad c > r > d. Todėl {x S : f(x) > a g(x)} = [ {x S : f(x) > r} {x S : r > a g(x)}. r Q Iš čia matyti, kad aibė {x S : f(x) > a g(x)} S, taigi ir {x S\A : f(x)+g(x) > a} S. (c) Pirmiausia pastebėkime, kad bet kurios mačios funkcijos f kvadratas f 2 yra mati funkcija. Tikrai, jei a 0, tuomet (f 2 ) 1 ((a, )) = S. Jei a > 0, tuomet (f 2 ) 1 ((a, )) = f 1 (( a, )) f 1 ((, a)) S. Toliau pastebėkime, kad fg = 2 1 ((f + g) 2 f 2 g 2 ). Taigi fg yra mati. (d) Pakanka įrodyti, kad funkcija 1/g yra mati. Ji apibrėžta aibėje B c, kai B = {x S : g(x) = 0}. Tegu a > 0. Tuomet {x B c : 1/g(x) > a} = {x B c : 0 g(x) < 1/c} = {x S : 0 < g(x) < 1/c} S. Jei a 0, tuomet {x B c : 1/g(x) > a} = {x B c : 0 g(x)} {x B c : g(x) < 1/a} = {x S : 0 < g(x)} {x S : g(x) < 1/a} S. 23

24 (e) Pakanka pastebėti, kad {x : max{f(x), g(x)} > a} = {x : f(x) > a} {x : g(x) > a} {x : min{f(x), g(x)} > a} = {x : f(x) > a} {x : g(x) > a}. (f) Funkcijos f = max{f, 0} ir f = min{f, 0} yra mačios, kaip ką tik įsitikinome. Taigi ir funkcija f = f + + f yra mati. Mačių funkcijų sekų ribos Tegu f n : S R yra mačių funkcijų seka. Pataškiui apibrėžta funkcija sup n f n reiškia, kad (sup n f n )(x) = sup n f n (x), x S. Analogiškai pataškiui apibrėžiamos ir kitos sekos (f n ) funkcijos teiginys. Tarkime, f, f n : S R, n 1 yra mačios funkcijos. Tuomet (a) funkcijos inf f n, sup f n yra mačios; (b) funkcijos lim inf f n, lim sup f n yra mačios; (c) aibė {x : lim f n (x) (d) aibėje {x : lim f n (x) egzistuoja} yra mati; egzistuoja} apibrėžta funkcija x lim n f n (x) = f(x) yra mati. Įrodymas. (a) Tegu g(x) = sup n f n (x), x S. Tuomet {x : g(x) a} = n {x : f n (x) a}, a R, {x : g(x) = + } = {x : g(x) = } = N=1 N=1 {x : f n (x) > N} n {x : f n (x) < N}. Kadangi kiekviena aibė dešinėje lygybių pusėje priklauso S, tai kairėje pusėje esančios aibės tai pat priklauso σ algebrai S. Taigi g yra mati funkcija. Kadangi inf n f n (x) = sup n ( f n (x)), tai funkcija inf n f n taip pat mati. (b) Pastebėję, kad n lim inf n f n = sup(inf f k) n 1 k n ir lim sup f n = inf (sup f k ), n n 1 k n rezultatą išvedame iš (a). (c) Turime {x : lim n f n (x) egzistuoja} = {x : lim inf n f n(x) = lim sup f n (x)}. n 24

25 (d) Pažymėkime A = {x : lim n f n (x) lim inf n f n (x) = lim n f n (x), tai egzistuoja}. Kadangi aibėje A teisinga lygybė {x A : lim n f n (x) > a} = {x A : lim inf n f n(x) > a} = A {x X : lim inf n f n(x) > a} S, nes funkcija lim n f n yra apibrėžta visoje aibėje S ir yra mati. Teiginys pilnai įrodytas. Taigi mačiųjų funkcijų pataškė riba, kai ji egzistuoja, yra mati funkcija. Čia verta pastebėti, kad tolydžiųjų funkcijų sekos riba nebūtinai tolydi funkcija. Pavyzdžiu gali būti seka f n (t) = t n, t [0, 1]. Jos pataškė riba yra lim f n(t) = n { 0, kai t 1 1, kai t = apibrėžimas. Mačių funkcijų seka (f n ) konverguoja prie mačios funkcijos f tolygiai, jei lim sup f n (x) f(x) = 0. n x S 1.14 apibrėžimas. Mačių funkcijų seka (f n ) konverguoja prie mačios funkcijos f beveik tikrai mato µ atžvilgiu (µ-b. t.) jei egzistuoja tokia mati aibė N, kad µ(n) = 0 ir su visais x N c. lim f n(x) = f(x) n 1.15 apibrėžimas. Mačių funkcijų seka (f n ) konverguoja prie mačios funkcijos f pagal matą µ, jei su kiekvienu ε > 0 lim n µ(x : f n(x) f(x) > ε) = 0. Taigi turime keturis mačių funkcijų sekos konvergavimo tipus: pataškis, pataškis tolygus, pagal matą ir beveik tikrai mato atžvilgiu. Panagrinėkime 6iuos konvergavimus indikatorinių funkcijų pavyzdžiu. Tegu (S, S, µ) yra erdvė su matu, (A n ) S - mačių aibių seka, A cs. Apibrėžkime f n (x) = 1 An (x), x S, n 1 ir f(x) = 1 A (x), x S. Kadangi sup x S 1 A (x) 1 B (x) = 1, jei A B, tai seka (f n ) konverguos tolygiai vieninteliu atveju, kai A n = A su visais n 1. Pataškiui seka konverguos prie funkcijos f = 1 A tada ir tik tada, kai lim sup A n = n n m n A m = lim inf n = n (žr pratimą). Seka f n f pagal matą tada ir tik tada, kai lim µ(a n A) = 0. n m n Taigi f n 0 pagal matą tada ir tik tada, kai µ(a n ) 0, nes 0 =. 25 A m = A

26 1.12 teiginys. Funkcija f : S R yra neneigiama mati funkcija. Tuomet egzistuoja tokia neneigiamų laiptinių funkcijų seka (f n ), kad f n f su visais n ir lim f n(x) = f(x) su visais x S. n Įrodymas. Kiekvienam n apibrėžkime A n,k = f 1 ((k/n, (k + 1)/n]), kai k = 1,..., n 2 1 ir A n,0 = f 1 ([0, 1/n] (n, )). Be to, tegu A = f 1 ({ }). Apibrėžkime f n (x) = 1 n n 2 1 k=0 Užbaigti teiginio įrodymą paliekame vietoj pratimo. k1 An,k (x) + n1 A (x), x S. 1.4 Mačių realiųjų funkcijų integravimas Apibrėžimai ir paprasčiausios savybės Tegu (S, S, µ) yra erdvė su matu. Nagrinėsime mačias funkcijas f, g, : (S, S) (R, B R ). Joms apibrėšime ingeralą atžvilgiu mato µ. Tai daroma trimis žingsniais. Pirmuoju apibrėžiamas laiptinės funkcijos integralas, antruoju - neneigiamos mačios funkcijos ir, galiausiai bet kurios mačios funkcijos integralas. Mato ir integralo teorijoje sutariama, kad 0 = apibrėžimas. Neneigiamos laiptinės funkcijos f = n k=1 x k1 Ak (x k [0, ], k = 1,..., n) (Lebego) integralas aibėje E S yra E fdµ := n x k µ(a k E). k=1 Pirmiausia reikėtų įsitikinti, kad integralo reikšmė nepriklauso nuo laiptinės funkcijos reprezentacijos, t.y., jei f = m k=1 y k1 Bk, tai n x k µ(a k E) = k=1 m y k µ(b k E). k=1 Tai paliekame vietoj pratimo. Iš integralo apibrėžimo iškart matyti, kad funkcija E E f dµ : S [0, ] yra neneigiama ir skaičiai adityvi apibrėžimas. Jei mati funkcija f 0, tai jos (Lebego) integralas aibėje E S yra E { f dµ := sup g dµ : E } g 0, g yra laiptinė funkcija ir g f aibėje E. 26

27 Norėdami apibrėžti integralą bet kuriai mačiai funkcijai f, pažymėkime f + = max{f, 0}, f = max{ f, 0}. Funkcijos f +, f, kurios vadinamos atitinkamai teigiama ir neigiama funkcijos f dalimi, yra mačios (žr teiginį ) ir f = f + f, f = f + + f apibrėžimas. Funkcija f vadinama integruojama aibėje E S, jei integralas f dµ yra E baigtinis. Šiuo atveju, funkcijos f integralas aibėje E yra f dµ = f + dµ f dµ. E E 1.13 teiginys. Jei mačios funkcijos f, g aibėje E yra lygios beveik visur mato µ atžvilgiu, t.y. µ(s E : f(s) g(s)) = 0, tai f dµ = g dµ. Įrodymas. Paliekamas vietoj pratimo. E Integralą S f dµ toliau žymėsime trumpiau f dµ. Jei µ yra tikimybinis matas, dažnai f dµ žymimas Ef ir vadinamas funkcijos f vidurkiu. E E 1.14 teiginys. Jei f yra neneigiama mati funkcija, tai atvaizdis (1.11) E f dµ, E S, yra neneigiama monotoninė nemažėjanti ir skaičiai adityvi funkcija. E Įrodymas. Kad (1.11) formule apibrėžta funkcija yra nemažėjanti, gauname tiesiog iš apibrėžimo. Tegu (E n ) yra mačių aibių seka ir E = n E n. Bet kuriai neneigiamai laiptinei funkcijai g f, remiantis integralo apibrėžimu, g dµ g dµ f dµ. E n E n n E n Nagrinėdami kairiosios pusės tikslųjį viršutinį rėžį atžvilgių visų neneigiamų laiptinių funkcijų g f, gauname f dµ f dµ. E n E n Norėdami įrodyti skaitų adytivumą, pakanka įsitikinti, kad (1.12) f dµ f dµ, E n E n 27

28 kai E i E j =, i j. Nagrinėkime dvi nesikertančias aibes E 1, E 2 S. Kiekvieną ε > 0 atitinka tokios dvi laiptinės funkcijas g 1, g 2, kad g i f aibėje E i, i = 1, 2 ir (1.13) f dµ E i g i dµ + ε/2. E i Apibrėžkime g 1 (s), kai s E 1, g(s) = g 2 (s), kai s E 2, 0, kai s (E 1 E 2 ) c. Funkcja g yra neneigiama ir g f aibėje E 1 E 2. Sudėję (1.13) nelygybes kai i = 1, 2, gauname f dµ + f dµ ε + g dµ + g dµ E 1 E 2 E 1 E 2 = ε + g dµ E 1 E 2 ε + f dµ. E 1 E 2 Kadangi ε > 0 laisvai pasirenkamas skaičius ir funkcija E f dµ pusiauadityvi, tai E f dµ = E 1 E 2 f dµ + E 1 f dµ. E 2 Remiantis šia lygybe ir integralo, kaip aibės funkcijos monotoniškumu, gauname E f dµ d dµ = A 1 E n n k=1 E k f dµ. Perėję prie ribis, kai n, įsitikiname, kad (1.12) nelygybė yra teisinga. Teiginys pilnai įrodytas. Lebego teoremos 1.7 teorema. ( Lebego teorema apie monotoninį konvergavimą ) Tegu 0 f 1 f 2 f n yra mačių funkcijų seka ir lim n f n (t) = f(t) su visais t S. Tuomet (1.14) lim f n dµ = f dµ n E E bet kuriai E S. Įrodymas. Kairę (1.14) lygybės pusę pažymėkime v. Kadangi f n f su visais n 1, tai (1.15) v f dµ. E 28

29 Tegu laiptinė funkcija g f aibėje E. Imdami skaičių c (0, 1), apibrėžkime aibes E n = {x : x E, 0 cg(x) f n (x)}. Seka (E n ) yra nemažėjanti ir konverguoja į E. Todėl f n dµ E f n dµ c E n g dµ. E n Perėję prie ribos, kai n ir, pritaikę ką tik įrodytą 1.4 teiginį, gauname v c g dµ. Imdami E tikslųjį viršutinį rėžį pagal neneigiamas laiptines funkcijas g f ir perėję prie ribos, kai c 1, gauname v f dµ. Ši nelygybė, kartu su (1.15), įrodo (1.14). E Integralo savybės Įrodysime, kad integravimas yra tiesinė operacija teiginys. Jei mačios funkcijos f 1, f 2 yra integruojamos aibėje E S, tai su bet kuriais a, b R, funkcija af 1 + bf 2 yra integruojama aibėje E ir (af 1 + bf 2 ) dµ = a f i dµ + b f 2 dµ. E Įrodymas. Paliekame vietoj pratimo įrodyti, kad teiginys yra teisingas laiptinėms funkcijoms. Tarkime, f 1, f 2 yra neneigiamos mačios funkcijos. Egzistuoja tokios dvi laiptinių funkcijų sekos (g 1n ) ir (g 2n ) kurios monotoniškai didėja ir konverguoja į atitinkamai f 1 ir f 2. Suma (g 1n +g 2n ) yra nemažėjanti laiptinių funkcijų seka ir konverguoja į sumą f 1 + f 2. Pritaikę 1.7 teoremą, gauname (f 1 + f 2 ) dµ = lim (g 1n + g 2n ) dµ E n E E = lim g 1n dµ + lim n E = f 1 dµ + f 2 dµ. E E E n E g 1n dµ 1.16 teiginys. Neneigiamos mačios funkcijos f integralas f dµ = 0 tada ir tik tada, kai µ(x E E : f(x) 0) = 0. Įrodymas. Tarkime, kad f dµ = 0, bet µ(x E : f(x) 0) = α > 0. Tuomet egzistuoja tokia E konstanta c > 0 ir tokia aibė A E, kad µ(a) > 0 ir f(s) c su visais s A. Tokiu atveju, f dµ f dµ c 1 dµ = cµ(a) > 0. E A A Taigi būtinumas įrodytas. Pakankamumą paliekame skaitytojui vietoj pratimo. Kai kurios kitos integralo savybės surinktos šiame pratime. 29

30 1.17 teiginys. Integralo pasižymi šiomis savybėmis: (a) Jei µ(t: f(t) > g(t)) = 0, tai f(t)µ( dt) g(t)µ( dt); S S (b) Jei yra integruojama funkcija f tai integruojama ir funkcija f ir, be to, f(t)µ( dt) f(t) µ( dt); S (c) Jei f yra integruojama funkcija, a, b R ir E tokia mati aibė, kad a f(t) b su visais t E, tai aµ(e) f(t)1 E µ( dt) bµ(e); S S (d) Atvaizdis yra σ-adityvus. E fdµ : F R E Įrodymas. Paliekamas vietoj pratimo. Integralų ribos Perėjimą prie ribos po integralo ženklu nustato trys žemiau suformuluoti rezultatai: Lebego teorema apie mažoruojamą konvergavimą, B. Levy teorema apie monotoninį konvergavimą ir Fatu lema. Sakysime, kad seka (f n ) konverguoja prie f pagal matą µ, jei su kiekvienu ε > 0 lim µ(t: f n(t) f(t) > ε) = 0. n Seka (f n ) konverguoja į funkciją f µ beveik visur, jei µ(t: f n (t) f(t)) = teorema. Tarkime, integruojamų funkcijų seka (f n ) konverguoja pagal matą µ į funkciją f ir egzistuoja tokia integruojama funkcija g, su kuria f n (t) g beveik visiems t S (n N.) Tuomet (1.16) lim f n (t)µ( dt) = f(t)µ( dt). n S 30 S

31 Įrodymas. Pereidami, jei reikia, prie posekių, galime tarti, kad seka (f n ) konverguoja prie f pataškiui. Be to, galime tarti, kad f n (t) g(t) kiekvienai argumento reikšmei t. Tuomet su visais t g(t) f n (t) 0, g(t) + f n (t) 0. Remiantis Fatu lema lim inf n (g f n ) dµ lim inf (g f n) dµ = n (g f) dµ. Kairėje šios lygybės pusįėje esantys dydis yra lygus g dµ lim inf n fn dµ. Kadangi funkcija g yra integruojama ir f g, f n g, tai f n ir f taip pat integruojamos, todėl lim inf f n dµ f dµ. n Atlikę analogiškus veiksmus su seka (g + f n ), gauname lim inf f n dµ n f dµ. Iš pastarųjų dviejų nelygybių gauname (1.16). 1.9 teorema. Tarkime (f n ) yra tokia mačių funkcijų seka, kad f n (t) 0 beveik visiems t S, f n (t) f m (t) su visais t S, kai n m ir lim n f n (t) = f(t) visiems t S. Tuomet galioja (1.16) sąryšis. 1.2 lema. Tarkime, (f n ) yra neneigiamų integruojamų funkcijų seka. Jei lim f n (t)µ( dt) <, n S tai funkcija f(t) = lim inf n f n (t), t S, yra integruojama ir f(t)µ( dt) lim inf f n (t)µ( dt). n S S Įrodymas. Apibrėžkime g n (s) = inf{f i (s), i n}, s S. Tuomet seka (g n ) monotoniškai nemažėja ir konverguoja į lim inf n f n. Remiantis teorema apie monotoninį konvergavimą lim inf g n dµ = (lim inf f n ) dµ. n n Kadangi g n f n su visais n, tai E g n dµ E f n dµ su visais n. E E 31

32 Integravimo kintamųjų keitimas Kintamųjų keitimo integrale taisyklę nustato ši teorema teorema. Tarkime, (S 1, S 1, µ 1 ) yra kita erdvė su matu, T : S 1 S matus atvaizdis. Be to, tarkime µ 1 yra toks σ baigtinis matas, kad matas µ 1 T 1 taip pat σ baigtinis. Tuomet su bet kuria mačia funkcija f ir bet kuria mačia aibe F f T dµ 1 = f dµ 1 T 1. T 1 (F ) F Matas µ 1 T 1 (A) = µ 1 (T 1 (A)), A T. Įrodymas. Pirmausia imkime funkciją f = 1 A. Tuomet 1 A dµ T 1 = µ T 1 (B F ) = µ(t 1 (B) T 1 (F )) F = 1 T 1 (B) dµ = 1 B T dµ. T 1 (F ) T 1 (F ) Taigi formulė teisinga, kai f indikatorinė funkcija. Kadangi laiptinės funkcijos yra tiesinė kompinacija indikatorinių, tai formulė išlieka teisinga ir bet kuriai laiptinei funkcijai. Toliau tarkime, f yra neneigiama mati funkcija. Tuomet egzistuoja tokia laiptinių funkcijų seka (g n ), kuri monotoniškai didėja ir konverguoja į f. Be to, (g n T ) taip pat yra monotoniškai didėjanti laiptinių funkcijų seka, kuri konverguoja į f T. Lieka pritaikyti teoremą apie monotoninį konvergavimą. Bendras mačios funkcijos atvejis susiveda į išnagrinėtą pritaikius lygybę f T = f T teiginys. Tegu (f n ) yra neneigiamų mačių funkcijų seka, kuri konverguoja prie f pagal matą. Jei f n ir f integruojamos ir f n dµ f dµ, tai f n f dµ = Pratimai lim n 1.1 pratimas. Raskite x [0,1] [x, 2] ir x [0,1] [x, 2]. 1.2 pratimas. Tarkime, {A i, i I} yra kurios nors aibės poaibių šeima. Įrodykite De Morgano (1.1) tapatybes. 1.3 pratimas. Nustatykite, kurie iš pateiktų binarinių sąryšių yra ekvivalentumo ir jiems aprašykite ekvivalentumo klases: (a) Aibėje R sąryšis x y reiškia, kad x y < 1.; (b) Aibėje R 2 sąryšis x y reiškia, kad taškai x ir y yra vienoje tiesėje, einančioje per koordinačių pradžią; 32

33 (c) Aibėje R 2 sąryšis x y reiškia, kad taškai x = (x 1, x 2 ) ir y = (y 1, y 2 ) tenkina x x 2 2 = y y 2 2; (d) Aibėje 2 R sąryšis A B aibėms A, B R reiškia, kad A B = ; (e) Funkcijų aibėje R R sąryšis f g reiškia, kad egzistuoja tokia konstanta c, kad f(x) = g(x) + c, x R. 1.4 pratimas. Apibrėžkime funkciją f : N {0} Z: f(x) = Įrodykite, kad funkcija f yra bijekcija. { x/2, 1.5 pratimas. Patikrinkite šias lygybes: (a) 1 A B = 1 A 1 B. { (b) x : } n 1 A n (x) < (x + 1)/2, = n k n Ac k. 1.6 pratimas. Įrodykite šiuos teiginius. (1) Racionaliųjų skaičių aibė Q yra skaiti. (2) Skaiti skaičių aibių sąjunga yra skaiti aibė. jei x yra lyginis jei x yra nelyginis. (3) Bet kuris netuščias atviras realiųjų skaičių intervalas yra neskaiti aibė. 1.7 pratimas. Įsitikinkite, kad visų galimų intervalo [0, 1] pointervalių baigtinių sąjungų rinkinys yra algebra, bet nėra σ algebra. 1.8 pratimas. Imkime A 2 S. Nagrinėkime aibių B = n k=1 i=1 m B ki, rinkinį, kai arba B ki A, arba B c ki A. Pažymėkime jį A 0. Įsitikinkite, kad šeima A 0 ir yra mažiausia algebra, kuriai priklauso A. 1.9 pratimas. Tegu A, A 2 S. Įrodykite šiuos sąryšius: (a) Jei A A, tai σ(a) σ(a ); (b) Jei A σ(a ) tai σ(a) σ(a ); (c) Jei A A σ(a), tai σ(a) = σ(a ). 33

34 1.10 pratimas. Įsitikinkite, kad B R = σ(a), kai A yra bet kuri iš šių šeimų: {(a, b) : a, b R}, {(, a) : a R}. {(a, b) : a, b Q}, {(, a) : a Q} pratimas. Įrodykite, kad realiųjų skaičių aibės R bet kuri taškinė aibė {x} yra Borelio pratimas. Įsitikinkite, kad B R = σ(a), kai (a) A = {(a, b) : a, b R}; (b) A = {(, a] : a R}; (c) A = {(a, ) : a R} pratimas. Įsitikinkite, kad B R = σ(b R, { }, {+ }) 1.14 pratimas. Įsitikinkite, kad topologinės erdvės Borelio σ algebra yra taip pat generuojama uždarųjų aibių šeima. Taigi tiek atviros tolologinės erdvės S aibės, tiek uždaros yra Borelio pratimas. Įrodykite, kad atvirasis metrinės erdvės rutulys yra atvira aibė, o uždarasis - uždara pratimas. Įsitikinkite, kad atvirųjų metrinės erdvės (S, d) aibių šeima τ d sudaro topologiją. Ji vadinama natūraliaja metrinės erdvės topologija pratimas. Patikrinkite metrikos aksiomas funkcijai d(x, y) = x y, x, y R. 1 + x y Ar metrinės erdvės (R, d) topologija yra ekvivalenti Euklidinei? 1.18 pratimas. Patikrinkite metrikos aksiomas funkcijoms d 1, d 2, d, apibrėžtoms?? pavyzdyje. Įsitikinkite, kad jos aprašo ekvivalenčias erdvės R m topologijas pratimas. Tegu F yra aibės Ω poaibių σ algebra, B Ω. Įsitikinkite, kad rinkinys G = {A B : A F} yra aibės B poaibių σ algebra. Tegu (S, S) yra mati erdvė. Seka (A n ) S yra monotoniškai didėjanti, jei A n A n+1 su visais n 1; monotoniškai mažėjanti, jei A n A n+1 su visais n 1. Aibei lim sup A n = n i=1 n=i A n 34

35 priklauso tik tie s S, kurie priklauso begalo daugeliui A n. Aibei lim inf A n = A n n i=1 n=i priklauso tik tie s S, kurie priklauso visoms aibėms A n išskyrus galbūt baigtinį jų skaičių. Jei lim inf n A n = lim sup n A n tai tą aibę žymime lim n A n ir vadiname aibių sekos (A n ) riba pratimas. Koks ryšys tarp lim sup ir lim inf apibrėžimų skaičių sekai (x n ) ir aibių sekai (A n )? 1.21 pratimas. Apibrėžkime A n = Raskite lim inf n A n ir lim sup n A n. { ( 1/n, 1], ( 1, 1/n], kai n nelyginis kai n lyginis pratimas. Tegu (A n, n N) yra aibių seka. Įrodykite šiuos teiginius: (a) lim inf n A n = lim sup n A n tada ir tik tada, kai su kiekvienu ω Ω egzistuoja riba lim n 1 An (ω). (b) Jei seka (A n ) monotoniškai didėjanti, tai lim n A n = n=1 A n. (c) Jei seka (A n ) monotoniškai mažėjanti, tai lim n A n = n=1 A n pratimas. Įrodykite 1.1 lemą pratimas. Įrodykite, kad (1.5 formule aprašoma aibių sistema yra algebra, o (1.5 formule aprašoma funkcija - matas toje algebroje pratimas. Įrodykite, kad funkcija f : S R yra mati tada ir tik tada, kai f 1 ((r, ]) S su visais r Q pratimas. Įrodykite, kad atitinkamai parinkus matą µ f(x n ) = f(x)µ(dx). n= pratimas. Tegu metrinės erdvės (S, d) σ algebra σ(c) yra generuota atvirų rutulių šeima C S = {S r (x) : r 0.x S}. Pateikite pavyzdį, kuris įrodytų, kad bendru atveju σ(c S ) B S. Pagalba. Nagrinė metrinę erdvę (R, d), kai d yra diskrečioji metrika: { 1, kai x y, d(x, y) = 0, kai x = y.. Tuomet bet kuris R poaibis yra atvira aibė, taigi B R = 2 R.. Atviri diskrečiosios metrinės erdvės rutuliai yra arba vieno taško aibės arba visa R. 35

36 1.28 pratimas. Tegu (S, S) yra mati erdvė, A R yra tiršta aibė. T.y., kokį beimtume skaičių ε > 0, kiekvienam x R rasime tokį x ε A, kad x x ε < ε. Pavyzdžiui, racionaliųjų skaičių aibė Q yra tiršta. Įrodykite, kad funkcija f : S R yra mati tada ir tik tada, kai išpildoma viena iš šių sąlygų: (a) f 1 ((a, ]) S su kiekvienu a A; (a) f 1 ([a, ]) S su kiekvienu a A; (a) f 1 ([, a)) S su kiekvienu a A; (a) f 1 ([, a]) S su kiekvienu a A pratimas. Tarkime, funkcija f : R R yra tolydi visur išskyrus baigtinį arba skaitų taškų skaičių. Įrodykite, kad funkcija f yra Borelio pratimas. Įrodykite, kad bet kuri monotoninė funkcija f : R R yra Borelio. 36

37 2 skyrius Atsitiktiniai dydžiai 2.1 Apibrėžimai Fiksuokime tikimybinę erdvė (Ω, F, P ). Tuo atveju, kai tikimybinę erdvę siejame su kokiu nors statistiniu eksperimentu, aibę Ω interpretuojame kaip elementariųjų įvykių visumą, F eksperimento metu stebimų įvykių σ-algebrą, o P (A) reiškia įvykio A pasirodymo galimybė išreikšta skaičiumi iš intervalo [0, 1]. Visiškai bendru atveju, Ω galima interpretuoti kaip vsiumą Gamtos scenarijų, o A F yra scenarijų rinkinys, kurį Gamta parenka su tikimybe P (A). Matematine-tikimybine kalba, atsitiktinis dydis, apibrėžtas tikimybinėje erdvėje (Ω, F, P ), yra (F, B R ) - matus (trumpiau F-matus) atvaizdis X : Ω R, t.y., tokia funkcija kad X : Ω R, (2.1) {ω Ω : X(ω) A} F su kiekviena Borelio aibe A R (A B R ). Kadangi Borelio σ algebrą generuoja intervalai, pakanka, kad (2.1) savybė būtų teisinga šio pavidalo (2.2) [a, b), (, b), [a, ), (, ), a, b R aibėms A R. Taigi tie scenarijai ω Ω, dėl kurių atsitiktinio dydžio X reikšmės yra, tarkime, intervale [a, b), visados yra pamatuojami, t.y. {ω Ω : X(ω) [a, b)} F ir galime kalbėti apie tikimybę P ({ω : X(ω) [a, b)}). Trumpindami, vietoj P ({ω : X(ω) A}) dažnai rašysime P (X A). 2.1 teiginys. Jei X yra atsitiktinis dydis, o g : R R yra Borelio funkcija, t.y., tokia funkcija, kuriai g 1 (A) := {x R : g(x) A} B R, su kiekviena aibe A B R, tai g(x) yra atsitiktinis dydis. 37

38 Įrodymas. Išvedame iš 1.6 teoremos. Tolydžios funkcijos ir funkcijos turinčios ne daugiau nei skaičią trūkio taškų aibę yra Borelio (žr pratimą). Taigi pavyzdžiui, jei X yra atsitiktinis dydis, tai X 2, cos(x), 1/X, yra atsitiktiniai dydžiai. Visų atistiktinių dydžių, apibrėžtų tikimybinėje erdvėjs (Ω, F, P ) aibė žymima L 0 = L 0 (Ω, F, P ). Du atsitiktiniai dydžiai X 1 ir X 2, apibrėžti toje pačioje tikimybinėje erdvėje, vadinami ekvivalenčiais (žymėsime X 1 = X 2 arba X 1 = X 2 b.t., arba tiesiog X 1 = X 2 ), b.t. jei P (ω : X 1 (ω) X 2 (ω)) = 0. Galima įsitikinti, kad yra aibės L 0 ekvivalentumo sąryšis (žr. 2.3 pratimą). Atitinkama faktor aibė žymima L 0 = L 0 (Ω, F, P ): L 0 (Ω, F, P ) = L(Ω, F, P )/. Atsitiktinis dydis X apibrėžia σ algebrą F X := {X 1 (B) : B B R } F, kuri vadinama atsitiktinio dydžio X generuota σ algebra (žr. 2.1 pratimą), bei tikimybinį matą P X : P X (B) = P ({ω : X(ω) B}), B B R. Tikimybinis matas P X vadinamas atsitiktinio dydžio X skirstiniu. Taigi atsitiktinis dydis tikimybinę erdvę (Ω, F.P ) pakeičia kita tikimybine erdve (R, B R, P X ) arba (R, F X, P X ). Jei µ yra tikimybinis matas, apibrėžtas aibės R Borelio σ algebroje, tai egzistuoja tikimybinė ervdvė (Ω, F, P ) ir toks atsitiktinis dydis X : Ω R, kad P X = µ. Pakanka paimti Ω = R, F = B R ir apibrėžti X : Ω R, X(ω) = ω. 2.2 Pasiskirstymo funkcija ir kitos charakteristikos Atsitiktinio dydžio aprašymui naudojamos įvairios neatsitiktinės charakteristikos. Bene svarbiausia yra pasiskirstymo funkcija. Atsitiktinio dydžio X pasiskirstymo funkcija yra realioji realaus argumento funkcija F X : R R, F X (x) = P (ω Ω : X(ω) x), x R. Pagrindines jos savybes aprašo šis teiginys. 2.2 teiginys. Atsitiktinio dydžio pasiskirstymo funkcija F pasižymi šiomis savybėmis: (i) lim x + F (x) = 1, lim x F (x) = 0, (ii) F yra nemažėjanti: jei x < y tai F (x) F (y), (iii) F yra tolydi iš dešinės: F (x + h) F (x), jei h 0. Be to, kiekviena nemažėjanti tolydi iš dešinės ir tenkinanti (i) sąlygą funkcija F : R R yra kurio nors atsitiktinio dydžio X pasiskirstymo funkcija, t.y. egzistuoja tokia tikimybinė erdvė (Ω, F, P ) ir toks joje apibrėžtas atsitiktinis dydis X, kad F = F X. Atsitiktiniai dydžiai X 1, X 2 yra vienodai pasiskirstę (žymėsime X 1 D = X2 ), jei jų pasiskirstymo funkcijos sutampa, t.y. F X1 (x) = P (ω : X 1 (ω) x) = P (ω : X 2 (ω) x) = F X2 (x) su visais x R. Čia atkreipiame dėmesį, kad vienodai pasiskirstę atsitiktiniai dydžiai nebūtinai turi būti apibrėžti vienoje tikimybinėje erdvėje. Ekonometrija bei finansų matematika paprastai nagrinėja tik diskrečiuosius ir tolydžiuosius atsitiktinius dydžius. 38

39 2.1 apibrėžimas. Atsitiktinis dydis X vadinamas diskrečiuoju, jeigu jo įgyjamų reikšmių aibė {x i } yra baigtinė arba skaiti. Diskretūs atsitiktiniai dydžiai pilnai aprašomi įgyjamomis reikšmėmis x 1, x 2,..., ir atitinkamomis tų reikšmių įgyjimo tikimybėmis p 1, p 2, : p k = p X (x k ) = P (ω : X(ω) = x k ), k = 1, 2,... Skaičių rinkinys (p X (x k )) (arba trumpiau (p k )) vadinamas diskrečiojo atsitiktinio dydžio X reikšmių tikimybių funkcija. Ji pasižymi šiomis savybėmis: (i) 0 p X (x k ) 1 su visais k (ii) p X (x) = 0, jei x x k ; (iii) k p X(x k ) = 1. Jei X yra diskretus atsitiktinis dydis su reikšmėmis x 1, x 2,... ir tai jo pasiskirstymo funkcija yra P (X = x k ) = p k, k = 1, 2,... F (x) = k: x k x p k, x R. Jei aibė A Ω yra mati (A F), tuomet (ir tik tuomet) indikatorinė funkcija { 1, kai ω A, 1 A (ω) = 0, kai ω A yra atsitiktinis dydis. Tai bene paprasčiausias diskretusis atsitiktinis dydis. 2.2 apibrėžimas. Atsitiktinį dydį X su pasiskirstymo funkcija F X vadiname tolydžiuoju, jei egzistuoja tokia neneigiama Borelio funkcija f X : R R, kad F X (x) = x f X (t) dt, x R. Jei nepasakyta kitaip, realaus argumento funkcijų integralai suprantami Lebego prasme. Funkcija f X vadinama atsitiktinio dydžio X tankio funkcija (tankiu). Ji pasižymi šiomis savybėmis: (i) f X (x) 0 su visais x R; (ii) f X(x) dx = 1; (iii) f X yra atkarpomis tolydi funkcija; (iv) P (ω : a < X(ω) b) = b a f X(x) dx su visais a < b; (v) Borelio aibei B R, B f(x) dx = P (X B). 39

40 Atsitiktinio dydžio X vidurkis (tikėtina reikšmė arba tipinė reikšmė) yra X integralas atžvilgiu tikimybinio mato P : E(X) = X(ω) dp (ω) = X dp. Ω Priminsime šio integralo apibrėžimą. Atskiru atveju, kai X yra diskretusis atsitiktinis dydis, tarkime, su reikšmėmis a 1, a 2,... ir A j = {ω : X(ω) = a j }, j = 1, 2,..., apibrėžiame X(ω) dp (ω) := a 1 P (A 1 ) + a 2 P (A 2 ) +. Ω Taigi E(1 A ) = P (A). Todėl vidurkis yra tam tikra prasme bendresnė sąvoka už tikimybę. Toliau remiamės šiuo faktu: jei X yra neneigiamas a.d. tai egzistuoja tokia neneigiamų diskrečiųjų a.d. seka X 1, X 2,..., kad X 1 (ω) X 2 (ω) ir, be to, lim X n(ω) = X(ω) n su visais ω Ω. Remdamiesi šiuo faktu, apibrėžiame X(ω) dp (ω) := lim n Ω Ω X n (ω) dp. Čia reikia pažymėti, kad riba visada egzistuoja (baigtinė arba begalinė), nes seka ( Ω X ndp, n 1) yra nemažėjanti. Galiausiai, jei X yra bet kuris atsitiktinis dydis, tuomet E(X) := E(X + ) E(X ), čia X + = max{x, 0}, X = min{x, 0}, jei tik bent vienas iš vidurkių E(X + ) arba E(X ) yra baigtinis. Jei abu vidurkiai EX + ir EX yra baigtiniai, tuomet E X <. Šiuo atveju sakome, kad a.d. X yra integruojamas. 2.3 teiginys. Neneigiamo tolydžiojo atsitiktinio dydžio vidurkis yra (2.3) E(X) = 0 P (ω : X(ω) > x) dx. Įrodymas. Šią formulę nesunkiai išvedame sukeitę integravimo tvarką: ( ) E(X) = X(ω) dp (ω) = 1 {X(ω)>t} dt dp (ω) = Ω 0 P (X > t) dt. Iš (2.3) gauname kitą svarbią formulę, kuri susieja atsitiktinio dydžio momentus su galimų didelių reikšmių tikimybėmis: jei p 1, tada (2.4) E X p = p 0 Ω 0 x p 1 P (ω : X(ω) > x) dx. Diskretaus neneigiamo sveikareikšmio a.d. vidurkiui skaičiuoti galima naudotis tokia formule. 40

41 2.4 teiginys. Jei X yra neneigiamas sveikareikšmis atsitiktinis dydis, tai (2.5) EX = P (X > k). k=0 Įrodymas. Įrodymui reikia sukeisti sumavimo tvarką: P (X > k) = k=0 = k=0 j=k+1 p j = jp j = EX. j=1 Atsitiktinio dydžio vidurkį galime išreikšti Rymano-Stiltjeso integralu atžvilgiu jo pasiskirstymo funkcijos: E(X) = 0 j=1 xdf X (x). Jei g : R R yra Borelio funkcija ir E g(x) <, tuomet E(g(X)) = g(x(ω)) dp (ω) = Atskiru atveju, jei X yra tolydusis a.d. su tankio funkcija f X, tai Eg(X) = Ω g(x) dp X (x) = Jei X yra diskretusis a.d. su reikšmių tikimybių funkcija (p k ) tuomet ( j 1 k=0 ) p j g(x) df X (x). g(x)f X (x) dx. Eg(X) = g(x) df X (x) = k g(x k )p k. Priminsime kitas svarbesnes diskrečiųjų bei tolydžiųjų atsitiktinių dydžių charakteristikas. n-tosios eilės momentas: { E(X n ) = xk f X (x)dx, kai X tolydus a.d. k xn k p X(x k ), kai X diskretus a.d. dispersija { σx 2 = var(x) = (x µ X) 2 f X (x)dx, kai X tolydus a.d. k (x k µ X ) 2 p X (x k ), kai X diskretus a.d. standartinis nuokrypis yra σ X - kvadratinė šaknis iš dispersijos. charakteristinė funkcija yra argumento t R, bendru atveju, kompleksinė funkcija c X (t) = Ee ıtx = E cos(tx) + ıe sin(tx). Čia ı = 1. 41

42 generuojanti funkcija yra argumento s > 0 funkcija g X (s) = Es X, s > 0. Funkcija g X yra apibrėžta tiems s > 0 su kuriais Es X <. 2.1 pavyzdys. Bernulio atsitiktinis dydis. Atsitiktinis dydis X turintis tik dvi galimas reikšmes 0 ir 1, vadinamas Bernulio atsitiktiniu dydžiu. Tikimybė, kad tas dydis įgis reikšmę 1 lygi p, o P (X = 0) = 1 p. Bernuli atsitiktinis dydis aprašo vieno kurio nors įvykio sėkmę nesekmę. Tai gali būti, tarkime, vartotojo sprendimas pirkti kurią nors prekę; banko sprendimas apie kredito išdavimą; darbdavio sprendimas apie priėmimą į darbą ir t.t. Jo vidurkis ir dispersija yra atitinkamai µ X = p ir σ 2 X = p(1 p). 2.2 pavyzdys. Binominis atsitiktinis dydis. Jei atliekame n bandymų, kiekviename iš kurių įvykis pasirodo su tikimybe p ir nepasirodo su tikimybe 1 p, tuomet įvykio pasirodymų skaičius X yra Binominis atsitiktinis dydis (žymime X b(k; n, p)). Jo galimos reikšmės yra 0, 1,..., n ir atitinkamos tikimybės P (X = k) = b(k; n, p) := ( n k ) p k (1 p) n k, k = 0, 1,..., n. Be to, µ X = E(X) = np, σ 2 X = var(x) = np(1 p), o generuojanti funkcija yra g X (s) = (1 p + ps) n, s > pavyzdys. Puasono atsitiktinis dydis. Puasono atsitiktinis dydis X yra diskretusis atsitiktinis dydis, kurio reikšmės yra 0, 1, 2, 3,..., o atitinkamos tikimybės P (X = k) = p(k; λ) := λk k! e λ su kiekvienu k = 0, 1,... (žymėsime X p(k; λ)). Čia λ > 0 yra Puasono parametras, dar vadinamas intensyvumu. Tai labai plačiai naudojamas atsitiktinis dydis, dažniausiai aprašantis kokių nors įvykių pasirodymo skaičių vienetinio ilgio laiko intervale, kai vidutinis tų įvykių pasirodymas per tą patį laiką yra λ. Pavyzdžiui, skambučių skaičius per tam tikrą laiką (valandą, dieną ir t.t.); fiksuotame laiko intervale kreditinių kortelių panaudojimo bankomate skaičius; per tam tikrą laiko intervalą (per dieną, valandą ar pan.) užeinančių į parduotuvę pirkėjų skaičius. Puasono atsitiktinis dydis labai paplitęs modeliuojant skaičiuojančiuosius procesus. Tegu X yra Puasono atsitiktinis dydis su parametru λ > 0. Tuomet EX = =λ k=0 k=1 k λk k! e λ = k=1 λ k 1 (k 1)! e λ = λ. k λk k! e λ Norėdami suskaičiuoti Puasono atsitiktinio dydžio dispersiją, pirmiausia suskaičiuojame EX(X 1) = k=2 k(k 1) λk k! e λ = λ 2. 42

43 Kadangi EX 2 = EX(X 1) + EX = λ 2 + λ, tai dispersija yra Puasono atsitiktinio dydžio generuojanti funkcija yra var(x) = EX 2 (EX) 2 = λ. g X (s) = e λ(s 1), s > pavyzdys. Geometrinis atsitiktinis dydis. Bandymą, kuriame įvykis pasirodo su tikimybe p tol kartojame, kol įvykis pasirodo. Reikalingų tam bandymų skaičius X ir turi geometrinį skirstinį (žymėsime X g(n; p). Atitinkamos tikimybės yra Pažymėję q = 1 p, suskaičiuojame P (X = n) = (1 p) n p, n = 0, 1, 2,... ( k ) EX = kq k p = p kq k = p 1 q k =p = k=0 j=1 k=j k=0 k=0 q j = p q j (1 q) 1 q j = q p. j=1 j=1 Geometrinio atsitiktinio dydžio generuojanti funkcija yra g X (s) = j=1 p 1 qs, 0 < s < q pavyzdys. Tolygusis a.d. Atsitiktinis dydis X vadinamas tolygiuoju intervale (a, b), jei jo tankio funkcija yra 1 f X (x) = b a, kai a < x < b 0 kitur. Tolygiojo a.d. pasiskirstymo funkcija yra 0, kai x a x a F X (x) =, kai a < x < b; b a 1 kai x b. Kitos jo skaitinės charakteristikos: vidurkis µ X = E(X) = a+b 2, dispersija σ2 (b a)2 X = var(x) = pavyzdys. Eksponentinis a.d. Atsitiktinis dydis X vadinamas eksponentiniu su parametru λ > 0 (žymėsime X exp{λ}), jei jo tankio funkcija yra f X (x) = { λe λx, kai x > 0 0 kitur. 43

44 Eksponentinio a.d. pasiskirstymo funkcija yra { 1 e λx, kai x 0; F X (x) = 0 kai x < 0. Kitos jo charakteristikos yra: vidurkis µ X = E(X) = 1 λ, dispersija σ2 X = var(x) = 1 λ 2. Eksponentiniai atsitiktiniai dydžiai taikomi modeliuojant draudiminius įvykius. 2.7 pavyzdys. Normalusis a.d. Atsitiktinis dydis X vadinamas normaliuoju su parametrais (µ, σ 2 ) (žymėsime X N (µ, σ 2 )), jei jo tankio funkcija yra f X (x) = 1 { (x } µ)2 exp 2πσ 2σ 2, x R. Parametrai µ ir σ 2 yra atitinkamai vidurkis ir dispersija. Atsitiktinis dydis X N (0, 1) vadinamas standartiniu normaliuoju. Jo pasiskirstymo funkcija žymima Φ: Φ(x) = 1 2π x e s2 /2 ds, x R. A.d. X N (0, σ 2 ) charakteristinę bei generuojančią funkcijas galime rasti pasinaudoję šia formule: su visais u R E exp{ux} = 1 σ e ux e x2 /2σ 2 dx = 1 2π σ 2π eσ2 u2 /2 e ux e (x σ2 u) 2 /2σ 2 dx = exp{σ 2 u 2 /2}. Normalusis atsitiktinis dydis, kurio vidurkis yra µ, o dispersija σ 2 reikšmes iš intervalo [µ 1.96σ, µ+1.96σ] įgyja su tikimybe 0.95: Šis sąryšis plačiai taikomas statistikoje. P (µ 1.96σ X µ σ) = Φ(1.96) Φ( 1.96) = Atsitiktiniai vektoriai Jei X 1,..., X d yra atsitiktiniai dydžiai, apibrėžti vienoje tikimybinėje erdvėje (Ω, F, P ), tai jų sutvarkytas rinkinys X = (X 1,..., X d ) vadinamas atsitiktiniu vektoriumi. Norėdami jį interpretuoti kaip atsitiktinį erdvės R d elementą, turime apibrėžti atitinkamą tos erdvės σ algebrą. 2.3 apibrėžimas. Erdvės R d Borelio σ algebra B R d yra mažiausia σ algebra, kuriai priklauso aibės A 1 A d, A 1,..., A d B R. Galima įsitiktinti (žr, 2.21 pratimą), kad atsitiktinis vektorius X = (X 1,..., X d ) yra F/B R d-matus atvaizdis: X 1 (B) F, B B R d. Taigi, atsitiktinis vektorius yra atsitiktinis erdvės R d elementas. Ir atvirkščiai, jei X : Ω R d yra F/B R d- matus atvaizdis, tuomet X = (X 1,..., X d ) ir X i, i = 1,..., d yra atsitiktiniai dyžiai. 44

45 Atsitiktinio vektoriaus X = (X 1,..., X d ) pasiskirstymo funkcija vadiname d kintamųjų funkciją F X (x) = F X (x 1,..., x d ) = P (ω : X 1 (ω) x 1,..., X d x d ), x = (x 1,..., x d ) R d. Atsitiktinio vektoriaus X = (X 1,..., X d ), kurio pasiskirstymo funkcija yra F X (x 1,..., x d ) komponentės X k marginalinė pasiskirstymo funkcija yra F k (x k ) = F X (+,, +, x k, +,..., + ) : lim F X(x 1,..., x d ), x k R. x 1,...,x k 1,x k+1,...,x d Analogiškai apibrėžiame ir bet kurio vektoriaus X = (X 1,..., X d ) kooedinačių rinkinio (X k1,..., X kq ) marginalinę pasiskirstymo funkciją F k1,...,k q (x k1,..., x kq ) = lim F X(x 1,..., x d ). x j,j {1,...,d}\{k 1,...,k q} Bet kuri d-mačio atsitiktinio vektoriaus pasiskirstymo funkcija F pasižymi šiomis savybėmis: (i) kiekvienam k, 1 k d, F (x 1,..., x d ) 0, kai x k ; (ii) F (x 1,..., x d ) 1, kai x 1,..., x d ; (iii) F yra tolydi iš dešinės kiekvieno argumento atžvilgiu; (iv) su bet kuriais a i < b i, i = 1,..., d, ( 1) ε 1+ +ε d F (ε 1 a 1 + (1 ε 1 )b 1,..., ε d a d + (1 ε d )b d ) 0. ε 1,...ε d =±1 Ir atvirkščiai, jei d kintamųjų funkcija F (x 1,..., x d ) pasižymi (i) (iv) savybėmis, tai ji yra kurio nors atsitiktinio vektoriaus pasiskirstymo funkcija. Atsitiktiniai vektoriai X 1 = (X 11,..., X 1d ), X 2 = (X 21,..., X 2d ) yra ekvivaletūs X 1 X 2 arba lygūs beveik tikrai X 1 = X 2 b.t., jei P ({ω : X 1 (ω) X 2 (ω)}) = 0; vienodai pasiskirstę (žymėsime X 1 D = X2 ), jei jų pasiskirstymo funkcijos sutampa, t.y. P (ω : X 11 (ω) x 1,..., X 1d (ω) x d ) = P (ω : X 21 (ω) x 1,..., X 2d x d ) su visais (x 1,..., x d ) R d. Sakysime, kad atsitiktinis vektorius X R d turi tankio funkciją f X jei f X : R d R yra tokia neneigiama Borelio funkcija, kad P (a i < X i b i, i = 1,..., d) = b1 a 1 su bet kuriais realiaisiais skaičiais a i < b i, i = 1,..., d. 2.5 teiginys. Jei funkcija g : R d R m yra Borelio, t.y. bd a d f X (x 1,..., x d )dx 1 dx d, g 1 (A) B R d su kiekviena aibe A B R m, tai g(x 1,..., X d ) yra m-matis atsitiktinis vektorius. 45

46 Atskiru šio teiginio atveju gauname, kad su kiekviena Borelio funkcija g : R d R, g(x) yra atsitiktinis dydis, jei X yra atsitiktinis vektorius. Taigi galime kalbėti apie to atsitiktinio dydžio įvairias skaitines charakteristikas. Tolydi funkcija arba funkcija turinti ne daugiau nei skaičią trūkio taškų aibę yra Borelio. Taigi pavyzdžiui, jei X 1, X 2 yra atsitiktiniai dydžiai, tai X 1 + X 2, X 1 X 2, X 1 /X 2 yra atsitiktiniai dydžiai. Atsitiktinio vektoriaus X = (X 1,..., X d ) vidurkis yra vektorius E(X) = (E(X 1 ),..., E(X d )). Atsitiktinio vektoriaus X = (X 1,..., X d ) kovariacinė matrica yra matrica Γ X = (Γ X (i, j)) 1 i,j d = (cov(x i, X j )) 1 i,j d ; čia Γ X (i, j) = cov(x i, X j ) = E(X i X j ) E(X i )E(X j ), yra atsitiktinių dydžių X i ir X j kovariacija, i, j = 1,..., d. Matrica Γ X yra simetrinė ir neneigiamai apibrėžta, t.y., Γ X (i, j) = Γ X (j, i) ir d Γ X (i, j)a i a j 0 i,j=1 su visais realiaisais skaičiais a 1,..., a d. Kovariacinės matricos simetriškumas yra matomas tiesiog apibrėžime, o jos neneigiamą apibrėžtumą gauname iš šių lygybių: d Γ X (i, j)a i a j = i,j=1 d ( d ) cov(x i, X j )a i a j = var a i X i 0. i,j=1 2.8 pavyzdys. Atsitiktinis vektorius X = (X 1,..., X d ) turi normalųjį skirstinį su parametrais m ir Γ (trumai žymėasime X N (m, Γ)), jei jo tankio funkcija yra { f X (x 1,..., x d ) = (2π det(γ)) d/2 exp 1 2 d i,j=1 i=1 } (x i m i )(x j m j )Γ 1 (i, j). Čia m = (m 1,..., m d ) R d yra atsitiktinio vektoriaus X vidurkio vektorius, Γ = (Γ(i, j)) - kovariacinė matrica, o Γ 1 = (Γ 1 (i, j)) - jos atvirkštinė matrica. Atsitiktinis vektorius X N (0, I); čia I yra vienetinė matrica, vadinamas standartiniu normaliuoju. Jei Γ yra diagonalinė matrica, Γ = diag(σ1 2,..., σ2 d ), tuomet atsitiktinio vektoriaus X tankio funkcija yra normaliųjų tankio funkcijų sandauga: f X (x 1,..., x d ) = d ( 1 2πσi 2 i=1 ) exp{ (x i m i ) 2 /2σi 2 }. Jei X N (m, Γ) ir A yra bet kuri d d matrica, tai atsitiktinis vektorius AX turi normalinį skirstinį su parametrais Am ir AΓA (A žymi transponuotą matricą). 46

47 2.4 Nepriklausomumas Nepriklausomumo sąvoka yra bene svarbiausia tikimybių teorijoje. Tegu (Ω, F, P ) yra tikimybinė erdvė. 2.4 apibrėžimas. Įvykiai A, B F yra vadinami tarpusavyje P -nepriklausomais, jei P (A B) = P (A)P (B). Nagrinėkime tikimybinę erdvę, atitinkančią taisyklingo lošimo kauliukų metimą. Įvykiai ir nėra nepriklausomi.tačiau įvykiai B ir A = {dviejų mestų kauliukų iškritusių taškų suma yra 6} B = {pirmame kauliuke iškrito 4} C = {dviejų mestų kauliukų iškritusių taškų suma yra 7} yra nepriklausomi. Pažymėsime, kad įvykiai gali būti tarpusavyje nepriklausomi vieno tikimybinio mato atžvilgiu, bet priklausomi atžvilgiu kito (žr pratimą). 2.5 apibrėžimas. Įvykiai A 1,..., A n vadinami: poromis tarpusavyje P -nepriklausomais, jei P (A j A k ) = P (A j )P (A k ), kai k j; tarpusavyje P -nepriklausomais, jei su bet kuriais 1 i 1 < i 2 < < i k n, P (A i1 A ik ) = P (A i1 ) P (A ik ), Begalinis rinkinys įvykių yra tarpusavyje P -nepriklausomi, jei bet kuris baigtinis jų porinkinis yra tarpusavyje P -nepriklausomi. Dvi aibės Ω poaibių σ algebros F 1 ir F 2 vadinamos P -nepriklausomomis, jei kai A F 1, B F 2. P (A B) = P (A)P (B), Galima įsitikinti, kad poromis tarpusavio P -nepriklausomumas negarantuoja tarpusavio P -nepriklausomumo (žr pratimą). Šiuose apibrėžimuose, tikimybinį matą P praleisime, kai jis yra žinomas iš konteksto, t.y., vietoj P - nepriklausomi sakysime tiesiog nepriklausomi. 2.6 apibrėžimas. Atsitiktiniai dydžiai X ir Y, apibrėžti vienoje tikimybinėje erdvėje vadinami nepriklausomais, jei σ algebros F X ir F Y yra nepriklausomos. Analogiškai, atsitiktiniai vektoriai X = (X 1,... X m ) ir Y = (Y 1,..., Y d ), apibrėžti vienoje tikimybinėje erdvėje vadinami nepriklausomais, jei jų generuotos σ algebros F X ir F Y yra nepriklausomos. 47

48 Galima įrodyti (žr pratimą), kad atsitiktiniai dydžiai X ir Y yra nepriklausomi tada ir tik tada, kai P (X x, Y y) = P (X x)p (Y y), x, y R. Ši nepriklausomumo savybė sugeneruoja įvairius atsitiktinių dydžių priklausomumo modelius. Pavyzdžiui, atsitiktiniai dydžiai X ir Y yra vadinami neigiamai priklausomais, jei P (X x, Y y) P (X x)p (Y y) ir P (X x, Y y) P (X x)p (Y y) su visais x, y R. Jei vektoriai X = (X 1,... X m ) ir Y = (Y 1,..., Y d ) yra nepriklausomi, tai nepriklausomi yra ir atsitiktiniai dydžiai h(x), g(y ), kokios bebūtų Borelio funkcijos h : R m R ir g : R d R (žr pratimą). 2.7 apibrėžimas. Atsitiktiniai dydžiai X ir Y, kuriems EX 2 < ir EY 2 < vadinami nekoreliuotais, jei E(XY ) = E(X)E(Y ). Atsitiktinių dydžių koreliacija rodo tam tikrą tų dydžių tarpusavio priklausomybę. Jei jie yra nepriklausomi tai ir nekoreliuoti. Bet atvirkščiai nebūtinai. Pavyzdžiui, jei X N (0, 1), tai atsitiktiniai dydžiai X 1 = X ir X 2 = X 2 yra akivaizdžiai priklausomi, bet nekoreliuoti : E(X 1 X 2 ) = E(X 3 ) = 0 = E(X 1 )E(X 2 ). Šis teiginys paaiškina nepriklausomumo sąryšį su koreliacija. 2.6 teiginys. Su bet kuriais m 1, d 1 atsitiktiniai vektoriai X = (X 1,... X m ) ir Y = (Y 1,..., Y d ), apibrėžti vienoje tikimybinėje erdvėje yra nepriklausomi tada ir tik tada, kai E(h(X 1,..., X m )g(y 1,..., Y d )) = Eh(X 1,..., X m )Eg(Y 1,..., Y d ), bet kurioms aprėžtoms Borelio funkcijoms h : R m R ir g : R d R. Pritaikę teiginį dviems atsitiktiniams dydžiams matome, kad atsitiktiniai dydžiai X 1 ir X 2 yra nepriklausomi tada ir tik tada, kai atsitiktiniai dydžiai h(x 1 ) ir g(x 2 ) yra nekoreliuoti su bet kuriomis aprėžtomis Borelio funkcijomis g, h : R R. Tikimybių teorija negrinėja įvairius atsitiktinių dydžių priklausomumo modelius. 2.8 apibrėžimas. Tegu sveikasis skaičius m 1. Atsitiktiniai dydžiai X 1, X 2,... vadinami m-priklausomais, jei atsitiktiniai dydžiai X i ir X j yra nepriklausomi, kai tik i j m. 2.9 pavyzdys. Tarkime, Y 0, Y 1, Y 2,... yra nepriklausomi atsitiktiniai dydžiai. Apibrėžkime X j = Y j 1 + Y j, j = 1, 2,... Tuomet atsitiktiniai dydžiai X 1, X 2,... yra 2-priklausomi. Kitokius atsitiktinių dydžių priklausomumo modelius (pavyzdžiui, martingalinis, markoviškas priklausomumai) sutiksime studijuodami atsitiktinius procesus. 48

49 2.5 Sąlyginis vidurkis Įvykio A F sąlyginė tikimybė su sąlyga, kad įvyko įvykis B F, apskaičiuojama pagal formulę P (A B) = P (A B). P (B) Sąlyginės tikimybės interpretacija paprasta. Tarkime, kad įvykis B įvyko. Ši, papildoma informacija, leidžia pakeisti tikimybinę erdvę. Priskirkime nulinę tikimybę įvykiui B c, o vienetą įvykiui B. Taip įvykis B pasidaro nauja elementariųjų įvykių erdve, tarkime, Ω, o įvykiais dabar yra jos matūs jos poaibiai A B Ω (žr. 3.2 pratimą). Naujoje erdvėje apibrėžiame tikimybinį matą normalizuodami senąsias tikimybes P (A B) skaičiumi P (B). Jei P (B) > 0 ir X atsitiktinis dydis, tai jo sąlyginė pasiskirstymo funkcija atžvilgiu B yra funkcija o sąlyginis vidurkis: F X (x B) = P (X x, B), x R, P (B) E(X B) = 1 P (B) EX1 B pavyzdys. Imkime Ω = (0, 1], F = B (0,1] - jos Borelio σ algebrą, o tikimybę P apibrėžkime taip, kad P ((a, b]) = b a. Apibrėžkime atsitiktinį dydį X(ω) = ω, ω Ω. Nesunku įsitikinti, kad X turi tolygųjį pasiskirstymą ir EX = 0.5. Jei B = (0, 1/4], tai E(X B) = 1 P (B) EX1 B = 1 P (B) 1/4 0 x dx = 1 8. Dabar tarkime, kad Y yra diskretusis atsitiktinis dydis, apibrėžtas aibėje Ω ir įgyjantis reikšmes y i, i = 1, 2,.... Nemažindami bendrumo galime tarti kad tos reikšmės yra skirtingos ir Tuomet aibių rinkinys (B i ) yra aibės Ω skaidinys: B i = {ω : Y (ω) = y i }, i = 1, 2,... B i B j =, kai i j ir B i = Ω. i=1 Be to, tarsime, kad P (B i ) > 0, su visais i = 1, 2, apibrėžimas. Atsitiktinio dydžio X, apibrėžto aibėje Ω ir turinčio baigtinį vidurkį (E X < ) sąlyginiu vidurkiu atžvilgiu atsitiktinio dydžio Y vadinamas toks diskretusis atsitiktinis dydis E(X Y ), kad E(X Y )(ω) = E(X B i ) = E(X Y = y i ), kai ω B i, i = 1, 2,... Jei žinome, kad įvyko įvykis B i, tuomet apsiribojame tik tais ω, kurie priklauso aibei B i. Tiems ω, E(X Y )(ω) sutampa su sąlyginiu vidurkiu E(X B i ) pavyzdys. Tęskime 2.10 pavyzdį. Tegu a.d. Y yra apibrėžtas toje pačioje tikimybinėje erdvėje kaip ir X, tokiu būdu: { ω/2, kai ω [0, 1/4) Y (ω) = 2ω, kai ω [1/4, 1]. 49

50 Tuomet E(X Y )(ω) = Išvardinsime kelias sąlyginio vidurkio savybes: Sąlyginis vidurkis yra tiesinė funkcija: { 1/8, kai ω [0, 1/4) 5/8, kai ω [1/4, 1]. E([aX + bz] Y ) = ae[x Y ] + be[z Y ]. Atsitiktinių dydžių X ir E[X Y ] vidurkiai sutampa: EX = E(E[X Y ]). Šių savybių įrodymą paliekame vietoj pratimo. Sąlyginis vidurkis E[X Y ], kai Y diskretusis a.d. yra diskretus a.d. Tam tikra prasme, tai yra šiurkštesnė (grubesnė) a.d. X versija. Kuo mažiau reikšmių įgyja Y, tuo grubesnis yra a.d. E[X Y ]. Taip, jei Y = const, tai E[X Y ] = EX; jei Y įgyja dvi skirtingas reikšmes, tai toks yra ir sąlyginis vidurkis E[X Y ]. Sąlyginis vidurkis E[X Y ] yra Y funkcija: E[X Y ] = g(y ), čia g(y) = E[X Y = y i ]1 {yi }(y). i=1 Iš sąlyginio vidurkio E[X Y ] apibrėžimo, kai Y yra diskretus atsitiktinis dydis, aišku, kad a.d. Y reikšmės čia visai nesvarbios, bet svarbūs įvykiai lemiantys tas reikšmes. Todėl sąlyginį vidurkį galime suprasti kaip atsitiktinį dydį sukonstruotą pagal su dydžiu Y susijusią įvykių aibę, tarkime σ(y ) ir simboliškai, vietoj E[X Y ] rašyti E[X σ(y )]. Aišku, kad σ(y ) suteikia visą informaciją apie a.d. Y, kaip ω Ω funkciją. Priminsime, kad atsitiktinius dydžius nagrinėjame apibrėžtus tikimybinėje erdvėje (Ω, F, P ). Tarkime, G yra kita aibės Ω poaibių σ algebra ir G F apibrėžimas. Atsitiktinio dydžio X sąlyginis vidurkis atžvilgiu σ algebros G yra toks G-matus atsitiktinis dydis E(X G), kuriam E(E(X G)1 F ) = E(X1 F ), su kiekviena aibe F G. Sąlyginis vidurkis E(X Y ) = E(X F Y ), kai F Y yra mažiausia σ algebra atžvilgiu kurios yra matus atsitiktinis dydis Y. Įvykio A F sąlyginė tikimybė atžvilgiu G yra P (A G) = E(1 A G). Svarbu įsidėmėti, kad sąlyginis vidurkis ir sąlyginė tikimybė atžvilgiu kurios nors σ algebros yra atsitiktinis dydis. Jei σ algebra G yra generuota baigtiniu skaidiniu {B 1,..., B n }, tuomet E(X G) = n k=1 1 P (B k ) E(X1 B k )1 Bk. Jei atsitiktinis vektorius (X, Y ) yra aprašomas tankio funkcija f(x, y), tai atsitiktinio dydžio X sąlyginė tankio funkcija, kai fiksuota dydžio Y reikšmė y, yra f(x y) = f(x, y) f Y (y), 50

51 kai f Y (y) yra atsitiktinio dydžio Y marginalioji tankio funkcija. Tuomet P (a < X b Y = y) = E(X Y = y) = b a xf(x y)dx. f(x y)dx, Išvardinsime paprasčiausias sąlyginio vidurkio savybes. Lygybės tarp atistiktinių dyžių yra lygybės beveik tikrai. 1) Jei X = c b.t., tai E(X G) = c b.t. 2) E(aX + by G) = ae(x G) + be(y G); 3) Jei σ algebros F X ir G yra nepriklausomos, tai E(X G) = EX; 4) Jei X yra G-matus, tai E(X G) = X; 5) Jei X Y b.t., tai E(X G) E(Y G) b.t. 6) E(X G) E( X G); 7) Dvigubo vidurkinimo taisyklė: jei σ-algebros G 1 ir G 2 tenkina G 1, G 2 F, tai E(E(X G 2 ) G 1 ) = E(X G 1 ). 8) Jei Y yra G-matus, tai E(XY G) = Y E(X G). 9) Jenseno nelygybė: jei h : R R yra iškiloji funkcija (t.y., h(λx + (1 λ)y) λh(x) + (1 λ)h(y) su visais λ [0, 1] ir x, y R), tuomet h(e(x G)) E(h(X) G). 2.6 Naudingi tikimybių teorijos faktai Šiame skirelyje surinkti naudingi tikimybių teorijos faktai, kuriais ateityje naudosimės. Čebyševo nelygybė: jei λ > 0, tai Švarco nelygybė: E(XY ) P ( X > λ) λ p E X p. ( EX 2 EY 2 ) 1/2. Hiolderio nelygybė: jei skaičiai p, q > 1 tenkina sąryšį 1/p + 1/q = 1, tai E(XY ) ( E X p) 1/p( E Y q ) 1/q. Jenseno nelygybė: jei funkcija φ : R R yra iškila, tai φ(e(x)) E(φ(X)). 51

52 Atsitiktinių dydžių sekoms apibrėžiami kelių tipų konvergavimai. Tarkime, atsitiktinių dydžių seka (X n ) ir a.d. X yra apibrėžti vienoje tikimybinėje erdvėje (Ω, F, P ). b.t. Konvergavimas beveik tikrai: Seka (X n ) konverguoja beveik tikrai prie X (X n X), jei egzistuoja tokia mati aibė N F, kad P (N) = 0 ir su visais ω N. lim X n(ω) = X(ω), n Konvergavimas pagal tikimybę: Seka (X n ) konverguoja pagal tikimybę prie X (X n su visais ε > 0. lim P ( X n X > ε) = 0, n P X), jei Konvergavimas p-ojo momento prasme: tegu p 1. Seka (X n ) konverguoja p-ojo momento praseme (L p -prasme) prie X (X n Lp X), jei lim E X n X p = 0. n Sekos (X n ) konvergavimo pagal skirstinį apibrėžimui jau nėra būtina, kad tie dydžiai būtų apibrėžti vienoje tikimybinėje erdvėje. Konvergavimas pagal skirstinį: Seka (X n ) konverguoja pagal skirstinį prie X (X n su bet kuria aprėžta tolydžia funkcija f : R R. lim Ef(X n) = Ef(X) n Pasiskirstymo funkcijų terminais konvergavimas pagal skirstinį yra ekvivalentus kiekvienam funkcijos F tolydumo taškui x R. Sąryšius tarp konvergavimo tipų nusako šis teiginys. lim F X n n (x) F X (x) 2.7 teiginys. Tegu (X n ) yra a.d. seka, a.d. X R. Teisingi šie teiginiai: 1. X n b.t. X X n P X; 2. X n Lp X X n P X; 3. X n P X X n D X; 4. X n D C(konstanta) Xn P X; 3. X n P X egzistuoja posekis X nk b.t. X. D X), jei Tikimybių teorijai labai svarbūs yra didžiųjų skaičių dėsnis bei centrinė ribinė teorema. Silpnasis didžiųjų skaičių dėsnis yra šis teiginys. 52

53 2.8 teiginys. (Silpnasis didžiųjų skaičių dėsnis) Tegu (X n ) yra nepriklausomų vienodai pasiskirsčiusių atsitiktinių dydžių seka. Tuomet n 1 P (X X n ) 0 tada ir tik tada, kai lim t tp ( X 1 > t) = 0; lim n EX1{ X > n} = 0. Stiprusis didžiųjų skaičių dėsnis ir centrinė ribinė teorema suformuluoti šiuose teiginiuose. 2.9 teiginys. (Stiprusis didžiųjų skaičių dėsnis) Tegu (X n ) yra seka nepriklausomų vienodai pasiskirsčiusių a.d. Tuomet n 1 (X X n ) b.t. EX 1. tada ir tik tada, kai E X 1 < teiginys. (Centrinė ribinė teorema) Tegu (X n ) yra seka nepriklausomų vienodai pasiskirsčiusių a.d. su vidurkiu µ = EX 1 ir baigtine dispersija σ 2 = EX1 2 <. Tuomet 2.7 Pratimai Z n = n 1/2 (X X n nµ) 2.1 pratimas. Įsitikinkite, kad F X yra σ algebra. 2.2 pratimas. Įrodykite 2.1 teiginį. D N (0, 1). 2.3 pratimas. Įrodykite kad atsitiktinių dydžių lygybė beveik tikrai yra ekvivalentumo sąryšis. 2.4 pratimas. Įrodykite, kad atsitiktinių dydžių X ir X skirstiniai sutampa, jei sutampa jų pasiskirstymo funkcijos. 2.5 pratimas. Įrodykite, kad λf + (1 λ)g yra pasiskirstymo funkcija, kai F ir G yra pasiskirstymo funkcijos, o λ [0, 1]. Ar sandauga F G yra pasiskirstymo funkcija? 2.6 pratimas. Įrodykite, kad tolydžiam atsitiktiniam dydžiui X, P (ω : X(ω) = x) = pratimas. Tegu (X n ) yra atsitiktinių dydžių seka. Įsitikinkite, kad (a) lim sup n X n, yra atsitiktinis dydis; (b) lim inf n X n yra atsitiktinis dydis; (c) aibė {ω : lim n X n (ω) egzistuoja} yra mati; { lim n X n (ω), jei riba egzistuopja (d) X(ω) =. 0, kitur. Įsitikinkite, kad X yra atsitiktinis dydis. 53

54 2.8 pratimas. Įrodykite, kad λf + (1 λ)g yra tankio funkcija, kai f ir g yra tankio funkcijos, o λ [0, 1]. Ar sandauga fg yra tankio funkcija? 2.9 pratimas. Tarkime, X yra atsitiktinis dydis su tankio funkcija kai x R. Raskite var(x) pratimas. Atsitiktinių dydžių f X (x) = λ 2 e λ x, X + = max{0, X}, X = min{0, X}, X = X + + X, X pasiskirstymo funkcijas išreiškite atsitiktinio dydžio X pasiskirstymo funkcija F X pratimas. Atvaizdis d : S S R vadinamas aibės S metrika, jei yra teisingos šios savybės: (i) d(s, t) = d(t, s) 0 su visais s, t S, (ii) d(s, t) = 0 tada ir tik tada, kai s = t, (iii) d(s, t) d(s, u) + d(u, t) su visais s, t, u S. (a) Levi metrika. Pasiskirstymo funkcijoms F ir G, Levi metrika yra d L (F, G) = inf{ε > 0 : G(x ε) F (x) G(x + ε), visiems x}. Įrodykite, kad d L yra pasiskirstymo funkcijų aibės metrika. (b) Pilnosios variacijos metrika. Tegu X ir Y yra sveikareikšmiai atsitiktiniai dydžiai ir d T V (X, Y ) = k P (X = k) P (Y = k). Įrodykite, kad funkcija d T V tenkina pirmą ir trečią metrikos savybes ir d T V (X, Y ) = 0 tada ir tik tada, kai P (X = Y ) = 1. (c) Įrodykite, kad 2.12 pratimas. Įrodykite, kad d T V (X, Y ) = 2 sup P (X A) P (Y A). A Z argmin a R E(X a) 2 = EX pratimas. Tarkime, X yra Puasono atsitiktinis dydis su parametru λ. Raskite E(1/(X + 1)) pratimas. Tegu X, Y yra nepriklausomi eksponentiniai atsitiktiniai dydžiai su parametru λ. Raskite E X Y pratimas. Tegu X N (0, σ 2 ). Žinodami, kad { 1 Ee λx = exp 2 λ2 σ 2} su visais λ R, išveskite: 54

55 (a) EX 2k = (2k)! 2 k k! σ2k, k = 1, 2,... ; (b) EX 2k 1 = 0, k = 1, 2, pratimas. Įrodykite, kad Puasono atsitiktinio dydžio X su paramatru λ charakteristinė funkcija yra lygi c X (t) = exp{λ(e it 1)}, t R. Remdamiesi šia formule suskaičiuokite EX 2, var(x), EX pratimas. Tegu X yra Bernulio atsitiktinis dydis, P (X = 0) = 1 p, P (X = 1) = p. Tegu Y = 1 X, o Z = XY. Raskite P (X = x, Y = y) ir P (X = x, Z = z), kai x, y, z [0, 1] pratimas. Įrodykite, kad a.d. X p(k; λ), generuojanti funkcija yra g X (s) = e λ(s 1), s > pratimas. Tarkime g(s) yra atsitiktinio dydžio generuojanti funkcija, kurios konvergavimo spindulys nemažesnis už 1. Įrodykite, kad funkcija g(s) yra be galo daug kartų diferencijuojama pratimas. Įrodykite šią generuojančių funkcijų savybę: Jei X 1, X 2 yra nepriklausomi neneigiami sveikareikšmiai a.d., kurių generuojančios funkcijos yra g Xi (s), 0 s 1, i = 1, 2, tai g X1 +X 2 (s) = P X1 (s)p X2 (s) pratimas. Įsitikinkite, kad jei X 1,, X d yra vienoje tikimybinėje erdvėje (Ω, F, P ) apibrėžti atsitiktiniai dydžiai, tai vektorius (X 1,..., X d ) yra F/B R d-matus pratimas. Įrodykite 2.5 teiginį pratimas. Tarkime, vektoriaus (X, Y ) pasiskirstymo funkcija yra F. Įrodykite, kad kai a < b, c < d. P (a < X b, c < Y d) = F (b, d) F (a, d) F (b, c) + F (a, c), 2.24 pratimas. Ar funkcija F (x, y) = 1 exp{ xy}, 0 x, y < yra kokio nors atsitiktinio vektoriaus pasiskirstymo funkcija? 2.25 pratimas. Sukonstruokite dviejų įvykių pavyzdį,kurie būtų tarpusavyje nepriklausomi vieno tikimybinio mato atžvilgiu, bet priklausomi atžvilgiu kito pratimas. Įsitikinkite, kad poromis tarpusavio P -nepriklausomumas negarantuoja tarpusavio P -nepriklausomumo pratimas. Įsitikinkite, kad jei vektoriai X = (X 1,... X m ) ir Y = (Y 1,..., Y d ) yra nepriklausomi, tai nepriklausomi yra ir atsitiktiniai dydžiai h(x), g(y ), kokios bebūtų Borelio funkcijos h : R m R ir g : R d R. 55

56 2.28 pratimas. Įrodykite, kad atsitiktiniai dydžiai X 1,..., X d yra tarpusavyje nepriklausomi tada ir tik tada, kai P (X 1 x 1,..., X d x d ) = P (X 1 x 1 ) P (X d x d ), x 1,..., x d R pratimas. Tegu X i N (m i, σi 2 ), i = 1, 2 yra nekoreliuoti atsitiktiniai dydžiai. Įrodykite, kad jie yra nepriklausomi. Apibendrinkite atsitiktiniams Gausiniams vektoriams pratimas. Jei X N (0, I m ) (I m = diag(1,..., 1) yra m m vienetinė matrica) ir A, B yra m m matricos, tai vektoriai AX ir BX yra nepriklausomi tada ir tik tada, kai AB = pratimas. Tegu τ yra eksponentinis atsitiktinis dydis su parametru λ. Raskite sąlyginį vidurkį E(τ τ < c) pratimas. Raskite atsitiktinio dydžio Y sąlyginę tankio funkciją ir sąlyginį vidurkį atžvilgiu X, jei poros (X, Y ) tankio funkcija yra: (a) f(x, y) = λ 2 e λy, 0 x y <, (b) f(x, y) = xe x(y+1), x, y pratimas. Įrodykite, kad beveik visur konvergavimas yra invariantinis tolydinių transformacių atžvilgiu: jei X n X ir f : R R yra tolydi funkcija, tuomet f(x n ) b.t. b.t. f(x) pratimas. Tegu (X n ) yra nepriklausomų bernuli a.d. seka, P (X n = 1) = p m, P (X m = 0) = 1 p m. Įrodykite šiuos teiginius: (a) X n (b) X n (c) X n P 0 tada ir tik tada, kai p n 0; Lp 0 tada ir tik tada, kai p n 0; b.t. 0 tada ir tik tada, kai n p n <. 56

57 3 skyrius Atsitiktiniai procesai Atsitiktinius procesus galime apibrėžti dviem būdais. Pirmuoju - kaip atsitiktinių dydžių rinkinį indeksuotą kokia nors realiųjų skaičių aibe. Antruoju - kaip atsitiktinį kokios nors mačios realiojo argumento funkcijų erdvės elementą. Šiam apibrėžimui reikalingos tam tikros funkcinės analizės žinios. Pirmajam gi tokių žinių nereikia, tačiau tuomet galime kalbėti tik apie atsitiktinio proceso baigtiniamačius skirstinius, bet ne apie jų trajektorijų savybes, tokias kaip tolydumas ar diferencijuojamumas. Šiame skyriuje pateikti abu atsitiktinių procesų apibrėžimai, aprašytos jų skaitinės charakteristikos bei reguliarumo (matumo, diferencijuojamumo, integruojamumo) savybės. 3.1 Apibrėžimai Tegu T R yra duota aibė. 3.1 apibrėžimas. Tikimybinėje erdvėje (Ω, F, P ) apibrėžtų atsitiktinių dydžių rinkinys vadinamas atsitiktiniu procesu. (X t, t T ) Atsitiktinio proceso (X t, t T ) indeksų aibė T dažnai vadinama laiko sritimi, o t T interpretuojamas kaip laiko momentas. Jei aibė T bus aiški iš konteksto, vietoj (X t, t T ) dažnai rašysime tiesiog (X t ). Atsitiktinis procesas (X t, t T ), kai T Z = {0, ±1, ±2,... } vadinamas diskretaus laiko procesu arba laikine seka. Jei T yra baigtinė aibė, tuomet (X t, t T ) yra tiesiog atsitiktinis vektorius. Jei aibė T yra tolydi, pavyzdžiui, T = [0, 1], tai procesas (X t, t T ) vadinamas tolydaus laiko. Atsitiktinis procesas (X t, t T ) yra dviejų argumentų t T ir ω Ω funkcija. Kai t T fiksuotas, X t = {X t (ω), ω Ω} yra atsitiktinis dydis ir interpretuojamas kaip proceso būsena laiko momentu t. Kai fiksuotas elementarusis įvykis ω Ω, turime argumento t T funkciją: {X t (ω), t T } arba t X t (ω) : T R. Ši funkcija vadinama proceso trajektorija arba realizacija. 3.1 pavyzdys. Bene paprasčiausias diskretaus laiko atsitiktinio proceso pavyzdys - atsitiktinis klaidžiojimas metant monetą. Dalelė startuoja nulinio laiko momentu koordinačių pradžioje (žr. 2.1 pav.). Kiekvienu laiko 57

58 momentu n = 1, 2,... metama moneta ir dalelė juda per vienetą į dešinę iškritus pinigui, į kaire - iškritus herbui. X n yra dalelės padėtis po n-ojo monetos metimo, n = 1, 2, pav. Diskretaus laiko proceso trajektorija 3.2 pavyzdys. Tegu X ir Y yra du nepriklausomi atsitiktiniai dydžiai. Apibrėžkime tolydaus laiko atsitiktinį procesą (X t, t 0): X t = tx + Y, t 0. Šio proceso trajektorijos yra tiesės su atsitiktiniais koeficientais (atsitiktinės tiesės). 3.3 pavyzdys. (Atvykimų procesas) Nagrinėkime klientų atvykimą į parduotuvę, matuodami laikus nuo vieno kliento atvykimo iki kito. Tegu tie laikai yra teigiami atsitiktiniai dydžiai X 1, X 2,.... Imdami t [0, ), apibrėžkime N t = k, jei sveikasis skaičius k yra toks, kad X X k t < X X k+1. Tegu N t = 0, jei t < X 1. Tuomet N t yra iki laiko momento t (laiko intervale [0, t]) į parduotuvę atvykusių klientų skaičius. Pastebėkime, kad su kiekvienu t 0, N t yra atsitiktinis dydis įgyjantis reikšmes aibėje N := {0, 1, 2,... }. Taigi {N t, t 0) yra tolydaus laiko diskretus procesas. Jo trajektorijos yra nemažėjančios, tolydžios iš dešinės funkcijos ir didėjančios vienetiniais šuoliukais taškuose X X k. Be to, N t < su visais t 0 tada ir tik tada, kai k=1 X k =. 3.4 pavyzdys. Nagrinėkime diskretaus laiko atsitiktinį procesą (X t ), kurio būsenų aibė yra S = {1, 2, 3}. Proceso dinamika (kitimas laike) aprašoma taip: iš būsenos 1 į būseną 2 procesas pereina su tikimybe 1. Iš būsenos 3 gali pereiti arba į 1, arba 2 su vienoda tikimybe 1/2, o iš 2 peršoka į 3 su tikimybe 1/3 arba lieka būsenoje 2. Tai yra Markovo grandinės pavyzdys. Jas detaliai nagrinėsime vėliau. 58

59 Kaip jau minėjome, kitaip atsitiktinį procesą galime apibrėžti panaudoję atsitiktinės funkcijos sampratą. Priminsime, kad R T žymi visų funkcijų f : T R aibę: R T := {f : T R}. Jei T = {1,..., d}, tuomet R T = R d yra tiesiog d-mačių vektorių aibė. Jei T = Z arba T = N, tuomet R T yra visų galimų skaitinių sekų aibė, atitinkamai R Z := {(x j, j = 0, ±1, ±2,... )}, R N := {(x j, j = 0, 1, 2,... )}. Taigi atsitiktinį procesą (X t, t T ) atitinka atvaizdis ω {X t (ω), t T } : Ω R T, apibrėžtas aibėje Ω ir reikšmes įgyjantis funkcijų erdvėje R T. Norėdami atsitiktinį procesą interpretuoti ar apibrėžti kaip atsitiktinį aibės R T elementą (kaip atsitiktinę funkciją), aibėje R T turime apibrėžti σ algebrą kurios atžvilgiu atvaizdis ω X(ω) = (X t (ω), t T ) būtų matus. Aibės R T d-mate cilindrine aibe vadinsime aibę A = {x S T : x(t 1 ) E 1,..., x(t d ) E d }, kai t 1,..., t d T, E i B R, i = 1,..., d. Cilindrinė aibės R T σ algebra yra C T R : C T R = σ{1 mačiai stačiakampiai). Pagal σ algebros apibrėžimą bet kuri baigtiniamatė cilindrinė aibė priklauso C T R. 3.2 apibrėžimas. Atsitiktine realiąja funkcija, apibrėžta aibėje T, vadinsime atvaizdį X : Ω R T, kuris yra F/C T R -matus, t.y. {ω : X(ω) C} F, jei C B T R. 3.1 teiginys. Atsitiktinis procesas X = (X t, t T ), kaip atvaizdis X : Ω R T, yra F/B T R -matus. Įrodymas. Jei E B R ir C = {x R : x(t) E} yra bet kuri vienmatė cilindrinė aibė, tai nes X t yra atsitiktinis dydis. X 1 (C) = {omega : X t (ω) E} = X 1 t (E) F, 3.3 apibrėžimas. Atsitiktinė (realioji) funkcija apibrėžta aibėje T yra (F, CR T )-matus atvaizdis X : Ω R T. Taigi atsitiktinis procesas yra kartu ir atsitiktinė funkcija. Atvirkščiai yra taip pat. Apibrėžkime projektorius π t : R T R: π t x = x(t), x R T. 3.2 teiginys. Funkcija X : Ω R T yra (F, C T R )-matu tada ir tik tada, kai π tx : Ω R yra (F, B R -matus su kiekvienu t T. 59

60 Įrodymas. Pakanka prisiminti, kad cilindrinę σ-algebrą generuoja vienmačtės cilindrinės aibės. Taigi atsitiktiniu procesu galime vadinti bet kurį BR T /F-matų atvaizdį X : Ω RT. Ši atsitiktinio proceso interpretacija leidžia kalbėti apie įvairias procesų trajektorijų savybes, pavyzdžiui, trajektorijų tolydumą, diferencijuojamumą ir pan. Tarkime, mus domina atsitiktinio proceso X = (X t, t T ) trajektorijų savybė, kurią aprašo aibė U R T. Pati U gali nepriklausyti (o dažniausiai ir nepriklauso) σ algebrai BR T. Todėl nagrinėkime susiaurintą σ algebrą U BR T := {U A : A BT R }. Tuomet pora (U, U BT R ) yra mati erdvė (žr. 3.2 pratimą). 3.4 apibrėžimas. Atsitiktiniu procesu su trajektorijomis aibėje U vadinsime atvaizdį X : Ω U, kuris yra F/U B T R -matus. 3.3 teiginys. Funkcija X = (X t, t T ) : Ω U yra F/U B T mati tada ir tik tada, kai su kiekvienu t T, X t : Ω R yra F/B R -matus atvaizis. Įrodymas. Kadangi X(ω) U, tai {ω : X(ω) U A} = {ω : X(ω) A} su kiekviena A B T. Kitaip tariant, jei X : Ω U tai X yra F/U B T -matus atvaizdis tada ir tik tada, kai jis yra F/B T -matus. Keletas pavyzdžių paaiškins, kaip aibės U parinkimas atspindi proceso trajektorijų savybes. Tegu T = [a, b] ir U := C(T ) = C[a, b] visų tolydžių funkcijų f : [a, b] R aibė. Taigi atsitiktinio proceso X = (X t, t [a, b]) trajektorijos yra tolydžios, jei tas procesas yra atsitiktinis erdvės C[a, b] elementas. Kartais tai matyti tiesiog iš proceso apibrėžimo. Taip, pavyzdžiui, atsitiktinis procesas X = (X t, t 0): X t = ηt + ξ, t 0, kai η, ξ yra atsitiktiniai dydžiai yra akivaizdžiai procesas su tolydžiomis trajektorijomis (su kiekvienu t 0, X t = ηt + ξ yra atsitiktinis dydis ir X : Ω C[0, ), nes {ω : X(ω) C[0, )} = Ω). Kiti analogiški pavyzdžiai: U = B[a, b] aprėžtų funkcijų f : [a, b] R aibė; T = (0, ) ir U = L 1 (T ) Lebego prasme integruojamų funkcijų f : (0, ) R aibė; T = N ir U = c 0 konverguojančių į nulį skaitinių sekų aibė arba U = l 2 kvadratu sumuojamų skaitinių sekų aibė. Norėdami įsitikinti, kad atsitiktinio proceso X = (X t, t T ) beveik visos trajektorijos turi savybę, kurią aprašo aibė U R T, pakanka įrodyti, kad X U su tikimybe vienas. Pavyzdžiui, atsitiktinio proceso X = (X n, n N) beveik visos trajektorijos konverguoja prie nulio, jei P (X c 0 ) = 1. Kadangi P (ω : X(ω) c 0 ) = P (ω : lim n X n (ω) = 0), tai X c 0 beveik tikrai reiškia, kad X n 0 beveik tikrai. Tačiau patikrinti, kad X U su tikimybe vienas, ne visada yra paprasta tolydaus laiko procesams, nes gali iškilti matumo problemos. Įvykis {ω : X(ω) U} nebūtinai yra matus. Pavyzdžiui, atsitiktiniam procesui X = (X t, t [0, 1]), aibė {ω : X(ω) C[0, 1]} = n=1 k=1 t s <1/k {ω : X t (ω) X s (ω) 1/n} nebūtinai priklauso F. Šią matumo problemą detaliau aptarsime kiek vėliau. 60

61 2.2 pav. Tolydaus laiko proceso trajektorijos Taigi turime atsitiktinio proceso apibrėžimą ir atsitiktinio proceso su aprašytomis trajektorijų savybėmis apibrėžimą. 3.2 Atsitiktinių procesų skirstiniai Nagrinėkime atsitiktinį procesą (X t, t T ), T R. Fiksuotu laiko momentu t 1 T, X t1 yra atsitiktinis dydis. Jo pasiskirstymo funkcija yra F t1 (x 1 ) = P (ω : X t1 (ω) x 1 ), x 1 R. Pasiskirstymo funkcijų rinkinys {F t1, t 1 T } vadinamas atsitiktinio proxceso (X t, t T ) pirmosios eilės pasiskirstimu. Analogiškai, jei t 1 < t 2 T, tai X t1, X t2 yra du atsitiktiniai dydžiai. Jų bendra pasiskirstymo funkcija yra F t1,t 2 (x 1, x 2 ) = P (ω : X t1 (ω) x 1, X t2 (ω) x 2 ). Rinkinys {F t1,t 2, t 1 < t 2 T } sudaro proceso antrosios eilės pasiskirstimą. Jei t 1 < < t n yra baigtinis parametro t skirtingų reikšmių rinkinys, tai atsitiktinio vektoriaus (X t1,..., X tn ) pasiskirstymo funkcija F t1,...,t n yra F t1,...,t n (x 1,..., x n ) = P (ω : X t1 (ω) x 1,..., X tn (ω) x n ) ir jų šeima, kai t 1 < < t n T vadinama n-tosios eilės pasiskirstimu. Visų eilių pasiskirstimų rinkinys, (3.1) {F t1,...,t n : t 1 < t 2 < t n T, n 1} vadinama proceso (X t, t T ) baigtiniamačių pasiskirstymo funkcijų šeima. Ji pilnai aprašo atsitiktinį procesą. Funkcijų šeima {F t1,...,t n : t 1 < t 2 < t n T, n 1}, vadinama suderinta pasiskirstymo funkcijų šeima, jei 61

62 (i) F t1,...,t n yra n-mačio atsitiktinio vektoriaus pasiskirstymo funkcija; (ii) jei {t k1 < < t km } {t 1 < < t n }, tuomet F tk1,...,t km yra pasiskirstymo funkcijos F t1,...,t n marginalinė funkcija atitinkanti indeksus t k1,..., t km, t.y. lim F t 1,...,t n (x 1,..., x n ) = F tk1,...,t km (x k1,..., x km ). x i, i {1,...,n}\{i 1,...,k m} 3.1 teorema. (Kolmogorovo) Jei {F t1,...,t n : t 1 < t 2 < t n T, n 1}, yra suderinta pasiskirstymo funkcijų šeima, tai egzistuoja tikimybinė erdvė (Ω, F, P ) ir toks joje apibrėžtas atsitiktinis procesas (X t, t T ), kurio baigtiniamačių pasiskirstymo funkcijų šeima sutampa su {F t1,...,t n : t 1 < t 2 < t n T, n 1}. 3.5 pavyzdys. (Chaoso procesas) Tegu F yra bet kuri pasiskirstymo funkcija, apibrėžta realiųjų skaičių aibėje R. Imdami skirtingus t 1 < < t m T ir bet kuriuos x 1,..., x m R, apibrėžkime F t1,t 2,...,t m (x 1, x 2,..., x m ) = m F (x k ), Atitinkama baigtiniamačių pasiskirstymo funkcijų šeima apibrėžia atsitiktinį procesą (X t, t T ), kurį galime interpretuoti kaip chaosą, nes visi procesą sudarantys atsitiktiniai dydžiai yra tarpusavyje nepriklausomi. Jei atsitiktinį procesą apibrėžiame kaip atsitiktinę funkciją, galime kalbėti apie jos skirstinį. Tegu U R T ir X = (X t, t T ) : Ω U yra F/U BR T -matus atvaizdis. Jo skirstiniu vadiname tikimybinį matą P X, apibrėžtą aibėms A U BR T : k=1 P X (A) = P (ω : X(ω) A). Jei A yra cilindrinė aibė, tarkime, A = (, x] R T \{t}, tai P X (A) = P (X t x). 3.2 teorema. Tarkime X = (X t, t T ) ir Y = (Y t, t T ) yra du atsitiktiniai procesai su trajektorijomis aibėje U R T. Tuomet P X = P Y tada ir tik tada, kai procesų (X t, t T ) ir (Y t, t T ) baigtiniamačiai skirstiniai sutampa. Įrodymas. Jei P X = P Y, tuomet P X (C) = P Y (C) su kiekviena cilindrine aibe C R T. Imdami C = {f R T : f(t 1 ) x 1,..., f(t d ) x d } gauname P (X t1 x 1,..., X td x d ) = P (Y t1 x 1,..., Y td x d ). Taigi procesų baigtiniamačiai skirstiniai sutampa. Pakankamumo įrodymui pasinaudosime aibių π λ-sistemų savybėmis. Nagrinėkime cilindrinių aibių šeimą C = {f R T : (f(t 1 ),..., f(t d )) B}, d N, B B R d, t 1,..., t d T. Ji yra uždara sankirtų atžvilgiu. Taigi yra π-sistema. Toliau nagrinėkime tokių aibių U R T sistemą U, kad P X (U) = P Y (U). Įsitikinkime, kad ji yra λ-sistema: (i) jai priklauso R T ; (ii) uždara atžvilgiu papildymo; (iii) uždara atžvilgiu monotoniniškai didėjančių ribų. Kadangi P X (R T ) = 1 = P Y (R T ), tai R T U. Jei U U, tai P X (U c ) = 1 P X (U) = 1 P Y (U) = P Y (U c ), taigi U c U. Galiausiai, jei turime monotoniškai didėjančią aibių seką (U n ) U ir U n U, 62

63 tuomet P X (U n ) P X (U) ir P Y (U n ) P Y (U). Bet P X (U n ) = P Y (U n ), todėl P X (U) = P Y (U). Taigi U yra λ-sistema. Kadangi C U ir C yra π λ-sistema, tai ir σ(c) U. Kita vertus σ(c) = B T R. Taigi BT R U. Vadinasi, B T R = U ir P X(U) = P Y (U) su visais U B T R. Taigi P X = P Y. Atsitiktinio proceso baigtiniamačiai skirstiniai aprašo įvairius jo skaitinius parametrus bei įvairias trajektorijų savybes. Atsitiktinio proceso X = (X t, t T ) vidurkio funkcija (arba tiesiog vidurkis) yra funkcija µ X : T R, µ X (t) = EX t, t T. Vidurkio funkciją, kuri charakterizuoja vidutinę ar tipinę proceso trajektoriją, aprašo proceso pirmos eilės pasiskirstymas, nes µ X (t) = x df t(x). Atsitiktinis procesas X = (X t, t T ) vadinamas antrosios eilės procesu, jei EXt 2 < su visais t T. Antrosios eilės procesui X = (X t, t T ) apibrėžiami šie parametrai: autokoreliacinė funkcija Q X : T 2 R, Q X (t, s) = EX t X s, t, s T, Funkcija (Q X (t, t), t T ) dažnai vadinama proceso (X t, t T ) vidutine galia. autokovariacinė funkcija Γ X : T 2 R, variacijos funkcija σ 2 X : T R, Γ X (t, s) = cov X (t, s) = E[(X t µ X (t))(x s µ X (s))], t, s T, autokoreliacijos keoficientas ρ X : T 2 R, σ 2 X(t) = cov X (t, t) = varx t, t T. ρ X (t, s) = Γ X (t, s), s, t T. [Γ X (t, t)γ X (s, s)] 1/2 Tiek autokoreliacinę funkciją, tiek autokovariacinę funkciją aprašo proceso antrosios eilės pasiskirstymas. Autokovariacinės funkcijos savybės surinktos šiame teiginyje. 3.4 teiginys. Tarkime, X = (X t, t T ) yra atsitiktinis procesas su nuliniu vidurkiu ir autokovariacine funkcija Γ = Γ X. Tada teisingos šios savybės: (1) Γ(s, t) = Γ(t, s) ir Γ(t, t) 0. (2) Funkcija Γ yra neneigiamai apibrėžta, t.y., n j,k=1 Γ(t j, t k )a j a k 0 su visais t i T, a i R, i = 1,..., n ir visais n N; (3) Γ(s, t) Γ 1/2 (s, s)γ 1/2 (t, t); 63

64 (4) dviejų autokovariacinių funkcijų suma yra autokovariacinė funkcija; (5) dviejų autokovariacinių funkcijų sandauga yra autokovariacinė funkcija; (6) su bet kuria realiąja funkcija σ : T R, funkcija (s, t) σ(s)σ(t) yra autokovariacinė funkcija. Įrodymas. Pimoji savybė gaunama tiesiog iš autokoreliacijos funkcijos apibrėžimo. Norėdami įrodyti (2) savybę, apibrėžkime atsitiktinį dydį Y = n k=1 a kx tk. Galime suskaičiuoti EY 2 = n j,k=1 a j a k Γ(t j, t k ) 0. Trečioji savybė yra tiesiog perrašyta Cauchy-Schwarz o nelygybė. Norėdami įrodyti (4), nagrinėkime du tokius procesus X ir Y, kuriems atsitiktiniai dydžiai X 1 (t) ir X 2 (t) yra nepriklausomi su bet kuriuo t T ir kurių autokovariacinės funkcijos yra atitinkamai Γ 1 ir Γ 2. Tuomet sumos X + Y autokovariacinė funkcija yra Γ 1 + Γ 2. (Įsitikinkite!) Kita savybė įrodoma analogiškai, suskaičiuojant sandaugos XY autokoreliacinę funkciją. Galiausiai (6) savybės įrodymui nagrinėjamre procesą X t = σ(t)z, t T. Čia a.d. Z N (0, 1). Kaip jau minėjome, baigtiniamačiai atsitiktinio proceso skirstiniai aprašo ir tam tikras trajektorijų savybes. Paprasčiausia apibrėžti atsitiktinio proceso tolydumą pagal tikimybę. 3.5 apibrėžimas. Atsitiktinis procesas (X t, t T ) vadinamas tolydžiu pagal tikimybę taške t 0 T, jei su kiekvienu ε > 0 lim h 0 P ( X t 0 +h X t0 > ε) = 0. Jei procesas tolydus pagal tikimybę kiekviename taške, tai jis vadinamas tiesiog tolydžiu pagal tikimybę. 3.6 apibrėžimas. Tegu p > 0. Atsitiktinis procesas (X t, t T ) vadinamas tolydžiu p-ojo momento prasme taške t 0 T, jei su kiekvienu ε > 0 lim E X t 0 +h X t0 p = 0. h 0 Jei procesas tolydus p-ojo momento prasme kiekviename taške, tai jis vadinamas tiesiog tolydžiu p-ojo momento prasme (kvadratinio vidurkio prasme, kai p = 2). Pritaikę Čebyševo nelygybę matome, kad tolydumas p-ojo momento prasme yra stipresnis už tolydumą pagal tikimybę: P ( X t0 +h X t0 > ε) = P ( X t0 +h X t0 p > ε p ) ε p E( X t0 +h X t0 p ), jei ε > 0 ir p > 0. Panašiai galime apibrėžti diferencijuojamumą pagal tikimybę: procesas (X t ) yra diferencijuojamas pagal tikimybę taške t 0 jei egzistuoja riba X t0 +h X t0 lim h 0 h := X t 0 pagal tikimybę. Riba X t 0 vadinama proceso išvestine pagal tikimybę taške t 0. 64

65 2.3 pav. Tolydaus pagal tikimybę proceso realizacija Kad ne visas atsitiktinio proceso trajektorijų savybes galima aprašyti baigtiniamačiais skirstiniais paaiškinsime pavyzdžiu. 3.6 pavyzdys. Tegu Ω = [0, 1] ir P yra tolygusis intervalo [0, 1] skirstinys. Apibrėžkime atsitiktinius procesus (X t, t [0, 1]) ir (Y t, t [0, 1]): X t (ω) = 0 su visais t, ω [0, 1] { 1, kai t = ω Y t (ω) = 0, kai t ω Galima įsitikinti, kad abu procesai turi vienodus baigtiniamačius skirstinius: { 1, kai visi x j 0 F t1,...,t n (x 1,..., x n ) = 0, kitur Tačiau tuo tarpu Taip pat matome, kad P (ω : X t (ω) < 1 su visais t [0, 1]) = P (Ω) = 1 P (ω : Y t (ω) < 1 su visais t [0, 1]) = P ( ) = 0 P ((X t ) tolydus intervale [0, 1]) = 1 P ((Y t ) tolydus intervale [0, 1]) = 0. Šiame paprastame pavyzdyje nagrinėjamų įvykių tikimybės nėra aprašomos baigtiniamačiais skirstiniais. Taigi vien Kolmogorovo teoremos nepakanka norint analizuoti atsitiktinius procesus. Mat tokios geometrinės trajektorijų savybės kaip tolydumas, diferencijuojamumas, integruojamumas ir pan., susijusios su visa proceso trajektorija, t.y. su reikšmėmis X t kiekvienam laiko momentui t T. Tuo atveju, kai T yra neskaiti 65

66 aibė kyla matumo problemų. Nagrinėjami įvykiai gali būti nematūs. Pavyzdžiui, jei T = [a, b], A B R - bet kuri Borelio aibė, tai įvykis {ω Ω : X t (ω) A su visais t T } = t T{ω Ω : X t A} yra neskaitaus skaičiaus mačių įvykių sankirta. Nors kiekvienas iš įvykių {ω Ω : X t A} yra matus (priklauso F) σ algebros apibrėžimas negarantuoja, kad jų neskaiti sankirta bus mati. Taigi norėdami analizuoti tas atsitiktinio proceso trajektorijų savybes, kurių aprašymui rekia kontroliuoti reikšmes kiekvienu laiko momentu t T, turime ieškoti papildomų priemonių, nei suteikia baigtiniamačiai skirstiniai. Laimei, tam yra galimybė modifikuoti procesus, nekeičiant jų baigtiniamačių skirstinių. 3.3 Klasifikavimas pagal skirstinius Šiame skyrelyje klasifikuojami atsitiktiniai procesai pagal savybes, aprašomas baigtiniamačiais skirstiniais. Gauso procesai 3.7 apibrėžimas. Atsitiktinis procesas X = (X t, t T ) yra Gauso (arba normalusis), jei visi jo baigtiniamačiai skirstiniai yra Gauso (normaliniai). 3.7 pavyzdys. Tegu X, Y yra normaliniai atsitiktiniai dydžiai. Tuomet procesas X t = tx + Y, t 0 yra Gauso. 3.5 teiginys. Gauso procesą pilnai aprašo jo vidurkio funkcija ir autokovariacinė funkcija šia prasme: jei m : T R yra bet kuri funkcija, o simetrinė funkcija Γ : T T R yra neneigiamai apibrėžta, tai egzistuoja Gauso procesas su vidurkio funkcija m ir autokovariacine funkcija Γ. Įrodymas. Įrodoma remiantis Kolmogorovo teorema, nes daugiamačius Gauso vektorius vienareikšmiškai aprašo vidurkio vektorius ir kovariacijų matrica. 3.6 teiginys. Atsitiktinis procesas X = (X t, t T ) yra Gauso tada ir tik tada, kai su bet kuriuo n 1 ir bet kuriais rinkiniais t 1,..., t n, λ 1,..., λ n atsitiktinis dydis n k=1 λ kx tk yra Gauso. Įrodymas. Paliekame vietoj pratimo. 3.8 pavyzdys. (Gauso baltasis triukšmas) Nagrinėkime procesą X = (X t, t Z), kai X t, t Z yra nepriklausomi normaliniai atsitiktiniai dydžiai su vienodu pasiskirstymu N (0, σ 2 ). Tada procesas X yra Gauso procesas su vidurkio funkcija m X (t) = 0, t Z, ir kovariacine funkcija Γ X (s, t) = { σ 2, kai s = t 0, kai s t, s, t Z. Šitaip apibrėžtas procesas vadinamas Gauso baltuoju triukšmu. 66

67 3.9 pavyzdys. (Vynerio procesas) Tarkime, T yra arba uždaras intervalas [0.a], arba aibė [0, ). Imdami 0 = t 0 < t 1 < < t n ir x 0 = 0, x 1,..., x n R apibrėžkime F t1,...,t n (x 1,..., x n ) = x1 xn f t1,...,t n (u 1,..., u n ) du 1 du n, o f t1,...,t n (u 1,..., u n ) = n { (2π(t k t k 1 )) 1/2 exp (u k u k 1 ) 2 } ; 2(t k t k 1 ) k=1 čia t 0 = u 0 = 0. Galime patikrinti, kad pasiskirstymo funkcijų šeima {F t1,...,t n, 0 t 1 < < t n T, n 1} tenkina Kolmogorovo 3.1 teoremos sąlygas. Taigi egzistuoja atsitiktinis procesas, pažymėkime jį (W t, t T ), kurio baigtiniamačių pasiskirstymo funkcijų šeima sutampa su {F t1,...,t n, t 1 < < t n T, n 1}. Gautasis procesas vadinamas Vynerio arba Brauno judesio procesu. Stacionarūs procesai Daugelio svarbių atsitiktinių procesų baigtiniamačiai skirstiniai nepriklauso nuo laiko postūmio. Todėl natūralu juos apjungti į vieną klasę. Primename, kad nagrinėjame atsitiktinius procesus, kurių indeksų aibė T yra realiųjų skaičių intervalas arba sveikųjų skaičių aibė. 3.8 apibrėžimas. Atsitiktinis procesas X = (X t, t T ) vadinamas stipriai stacionariu (stacionariu siaurąja prasme), jei atsitiktinių vektorių (X t1, X t2,..., X tm ) ir (X t1 +h, X t2 +h,..., X tm+h) skirstiniai sutampa kokie bebūtų t 1 < t 2 < < t m T ir toks h > 0, kad t 1 + h,..., t m + h T. Stipriai stacionaraus atsitiktinio proceso (X t, t T ), atsitiktiniai dydžiai X t, t 0, yra vienodai pasiskirstę. Tikrai, imdami t < s, turime F t (x) = P (X t x) = P (X t+(s t) x) = F s (x), x R. Taigi a.d. X t ir X s pasiskirstymo funkcijos sutampa. Kadangi proceso vidurkį aprašo pirmos eilės skirstinys, tai stacionaraus proceso vidurkio funkcija yra konstanta. 3.7 teiginys. Stacionaraus proceso (X t, t T ) kovariacinė funkcija Γ(s, t), s > t, priklasuso tik nuo skirtumo s t. Įrodymas. Tarkime, EX t = 0 su kiekvienu t T. Jei s > t, tai Γ(s, t) = E(X s X t ) = xy df s,t (x, y) = xy df s t,0 (x, y) = Γ(s t, 0). Taigi Γ(s, t) = Γ(s t, 0) su visais s > t. Stacionaraus atsitiktinio proceso autokovariacinį funkcija yra vieno argumento funkcija. Dėl šios priežasties, vietoj Γ(h, 0) rašysime tiesiog γ(h). 67

68 3.10 pavyzdys. (Stiprus baltasis triukšmas) Atsitiktinių dydžių seka X t, t Z sudaryta iš centruotų ir nepriklausomų vienodai pasiskirs2iusių atsitiktinių dydžių: EX t = 0, vadinama stipriu baltuoju triukšmu. Jo autokoreliacinė funkcija yra { σ 2, jei s = t (3.2) Q X (s, t) = EX t X s = 0, jei s t. 2.3 pav. Stiprus baltasis triukšmas Bendru atveju, atsitiktinis procesas su nuliniu vidurkiu ir (3.4) autokoreliacine funkcija nėra stacionarus. Tokia autokoreliacinė funkcija tik reiškia, kad atsitiktiniai dydžiai X t ir X s yra nekoreliuoti pavyzdys. Tegu (Y t, t Z) yra stacionarus procesas, sveikasis skaičius d 1 ir a 1,..., a d realieji skaičiai. Apibrėžkime d X t = a k Y t k, t Z. k=0 Atsitiktinis procesas (X t, t Z) yra stacionarus (įsitikinkite!). Jis vadinamas d-eilės slenkančio vidurkio procesu (MA(d) procesu). Jo autokoreliacinė funkcija yra (3.3) Q X (s, t) = kai t s. d k=0 m=0 d a k a m E(Y t k Y s m ) = d a m a t s+m, m=0 2.4 pav. Slenkančio vidurkio procesas MA(1) Stipraus stacionarumo sąlyga dažniausiai yra per stiprus reikalavimas praktiniuose atsitiktinių procesų teorijos taikymuose. Todėl dažnai pakanka vadinamojo silpnojo stacionarumo. 3.9 apibrėžimas. Antrosios eilės atsitiktinis procesas X = (X t, t T ) vadinamas silpnai stacionariu (stacionariu plačiąja prasme), jei su visais t 1, t 2 T ir tokiais h > 0, kad t 1 + h, t 2 + h T, 68

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

Matematinės analizės konspektai

Matematinės analizės konspektai Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,

Διαβάστε περισσότερα

Matematika 1 3 dalis

Matematika 1 3 dalis Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A

Διαβάστε περισσότερα

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam, 41 Funkcijos riba IV FUNKCIJOS RIBA Taško x X aplinka vadiname bet koki atvira intervala, kuriam priklauso taškas x Taško x 0, 2t ilgio aplinka žymėsime tokiu būdu: V t (x 0 ) = ([x 0 t, x 0 + t) Sakykime,

Διαβάστε περισσότερα

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga VII DAUGELIO KINTAMU JU FUNKCIJOS 71 Bendrosios sa vokos Iki šiol mes nagrinėjome funkcijas, apibrėžtas realiu skaičiu aibėje Nagrinėsime funkcijas, kurios apibrėžtos vektorinėse erdvėse Tarkime, kad R

Διαβάστε περισσότερα

Elektronų ir skylučių statistika puslaidininkiuose

Elektronų ir skylučių statistika puslaidininkiuose lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3 Skaičių teorija paskaitų konspektas Paulius Šarka, Jonas Šiurys 1 Įvadas 1 1.1 Neišspręstos problemos.............................. 1 2 Dalumas 2 2.1 Dalyba su liekana.................................

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lgčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai

Διαβάστε περισσότερα

FDMGEO4: Antros eilės kreivės I

FDMGEO4: Antros eilės kreivės I FDMGEO4: Antros eilės kreivės I Kęstutis Karčiauskas Matematikos ir Informatikos fakultetas 1 Koordinačių sistemos transformacija Antrosios eilės kreivių lgtis prastinsime keisdami (transformuodami) koordinačių

Διαβάστε περισσότερα

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

Vilniaus universitetas Matematikos ir informatikos fakultetas. Algirdas Ma iulis. Duomenu tyrimas. Paskaitu konspektas

Vilniaus universitetas Matematikos ir informatikos fakultetas. Algirdas Ma iulis. Duomenu tyrimas. Paskaitu konspektas Vilniaus universitetas Matematikos ir informatikos fakultetas Algirdas Ma iulis Duomenu tyrimas Paskaitu konspektas 2011 Turinys Ivadas 5 1 Pagrindines tikimybiu teorijos ir informacijos teorijos s vokos

Διαβάστε περισσότερα

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip:

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip: III MATRICOS DETERMINANTAI Realiu ju skaičiu lentele 3 Matricos a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn vadinsime m n eilės matrica Trumpai šia lentele žymėsime taip: A = a ij ; i =,, m, j =,, n čia

Διαβάστε περισσότερα

EUROPOS CENTRINIS BANKAS

EUROPOS CENTRINIS BANKAS 2005 12 13 C 316/25 EUROPOS CENTRINIS BANKAS EUROPOS CENTRINIO BANKO NUOMONĖ 2005 m. gruodžio 1 d. dėl pasiūlymo dėl Tarybos reglamento, iš dalies keičiančio Reglamentą (EB) Nr. 974/98 dėl euro įvedimo

Διαβάστε περισσότερα

06 Geometrin e optika 1

06 Geometrin e optika 1 06 Geometrinė optika 1 0.1. EIKONALO LYGTIS 3 Geometrinėje optikoje įvedama šviesos spindulio sąvoka. Tai leidžia Eikonalo lygtis, kuri išvedama iš banginės lygties monochromatinei bangai - Helmholtco

Διαβάστε περισσότερα

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof.

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof. Papildoo ugdyo okykla izikos olipas Mechanika Dinaika (Paskaitų konspektas) 9. sausio -8 d. Prof. Edundas Kuokštis Vilnius Paskaita # Dinaika Jei kineatika nagrinėja tik kūnų judėjią, nesiaiškindaa tą

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 014 m. birželio 5 d. matematikos valstybinį

Διαβάστε περισσότερα

04 Elektromagnetinės bangos

04 Elektromagnetinės bangos 04 Elektromagnetinės bangos 1 0.1. BANGINĖ ŠVIESOS PRIGIMTIS 3 Šiame skyriuje išvesime banginę lygtį iš elektromagnetinio lauko Maksvelo lygčių. Šviesa yra elektromagnetinė banga, kurios dažnis yra optiniame

Διαβάστε περισσότερα

KLASIKIN E MECHANIKA

KLASIKIN E MECHANIKA KLASIKIN E MECHANIKA Algirdas MATULIS Puslaidininkiu zikos institutas Vadoveliu serijos papildymas auk²tuju mokyklu tiksliuju mokslu specialybiu studentams Email: amatulis@takas.lt Mob.: +370 654 543 06

Διαβάστε περισσότερα

Paskait u konspektas. Jam padėjo Aristidas Vilkaitis ir Donatas Šepetys 2006 metais

Paskait u konspektas. Jam padėjo Aristidas Vilkaitis ir Donatas Šepetys 2006 metais Paskait u konspektas AKTUARINĖ MATEMATIKA Surašė Jonas Šiaulys Ja padėjo Aristidas Vilkaitis ir Donatas Šepetys 26 etais Naudota literatūra Bowers N.L., Gerber H.U., Hickan J.C., Jones D.A., Nesbitt C.J.,

Διαβάστε περισσότερα

1. Klasifikavimo su mokytoju metodai

1. Klasifikavimo su mokytoju metodai 1. Klasifikavimo su mokytoju metodai Klasifikacijos uždavinys yra atpažinimo uždavinys, kurio esmė pagal pateiktus objekto (vaizdo, garso, asmens, proceso) skaitinius duomenis priskirti ji kokiai nors

Διαβάστε περισσότερα

MATEMATIKOS BRANDOS EGZAMINO PROGRAMA I. BENDROSIOS NUOSTATOS

MATEMATIKOS BRANDOS EGZAMINO PROGRAMA I. BENDROSIOS NUOSTATOS PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 0 m. liepos d. įsakymu Nr. V-97 (Lietuvos Respublikos švietimo ir mokslo ministro 04 m. gruodžio 9 d. įsakymo Nr. V- 7 redakcija) MATEMATIKOS

Διαβάστε περισσότερα

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA JONAS DUMČIUS (1905 1986) TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA 1975 metais rotaprintu spausdintą vadovėlį surinko klasikinės filologijos III kurso studentai Lina Girdvainytė Aistė Šuliokaitė Kristina

Διαβάστε περισσότερα

Kengūra Užduotys ir sprendimai. Senjoras

Kengūra Užduotys ir sprendimai. Senjoras Kengūra 2014 Užduotys ir sprendimai Senjoras KENGŪROS KONKURSO ORGANIZAVIMO KOMITETAS KENGŪRA 2014 TARPTAUTINIO MATEMATIKOS KONKURSO UŽDUOTYS IR SPRENDIMAI Autorius ir sudarytojas Aivaras Novikas Redaktorius

Διαβάστε περισσότερα

Integriniai diodai. Tokio integrinio diodo tiesiogin įtampa mažai priklauso nuo per jį tekančios srov s. ELEKTRONIKOS ĮTAISAI 2009

Integriniai diodai. Tokio integrinio diodo tiesiogin įtampa mažai priklauso nuo per jį tekančios srov s. ELEKTRONIKOS ĮTAISAI 2009 1 Integriniai diodai Integrinių diodų pn sandūros sudaromos formuojant dvipolių integrinių grandynų tranzistorius. Dažniausiai integriniuose grandynuose kaip diodai naudojami tranzistoriniai dariniai.

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Techninis aprašymas Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Aprašymas Šie vožtuvai skirti naudoti su AMV(E) 335, AMV(E) 435 arba

Διαβάστε περισσότερα

MATEMATIKA. VIDURINIO UGDYMO BENDROSIOS PROGRAMOS 3 priedas

MATEMATIKA. VIDURINIO UGDYMO BENDROSIOS PROGRAMOS 3 priedas VIDURINIO UGDYMO BENDROSIOS PROGRAMOS 3 priedas Vi du ri nio ug dy mo ben drų jų pro gra mų 3 prie das Matematika Redakcinė grupė: Alvyda Ambraškienė, Regina Rudalevičienė, Marytė Skakauskienė, dr. Eugenijus

Διαβάστε περισσότερα

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 04 m. birželio 6 d. Nr. (.)-V-69birželio 4 04 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA I dalis Kiekvieno I dalies klausimo

Διαβάστε περισσότερα

8. LENKIAMŲ PLOKŠTELIŲ ELEMENTAI

8. LENKIAMŲ PLOKŠTELIŲ ELEMENTAI 8. LENKIAMŲ PLOKŠELIŲ ELEMENAI 8.1. LENKIAMŲ PLOKŠELIŲ EORIJA Įtempimai: storį: paprastai operuojama įrąžomis įtempimų atstojamosiomis per plokštelės z τ z t τ z M t = zdz, M =...., M =.. t t = τzdz, =

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

1 tema. Bendroji mokslinių tyrimų metodologija

1 tema. Bendroji mokslinių tyrimų metodologija 1 tema. Bendroji mokslinių tyrimų metodologija Mokslas, kaip viena protinės veiklos sudėtinė dalis - tai žmonių veikla, kurios funkcijos yra gauti ir teoriškai sisteminti objektyvias žinias apie tikrovę.

Διαβάστε περισσότερα

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka WMB 71032 PTM Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató utomatická pračka Používateľská príručka Dokumentu Nr 2820522945_LT / 06-07-12.(16:34) 1 Svarbūs

Διαβάστε περισσότερα

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω

Διαβάστε περισσότερα

Investicijų grąža. Parengė Investuok Lietuvoje analitikai

Investicijų grąža. Parengė Investuok Lietuvoje analitikai Investicijų grąža Parengė Investuok Lietuvoje analitikai Turinys Lietuva pateisina investuotojų lūkesčius... 3 Nuosavo kapitalo grąža... 4 Kokią grąžą generuoja Lietuvos įmonės?... 4 Kokią grąžą generuoja

Διαβάστε περισσότερα

= γ. v = 2Fe(k) O(g) k[h. Cheminė kinetika ir pusiausvyra. Reakcijos greičio priklausomybė nuo temperatūros. t2 t

= γ. v = 2Fe(k) O(g) k[h. Cheminė kinetika ir pusiausvyra. Reakcijos greičio priklausomybė nuo temperatūros. t2 t Cheminė kineika ir pusiausyra Nagrinėja cheminių reakcijų greiį ir mechanizmą. Cheminių reakcijų meu kina reaguojančių iagų koncenracijos: c ų koncenracija, mol/l laikas, s c = Reakcijos greičio io ()

Διαβάστε περισσότερα

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ Περιεχόμενα 1. Το εξωτερικό μέτρο Lebesgue 2 2. Mετρήσιμα σύνολα 4 3. Η κανονικότητα του μέτρου Lebesgue

Διαβάστε περισσότερα

1 teorinė eksperimento užduotis

1 teorinė eksperimento užduotis 1 teorinė eksperimento užduotis 2015 IPhO stovykla DIFERENCINIS TERMOMETRINIS METODAS Šiame darbe naudojame diferencinį termometrinį metodą šiems dviems tikslams pasiekti: 1. Surasti kristalinės kietosios

Διαβάστε περισσότερα

Kompiuterinė lazerių fizika. Viktorija Pyragaitė

Kompiuterinė lazerių fizika. Viktorija Pyragaitė Kompiuterinė lazerių fizika Viktorija Pyragaitė VILNIAUS UNIVERSITETAS FIZIKOS FAKULTETAS Viktorija Pyragaitė KOMPIUTERINĖ LAZERIŲ FIZIKA Elektroninis leidinys Mokomoji knyga Vilnius 2013 Apsvarstė ir

Διαβάστε περισσότερα

Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos

Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos Rimantas DEKSNYS, Robertas STANIULIS Elektros sistemų katedra Kauno technologijos universitetas

Διαβάστε περισσότερα

9. KEVALŲ ELEMENTAI. Pavyzdžiai:

9. KEVALŲ ELEMENTAI. Pavyzdžiai: 9. KEVALŲ ELEMENTAI Kealai Tai ploni storio krptii kūnai, sudarti iš kreių plokštuų. Geoetrija nusakoa iduriniu pairšiui ir storiu t. Kiekiena pairšiaus taške galia rasti di kreies, atitinkančias inialius

Διαβάστε περισσότερα

2 TEMOS SKAITINIAI. Z.Lydeka. Rinkos ekonomikos tapsmas: teoriniai svarstymai. Kaunas: VDU leidykla, 2001, p.27-33; 45-60; ;

2 TEMOS SKAITINIAI. Z.Lydeka. Rinkos ekonomikos tapsmas: teoriniai svarstymai. Kaunas: VDU leidykla, 2001, p.27-33; 45-60; ; 2 TEMOS SKAITINIAI Z.Lydeka. Rinkos ekonomikos tapsmas: teoriniai svarstymai. Kaunas: VDU leidykla, 2001, p.27-33; 45-60; 112-117; 126-135. Mokslinėje literatūroje sutinkamus požiūrius į ekonominę sistemą,

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA 006 m. valstybinio brandos egzamino uþduotis Pagrindinë sesija 006 m. geguþës 17 d. Trukmë 3 val. Nacionalinis

Διαβάστε περισσότερα

Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje. V.Gineityt

Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje. V.Gineityt Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje V.Gineityt Gamtos moksluose teorijoms keliami du pagrindiniai uždaviniai: paaiškinti stebimų objektų savybes

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS STATISTINĖ ANALIZĖ

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS STATISTINĖ ANALIZĖ LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS 2010 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 2010 m. birželio 8 d. valstybinį matematikos

Διαβάστε περισσότερα

MATAVIMO PRIEMONIŲ METROLOGINö PRIEŽIŪRA

MATAVIMO PRIEMONIŲ METROLOGINö PRIEŽIŪRA MATAVIMO PRIEMONIŲ METROLOGINö PRIEŽIŪRA Matavimo priemonių metrologin priežiūra (teisin metrologija) Pagrindin s metrologin s priežiūros (pagal metrologijos įstatymą) rūšys: tipo patvirtinimas pirmin

Διαβάστε περισσότερα

fx-82es PLUS fx-85es PLUS fx-95es PLUS fx-350es PLUS

fx-82es PLUS fx-85es PLUS fx-95es PLUS fx-350es PLUS LT fx-82es PLUS fx-85es PLUS fx-95es PLUS fx-350es PLUS Naudotojo vadovas CASIO Worldwide Education svetainė http://edu.casio.com CASIO ŠVIETIMO FORUMAS http://edu.casio.com/forum/ Išversta vertimų biure

Διαβάστε περισσότερα

Gyvųjų organizmų architektūra: baltymai

Gyvųjų organizmų architektūra: baltymai Gyvųjų organizmų architektūra: baltymai Dr. Zita Naučienė Baltymai yra gausiausia biologinių makromolekulių klasė randama visose ląstelėse. Baltymų įvairovė yra labai didelė, nei viena makromolekulių klasė

Διαβάστε περισσότερα

AUTOMATINIO VALDYMO TEORIJA

AUTOMATINIO VALDYMO TEORIJA Saulius LISAUSKAS AUTOMATINIO VALDYMO TEORIJA Projekto kodas VP1-.-ŠMM-7-K-1-47 VGTU Elektronikos fakulteto I pakopos studijų programų esminis atnaujinimas Vilnius Technika 1 VILNIAUS GEDIMINO TECHNIKOS

Διαβάστε περισσότερα

Elektrotechnikos pagrindai

Elektrotechnikos pagrindai Valentinas Zaveckas Elektrotechnikos pagrindai Projekto kodas VP1-2.2-ŠMM 07-K-01-023 Vilnius Technika 2012 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant inovatyvius

Διαβάστε περισσότερα

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Teor imov r. ta matem. statist. Vip. 94, 2016, stor eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

Apì ton diakritì kôbo ston q ro tou Gauss

Apì ton diakritì kôbo ston q ro tou Gauss Apì ton diaritì Ôbo ston q ro tou Gauss 1 Isoperimetri anisìthta sto diaritì Ôbo Θεωρούμε την οικογένεια J των συναρτήσεων J : [0 1] [0 ) που ικανοποιούν τα εξής: J0) = J1) = 0. Για κάθε a b [0 1] a +

Διαβάστε περισσότερα

TEORINĖ ELEKTROTECHNIKA

TEORINĖ ELEKTROTECHNIKA Zita SAVICKIENĖ TEORINĖ ELEKTROTECHNIKA Prjekt kdas VP1-2.2-ŠMM-07-K-01-047 VGTU Elektrniks fakultet I pakps studijų prgramų esminis atnaujinimas Vilnius Technika 2012 VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

Διαβάστε περισσότερα

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t) Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων

Διαβάστε περισσότερα

GEOMETRINĖS OPTIKOS PAGRINDAI

GEOMETRINĖS OPTIKOS PAGRINDAI OPTINĖS SISTEMOS GEOMETRINĖS OPTIKOS PAGRINDAI sites.google.com/site/optinessistemos/ I. ĮVADAS Ženklai geometrinėje optikoje LABAI SVARBU! Fizikinė optika ir geometrinė optika Fizikinė optika - bangų

Διαβάστε περισσότερα

Turininga informatikos mokymosi medžiaga pradinukams ir vyresniems

Turininga informatikos mokymosi medžiaga pradinukams ir vyresniems Turininga informatikos mokymosi medžiaga pradinukams ir vyresniems Parašė Tim Bell, Ian H. Witten ir Mike Fellows Darbui klasėje pritaikė Robyn Adams ir Jane McKenzie Iliustravo Matt Powell 2015 m. atnaujino

Διαβάστε περισσότερα

!"#$%#&'(#)*+,$-.#/ 0%&#1%&%#)*2!1/&%3) 0&/(*+"45 64.%*)52(/7

!#$%#&'(#)*+,$-.#/ 0%&#1%&%#)*2!1/&%3) 0&/(*+45 64.%*)52(/7 !"#$%#&'(#)*+,$-.#/ 0%&#1%&%#)*2!1/&%3) 0&/(*+"45 64.%*)52(/7 2010 2012 !"#$%!&'()$!!"#$% &!#'()* +(, $-(./!'$% $+0 '$ 1!")& '(, 2,3!4#*'& '&5 67µ3(, 0'$# (%!)%/µ(" '&5 $+849!:5 ()(-)&4:;(.# -$% & +4

Διαβάστε περισσότερα

ESIM364 GSM APSAUGOS IR VALDYMO SISTEMA VARTOTOJO VADOVAS ATITINKA EN GRADE 3, CLASS II REIKALAVIMUS

ESIM364 GSM APSAUGOS IR VALDYMO SISTEMA VARTOTOJO VADOVAS ATITINKA EN GRADE 3, CLASS II REIKALAVIMUS ESIM364 GSM APSAUGOS IR VALDYMO SISTEMA VARTOTOJO VADOVAS ATITINKA EN 50131-1 GRADE 3, CLASS II REIKALAVIMUS Vartotojo Vadovas v1.4 Suderinama su ESIM364 v02.10.01 ir vėlesne Saugos informacija Kad užtikrinti

Διαβάστε περισσότερα

Techninis katalogas Plokščių radiatoriai LIETUVA 2012

Techninis katalogas Plokščių radiatoriai LIETUVA 2012 Techninis katalogas Plokščių radiatoriai LIETUVA 2012 2 turinys plokščių radiatoriai charakteristika...4 plokščių radiatoriai charakteristika... 88 Compact... 10 Ventil Compact 200 mm... 91 Ventil Compact...

Διαβάστε περισσότερα

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Fizika doc. dr. Vytautas Stankus Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Studentų 50 58 kab. Darbo tel.: 861033946 Vytautas.Stankus@ktu.lt Bendrosios fizikos

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ] συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)

Διαβάστε περισσότερα

Oksidacija ir redukcija vyksta kartu ir vienu metu!!!

Oksidacija ir redukcija vyksta kartu ir vienu metu!!! Valentingumas Atomo krūviui molekulėje apibūdinti buvo pasirinkta sąvoka atomo oksidacijos laipsnis. Oksidacijos laipsnis Oksidacijos laipsnio vertė gali būti teigiama, neigiama arba lygi nuliui. Teigiama

Διαβάστε περισσότερα

PIRMO VAISIŲ VARTOJIMO SKATINIMO LIETUVOS MOKYKLOSE PROGRAMOS ĮGYVENDINIMO IR VEIKSMINGUMO VERTINIMO, APIMANČIO 2010 M. RUGPJŪČIO 1D.

PIRMO VAISIŲ VARTOJIMO SKATINIMO LIETUVOS MOKYKLOSE PROGRAMOS ĮGYVENDINIMO IR VEIKSMINGUMO VERTINIMO, APIMANČIO 2010 M. RUGPJŪČIO 1D. PIRMO VAISIŲ VARTOJIMO SKATINIMO LIETUVOS MOKYKLOSE PROGRAMOS ĮGYVENDINIMO IR VEIKSMINGUMO VERTINIMO, APIMANČIO 2010 M. RUGPJŪČIO 1D. 2011 M. LIEPOS 31 D. LAIKOTARPĮ, ATASKAITOS SANTRAUKA Vadovaujantis

Διαβάστε περισσότερα

σημειωσεις θεωριας μετρου

σημειωσεις θεωριας μετρου σημειωσεις θεωριας μετρου Σάμος 2009 Επιλογή υλικού Αντώνης Τσολομύτης Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών. Δημιουργία πρώτου ηλεκτρονικού αρχείου Μαγδαληνή Πλιόγκα Απόφοιτος του Τμήματος Μαθηματικών

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

TRUMAN. Vartotojo vadovas

TRUMAN. Vartotojo vadovas TRUMAN Vartotojo vadovas Jūsų PRESIDENT TRUMAN ASC iš pirmo žvilgsnio DĖMESIO! Prieš pradedant naudotis stotele, pirmiausia būtina prie jos prijungti anteną (jungtis, esanti prietaiso galinėje dalyje)

Διαβάστε περισσότερα

MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS

MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 004 m. gegužės 7 d. įsakymu Nr. ISAK-75 MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS

Διαβάστε περισσότερα

TEDDY Vartotojo vadovas

TEDDY Vartotojo vadovas TEDDY Vartotojo vadovas Jūsų PRESIDENT TEDDY ASC iš pirmo žvilgsnio DĖMESIO! Prieš pradedant naudotis stotele, pirmiausia būtina prie jos prijungti anteną (jungtis, esanti prietaiso galinėje dalyje) ir

Διαβάστε περισσότερα

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö

Διαβάστε περισσότερα

Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC standartą

Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC standartą Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC 60364-6 standartą TURINYS 1. Įžanga 2. Standartai 3. Iki 1000V įtampos skirstomojo tinklo sistemos 4. Kada turi būti atliekami bandymai?

Διαβάστε περισσότερα

Οδηγίες Χρήσης naudojimo instrukcija Упутство за употребу navodila za uporabo

Οδηγίες Χρήσης naudojimo instrukcija Упутство за употребу navodila za uporabo Οδηγίες Χρήσης naudojimo instrukcija Упутство за употребу navodila za uporabo Πλυντήριο πιάτων Indaplovė Машинa за прање посуђа Pomivalni stroj ESL 46010 2 electrolux Περιεχόμενα Electrolux. Thinking of

Διαβάστε περισσότερα

Laißkas moteriai alkoholikei

Laißkas moteriai alkoholikei Laißkas moteriai alkoholikei Margaret Lee Runbeck / Autori teis s priklauso The Hearst Corporation Jeigu aß b çiau tavo kaimyn ir matyçiau, kaip tu narsiai ir beviltißkai kovoji su savo negalia, ir kreipçiausi

Διαβάστε περισσότερα

Aviacinės elektronikos pagrindai

Aviacinės elektronikos pagrindai Antanas Savickas Aviacinės elektronikos pagrindai Projekto kodas VP1-2.2-ŠMM 07-K-01-023 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant inovatyvius studijų metodus

Διαβάστε περισσότερα

PAPILDOMA INFORMACIJA

PAPILDOMA INFORMACIJA PAPILDOMA INFORMACIJA REKOMENDACIJOS, KAIP REIKIA ĮRENGTI, PERTVARKYTI DAUGIABUČIŲ PASTATŲ ANTENŲ ŪKIUS, KAD BŪTŲ UŽTIKRINTAS GEROS KOKYBĖS SKAITMENINĖS ANTŽEMINĖS TELEVIZIJOS SIGNALŲ PRIĖMIMAS I. BENDROSIOS

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

VALIUTOS RIZIKOS VALDYMAS

VALIUTOS RIZIKOS VALDYMAS I Ž D O D E P A R T A M E N T A S VALIUTOS RIZIKOS VALDYMAS SEMINARO MEDŽIAGA praneš jas: Mindaugas Vaičiulis Iždo departamento direktorius Lietuvos žem s ūkio bankas Tel. 22-393567, 393601 Faks. 22-393568

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Μιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης Μιχάλης Παπαδημητράκης Αρμονική Ανάλυση Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα 1 Το ολοκλήρωμα Lebesgue. 1 1.1 Σύνολα μηδενικού μέτρου..................................... 1 1.2 Η συλλογή C

Διαβάστε περισσότερα

6 laboratorinis darbas DIODAS IR KINTAMOSIOS ĮTAMPOS LYGINTUVAI

6 laboratorinis darbas DIODAS IR KINTAMOSIOS ĮTAMPOS LYGINTUVAI Kauno technologijos universitetas...gr. stud... Elektros energetikos sistemų katedra p =..., n =... 6 laboratorinis darbas DIODAS IR KINTAMOSIOS ĮTAMPOS LYGINTUVAI Darbo tikslas Susipažinti su diodo veikimo

Διαβάστε περισσότερα

Jūsų PRESIDENT TAYLOR III ASC iš pirmo žvilgsnio

Jūsų PRESIDENT TAYLOR III ASC iš pirmo žvilgsnio Vartotojo vadovas Jūsų PRESIDENT TAYLOR III ASC iš pirmo žvilgsnio . DĖMESIO! Prieš pradedant naudotis stotele, pirmiausia būtina prie jos prijungti anteną (jungtis, esanti prietaiso galinėje dalyje) ir

Διαβάστε περισσότερα

Teorinė mechanika I. Uždavinių sprendimo vadovas

Teorinė mechanika I. Uždavinių sprendimo vadovas VILNIUS GEDIINO TEHNIKOS UNIVERSITETS R. UŠYS, J. KSNUSKS Teorinė mechania I. Uždavinių sprendimo vadovas OKOOJI KNYG Vilnius Technia 00 R. aušs, J. Kasnausas. TEORINĖ EHNIK I. UŽDVINIŲ SPRENDIO VDOVS

Διαβάστε περισσότερα

Topologinio rūšiavimo algoritmai

Topologinio rūšiavimo algoritmai 4.4. SPECIALIEJI GRAFŲ ALGORITMAI 5 4.4. Specialieji graf algorimai Šiame krije ipažinime grafo iršūni peržiūro algorimai ir jų aikmai prendžian įairi informaiko ždaini. Kiekiena grafo iršūnę galime paieki

Διαβάστε περισσότερα

n = r J n,r J n,s = J

n = r J n,r J n,s = J Ανάλυση Fourer και Ολοκλήρωμα Lebesgue (2011 12) 4ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω E [a, b] με µ (E) = 0. Δείξτε ότι το [a, b] \ E είναι πυκνό υποσύνολο του [a, b]. Υπόδειξη. Θεωρήστε ένα μη κενό

Διαβάστε περισσότερα

+ 1 n 5 (η) {( 1) n + 1 m

+ 1 n 5 (η) {( 1) n + 1 m Κεφάλαιο Τοπολογία του. Στοιχεία Θεωρίας Ορισµός Αν α και ɛ > ονοµάζουµε ɛ-περιοχή του α ή περιοχή κέντρου α και ακτίνας ɛ και συµβολίζουµε N α (ɛ) το σύνολο όλων των αριθµών που έχουν απόσταση από το

Διαβάστε περισσότερα

, t.y. per 41 valandą ir 40 minučių. (3 taškai) v Braižome h = f(t) priklausomybės grafiką.

, t.y. per 41 valandą ir 40 minučių. (3 taškai) v Braižome h = f(t) priklausomybės grafiką. 5 m. Lietuvos 7-ojo fizikos čempionato UŽDUOČIŲ SPENDIMI 5 m. gruodžio 5 d. (Kiekvienas uždavinys vertinamas taškų, visa galimų taškų suma ). L 5 m ilgio ir s m pločio baseino dugno profilis pavaizduotas

Διαβάστε περισσότερα

XI. MIKROSKOPAI OPTINĖS SISTEMOS. XI. Mikroskopai. sites.google.com/site/optinessistemos/ 2016 pavasario semestras

XI. MIKROSKOPAI OPTINĖS SISTEMOS. XI. Mikroskopai. sites.google.com/site/optinessistemos/ 2016 pavasario semestras OPTINĖS SISTEMOS XI. Mikroskopai sites.google.com/site/optinessistemos/ Mikroskopas Pagrindiniai mikroskopijos principai Vaizdų susidarymas Kohler apšvietimas Tiesioginis ir invertuotas mikroskopas Objektyvai

Διαβάστε περισσότερα

MIKROSCHEMŲ TECHNOLOGIJŲ ANALIZĖ

MIKROSCHEMŲ TECHNOLOGIJŲ ANALIZĖ Romualdas NAVICKAS Vaidotas BARZDĖNAS MIKROSCHEMŲ TECHNOLOGIJŲ ANALIZĖ Projekto kodas VP1-2.2-ŠMM-07-K-01-047 VGTU Elektronikos fakulteto I pakopos studijų programų esminis atnaujinimas Vilnius Technika

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

FIZ 313 KOMPIUTERINĖ FIZIKA. Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU

FIZ 313 KOMPIUTERINĖ FIZIKA. Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU EUROPOS SĄJUNGA Europos socialinis fondas KURKIME ATEITĮ DRAUGE! 2004-2006 m. Bendrojo programavimo dokumento 2 prioriteto Žmogiškųjų išteklių plėtra 4 priemonė Mokymosi visą gyvenimą sąlygų plėtra Projekto

Διαβάστε περισσότερα

MATEMATIKOS BRANDOS EGZAMINŲ PROGRAMA Programą rengė D. Dobravolskaitė, P. Gudynas, V. Sičiūnienė, M. Stričkienė

MATEMATIKOS BRANDOS EGZAMINŲ PROGRAMA Programą rengė D. Dobravolskaitė, P. Gudynas, V. Sičiūnienė, M. Stričkienė MATEMATIKOS BRANDOS EGZAMINŲ PROGRAMA Prgramą rengė D. Dbravlskaitė, P. Gudynas, V. Sičiūnienė, M. Stričkienė 1. ĮVADAS Brands egzaminus laik mksleiviai, kurie mkėsi pagal Bendrąsias prgramas ir išsilavinim

Διαβάστε περισσότερα

MONOLITINIO GELŽBETONIO BALKONO PLOKŠČIŲ ARMAVIMAS ELEMENTAIS SU IZOLIUOJANČIU INTARPU

MONOLITINIO GELŽBETONIO BALKONO PLOKŠČIŲ ARMAVIMAS ELEMENTAIS SU IZOLIUOJANČIU INTARPU VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS HALFEN-DEHA Bronius Jonaitis, Arnoldas Šneideris MONOLITINIO GELŽBETONIO BALKONO PLOKŠČIŲ ARMAVIMAS ELEMENTAIS SU IZOLIUOJANČIU INTARPU Mokomoji knyga Vilnius

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

Plato vs Zeno or the Problem of Ontological Status of Existences in Parmenides

Plato vs Zeno or the Problem of Ontological Status of Existences in Parmenides Gauta 2015 06 19 Skirmantas Jankauskas Vilniaus universitetas Platonas vs Zenonas, arba esinių ontiškumo problema Parmenide Plato vs Zeno or the Problem of Ontological Status of Existences in Parmenides

Διαβάστε περισσότερα

Matematika PIRMOJI KNYGA. Išplėstinis kursas. Vadovėlis gimnazijos IV klasei

Matematika PIRMOJI KNYGA. Išplėstinis kursas. Vadovėlis gimnazijos IV klasei Mtemtik Išplėstinis kurss Vdovėlis gimnzijos IV klsei PIRMOJI KNYGA Turinys Trigonometrinės funkcijos 5 Rdininis kmpo mts Posūkio kmpi 5 Bet kokio kmpo sinuss, kosinuss, tngents ir kotngents 9 Funkcijos

Διαβάστε περισσότερα

L 2 -σύγκλιση σειρών Fourier

L 2 -σύγκλιση σειρών Fourier Κεφάλαιο 7 L -σύγκλιση σειρών Fourier 7.1 Χώροι Hilbert 7.1.1 Χώροι µε εσωτερικό γινόµενο και χώροι Hilbert Ορισµός 7.1.1. Εστω X γραµµικός χώρος πάνω από το K. Μια συνάρτηση, : X X K λέγεται εσωτερικό

Διαβάστε περισσότερα

lt, Red. 4. GSA-AA tipo pervadiniai izoliatoriai Montavimo ir techninės priežiūros vadovas

lt, Red. 4. GSA-AA tipo pervadiniai izoliatoriai Montavimo ir techninės priežiūros vadovas 2750 515-137 lt, Red. 4 GSA-AA tipo pervadiniai izoliatoriai Montavimo ir techninės priežiūros vadovas Originali instrukcija Šiame dokumente pateikta informacija yra bendrojo pobūdžio ir neapima visų galimų

Διαβάστε περισσότερα