Η ΔΗΜΙΟΥΡΓΙΑ ΤΩΝ ΠΟΛΛΑΠΛΩΝ ΚΟΣΜΩΝ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η ΔΗΜΙΟΥΡΓΙΑ ΤΩΝ ΠΟΛΛΑΠΛΩΝ ΚΟΣΜΩΝ"

Transcript

1 Η ΔΗΜΙΟΥΡΓΙΑ ΤΩΝ ΠΟΛΛΑΠΛΩΝ ΚΟΣΜΩΝ Του Αλέκου Χαραλαμπόπουλου Όπως διατυπώθηκε στην κοσμοθεωρία μας ΤΟ ΙΔΙΟΝ, ο κόσμος μας, το σύμπαν μας είναι μία ολογραφία, περίπου ένα επίπεδο τετράγωνο. Υπάρχουν έξι σύμπαντα, ένας κύβος. Οι έδρες του κύβου μόλις απέχουν και δεν έχουν κοινές ακμές, τα έξι σύμπαντα. Στο κέντρο του κύβου υπάρχει μία φυσαλίδα αραιότερου αιθέρα και ο πυκνότερος περιβάλλει την φυσαλίδα και εκτείνεται στο άπειρο. Παρέχουμε το σχήμα του κύβου με εγγεγραμμένη και περιγεγραμμένη σφαίρα. Εκεί όπου βλέπετε την εγγεγραμμένη σφαίρα, νοείστε μία πολύ μικρότερη με το ίδιο κέντρο, την κεντρική φυσαλίδα κέντρο ελέγχου του θεού. Η ΔΗΜΙΟΥΡΓΙΑ ΤΩΝ ΠΟΛΛΑΠΛΩΝ ΚΟΣΜΩΝ Η δημιουργία των πολλαπλών κόσμων, όταν ο άνθρωπος γίνει δημιουργός (ο δημιουργός δημιουργεί δυνάμει του ποιητή-θεού), θα είναι όπως τα πέντε κανονικά στερεά του Πλάτωνα. Το τετράεδρο, το εξάεδρο κύβος που είμαστε, το οκτάεδρο, το δωδεκάεδρο και το εικοσάεδρο. Κάθε έδρα και ένα σύμπαν. και ο χώρος θα πρέπει να είναι Ευκλείδειος. Στα πέντε κανονικά στερεά θα προστεθούν η ευθεία και ο κύκλος, που είναι ένας εγγεγραμμένος κύκλος στο τετράεδρο με την ακτίνα του-ευθεία. Και το τετράεδρο θα έχει εγγεγραμμένη σφαίρα και περιγεγραμμένη την σφαίρα την εγγεγραμμένη στον κύβο. Και η περιγεγραμμένη σφαίρα του κύβου, εγγεγραμμένη στο οκτάεδρο. Και η περιγεγραμμένη σφαίρα του οκταέδρου, εγγεγραμμένη στο δωδεκάεδρο. Και η περιγεγραμμένη σφαίρα του δωδεκαέδρου, εγγεγραμμένη στο εικοσάεδρο που θα έχει την τελευταία περιγεγραμμένη σφαίρα. Δίνουμε τα σχήματα. κύκλος με ακτίνα

2 Κανονικό τετράεδρο με εγγεγραμμένη και περιγεγραμμένη σφαίρα. Ακολουθεί ο κύβος που δόθηκε. Οκτάεδρο με εγγεγραμμένη και περιγεγραμμένη σφαίρα. Δωδεκάεδρο με εγγεγραμμένη και περιγεγραμμένη σφαίρα.

3 Εικοσάεδρο με εγγεγραμμένη και περιγεγραμμένη σφαίρα. Τώρα θα παραθέσουμε συνοπτικά τα πολύεδρα με τις σφαίρες. Τα πέντε πολύεδρα έχουν πενήντα έδρες, οι κόσμοι που θα δημιουργηθούν. Εκτός από τις εγγεγραμμένες και περιγεγραμμένες σφαίρες, υπάρχουν και οι μεσόσφαιρες, οι σφαίρες που εφάπτονται στα μέσα των ακμών των εδρών. Οι μεσόσφαιρες είναι οι αντιπροσωπευτικές σφαίρες κάθε είδους κόσμου. Ο μονοδιάστατος κόσμος ανήκει στην αρχική ευθεία, ο δισδιάστατος στον κύκλο, ο τρισδιάστατος στο τετράεδρο χωρίς χρόνο, ο τετραδιάστατος (οι τρεις διαστάσεις και ο χρόνος που δεν έχει προτιμιτέα διεύθυνση) στον κύβο, που βρισκόμαστε. Το οκτάεδρο, όπου δεν υπάρχει χρόνος και οι διαστάσεις είναι τρεις, πρόκειται για δύο τετράεδρα. Το δωδεκάεδρο (εδώ ο χρόνος έχει δύο διαστάσεις, σε κάθε επίπεδο-έδρα, ο χρόνος ρέει στις δύο διαστάσεις του, ο πενταδιάστατος κόσμος. Η συνείδηση εδώ είναι ανώτερη της δικής μας. Και το εικοσάεδρο, όπου ο χρόνος έχει τρεις διαστάσεις, ρέει στις τρεις διαστάσεις του χώρου. Εδώ η συνείδηση είναι η ανώτατη. ΟΙ ΣΧΕΣΕΙΣ ΑΚΤΙΝΩΝ ΤΩΝ ΣΦΑΙΡΩΝ ΚΑΙ ΤΩΝ ΑΚΜΩΝ Στο τετράεδρο ισχύουν:

4 R ε τ = α τ = R π τ = /R ε τ ακτίνα εγγεγραμμένης σφαίρας στο τετραέδρο, α τ ακμή τετραέδρου, α κ ακμή του κύβου. R μ τ = α τ = R π τ= / R μ τ ακτίνα μεσόσφαιρας τετραέδρου R π τ = α τ = R ε κ = ½ α κ / R π τ ακτίνα περιγεγραμμένης σφαίρας τετραέδρου, R ε κ ακτίνα εγγεγραμένης σφαίρας στον κύβο S τ = 3 α τ V τ = α τ 3 η επιφάνεια του τετραέδρου ο όγκος του τετραέδρου Στον κύβο ισχύουν: R ε κ = ½ α κ R μ κ = R π κ = S κ = 6 α κ V κ = α κ 3 Στο οκτάεδρο ισχύουν: R ε ο = α ο = R π κ = R μ ο = ½ α ο = α κ / R π ο = α ο = α κ S ο = 3 α ο V o = α ο 3 Στο δωδεκάεδρο ισχύουν:

5 R ε δ = R π ο = α κ = 10( ) α δ R μ δ = (1+ 5) α δ R π δ = (3+ 5) α δ S δ = 3 ( ) α δ V δ = (15+7 5) α δ 3 Και για το εικοσάεδρο ισχύουν: R ε ε = R π δ = (3+ 5) α ε R μ ε = (1+ 5) α ε R π ε = (10 + 5) α ε S ε = 5 3 α ε V ε = (3+ 5) α ε 3 Η ΕΠΙΚΟΙΝΩΝΙΑ ΤΩΝ ΚΟΣΜΩΝ Στις κορυφές κάθε κόσμου, θα είναι η επικοινωνία του κόσμου με τον ανώτερό του. Τα όντα του κατώτερου κόσμου θα πρέπει να είναι τεχνολογικά εξοπλισμένα για την εισδοχή στον ανώτερο κόσμο. Θα υπάρχει περιορισμός εισδοχής σε κατώτερο κόσμο.

ΔΙΑΘΛΑΣΗ ΚΑΙ ΦΟΡΤΙΟ. ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΟΙ ΟΥΡΑΝΟΙ. Του Αλέκου Χαραλαμπόπουλου

ΔΙΑΘΛΑΣΗ ΚΑΙ ΦΟΡΤΙΟ. ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΟΙ ΟΥΡΑΝΟΙ. Του Αλέκου Χαραλαμπόπουλου ΔΙΑΘΛΑΣΗ ΚΑΙ ΦΟΡΤΙΟ. ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΟΙ ΟΥΡΑΝΟΙ Του Αλέκου Χαραλαμπόπουλου Όσοι διαβάσατε «ΤΟ ΙΔΙΟΝ» www.omas-e.gr, θα διαπιστώσατε ότι στο κέντρο των συμπάντων υπάρχει η φυσαλίδα που στέλνει

Διαβάστε περισσότερα

Θέμα: «Κωνσταντίνος και Ελένη. Ήσαν Άγιοι και οι δύο.» (Κ + Ε = Α + 2). Την εποχή της Στερεομετρίας.

Θέμα: «Κωνσταντίνος και Ελένη. Ήσαν Άγιοι και οι δύο.» (Κ + Ε = Α + 2). Την εποχή της Στερεομετρίας. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Παράρτημα Κέρκυρας Χαράλαμπος Δημητριάδης Μαθηματικός Θέμα: «Κωνσταντίνος και Ελένη. Ήσαν Άγιοι και οι δύο.» (Κ + Ε = Α + ). Την εποχή της Στερεομετρίας. Μέγιστο γινόμενο,

Διαβάστε περισσότερα

1. * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α. ισοσκελές. Β. ισόπλευρο. Γ. ορθογώνιο.. αµβλυγώνιο. Ε. τυχόν.

1. * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α. ισοσκελές. Β. ισόπλευρο. Γ. ορθογώνιο.. αµβλυγώνιο. Ε. τυχόν. Ερωτήσεις πολλαπλής επιλογής 1 * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α ισοσκελές Β ισόπλευρο Γ ορθογώνιο αµβλυγώνιο Ε τυχόν * Κάθε παραλληλεπίπεδο έχει ακµές Α Β 6 Γ 8 10 Ε

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο 13: ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Θεωρούµε ένα επίπεδο p, µια κλειστή πολυγωνική γραµµή του p και µια ευθεία ε που έχει µε το p ένα µόνο κοινό σηµείο. Από κάθε σηµείο

Διαβάστε περισσότερα

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αρχιτεκτόνων Μηχανικών Τομέας III : Αρχιτεκτονικής Γλώσσας, Επικοινωνίας & Σχεδιασμού ntua ACADEMIC OPEN COURSES Ανθή Μαρία Κουρνιάτη Επίκουρη Καθηγήτρια, Σχολή Αρχιτεκτόνων

Διαβάστε περισσότερα

1 Dodecaeder 3 7 5 11 9. 2 12 4 10 6. 8 Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Dodecaeder Copyright 1998-2005 Gijs Korthals

Διαβάστε περισσότερα

τέτοιους ώστε ο ένας να είναι µέσος των άλλων, δηλαδή

τέτοιους ώστε ο ένας να είναι µέσος των άλλων, δηλαδή Η ιδέα, ότι όλα τα υλικά πράγµατα συντίθενται από αυτά τα τέσσερα πρωταρχικά στοιχεία, αποδίδεται στον προγενέστερό Εµπεδοκλή, Έλληνα φιλόσοφο, ποιητή και πολιτικό [493-433 π.χ.] που γεννήθηκε στον Ακράγαντα

Διαβάστε περισσότερα

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58].

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. Η συνεισφορά του Kepler στα Αρχιµήδεια ήταν µεγάλη, γιατί αυτός απέδειξε

Διαβάστε περισσότερα

Λίγα λόγια για τα Πλατωνικά και Αρχιµήδεια Στερεά

Λίγα λόγια για τα Πλατωνικά και Αρχιµήδεια Στερεά Λίγα λόγια για τα Πλατωνικά και Αρχιµήδεια τερεά (Κανονικά και Ηµικανονικά Πολύεδρα) Λίγα Ιστορικά στοιχεία ηµ. Μπουνάκης χ. ύµβουλος Μαθηµατικών dimitrmp@sch.gr Ιούνιος 2011 Κανονικό Πολύεδρο είναι το

Διαβάστε περισσότερα

4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου

4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου 4. Ομάδες Σημείου ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o ορίζετε την έννοια της ομάδας σημείου ενός μορίου o διακρίνετε τις βασικές κατηγορίες ομάδων σημείου

Διαβάστε περισσότερα

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D 1 Φύλλο 2 Δράσεις με το λογισμικό Cabri-geometry 3D Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο με το αντίστοιχο λογισμικό του Cabri II. Περιέχει γενικές εντολές και εικονίδια που συμπεριλαμβάνουν

Διαβάστε περισσότερα

MATHematics.mousoulides.com

MATHematics.mousoulides.com ΣΤΕΡΕΟΜΕΤΡΙΑ Ενδεικτικές Επαναληπτικές Δραστηριότητες 1 1. Να χαρακτηρίσετε με ΟΡΘΟ ή ΛΑΘΟΣ τις πιο κάτω προτάσεις, βάζοντας σε κύκλο τον αντίστοιχο χαρακτηρισμό. (α) Ο κύλινδρος είναι πολύεδρο. ΟΡΘΟ /

Διαβάστε περισσότερα

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την

Διαβάστε περισσότερα

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.

Διαβάστε περισσότερα

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2

Διαβάστε περισσότερα

ΓΥΜΝΑΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Κασαπίδης Γεώργιος Μαθηματικός Ο τύπος του Euler για τα πολύεδρα

ΓΥΜΝΑΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Κασαπίδης Γεώργιος Μαθηματικός Ο τύπος του Euler για τα πολύεδρα 1. Πολύεδρα Στον τριδιάστατο ευκλείδειο χώρο θεωρούμε ένα σύστημα πολυγώνων, τα οποία είναι διατεταγμένα κατά τέτοιο τρόπο, ώστε να πληρούνται οι εξής δύο συνθήκες: α) Κάθε πλευρά των πολυγώνων του συστήματος

Διαβάστε περισσότερα

Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΤΗ ΣΤΕΡΕΟΜΕΤΡΙΑ

Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΤΗ ΣΤΕΡΕΟΜΕΤΡΙΑ Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΤΗ ΣΤΕΡΕΟΜΕΤΡΙΑ Μέσος και άκρος λόγος σε τµήµα Το Φ προκύπτει µαθηµατικά, αλλά απαντάται και στη φύση, µε αρκετούς διαφορετικούς τρόπους. Θεωρείται ότι δίνει αρµονικές αναλογίες

Διαβάστε περισσότερα

συµµετρίες που αντιστοιχούν σε έναν από τους άξονες συµµετρίας του τετράεδρου.

συµµετρίες που αντιστοιχούν σε έναν από τους άξονες συµµετρίας του τετράεδρου. συµµετρίες που αντιστοιχούν σε έναν από τους άξονες συµµετρίας του τετράεδρου. Σε κάθε άξονα αντιστοιχούν 3 κατοπτρισµοί, οπότε έχουµε 4 * 3 = 12 κατοπτρισµούς συνολικά. Συνολικά, η οµάδα των συµµετριών

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ 3D Μοντέλα ομές και βάσεις δεδομένων Οργάνωση των γεωμετρικών δεδομένων σε βάσεις δεδομένων επεξεργάζονται μεγάλες ποσότητες γεωμετρικών δεδομένων με μεγάλη ταχύτητα ομές και Βάσεις εδομένων Μοντέλα Βάσεων

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΟΤΗΤΑ, ΙΞΩΔΕΣ ΚΑΙ ΑΝΤΙΣΤΑΣΗ ΤΟΥ ΑΙΘΕΡΑ

ΕΛΑΣΤΙΚΟΤΗΤΑ, ΙΞΩΔΕΣ ΚΑΙ ΑΝΤΙΣΤΑΣΗ ΤΟΥ ΑΙΘΕΡΑ ΕΛΑΣΤΙΚΟΤΗΤΑ, ΙΞΩΔΕΣ ΚΑΙ ΑΝΤΙΣΤΑΣΗ ΤΟΥ ΑΙΘΕΡΑ Έχουμε διατυπώσει ότι στο «κέντρο» του άπειρου χώρου, υπάρχει μία φυσαλίδα αραιότερου αιθέρα (υπερβατικής μη ουσίας), που περιβάλλεται από πυκνό αιθέρα, την

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 1. ΓΕΝΙΚΑ Από τις καταστάσεις της ύλης τα αέρια και τα υγρά δεν παρουσιάζουν κάποια τυπική διάταξη ατόμων, ενώ από τα στερεά ορισμένα παρουσιάζουν συγκεκριμένη διάταξη ατόμων

Διαβάστε περισσότερα

Γραφικά με Η/Υ. 3D Μοντέλα

Γραφικά με Η/Υ. 3D Μοντέλα Γραφικά με Η/Υ 3D Μοντέλα Τρισδιάστατα μοντέλα Τρισδιάστατα μοντέλα Δομές και βάσεις δεδομένων Οργάνωση των γεωμετρικών δεδομένων σε βάσεις δεδομένων επεξεργάζονται μεγάλες ποσότητες γεωμετρικών δεδομένων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Κεφάλαιο 2: Αναλογίες - Ομοιότητα Κεφάλαιο 3: Πυθαγόρειο Θεώρημα (και μετρικές σχέσεις) Κεφάλαιο 4: Εμβαδά ευθυγράμμων σχημάτων

ΕΙΣΑΓΩΓΗ Κεφάλαιο 2: Αναλογίες - Ομοιότητα Κεφάλαιο 3: Πυθαγόρειο Θεώρημα (και μετρικές σχέσεις) Κεφάλαιο 4: Εμβαδά ευθυγράμμων σχημάτων ΕΙΣΑΓΩΓΗ Στη Γεωμετρία της Β Λυκείου παρουσιάζονται θεωρήματα και προβλήματα που έχουν μεγάλη ιστορική και μαθηματική αξία. Αξιοποιείται η αναλυτικήσυνθετική μέθοδος και επιχειρείται μία πρώτη επαφή με

Διαβάστε περισσότερα

Θέμα [2] Γεωμετρία: ΣΤΕΡΕΑ: [Ονοματολογία Συμβολισμός] Η έννοια της μεταβλητής -Απλές εξισώσεις. [ο προγραμματισμός]

Θέμα [2] Γεωμετρία: ΣΤΕΡΕΑ: [Ονοματολογία Συμβολισμός] Η έννοια της μεταβλητής -Απλές εξισώσεις. [ο προγραμματισμός] Θέμα [2] 1 Γεωμετρία: ΣΤΕΡΕΑ: [Ονοματολογία Συμβολισμός] Η έννοια της μεταβλητής -Απλές εξισώσεις Ενδεικτική πορεία διδασκαλίας [ο προγραμματισμός] Α. Δίνουμε στους εκπαιδευομένους διάφορα στερεά (κατασκευασμένα)-πολύεδρα

Διαβάστε περισσότερα

4.6 Η ΣΦΑΙΡΑ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.6 Η ΣΦΑΙΡΑ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.6 Η ΣΦΙΡ ΚΙ Τ ΣΤΙΧΙ ΤΗΣ ΘΩΡΙ 1. Σφαίρα : νοµάζεται το στερεό που προκύπτει από µία πλήρη περιστροφή ενός κυκλικού δίσκου γύρω από µία διάµετρό του. Η γεωµετρική µορφή µιας φαίνεται στο διπλανό σχήµα.

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 8.03.12 Χ. Χαραλάμπους Θαλής ο Μιλήσιος ( 630-550π.Χ.) Πυθαγόρας o Σάμιος (570-490) Ζήνωνας ο Ελεάτης ( 490-430) Δημόκριτος o Αβδηρίτης (c. 460-370) Πλάτων (427-347 π.χ.) Ιστορικές

Διαβάστε περισσότερα

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών

Διαβάστε περισσότερα

Η ζωή και ο Θάνατος στο Υλικό Σύμπαν

Η ζωή και ο Θάνατος στο Υλικό Σύμπαν Η ζωή και ο Θάνατος στο Υλικό Σύμπαν Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Τμήμα Φυσικής- Πανεπιστήμιο Αθηνών Η Γεωμετρία Του Σύμπαντος Όταν αναφερόμαστε σε μια γεωμετρία, θεωρούμε ως αυτονόητη

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές

Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Εργαστηριακή άσκηση 01 Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Ηλίας Χατζηθεοδωρίδης Οκτώβριος / Νοέμβριος 2004 Τι περιλαμβάνει η άσκηση Θα μάθετε τα 7 κρυσταλλογραφικά συστήματα και πως

Διαβάστε περισσότερα

Κύκλος. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Κύκλος. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Κύκλος Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyks.gr 1 3 / 1 1 / 2 0 1 6 Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις και τεχνικές σε 5 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για

Διαβάστε περισσότερα

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΑΠΟΔΕΙΞΕΙΣ ΤΡΙΓΩΝΩΝ Δρ Μιχάλης ΛΑΜΠΡΟΥ, Καθηγητής Μαθηματικών

ΜΑΘΗΜΑΤΙΚΕΣ ΑΠΟΔΕΙΞΕΙΣ ΤΡΙΓΩΝΩΝ Δρ Μιχάλης ΛΑΜΠΡΟΥ, Καθηγητής Μαθηματικών ΗΤΙΚΕΣ ΠΟΕΙΞΕΙΣ ΤΡΙΩΝΩΝ ρ ιχάλης ΠΡΟΥ, Καθηγητής αθηματικών H επίκεντρη γωνία είναι το της περιφέρειας, άρα είναι ισοσκελές με είναι. ια τον ίδιο λόγο οι επίκεντρες γωνίες στα τόξα είναι από και λόγω συμμετρίας.

Διαβάστε περισσότερα

Θεωρία και Αλγόριθμοι Γράφων

Θεωρία και Αλγόριθμοι Γράφων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 2: Εισαγωγή (Ορισμοί) Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Ε. ΛΕΥΚΑΔΙΤΗΣ ΕΥΑ Κ. ΔΗΜΗΤΡΙΑΔΟΥ ΜΕΛΕΤH ΚΑΝΟΝΙΚΩΝ ΚΑΙ ΗΜΙΚΑΝΟΝΙΚΩΝ ΠΟΛΥΕΔΡΩΝ

ΓΙΩΡΓΟΣ Ε. ΛΕΥΚΑΔΙΤΗΣ ΕΥΑ Κ. ΔΗΜΗΤΡΙΑΔΟΥ ΜΕΛΕΤH ΚΑΝΟΝΙΚΩΝ ΚΑΙ ΗΜΙΚΑΝΟΝΙΚΩΝ ΠΟΛΥΕΔΡΩΝ ΓΙΩΡΓΟΣ Ε. ΛΕΥΚΑΔΙΤΗΣ ΕΥΑ Κ. ΔΗΜΗΤΡΙΑΔΟΥ ΜΕΛΕΤH ΚΑΝΟΝΙΚΩΝ ΚΑΙ ΗΜΙΚΑΝΟΝΙΚΩΝ ΠΟΛΥΕΔΡΩΝ ΑΘΗΝΑ 2016 2 ΠΡΟΛΟΓΟΣ Α. ΤΟ ΕΝΔΙΑΦΕΡΟΝ ΓΙΑ ΤΑ ΠΛΑΤΩΝΙΚΑ ΚΑΙ ΑΡΧΙΜΗΔΕΙΑ ΠΟΛΥΕΔΡΑ Τα κανονικά και ημικανονικά πολύεδρα

Διαβάστε περισσότερα

4 Ομάδες Σημείου. - Ευχέρεια στην εκτέλεση των αντίστοιχων διεργασιών συμμετρίας περιστροφής, στροφοκατοπτρισμού, κατοπτρισμού και αναστροφής.

4 Ομάδες Σημείου. - Ευχέρεια στην εκτέλεση των αντίστοιχων διεργασιών συμμετρίας περιστροφής, στροφοκατοπτρισμού, κατοπτρισμού και αναστροφής. 4 Ομάδες Σημείου Διδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε: - Να ορίζετε την έννοια της ομάδας σημείου ενός μορίου. - Να διακρίνετε τις βασικές κατηγορίες ομάδων

Διαβάστε περισσότερα

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας.

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας. ΣΤΕΡΕΑ ΜΑΘΗΜΑ 12 ΑΝΑΚΕΦΑΛΑΙΩΣΗ 1. Αν τυχαία πυραμίδα τμηθεί με επίπεδο παράλληλο στη βάση της, έχουμε: KA/KA' = KB/KB' = ΚΓ/ΚΓ' = ΚΗ/Κ'Η' = λ και ΑΒΓ Α'Β'Γ' με λόγο ομοιότητας λ. 2. Μέτρηση κανονικής πυραμίδας:

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. Οι άγγελοι του Γιάννη Κοντός Γιάννης Γιαννούλη Βασιλική Καΐκα Χαρά Μπαρμπαλιά Γεωργία

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. Οι άγγελοι του Γιάννη Κοντός Γιάννης Γιαννούλη Βασιλική Καΐκα Χαρά Μπαρμπαλιά Γεωργία 1 Γενικό Λύκειο Μεγαλόπολης Σχ.έτος: 2011-12 Α Λυκείου Β τετράμηνο ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Θέμα: «Χρυσή Τομή» Υπεύθυνες καθηγήτριες: Λέφα Αικατερίνη, ΠΕ 03, Θανόγιαννη Χαρίκλεια, ΠΕ 02. Μαθητές/τριες που εργάστηκαν:

Διαβάστε περισσότερα

Qwertyuiopasdfghjklzxcvbnmq. wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty

Qwertyuiopasdfghjklzxcvbnmq. wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty Qwertyuiopasdfghjklzxcvbnmq ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΕΠΑ.Λ. uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

Διαβάστε περισσότερα

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του ΣΤΕΡΕΑ ΜΑΘΗΜΑ 10 Δίεδρες γωνίες Δύο επίπεδα α και β που τέμνονται, χωρίζουν τον χώρο σε τέσσερα μέρη, που λέγονται τεταρτημόρια. Ορίζουν επίσης σχήματα ανάλογα των γωνιών που ορίζουν δύο τεμνόμενες ευθείες

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 0.

ραστηριότητες στο Επίπεδο 0. ραστηριότητες στο Επίπεδο 0. Σε αυτό το επίπεδο περιλαµβάνονται δραστηριότητες ταξινόµησης, αναγνώρισης και περιγραφής διαφόρων σχηµάτων. Είναι σηµαντικό να χρησιµοποιούνται πολλά διαφορετικά και ποικίλα

Διαβάστε περισσότερα

Οι Πλακοστρώσεις στο Sketchpad v4 ως διαισθητικό θεμέλιο για την ανάπτυξη παραγωγικών συλλογισμών

Οι Πλακοστρώσεις στο Sketchpad v4 ως διαισθητικό θεμέλιο για την ανάπτυξη παραγωγικών συλλογισμών Οι Πλακοστρώσεις στο Sketchpad v4 ως διαισθητικό θεμέλιο για την ανάπτυξη παραγωγικών συλλογισμών Σ.Πατσιομίτου Εκπ/κός Δ/θμιας Εκπ/σης, Med Διδακτικής και Μεθοδολογίας Μαθηματικών ΕΚΠΑ, Υπ. Διδάκτωρ Παν.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ 17. ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ 17. ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΕΓΟΜΕΝΑ 17 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί 26 Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών 27 Η αναπαράσταση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών).

ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών). ΣΤΕΡΕΟΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.6 Ονομάζουν, περιγράφουν και ταξινομούν τρισδιάστατα σχήματα (κύβο, ορθογώνιο παραλληλεπίπεδο, πυραμίδα, σφαίρα, κύλινδρο, κώνο),

Διαβάστε περισσότερα

ΤΟΜΕΑΣ Ι ΑΡΧΙΤΕΚΤΟΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ 1Ο ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 2014-15 Ο ΚΥΒΟΣ, ΤΟ ΤΕΤΡΑΓΩΝΟ, ΔΥΟ ΠΑΙΧΝΙΔΙΑ ΚΑΙ ΕΝΑ ΠΡΟΝΟΜΙΟ ΕΦΕΥΡΕΣΕΩΣ

ΤΟΜΕΑΣ Ι ΑΡΧΙΤΕΚΤΟΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ 1Ο ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 2014-15 Ο ΚΥΒΟΣ, ΤΟ ΤΕΤΡΑΓΩΝΟ, ΔΥΟ ΠΑΙΧΝΙΔΙΑ ΚΑΙ ΕΝΑ ΠΡΟΝΟΜΙΟ ΕΦΕΥΡΕΣΕΩΣ ΤΟΜΕΑΣ Ι ΑΡΧΙΤΕΚΤΟΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ 1Ο ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 2014-15 Ο ΚΥΒΟΣ, ΤΟ ΤΕΤΡΑΓΩΝΟ, ΔΥΟ ΠΑΙΧΝΙΔΙΑ ΚΑΙ ΕΝΑ ΠΡΟΝΟΜΙΟ ΕΦΕΥΡΕΣΕΩΣ Ματθαίος Παπαβασιλείου Δευτέρα 24 Νοεμβρίου 2014 κανονικά πολύεδρα.

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 27.03.12 Χ. Χαραλάμπους Προσέγγιση για το π (Αρχιμήδης) "Κύκλου μέτρησις" Το θεώρημα εκφράζει τον λόγο της περιφέρειας του κύκλου ως προς τη διάμετρο του κύκλου, δηλ. το π. 3 10 / 71

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΟΤΗΤΑ ΙΞΩΔΕΣ ΑΝΤΙΣΤΑΣΗ ΘΕΡΜΟΤΗΤΑ ΚΑΙ ΠΙΕΣΗ ΤΟΥ ΑΙΘΕΡΑ

ΕΛΑΣΤΙΚΟΤΗΤΑ ΙΞΩΔΕΣ ΑΝΤΙΣΤΑΣΗ ΘΕΡΜΟΤΗΤΑ ΚΑΙ ΠΙΕΣΗ ΤΟΥ ΑΙΘΕΡΑ ΕΛΑΣΤΙΚΟΤΗΤΑ ΙΞΩΔΕΣ ΑΝΤΙΣΤΑΣΗ ΘΕΡΜΟΤΗΤΑ ΚΑΙ ΠΙΕΣΗ ΤΟΥ ΑΙΘΕΡΑ Έχουμε διατυπώσει ότι στο «κέντρο» του άπειρου χώρου, υπάρχει μία φυσαλίδα αραιότερου αιθέρα (υπερβατικής μη ουσίας), που περιβάλλεται από πυκνό

Διαβάστε περισσότερα

1 8 και ο δεύτερος παίρνει το υπόλοιπο. Παρακάτω, ο πρώτος παραπόταμος χωρίζεται στα 3 και το ένα τμήμα του παίρνει το του νερού του 8 ) 1 2

1 8 και ο δεύτερος παίρνει το υπόλοιπο. Παρακάτω, ο πρώτος παραπόταμος χωρίζεται στα 3 και το ένα τμήμα του παίρνει το του νερού του 8 ) 1 2 Kangourou Sans Frontières Θέματα Καγκουρό 00 LEVELS: - (για μαθητές της Β' και ' τάξης Λυκείου) Ερωτήσεις βαθμών: ) Οι αριθμοί και και δύο άγνωστοι αριθμοί γράφονται μέσα στα τετραγωνάκια του διπλανού

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων 9 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Β -- ΓΕΩΜΕΤΡΙΙΑ Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων Β. 1. 1 44. Τι ονομάζεται εμβαδόν μιας επίπεδης επιφάνειας και από τι εξαρτάται; Ονομάζεται εμβαδόν

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΑΠΟΔΕΙΞΗ ΤΗΣ ΥΠΑΡΞΗΣ ΤΟΥ ΑΙΘΕΡΑ Ο ΑΙΘΕΡΑΣ ΣΤΗΝ ΚΟΣΜΟΘΕΩΡΙΑ «ΤΟ ΙΔΙΟΝ» ΠΡΟΛΟΓΟΣ

ΠΕΙΡΑΜΑΤΙΚΗ ΑΠΟΔΕΙΞΗ ΤΗΣ ΥΠΑΡΞΗΣ ΤΟΥ ΑΙΘΕΡΑ Ο ΑΙΘΕΡΑΣ ΣΤΗΝ ΚΟΣΜΟΘΕΩΡΙΑ «ΤΟ ΙΔΙΟΝ» ΠΡΟΛΟΓΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΑΠΟΔΕΙΞΗ ΤΗΣ ΥΠΑΡΞΗΣ ΤΟΥ ΑΙΘΕΡΑ Ο ΑΙΘΕΡΑΣ ΣΤΗΝ ΚΟΣΜΟΘΕΩΡΙΑ «ΤΟ ΙΔΙΟΝ» Του Αλέκου Χαραλαμπόπουλου ΠΡΟΛΟΓΟΣ Σύμφωνα με τις αντιλήψεις της κλασσικής φυσικής, ο αιθέρας είναι ένα συνεχές ελαστικό

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης Τομέας Παιδαγωγικής Ιστορίας, και Φιλοσοφίας των Μαθηματικών «Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης 01-0-016 ΘΕΜΑ 1α [] Σε τυχαίο ορθογώνιο τρίγωνο ΑΒΓ ( Α=90 Ο ) η διχοτόμος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ. 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ. 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0 ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0 2. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σηµείο Κ(1,2)

Διαβάστε περισσότερα

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT Βασιλίσιν Μιχάλης, Δέφτο Χριστίνα, Ιλινιούκ Ίον, Κάσα Μαρία, Κουζμίδου Ελένη, Λαμπαδάς Αλέξης, Μάνε Χρισόστομος, Μάρκο Χριστίνα, Μπάμπη Χριστίνα, Σακατελιάν Λίλιτ, Σαχμπαζίδου

Διαβάστε περισσότερα

ΠΛΑΤΩΝ ( Αθήνα 427 π.χ. Αθήνα 347 π.χ. )

ΠΛΑΤΩΝ ( Αθήνα 427 π.χ. Αθήνα 347 π.χ. ) 1 ΠΛΑΤΩΝ ( Αθήνα 427 π.χ. Αθήνα 347 π.χ. ) ΦΑΙΝΟΜΕΝΑ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑ ( ΟΝΤΩΣ ΟΝΤΑ) ΔΥΪΣΜΟΣ ΑΙΣΘΗΣΕΙΣ ΝΟΥΣ ΣΩΜΑ ΨΥΧΗ ΙΔΕΕΣ ΝΟΥΣ ΕΚ ΤΩΝ ΠΡΟΤΕΡΩΝ ΓΝΩΣΗ ( a priori ) ΑΝΑΜΝΗΣΗ ΟΡΘΟΛΟΓΙΣΜΟΣ ΜΑΙΕΥΤΙΚΗ ΣΩΚΡΑΤΙΚΗ

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Υψηλών Τάσεων ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ (Αριθμητικές μέθοδοι υπολογισμού

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΟΤΗΤΑ ΙΞΩΔΕΣ ΑΝΤΙΣΤΑΣΗ ΘΕΡΜΟΤΗΤΑ ΚΑΙ ΠΙΕΣΗ ΤΟΥ ΑΙΘΕΡΑ

ΕΛΑΣΤΙΚΟΤΗΤΑ ΙΞΩΔΕΣ ΑΝΤΙΣΤΑΣΗ ΘΕΡΜΟΤΗΤΑ ΚΑΙ ΠΙΕΣΗ ΤΟΥ ΑΙΘΕΡΑ ΕΛΑΣΤΙΚΟΤΗΤΑ ΙΞΩΔΕΣ ΑΝΤΙΣΤΑΣΗ ΘΕΡΜΟΤΗΤΑ ΚΑΙ ΠΙΕΣΗ ΤΟΥ ΑΙΘΕΡΑ Έχουμε διατυπώσει ότι στο «κέντρο» του άπειρου χώρου, υπάρχει μία φυσαλίδα αραιότερου αιθέρα (υπερβατικής μη ουσίας), που περιβάλλεται από πυκνό

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 2: Απόδειξη Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Η ΔΙΑΧΥΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΕΜΒΑΔΟΥ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

Η επιρροή των Μαθηματικών στη φιλοσοφική εξέλιξη του Πλάτωνα για παιδεία και Σύμπαν

Η επιρροή των Μαθηματικών στη φιλοσοφική εξέλιξη του Πλάτωνα για παιδεία και Σύμπαν 1 Η επιρροή των Μαθηματικών στη φιλοσοφική εξέλιξη του Πλάτωνα για παιδεία και Σύμπαν Μπερκέτης Μ. Νικόλαος Δρ. Εφαρμοσμένων Μαθηματικών Τμήματος Μαθηματικών, Ε.Κ.Π.Α Οκτώβριος 2009 Περίληψη Τα μαθηματικά

Διαβάστε περισσότερα

Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο.

Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Καταστάσεις της ύλης Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Υγρά: Τάξη πολύ µικρού βαθµού και κλίµακας-ελκτικές δυνάµεις-ολίσθηση. Τα µόρια βρίσκονται

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΑΠΟΔΕΙΞΗ ΤΗΣ ΥΠΑΡΞΗΣ ΤΟΥ ΑΙΘΕΡΑ. Γυάλινος σωλήνας από ένεση με αγώγιμες ροδέλες εκατέρωθεν

ΠΕΙΡΑΜΑΤΙΚΗ ΑΠΟΔΕΙΞΗ ΤΗΣ ΥΠΑΡΞΗΣ ΤΟΥ ΑΙΘΕΡΑ. Γυάλινος σωλήνας από ένεση με αγώγιμες ροδέλες εκατέρωθεν ΠΕΙΡΑΜΑΤΙΚΗ ΑΠΟΔΕΙΞΗ ΤΗΣ ΥΠΑΡΞΗΣ ΤΟΥ ΑΙΘΕΡΑ Ο ΑΙΘΕΡΑΣ ΣΤΗΝ ΚΟΣΜΟΘΕΩΡΙΑ «ΤΟ ΙΔΙΟΝ» Του Αλέκου Χαραλαμπόπουλου ΠΡΟΛΟΓΟΣ Σύμφωνα με τις αντιλήψεις της κλασσικής φυσικής, ο αιθέρας είναι ένα συνεχές ελαστικό

Διαβάστε περισσότερα

4.1 ΕΥΘΕΙΑ ΚΑΙ ΕΠΙΠΕΔΑ ΣΤΟ ΧΩΡΟ Ευθείες και επίπεδα Οι πρωταρχικές έννοιες του χώρου είναι: το σημείο, η ευθεία και το επίπεδο.

4.1 ΕΥΘΕΙΑ ΚΑΙ ΕΠΙΠΕΔΑ ΣΤΟ ΧΩΡΟ Ευθείες και επίπεδα Οι πρωταρχικές έννοιες του χώρου είναι: το σημείο, η ευθεία και το επίπεδο. ΜΕΡΟΣ 4.1 ΕΥΕΙ ΚΙ ΕΠΙΠΕ ΣΤΟ ΧΩΡΟ 367 4.1 ΕΥΕΙ ΚΙ ΕΠΙΠΕ ΣΤΟ ΧΩΡΟ Ευθείες και επίπεδα Οι πρωταρχικές έννοιες του χώρου είναι: το σημείο, η ευθεία και το επίπεδο. α Σχετικές θέσεις δύο επιπέδων Οι δυνατές

Διαβάστε περισσότερα

ΣΥΜΜΕΤΡΙΑ ΑΠΟ ΤΟΝ ΤΙΜΑΙΟ ΩΣ ΤΟΝ FELIX KLEIN KAI ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΟΥ ERLANGEN

ΣΥΜΜΕΤΡΙΑ ΑΠΟ ΤΟΝ ΤΙΜΑΙΟ ΩΣ ΤΟΝ FELIX KLEIN KAI ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΟΥ ERLANGEN ΣΥΜΜΕΤΡΙΑ ΑΠΟ ΤΟΝ ΤΙΜΑΙΟ ΩΣ ΤΟΝ FELIX KLEIN KAI ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΟΥ ERLANGEN 4. Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΧΩΡΟ ΠΟΛΥΕ ΡΑ Στις τρεις διαστάσεις, η συµµετρία έχει την πιο ενδιαφέρουσα εφαρµογή της στα πολύεδρα και δη

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ Εαρινό εξάμηνο 2011 23.02.11 Χ. Χαραλάμπους ΑΠΘ Υπολογισμός (ακρίβεια έως 5 δεκαδικά) Yale Babylonian collection, 1800 π.χ. 24 51 10 1+ + + = 1.41421296 2 3 60 60 60 Τετραγωνική ρίζα του 2 Ποια είναι η

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

= 5 2cm. 1 64, = ,6 cm

= 5 2cm. 1 64, = ,6 cm 8. α) V ( +β + β ) Θ Η 70 4.900 cm β 0.00 cm Ε Ζ β 70 0 70 0 4.00 cm Υπολογισµός το πό το Ζ φέροµε κάθετη ΖΛ πάνω στη βάση η οποία τέµνει την Κ στο σηµείο Λ. Θα είναι Λ Κ - ΚΛ ή 70 Λ - 0 5 cm πό το ορθογώνιο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας,

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας, ΠΡΟΟΠΤΙΚΗ Εισαγωγή Αυτό που στην εφαρμοσμένη γεωμετρία ονομάζουμε συχνά γραμμική προοπτική είναι ένα σύστημα αναπαράστασης του τρισδιάστατου χώρου σε επιφάνεια δύο διαστάσεων. Η μέθοδος αυτή απεικόνισης

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 2.1: Στοιχεία Γεωμετρίας του Χώρου. Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε.

Τεχνικό Σχέδιο. Ενότητα 2.1: Στοιχεία Γεωμετρίας του Χώρου. Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 2.1: Στοιχεία Γεωμετρίας του Χώρου Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Διαδραστικό λογισμικό για τη γεωμετρία του χώρου και τα μαθηματικά

Διαδραστικό λογισμικό για τη γεωμετρία του χώρου και τα μαθηματικά Διαδραστικό λογισμικό για τη γεωμετρία του χώρου και τα μαθηματικά Εξερευνήστε την 3 η διάσταση! Έκδοση 2.1 CABRI 3D V2 Πρωτοποριακά Μαθηματικά Εργαλεία ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΤΗ 1 2 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1 -

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 13: Ογκομετρήσεις Δρ. Γρηγόριος Βάρρας

Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 13: Ογκομετρήσεις Δρ. Γρηγόριος Βάρρας Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 13: Ογκομετρήσεις Δρ. Γρηγόριος Βάρρας 1.1. ΟΓΚΟΙ ΓΕΩΜΕΤΡΙΚΩΝ ΣΤΕΡΕΩΝ 1.1.1. ΟΓΚΟΣ ΤΕΤΡΑΕΔΡΟΥ Τετράεδρο είναι κάθε στερεό το οποίο έχει τέσσερες έδρες (Σχήμα

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

Σωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες.

Σωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες. Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1) Οι οξείες

Διαβάστε περισσότερα

Η ΠΕΜΠΤΟΥΣΙΑ ΤΟΥ «Ι ΙΟΝ» ΚΑΙ Η ΒΑΡΥΤΗΤΑ. Του Αλέκου Χαραλαµπόπουλου

Η ΠΕΜΠΤΟΥΣΙΑ ΤΟΥ «Ι ΙΟΝ» ΚΑΙ Η ΒΑΡΥΤΗΤΑ. Του Αλέκου Χαραλαµπόπουλου Η ΠΕΜΠΤΟΥΣΙΑ ΤΟΥ «Ι ΙΟΝ» ΚΑΙ Η ΒΑΡΥΤΗΤΑ Του Αλέκου Χαραλαµπόπουλου ΠΡΟΛΟΓΟΣ Το κενό δεν έχει ύλη, έχει µία µη ουσία, µη ύλη, το «ίδιον». Αυτό έχει τις ιδιότητες του αιθέρα. Είναι ελαστικό και αραιό, συνεχές

Διαβάστε περισσότερα

Επίσκεψη στο Μουσείο Ηρακλειδών

Επίσκεψη στο Μουσείο Ηρακλειδών 1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Επίσκεψη στο Μουσείο Ηρακλειδών 19/3/2012 Σ.Πατσιοµίτου 1 Η επίσκεψη στο Μουσείο Ηρακλειδών στο Θησείο, πραγματοποιήθηκε στις 19/3/2012 από τους μαθητές της Γ τάξης

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

Επίσκεψη στο Μουσείο Ηρακλειδών

Επίσκεψη στο Μουσείο Ηρακλειδών 1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Επίσκεψη στο Μουσείο Ηρακλειδών 19/3/2012 Σ.Πατσιοµίτου 1 Η επίσκεψη στο Μουσείο Ηρακλειδών στο Θησείο, πραγματοποιήθηκε στις 19/3/2012 από τους μαθητές της Γ τάξης

Διαβάστε περισσότερα

Ψ Υ Υ Χ Χ Α Α Σ Σ Β Β Α Α Γ Γ Γ Γ ΕΛΗΣ ΕΛΗΣ--

Ψ Υ Υ Χ Χ Α Α Σ Σ Β Β Α Α Γ Γ Γ Γ ΕΛΗΣ ΕΛΗΣ-- 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 10 Τα συμμετρικά του ορθοκέντρου τριγώνου (ως προς τις πλευρές του) βρίσκονται επάνω στον περιγεγραμμένο κύκλο του. 11 11 Τα ύψη τριγώνου, διχοτομούν τις γωνίες

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Παναγιώτης Βλάμος Παναγιώτης ρούτσας Γεώργιος Πρέσβης Κωνσταντίνος Ρεκούμης

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Παναγιώτης Βλάμος Παναγιώτης ρούτσας Γεώργιος Πρέσβης Κωνσταντίνος Ρεκούμης ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Παναγιώτης Βλάμος Παναγιώτης ρούτσας Γεώργιος Πρέσβης Κωνσταντίνος Ρεκούμης ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΜΕΡΟΣ Β Τόμος 3ος Μαθηματικά Β ΓΥΜΝΑΣΙΟΥ

Διαβάστε περισσότερα

Επιβλέπων Καθηγητής : ΟΥΡΑΝΙΑ ΓΙΑΝΝΑΡΑΚΗ

Επιβλέπων Καθηγητής : ΟΥΡΑΝΙΑ ΓΙΑΝΝΑΡΑΚΗ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ιαπανεπιστηµιακό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών Σπουδών «ιδακτική και Μεθοδολογία των Μαθηµατικών» ιπλωµατική

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

Σειρά Α. Δράσεις με το λογισμικό Cabri-geometry II

Σειρά Α. Δράσεις με το λογισμικό Cabri-geometry II Σειρά Α Δράσεις με το λογισμικό Cabri-geometry II Α.1. Να σχεδιαστούν τα τμήματα ΑΒ, ΓΔ, ΕΖ με μήκη αντίστοιχα ίσα με 2, 4, 6 μονάδες μέτρησης, και να τοποθετηθούν έτσι ώστε να σχηματίσουν τραπέζιο με

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

x 2 + y 2 x y

x 2 + y 2 x y ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 014-15 Τμήμα Μαθηματικών και Διδάσκων: Χρήστος Κουρουνιώτης Εφαρμοσμένων Μαθηματικών ΜΕΜ0 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ Φυλλάδιο Προβλημάτων Κύκλος, Ελλειψη, Υπερβολή, Παραβολή

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Δίνονται τα ιόντα Mg 2+, 2, F, Na + και Al + και οι τιμές ιοντικών ακτίνων 16 pm, 95 pm, 50 pm, 140 pm και 65 pm. Βρείτε ποια ακτίνα ταιριάζει σε καθένα από τα ιόντα

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος Ασκήσεις Κύκλος 1. Να βρείτε αν οι παρακάτω εξισώσεις παριστάνουν κύκλο. Έπειτα να βρείτε το κέντρο και την ακτίνα τους. i) x 2 + y 2 2x 4y + 1 = 0 (Απ.: (x 1) 2 + (y 2) 2 = 4) x 2 + y 2 2x + 4y + 5 =

Διαβάστε περισσότερα

Σειρά Α. Δράσεις με το λογισμικό Cabri-geometry II

Σειρά Α. Δράσεις με το λογισμικό Cabri-geometry II Σειρά Α Δράσεις με το λογισμικό Cabri-geometry II Α.1. Να σχεδιαστούν τα τμήματα,, με μήκη αντίστοιχα ίσα με 2, 4, 6 μονάδες μέτρησης, και να τοποθετηθούν έτσι ώστε να σχηματίσουν τραπέζιο με βάσεις, και

Διαβάστε περισσότερα

Η καμπύλωση του χώρου-θεωρία της σχετικότητας

Η καμπύλωση του χώρου-θεωρία της σχετικότητας Η καμπύλωση του χώρου-θεωρία της σχετικότητας Σύμφωνα με τη Γενική Θεωρία της Σχετικότητας που διατύπωσε ο Αϊνστάιν, το βαρυτικό πεδίο κάθε μάζας δημιουργεί μια καμπύλωση στον χώρο (μάλιστα στον χωροχρόνο),

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

ΠΕΡΙ ΤΟΠΙΚΩΝ ΜΕΤΑΒΑΛΛΟΜΕΝΩΝ ΗΛΕΚΤΡΙΚΩΝ ΚΑΙ ΜΑΓΝΗΤΙΚΩΝ ΠΕ ΙΩΝ ΚΑΙ ΑΝΤΙΣΤΑΣΗΣ ΤΟΥ ΚΕΝΟΥ

ΠΕΡΙ ΤΟΠΙΚΩΝ ΜΕΤΑΒΑΛΛΟΜΕΝΩΝ ΗΛΕΚΤΡΙΚΩΝ ΚΑΙ ΜΑΓΝΗΤΙΚΩΝ ΠΕ ΙΩΝ ΚΑΙ ΑΝΤΙΣΤΑΣΗΣ ΤΟΥ ΚΕΝΟΥ ΠΕΡΙ ΤΟΠΙΚΩΝ ΜΕΤΑΒΑΛΛΟΜΕΝΩΝ ΗΛΕΚΤΡΙΚΩΝ ΚΑΙ ΜΑΓΝΗΤΙΚΩΝ ΠΕ ΙΩΝ ΚΑΙ ΑΝΤΙΣΤΑΣΗΣ ΤΟΥ ΚΕΝΟΥ του Αλέκου Χαραλαµπόπουλου ΤΟ ΙΑΤΟΜΙΚΟ ΜΟΡΙΟ ΤΟΥ Υ ΡΟΓΟΝΟΥ Γίνεται αποδεκτό (αξιώνεται), ότι η ύλη καταλήγει στα έσχατα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ ΛΗΜΜΑ. Έστω μετρικός χώρος (X, d) και x, y X με x y. Τότε υπάρχει μια περιοχή του x και μια περιοχή του y (και, μάλιστα, ίδιας ακτίνας) οι οποίες είναι

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα