Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 1"

Transcript

1 Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 1

2 Στόχοσ τησ εργαςίασ είναι η ςτατιςτική ανάλυςη δεδομζνων που αφοροφν τουσ βαθμοφσ πτυχίου των φοιτητών του ΤΕΜ (ΠΚ). Θ εργαςία χωρίηεται ςε δφο μζρθ: (Α) πρϊτο μζροσ είναι θ περιγραφικι ςτατιςτικι των δεδομζνων και (Β) δεφτερο μζροσ ςυςχζτιςθ μεταξφ των μεταβλθτϊν. (Α) Θ διάκρωςθ του πρϊτου μζρουσ είναι θ ακόλουκθ: παρουςίαςθ μιασ γενικισ εικόνασ του τμιματοσ, κατανομι του βακμοφ πτυχίου και λεπτομερισ ανάλυςθ πωσ ο βακμόσ πτυχίου επθρεάηεται από τισ μεταβλθτζσ φφλο, διάρκεια ςπουδϊν κλπ. Και τζλοσ ο βακμόσ πτυχίου ανά κατεφκυνςθ ςπουδϊν 1 θ κατεφκυνςθ : μακθματικζσ μζκοδοι & ανάπτυξθ λογιςμικοφ 2 θ κατεφκυνςθ: μακθματικι μοντελοποίθςθ & τεχνικζσ υπολογιςμϊν 3θ κατεφκυνςθ: χρθματοοικονομία & επιχειρθςιακά μακθματικά. (Β) Θ διάκρωςθ του δευτζρου μζρουσ είναι θ ακόλουκθ: υςχζτιςθ μεταξφ μεταβλθτϊν κατά : Φφλλο Κατεφκυνςθ Ζτοσ ειςαγωγισ Ανάλυςθ διαςποράσ κατά: Ζτοσ ειςαγωγισ (one-way ANOVA) Φφλλο και ζτοσ ειςαγωγισ (two-way ANOVA) Φφλλο, ζτοσ ειςαγωγισ και διάρκεια ςπουδϊν (n-way ANOVA) Oι παρατθριςεισ τισ οποίεσ αναλφςαμε είναι δεδομζνα τα όποια προζρχονται από τθν γραμματεία του τμιματοσ και αφοροφν το ςφνολο των φοιτθτϊν. τα δεδομζνα αυτά αναφζρονται το ζτοσ ειςαγωγισ διάρκεια ςπουδϊν, το ζτοσ ορκωμοςίασ και το φφλο των φοιτθτϊν. τθν ςτατιςτικι μασ ανάλυςθ πλθκυςμόσ κεωρείται το ςφνολο των φοιτθτϊν του τμιματοσ εφαρμοςμζνων μακθματικϊν και το εξεταηόμενο δείγμα οι πτυχιοφχοι. τθν μελζτθ του βακμοφ πτυχίου των φοιτθτϊν, το ζτοσ ειςαγωγισ, θ διάρκεια και το φφλο είναι ανεξάρτθτεσ μεταβλθτζσ ενϊ ο βακμόσ είναι θ εξαρτθμζνθ μασ μεταβλθτι. τθν μελζτθ τθσ Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 2

3 διάρκειασ ςπουδϊν ο βακμόσ και το φφλο είναι ανεξάρτθτεσ μεταβλθτζσ ενϊ θ διάρκεια ςπουδϊν εξαρτθμζνθ. Οι τιμζσ των εξαρτθμζνων μεταβλθτϊν είναι ποςοτικζσ και διακριτζσ εκτόσ τθσ μεταβλθτισ του φφλου που είναι ποιοτικι. Όςον αφορά τθν περιγραφικι ςτατιςτικι υπολογίηουμε μετρά κεντρικισ τάςθσ, όπωσ θ μζςθ τιμι και θ διάμεςοσ, κακϊσ και μζτρα μεταβλθτότθτασ, όπωσ θ τυπικι απόκλιςθ, θ διαςπορά και το εφροσ. ε όλεσ τισ περιπτϊςεισ χρθςιμοποιικθκε το ςτατιςτικό πακζτο (statistics toolbox) του MATLAB. Σθν εργαςία επιμελικθκαν οι παρακάτω φοιτθτζσ του Σμιματοσ Εφαρμοςμζνων Μακθματικϊν ςτο πλαίςιο του μακιματοσ Εφαρμοςμζνθσ τατιςτικισ με επιβλζπων κακθγθτι κ. Ε. Χαρμανδάρθ (Α) (Β) ΒΟΡΔΩΝΘ ΓΕΩΡΓΙΟ ΔΕΜΕΣΗΟΤ ΜΑΡΙΑ-ΕΛΕΝΘ ΚΑΝΑΒΑΚΘ ΕΜΜΑΝΟΤΘΛ ΚΛΕΙΙΟΤΝΘ ΡΕΓΓΙΝΑ ΛΙΩΣΑ ΧΡΙΣΙΝΑ ΣΑΝΣΟΤΡΙΑ ΔΑΤΙΔ ΦΩΚΑ ΔΘΜΘΣΡΙΟ ΧΡΤΟΣOΜΙΔΘ ΔΘΜΘΣΡΙΟ ΑΝΔΡΙΑΝΟ ΠΕΡΙΚΛΘ ΓΡΘΓΟΡΟΠΟΤΛΟΤ ΝΣΟΡΑ ΚΟΚΟΛΕΣΟ ΚΩΣΑ ΚΤΡΙΝΘ ΓΙΩΡΓΟ ΠΑΠΠΑ ΙΩΑΝΝΘ ΣΟΣΟΝΙΔΟΤ ΔΕΠΟΙΝΑ Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 3

4 (Α) Περιγραφική Στατιστική Παρακάτω παρατίκεται πινάκασ με τθν κατάςταςθ όλων των φοιτθτϊν του ΣΕΜ των ετϊν ζωσ XΡΟΝΙΑ ΕΙΑΓΩΓΘ ΕΙΑΚΣΕΟΙ ΑΝΕΝΕΡΓΟΙ ΕΝΕΡΓΟΙ ΔΙΑΓΕΓΡΑΜΜΕΝΟΙ ΠΣΤΧΙΟΤΧΟΙ ΔΙΑΚΟΠΘ ΠΟΤΔΩΝ ΤΝΟΛΟ τον παραπάνω πίνακα ανενεργοί κεωροφνται οι φοιτθτζσ οι οποίοι δεν ζχουν κάνει εγγραφι ςε δφο θ παραπάνω εξάμθνα ενϊ διαγεγραμμζνοι όςοι επζλεξαν να ςταματιςουν τισ ςπουδζσ τουσ ςτο τμιμα. το παρακάτω ςχεδιάγραμμα παρουςιάηεται θ ςχζςθ μεταξφ των πτυχιοφχων και των ειςακτζων φοιτθτϊν κάκε ζτουσ. ΕΙΑΚΣΕΟΙ ΠΣΤΧΙΟΤΧΟΙ Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 4

5 Τπολογίςτθκε ότι ο μζςοσ όροσ διάρκειασ ςπουδϊν είναι ςτα 6 χρόνια, μποροφμε όμωσ να ποφμε ςφμφωνα με το παραπάνω διάγραμμα ότι αυτόσ κα αυξθκεί δεδομζνου ότι οι χρονιζσ και ζχουν ποςοςτό πτυχιοφχων πολφ μικρότερο του 50%. Όςον αφορά τον παράγοντα φφλο βλζπουμε από τον παρακάτω πινάκα και το αντίςτοιχο του διάγραμμα πωσ ςχεδόν ςε όλεσ τισ χρονιζσ τα αγόρια ειςακτζοι είναι διπλάςιοι των ειςακτζων κοριτςιϊν. Παρ όλα αυτά το ποςοςτό πτυχιοφχων κοριτςιϊν ςε όλεσ τισ χρονιζσ είναι μεγαλφτερο των αγοριϊν οπότε μποροφμε να ποφμε με ςιγουριά πωσ τα κορίτςια υπερτεροφν ςε αρικμό πτυχίων ζναντι των αγοριϊν. ΕΙΑΚΣΕΟΙ ΠΣΤΧΙΟΤΧΟΙ ΧΡΟΝΙΑ ΕΙΑΓΩΓΘ ΑΓΟΡΙΑ ΚΟΡΙΣΙΑ ΑΓΟΡΙΑ ΚΟΡΙΣΙΑ % 31,93% 74,07% 84,21% ,2% 43,79% 57,14% 78,33% ,93% 36,06% 55,12% 70,45% ,38% 33,61% 29,11% 72,5% ,21% 34,78% 25,33% 42,5% ,22% 35,77% 10% 15,38% ,93% 37,06% 1,36% 4,65% ΤΝΟΛΟ Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 5

6 ΕΙΣΑΚΤΕΟΙ ΚΑΙ ΠΤΥΧΙΟΥΧΟΙ ΑΝΑ ΦΥΛΟ ΑΓΟΡΙΑ ΕΙΑΚΣΕΟΙ ΚΟΡΙΣΙΑ ΕΙΑΚΣΕΟΙ ΑΓΟΡΙΑ ΠΣΤΧΙΟΤΧΟΙ ΚΟΡΙΣΙΑ ΠΣΤΧΙΟΤΧΟΙ Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 6

7 1.ΒΑΘΜΟ ΠΣΤΧΙΟΤ ΤΝΟΛΟΤ Πιραμε τουσ βακμοφσ των πτυχίων από τουσ 361 αποφοίτουσ (από το μζχρι το ). Μζςοσ όροσ πτυχίου Διαςπορά Διάμεςοσ Συπικι Απόκλιςθ Συπικό φάλμα υντελεςτισ Μεταβλθτότθτασ υντελεςτισ Αςυμμετρίασ υντελεςτισ Κφρτωςθσ Εφροσ Eνδοτεταρτθμοριακό ευροσ Παρατθροφμε ότι επειδι θ τυπικι απόκλιςθ είναι μικρι,ο μζςοσ όροσ που βρικαμε αποτελεί αξιόπιςτο ςτατιςτικό μζγεκοσ δθλαδι όλοι οι βακμοί κυμαίνονται γφρω από αυτόν. Ακόμα, επειδι ο ςυντελεςτισ μεταβλθτότθτασ είναι μικρότεροσ του 10% ςυμπεραίνουμε ότι το δείγμα μασ είναι ομοιογενζσ. Οι κετικζσ τιμζσ του ςυντελεςτι αςυμμετρίασ και του ςυντελεςτι κφρτωςθσ μασ δίνουν αντίςτοιχα τθν πλθροφορία ότι θ καμπφλθ είναι λοξι προσ τα δεξιά και πλατφκυρτθ, δεδομζνου ότι το δείγμα μασ ακόλουκθ περίπου κανονικι κατανομι. Σζλοσ, παρατθροφμε πωσ το 50% των παρατθριςεων μασ βρίςκεται ςτο διάςτθμα (6.1900, ). Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 7

8 Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 8

9 2.ΒΑΘΜΟ ΠΣΤΧΙΟΤ ΑΓΟΡΙΩΝ-ΚΟΡΙΣΙΩΝ Παρακάτω παρακζτουμε τα ςτοιχειά που αφοροφν τουσ βακμοφσ πτυχίου των 197 αγοριϊν και των 164 κοριτςιϊν (από το μζχρι το ΑΓΟΡΙΑ ΚΟΡΙΣΙΑ Μζςοσ όροσ πτυχίου Διαςπορά Διάμεςοσ Συπικι Απόκλιςθ Συπικό φάλμα υντελεςτισ Μεταβλθτότθτασ υντελεςτισ Αςυμμετρίασ υντελεςτισ Κφρτωςθσ Ευροσ Eνδοτεταρτθμοριακό ευροσ Παρατθροφμε ότι επειδι θ τυπικι απόκλιςθ είναι μικρι,ο μζςοσ όροσ που βρικαμε αποτελεί αξιόπιςτο ςτατιςτικό μζγεκοσ δθλαδι όλοι οι βακμοί κυμαίνονται γφρο από αυτόν. Ακόμα, επειδι ο ςυντελεςτισ μεταβλθτότθτασ είναι μικρότεροσ του 10% ςυμπεραίνουμε ότι το δείγμα μασ είναι ομοιογενζσ. Οι κετικζσ τιμζσ του ςυντελεςτι αςυμμετρίασ και του ςυντελεςτι κφρτωςθσ μασ δίνουν αντίςτοιχα τθν πλθροφορία ότι θ καμπφλθ είναι λοξι προσ τα δεξιά και πλατφκυρτθ, δεδομζνου ότι το δείγμα μασ ακόλουκθ περίπου κανονικι κατανομι. Σζλοσ, παρατθροφμε πωσ το 50% των παρατθριςεων μασ για τα αγόρια βρίςκονται ςτο διάςτθμα (6.1700, ) και το % των αποφοίτων είναι αγόρια και το 50% των παρατθριςεων μασ Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 9

10 βρίςκονται ςτο διάςτθμα (6.2300, ) και το % των αποφοίτων είναι κορίτςια. Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 10

11 Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 11

12 3.ΒΑΘΜΟ ΠΣΤΧΙΟΤ ΑΝΑ ΕΣΟ ΕΙΑΓΩΓΘ Παρακάτω παρακζτουμε τα ςτοιχειά που αφοροφν τουσ βακμοφσ πτυχίου των 92 πτυχιοφχων φοιτθτϊν που ειςιχκθςαν το , των 91 του ζτουσ , των 74 του ζτουσ , των 52 του ζτουσ και των 36 του ζτουσ ςτο τμιμα εφαρμοςμζνων μακθματικϊν Μζςοσ όροσ πτυχίου Διαςπορά Διάμεςοσ Συπικι Απόκλιςθ Συπικό φάλμα υντελεςτισ Μεταβλθτότθτασ υντελεςτισ Αςυμμετρίασ υντελεςτισ Κφρτωςθσ Ευροσ Eνδοτεταρτθμοριακό ευροσ Παρατθροφμε ότι επειδι θ τυπικι απόκλιςθ είναι μικρι,ο μζςοσ όροσ που βρικαμε αποτελεί αξιόπιςτο ςτατιςτικό μζγεκοσ δθλαδι όλοι οι βακμοί κυμαίνονται γφρω από αυτόν. Ακόμα, επειδι ο ςυντελεςτισ μεταβλθτότθτασ είναι μικρότεροσ του 10% ςυμπεραίνουμε ότι το δείγμα μασ είναι ομοιογενζσ. Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 12

13 Οι κετικζσ τιμζσ του ςυντελεςτι αςυμμετρίασ και του ςυντελεςτι κφρτωςθσ μασ δίνουν αντίςτοιχα τθν πλθροφορία ότι θ καμπφλθ είναι λοξι προσ τα δεξιά και πλατφκυρτθ, δεδομζνου ότι το δείγμα μασ ακόλουκθ περίπου κανονικι κατανομι. Σζλοσ, παρατθροφμε πωσ το 50% των παρατθριςεων μασ βρίςκονται ςτο διάςτθμα (6.1500, ) για το (6.2400, ) για το (6.0100, ) για το (6.1500, ) για το (6.1900, ) για το Παρακάτω παρακζτουμε τα ςτοιχεία που αφοροφν μόνο τουσ βακμοφσ πτυχίου των 13 φοιτθτϊν που ειςιχκθςαν το και των 3 που ειςιχκθςαν το Μζςοσ όροσ πτυχίου Διαςπορά Διάμεςοσ Συπικι Απόκλιςθ Συπικό φάλμα υντελεςτισ Μεταβλθτότθτασ υντελεςτισ Αςυμμετρίασ υντελεςτισ Κφρτωςθσ Ευροσ Eνδοτεταρτθμοριακο ευροσ Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 13

14 Παρατθροφμε ότι επειδι θ τυπικι απόκλιςθ είναι μικρι,ο μζςοσ όροσ που βρικαμε αποτελεί αξιόπιςτο ςτατιςτικό μζγεκοσ δθλαδι όλοι οι βακμοί κυμαίνονται γφρω από αυτόν. Ακόμα, επειδι ο ςυντελεςτισ μεταβλθτότθτασ είναι μικρότεροσ του 10% ςυμπεραίνουμε ότι το δείγμα μασ είναι ομοιογενζσ. Οι κετικζσ τιμζσ του ςυντελεςτι αςυμμετρίασ και του ςυντελεςτι κφρτωςθσ μασ δίνουν αντίςτοιχα τθν πλθροφορία ότι θ καμπφλθ είναι λοξι προσ τα δεξιά και πλατφκυρτθ, δεδομζνου ότι το δείγμα μασ ακολουκεί περίπου κανονικι κατανομι. Σζλοσ, παρατθροφμε πωσ το 50% των παρατθριςεων μασ βρίςκονται ςτο διάςτθμα : (6.5000, ) για το ζτοσ (6.3200, ) για το ζτοσ ΒΑΘΜΟ ΠΣΤΧΙΟΤ ΑΝΑ ΔΙΑΡΚΕΙΑ ΠΟΤΔΩΝ Παρακάτω παρακζτουμε ζνα διάγραμμα το οποίο δίνει τθν ςχζςθ μεταξφ τθσ διάρκειασ ςπουδϊν και των αρικμό των αποφοίτων. Αναλυτικότερα ζγινε μελζτθ ςτουσ βακμοφσ πτυχίου των πτυχιοφχων με διάρκεια ςπουδϊν από 4 ζωσ 10 ζτθ : Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 14

15 23 απόφοιτουσ ςτα 4 χρόνια 116 απόφοιτουσ ςτα 5 χρόνια 120 απόφοιτουσ ςτα 6 χρόνια 77 απόφοιτουσ ςτα 7 χρόνια 19 απόφοιτουσ ςτα 8 χρόνια 5 απόφοιτουσ ςτα 9 χρόνια 1 απόφοιτουσ ςτα 10 χρόνια με τα ακόλουκα αποτελζςματα: 4 χρόνια 5 χρόνια 6 χρόνια 7 χρόνια 8 χρόνια Μζςοσ όροσ πτυχίου Διαςπορά Διάμεςοσ Συπικι Απόκλιςθ Συπικό φάλμα υντελεςτισ Μεταβλθτότθτασ υντελεςτισ Αςυμμετρίασ υντελεςτισ Κφρτωςθσ Ευροσ Eνδοτεταρτθμοριακό ευροσ Παρατθροφμε ότι επειδι θ τυπικι απόκλιςθ είναι μικρι,ο μζςοσ όροσ που βρικαμε αποτελεί αξιόπιςτο ςτατιςτικό μζγεκοσ δθλαδι όλοι οι βακμοί κυμαίνονται γφρω από αυτόν. Ακόμα, επειδι ο ςυντελεςτισ μεταβλθτότθτασ είναι μικρότεροσ του 10% ςυμπεραίνουμε ότι το δείγμα μασ είναι ομοιογενζσ. Οι κετικζσ τιμζσ του ςυντελεςτι αςυμμετρίασ και του ςυντελεςτι κφρτωςθσ μασ δίνουν αντίςτοιχα τθν πλθροφορία ότι θ καμπφλθ είναι λοξι προσ τα δεξιά και πλατφκυρτθ, δεδομζνου ότι το δείγμα μασ ακολουκεί περίπου κανονικι κατανομι. Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 15

16 Σζλοσ, παρατθροφμε πωσ το 50% των παρατθριςεων μασ βρίςκεται ςτο διάςτθμα (6.8800, ) και το % των αποφοίτων τζλειωςαν ςτα 4 χρονιά. (6.4800, ) και το 32,133% των αποφοίτων τζλειωςαν ςτα 5 χρόνια. (6.2050, ) και το 33,2410% των αποφοίτων τζλειωςαν ςτα 6 χρόνια. (6.0100, ) και το 21,3296% των αποφοίτων τζλειωςαν ςτα 7 χρόνια. (5.9450, ) και το 5,2632 των αποφοίτων τζλειωςαν ςτα 8 χρόνια. Οι πτυχιοφχοι με διάρκεια ςπουδϊν 9 χρόνια είναι μόλισ 5 οπότε αναφζρουμε μόνο ότι το 50% βρίςκεται ςτο διάςτθμα (6.0500, ) και αποτελοφν το 1,3850% των αποφοίτων. Σζλοσ ςτα 10 ζτθ υπάρχει μόνο ζνασ πτυχιοφχοσ με βακμό πτυχίου 5.58 που είναι και ο χαμθλότεροσ που ζχει παρατθρθκεί και αποτελεί το % του ςυνόλου. 5. ΒΑΘΜΟ ΠΣΤΧΙΟΤ ΑΝΑ ΕΣΟ ΟΡΚΩΜΟΙΑ Από ανάλυςθ που ζγινε ςτουσ βακμοφσ πτυχίων των αποφοίτων με: 3 απόφοιτουσ το ζτοσ απόφοιτουσ το ζτοσ απόφοιτουσ το ζτοσ απόφοιτουσ το ζτοσ απόφοιτουσ το ζτοσ απόφοιτουσ το ζτοσ απόφοιτουσ το ζτοσ απόφοιτουσ το ζτοσ Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 16

17 Μζςοσ όροσ πτυχίου Διαςπορά Διάμεςοσ Συπικι Απόκλιςθ Συπικό φάλμα υντελεςτισ Μεταβλθτότθτασ υντελεςτισ Αςυμμετρίασ υντελεςτισ Κφρτωςθσ Ευροσ Eνδοτεταρτθμοριακό ευροσ Μζςοσ όροσ πτυχίου Διαςπορά Διάμεςοσ Συπικι Απόκλιςθ Συπικό φάλμα υντελεςτισ Μεταβλθτότθτασ υντελεςτισ Αςυμμετρίασ υντελεςτισ Κφρτωςθσ Ευροσ Eνδοτεταρτθμοριακό ευροσ Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 17

18 Γενικά παρατθροφμε ότι επειδι θ τυπικι απόκλιςθ είναι μικρι,ο μζςοσ όροσ που βρικαμε αποτελεί αξιόπιςτο ςτατιςτικό μζγεκοσ δθλαδι όλοι οι βακμοί κυμαίνονται γφρω από αυτόν. Ακόμα, επειδι ο ςυντελεςτισ μεταβλθτότθτασ είναι μικρότεροσ του 10% ςυμπεραίνουμε ότι το δείγμα μασ είναι ομοιογενζσ. Οι κετικζσ τιμζσ του ςυντελεςτι αςυμμετρίασ και του ςυντελεςτι κφρτωςθσ μασ δίνουν αντίςτοιχα τθν πλθροφορία ότι θ καμπφλθ είναι λοξι προσ τα δεξιά και πλατφκυρτθ, δεδομζνου ότι το δείγμα μασ ακολουκεί περίπου κανονικι κατανομι, όςον αφορά το ζτοσ ειςαγωγισ θ αρνθτικι τιμι του ςυντελεςτι αςυμμετρίασ και θ κετικι τιμι του ςυντελεςτι κφρτωςθσ μασ δίνουν αντίςτοιχα τθν πλθροφορία ότι θ καμπφλθ είναι λοξι προσ τα αριςτερά και πλατφκυρτθ δεδομζνου ότι το δείγμα μασ ακολουκεί περίπου κανονικι κατανομι. Σζλοσ, παρατθροφμε πωσ το 50% των παρατθριςεων μασ βρίςκονται ςτο διάςτθμα: (6.8700, ) για το ζτοσ (6.5900, ) για το ζτοσ (6.4900, ) για το ζτοσ (6.3600, ) για το ζτοσ (6.1600, ) για το ζτοσ (6.0800, ) για το ζτοσ (6.0450, ) για το ζτοσ (6.3200, ) για το ζτοσ Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 18

19 6. ΒΑΘΜΟ ΠΣΤΧΙΟΤ ΑΝΑ ΚΑΣΕΤΘΤΝΘ Παρατίκενται ανάλυςθ του βακμοφ των πτυχιοφχων ανά κατεφκυνςθ κακϊσ και ςχεδιαγράμματα τθσ κατανομισ τουσ. 1 θ κατ. 2 θ κατ. 3 θ κατ. Μζςοσ όροσ πτυχίου 6, Διαςπορά 0, Διάμεςοσ 6, Συπικι Απόκλιςθ 0, Συπικό φάλμα 0, υντελεςτισ Μεταβλθτότθτασ 0, υντελεςτισ Αςυμμετρίασ 1, υντελεςτισ Κφρτωςθσ 3, Ευροσ 2, Eνδοτεταρτθμοριακό ευροσ 0, Παρατθροφμε ότι υπάρχουν πολφ μικρζσ διαφορζσ ςτουσ μζςουσ όρουσ πτυχίων των τριϊν κατευκφνςεων τουσ οποίουσ κεωροφμε αξιόπιςτο ςτατιςτικό μζγεκοσ διότι θ τυπικι απόκλιςθ είναι μικρι. Ο ςυντελεςτισ μεταβλθτότθτασ ςτθν 1 θ και 2 θ κατεφκυνςθ είναι αρκετά μεγαλφτεροσ του 10% επομζνωσ δεν ζχουμε ομοιογενζσ δείγμα ςε αντίκεςθ με τθν 3 θ κατεφκυνςθ που το δείγμα μασ είναι ομοιογενζσ. Όςον αφορά τον ςυντελεςτι αςυμμετρίασ για τισ δφο πρϊτεσ κατευκφνςεισ δθμιουργεί ζνα μεγάλο άπλωμα προσ τα δεξιά και ο ςυντελεςτισ κφρτωςθσ κάνει τθν καμπφλθ μεςόκυρτθ για τιμζσ κοντά ςτο 3 και πλατφκυρτθ για μεγαλφτερεσ τιμζσ. Όλα τα παραπάνω ςυνοψίηονται ςτα διαγράμματα που ακολουκοφν. Σζλοσ το 50% των παρατθριςεων βρίςκεται (6.2500, ) για τθν 1 θ κατεφκυνςθ (6.0700, ) για τθν 2 θ κατεφκυνςθ (6.4000, ) για τθν 3 θ κατεφκυνςθ Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 19

20 Αξίηει να αναφερκεί ότι από το ςφνολο των πτυχιοφχων το Οι 65 ι το 18% των πτυχιοφχων ανικει ςτθν 1 θ κατεφκυνςθ Οι 194 ι το 53,73% των πτυχιοφχων ανικει ςτθν 2 θ κατεφκυνςθ Και τζλοσ οι 102 ι το 28,25% των πτυχιοφχων ανικει ςτθν 3 θ κατεφκυνςθ. Γράφθμα 1 θσ κατεφκυνςθσ αριθμόσ πτυχίων βαθμόσ πτυχίου Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 20

21 Γράφθμα 2 θσ κατεφκυνςθσ αριθμόσ πτυχίων βαθμόσ πτυχίου Γράφθμα 3 θσ κατεφκυνςθσ αριθμόσ πτυχίων 1 βαθμόσ πτυχίου Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 21

22 (Β) Συσχέτιση Μεταξφ των Μεταβλητών Θέλουμε να μελετήσουμε τη συσχέτιση μεταξύ του βαθμού πτυχίου και της διάρκειας σπουδών των αποφοίτων του τμήματος εφαρμοσμένων μαθηματικών, σε δείγμα n=361 αποφοίτων. Με χρήση στατιστικού πακέτου Μatlab, κατασκευάσαμε το διάγραμμα διασποράς (scatter plot).(σχήμα 1) (Σχήμα 1) Παρατηρούμε ότι, όσο αυξάνεται η διάρκεια σπουδών μειώνεται ο βαθμός πτυχίου. Αυτό επαληθεύεται από το συντελεστή συσχέτισης r=-0,5047, που δηλώνει την αρνητική συσχέτιση μεταξύ των μεταβλητών (βαθμός πτυχίου-έτη σπουδών). Η εκτίμηση του συντελεστή συσχέτισης για το δείγμα είναι r=-0,5047. Το ρ(=συντελεστής συσχέτισης πληθυσμού) ανήκει στο διάστημα: [ , ] με πιθανότητα 95%. Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 22

23 Στη συνέχεια, με γραμμική παλινδρόμηση εκτιμάμε τους συντελεστές της ευθείας ελαχίστων τετραγώνων για τη σχέση του βαθμού πτυχίου με τη διάρκεια σπουδών. Η ευθεία αυτή είναι : Υ= Χ. Ειδικότερα, κάνουμε την ίδια ανάλυση κατά φύλο, κατά κατεύθυνση και έτος εισαγωγής. ΚΑΣΑ ΥΤΛΟ: Σε δείγμα 164 γυναικών ο συντελεστής συσχέτισης είναι r= και το 95% διάστημα εμπιστοσύνης είναι [ , ] (Σχήμα 2). (Σχήμα 2) Ενώ, για τους άνδρες (=194) ο συντελεστής συσχέτισης είναι r= και το 95% διάστημα εμπιστοσύνης είναι [ , ] (Σχήμα 3). Οι ευθείες ελαχίστων τετραγώνων για τις γυναίκες και τους άνδρες αντίστοιχα είναι:y= x και Y= Χ. Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 23

24 Στο από κοινού διάγραμμα διασποράς οι ευθείες ελαχίστων τετραγώνων για τις γυναίκες και τους άνδρες,δείχνουν ότι ο βαθμός πτυχίου για τους άνδρες μειώνεται πιο απότομα όσο περνούν τα έτη σπουδών συγκριτικά με τις γυναίκες. Δηλαδή τα έτη σπουδών επηρεάζουν περισσότερο τους άνδρες.(σχήμα Β) (Σχήμα Β) Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 24

25 ΚΑΤΑ ΚΑΤΕΥΘΥΝΣΗ: Χωρίσαμε τους φοιτητές ανάλογα με την κατεύθυνση που επέλεξαν, με κριτήριο τα δύο μαθήματα κατεύθυνσης. Οι κατευθύνσεις είναι τρεις : Κατεύθυνση I: Μαθηματικές Μέθοδοι και Ανάπτυξη Λογισμικού Κατεύθυνση II: Μαθηματική Μοντελοποίηση και Τεχνικές Υπολογισμών Κατεύθυνση III: Χρηματοοικονομικά και Επιχειρησιακά Μαθηματικά Μαθηματικές Μέθοδοι και Ανάπτυξη Λογισμικού Η πρώτη κατεύθυνση αποτελείται από 65 πτυχιούχους. Ο συντελεστής συσχέτισης είναι r= και το 95% διάστημα εμπιστοσύνης του είναι [ ].Η ευθεία ελαχίστων τετραγώνων είναι η Y= Χ. (Σχήμα 4) (Σχήμα 4) Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 25

26 Μαθηματική Μοντελοποίηση και Σεχνικές Τπολογισμών Η δεύτερη κατεύθυνση αποτελείται από 194 πτυχιούχους. Ο συντελεστής συσχέτισης θα είναι r= και το 95% διάστημα εμπιστοσύνης του είναι [ ].Η ευθεία ελαχίστων τετραγώνων είναι η Y= X. (Σχήμα 5) (Σχήμα 5) Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 26

27 Φρηματοοικονομικά και Επιχειρησιακά Μαθηματικά Τέλος, η τρίτη κατεύθυνση αποτελείται από 102 πτυχιούχους. Ο συντελεστής συσχέτισης είναι r= και το 95% διάστημα εμπιστοσύνης του είναι [ ].Η ευθεία ελαχίστων τετραγώνων είναι η Y= X (Σχήμα6) (Σχήμα6) Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 27

28 Στο από κοινού διάγραμμα διασποράς οι ευθείες ελαχίστων τετραγώνων για τις τρεις κατευθύνσεις,δείχνουν ότι ο βαθμός πτυχίου για την δεύτερη κατεύθυνση μειώνεται πιο απότομα όσο περνούν τα έτη σπουδών από την τρίτη κατεύθυνση. Επίσης ο βαθμός πτυχίου για την πρώτη κατεύθυνση μειώνεται πιο απότομα όσο περνούν τα έτη σπουδών από τη δεύτερη. (Σχήμα Γ) (Σχήμα Γ) Επειδή οι μέσοι όροι βαθμών πτυχίου δεν είναι ομοιόμορφα κατανεμημένοι ανά έτος σπουδών χωρίζουμε τους απόφοιτους σε δύο κατηγορίες. Η πρώτη θα είναι αυτοί που αποφοίτησαν από τέσσερα μέχρι έξι χρόνια και η δεύτερη αυτοί που αποφοίτησαν από έξι μέχρι δέκα χρόνια. Έτσι επιτυγχάνεται μία πιο αντικειμενική γραμμική σχέση ανάμεσα στο βαθμό πτυχίου και στα έτη σπουδών. Έτσι θα έχουμε, ακόμα τρία διαγράμματα διασποράς. Για τους φοιτητές που αποφοίτησαν από τέσσερα έως έξι χρόνια ο συντελεστής συσχέτισης r =-0,3769 και το 95% διάστημα εμπιστοσύνης είναι το [ ].Ενώ για τους φοιτητές που αποφοίτησαν από έξι έως δέκα χρόνια ο συντελεστής συσχέτισης είναι r =-0,3269 και το 95% διάστημα εμπιστοσύνης είναι το [ ].(Σχήμα7) Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 28

29 (Σχήμα7) Οι ευθείες ελαχίστων τετραγώνων για τους φοιτητές που αποφοίτησαν από τέσσερα έως έξι χρόνια και για τους φοιτητές που αποφοίτησαν από έξι έως δέκα χρόνια αντίστοιχα είναι: Y= X και Y= Χ. Μόνο για τους άνδρες φοιτητές που αποφοίτησαν από τέσσερα έως έξι χρόνια ο συντελεστής συσχέτισης r =-0,3920 και το 95% διάστημα εμπιστοσύνης είναι το [ ]. Ενώ για τους άνδρες φοιτητές που αποφοίτησαν από έξι έως δέκα χρόνια ο συντελεστής συσχέτισης είναι r =-0,2704 και το 95% διάστημα εμπιστοσύνης είναι : [ ]. ( Σχήμα 8) Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 29

30 Μόνο για τις γυναίκες φοιτήτριες που αποφοίτησαν από τέσσερα έως έξι χρόνια ο συντελεστής συσχέτισης r =-0,3686 και το 95% διάστημα εμπιστοσύνης είναι το [ ]. Ενώ για τις γυναίκες φοιτήτριες που αποφοίτησαν από έξι έως δέκα χρόνια ο συντελεστής συσχέτισης είναι r =- 0,2875 και το 95% διάστημα εμπιστοσύνης είναι το [ ]. ( Σχήμα 9) (Σχήμα 9) Στο από κοινού διάγραμμα διασποράς οι ευθείες ελαχίστων τετραγώνων για τις γυναίκες και τους άνδρες που αποφοίτησαν από τέσσερα έως έξι χρόνια, δείχνουν ότι ο βαθμός πτυχίου για τους άνδρες μειώνεται πιο απότομα όσο περνούν τα έτη σπουδών συγκριτικά με τις γυναίκες, (Σχήμα Β). Το ίδιο ισχύει για τις γυναίκες και τους άνδρες που αποφοίτησαν από έξι έως δέκα χρόνια.(σχήμα Δ) Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 30

31 (Σχήμα Δ) ΚΑΤΑ ΈΤΟΣ ΕΙΣΑΓΩΓΗΣ Χωρίσαμε τους φοιτητές ανάλογα με το έτος εισαγωγής τους. Από το 1999 έως το Για το 1999 ο συντελεστής συσχέτισης r =-0,5831 και το 95% διάστημα εμπιστοσύνης είναι το [ ]. Για το 2000 ο συντελεστής συσχέτισης r =-0,5590 και το 95% διάστημα εμπιστοσύνης είναι το [ ]. Για το 2001 ο συντελεστής συσχέτισης r =-0,5985 και το 95% διάστημα εμπιστοσύνης είναι το [ ]. Για το 2002 ο συντελεστής συσχέτισης r =-0,3363 και το 95% διάστημα εμπιστοσύνης είναι το [ ]. για το 2003 ο συντελεστής συσχέτισης r =-0,4382 και το 95% διάστημα εμπιστοσύνης είναι το [ ]. Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 31

32 Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 32

33 Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 33

34 Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 34

35 ΑΝΑΛΤΗ ΔΙΑΠΟΡΑ ΚΑΣΑ ΕΣΟ ΕΙΑΓΩΓΗ (one-way ANOVA) Θέλουμε να μελετήσουμε αν υπάρχουν σημαντικές διαφορές στα έτη εισαγωγής, όσον αφορά το μέσο όρο αποφοίτησης των φοιτητών. Ο έλεγχος των διαφορών θα γίνει σε επίπεδο σημαντικότητας α=5%. Επιλέγουμε [1] τους φοιτητές που έχουν εισαχθεί τα ακαδημαϊκά έτη 1999 έως 2003 και έχουν διάρκεια σπουδών μέχρι και 6 έτη. Ορίζουμε τον έλεγχο: Ho= δεν υπάρχουν διαφορές μεταξύ των μέσων όρων βαθμών πτυχίων ανά έτος εισαγωγής. Η1= υπάρχουν διαφορές μεταξύ των μέσων όρων βαθμών πτυχίων ανά έτος εισαγωγής. Εκτελούμε one-way ANOVA για να ελέγξουμε αν η αρχική μας υπόθεση είναι αποδεκτή για διάστημα εμπιστοσύνης 95%. Ο πίνακας ANOVA στην πρώτη στήλη παρουσιάζει το άθροισμα των τετραγώνων, στην επόμενη στήλη είναι οι βαθμοί ελευθερίας. Ακολουθεί η στήλη με τα μέσα τετράγωνα, η στατιστική F και τέλος η τιμή p-value. Το κριτήριο για τον έλεγχο είναι: F F crit : απορρίπτω την μηδενική μου υπόθεση F F crit : δέχομαι την μηδενική μου υπόθεση όπου Fcrit Fdf, error (1 a) Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 35

36 Συγκεκριμένα, εδώ δεχόμαστε την μηδενική υπόθεση γιατί : F F (1 5%) 2.37 F 2 crit 4,300 Δηλαδή, δεν υπάρχουν σημαντικές διαφορές στα έτη εισαγωγής, όσον αφορά το μέσο όρο αποφοίτησης των φοιτητών. Το boxplot μας παρουσιάζει πως είναι κατανεμημένες οι βαθμοί αποφοίτησης ανά έτος εισαγωγής, μέσα σε κάθε boxplot βρίσκεται το 50% των παρατηρήσεων. Η κόκκινη γραμμή είναι η διάμεσος ή αλλιώς το κέντρο των παρατηρήσεων. Τα πάνω και κάτω άκρο σε κάθε boxpot είναι το 75 ο εκατοστιαίο σημείο και 25 ο εκατοστιαίο σημείο αντίστοιχα. [1]Για ισορροπία των παρατηρήσεων ανά έτος εισαγωγής προσθέσαμε τη μέση τιμή του βαθμού αποφοίτησης για κάθε χρόνο. {σύνταξη εντολής ANOVA} Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 36

37 ΑΝΑΛΤΗ ΔΙΑΠΟΡΑ ΚΑΣΑ ΥΤΛΟ ΚΑΙ ΕΣΟ ΕΙΑΓΩΓΗ (two-way ANOVA) Ελέγχουμε αν υπάρχουν σημαντικές διαφορές στους βαθμούς αποφοίτησης ανάλογα με το φύλο. Επίσης, ελέγχουμε αν υπάρχει αλληλεπίδραση μεταξύ φύλου και έτους εισαγωγής στο βαθμό πτυχίου. Στην πρώτη περίπτωση: Ορίζουμε τον έλεγχο: Ho= δεν υπάρχουν διαφορές μεταξύ των μέσων όρων βαθμών πτυχίων κατά φύλο. Η1= υπάρχουν διαφορές μεταξύ των μέσων όρων βαθμών πτυχίων κατά φύλο. F=2.67 και Fcrit=F40,205(1-5%)=1.46. Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 37

38 Άρα F F crit : απορρίπτω την μηδενική μου υπόθεση Άρα, υπάρχουν διαφορές στο βαθμό πτυχίου των αποφοίτων κατά φύλο σε επίπεδο σημαντικότητας 5%. Στην δεύτερη περίπτωση: Ορίζουμε τον έλεγχο: Ho= δεν υπάρχει αλληλεπίδραση μεταξύ φύλου και έτους εισαγωγής στο βαθμό πτυχίου. Η1= υπάρχει αλληλεπίδραση μεταξύ φύλου και έτους εισαγωγής στο βαθμό πτυχίου. F=1,46 και Fcrit=F160,205(1-5%)=1,29 Άρα F F crit : απορρίπτω την μηδενική μου υπόθεση Άρα, υπάρχει αλληλεπίδραση μεταξύ φύλου και έτους εισαγωγής στο βαθμό πτυχίου σε επίπεδο σημαντικότητας 5%. Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 38

39 ΑΝΑΛΤΗ ΔΙΑΠΟΡΑ ΚΑΣΑ ΥΤΛΟ, ΕΣΟ ΕΙΑΓΩΓΗ ΚΑΙ ΔΙΑΡΚΕΙΑ ΠΟΤΔΩΝ (n-way ANOVA) Η επιλογή των αποφοίτων έγινε για τα έτη εισαγωγής Το μέγεθος του δείγματος είναι 345 απόφοιτοι, 189 άνδρες και 156 γυναίκες. Ορίζουμε 3 ελέγχους : Κατά έτος εισαγωγής H0= δεν υπάρχει αλληλεπίδραση μεταξύ φύλου και έτους εισαγωγής στο βαθμό πτυχίου. Κατά φύλο Η1= δεν υπάρχει αλληλεπίδραση μεταξύ φύλου και έτους εισαγωγής στο βαθμό πτυχίου. Κατά διάρκεια σπουδών Η2= δεν υπάρχει αλληλεπίδραση μεταξύ φύλου και έτους εισαγωγής στο βαθμό πτυχίου. Ελεγχός υπόθεσης H0: F=2,5 και Fcrit=F4,333(1-5%)=2,4 Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 39

40 Άρα F F crit : απορρίπτω την μηδενική μου υπόθεση Άρα, υπάρχουν διαφορές ανά έτος εισαγωγής στο βαθμό πτυχίου σε επίπεδο σημαντικότητας 5%. Ελεγχός υπόθεσης H1: F=0,84 και Fcrit=F1,333(1-5%)=3,87 Άρα F F crit : δέχομαι την μηδενική μου υπόθεση Άρα, δεν υπάρχουν διαφορές στο βαθμό πτυχίου κατά φύλο σε επίπεδο σημαντικότητας 5%. Ελεγχός υπόθεσης H3: F=22,89 και Fcrit=F6,333(1-5%)=2,13 Άρα, F F crit : απορρίπτω την μηδενική μου υπόθεση Άρα, υπάρχουν διαφορές στο βαθμό πτυχίου, κατά έτη σπουδών σε επίπεδο σημαντικότητας 5%. Ορίζουμε 3 ελέγχους : Κατά έτος εισαγωγής και φύλο Κ0= δεν υπάρχει αλληλεπίδραση μεταξύ έτους εισαγωγής και φύλου στο βαθμό πτυχίου. Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 40

41 Κατά έτος εισαγωγής και διάρκεια σπουδών Κ1= δεν υπάρχει αλληλεπίδραση μεταξύ έτος εισαγωγής και διάρκεια σπουδών στο βαθμό πτυχίου. Κατά φύλο και διάρκεια σπουδών Κ2= δεν υπάρχει αλληλεπίδραση μεταξύ φύλου και διάρκειας σπουδών στο βαθμό πτυχίου. Ελεγχός υπόθεσης Κ0: F=0,51 και Fcrit=F4,309(1-5%)=2,4 Άρα, F F crit : δέχομαι την μηδενική μου υπόθεση Άρα, δεν υπάρχει αλληλεπίδραση μεταξύ έτους εισαγωγής και φύλου στο βαθμό πτυχίου σε επίπεδο σημαντικότητας 5%. Ελεγχός υπόθεσης Κ1: F=0,91 και Fcrit=F15,309(1-5%)=1,7 Άρα, F F crit : δέχομαι την μηδενική μου υπόθεση Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 41

42 Άρα, δεν υπάρχει αλληλεπίδραση μεταξύ έτος εισαγωγής και διάρκεια σπουδών στο βαθμό πτυχίου σε επίπεδο σημαντικότητας 5%. Ελεγχός υπόθεσης Κ3: F=1,28 και Fcrit=F5,309(1-5%)=2,24 Άρα, F F crit : δέχομαι την μηδενική μου υπόθεση Άρα, δεν υπάρχει αλληλεπίδραση μεταξύ φύλου και διάρκειας σπουδών στο βαθμό πτυχίου σε επίπεδο σημαντικότητας 5%. Ορίζουμε τον έλεγχο: Κατά έτος εισαγωγής, φύλο και διάρκεια σπουδών Μ0= δεν υπάρχει αλληλεπίδραση μεταξύ εισαγωγής, φύλου και διάρκειας σπουδών στο βαθμό πτυχίου. Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 42

43 Ελεγχός υπόθεσης Μ0: F=2,58 και Fcrit=F12,297(1-5%)=1,78 Άρα, F F crit : απορρίπτω την μηδενική μου υπόθεση Άρα, υπάρχει αλληλεπίδραση μεταξύ εισαγωγής, φύλου και διάρκειας σπουδών στο βαθμό πτυχίου σε επίπεδο σημαντικότητας 5%. Τμήμα Εφαρμοσμένων Μαθηματικών Σελίδα 43

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ:

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: 1. Ομάδα Ανκρωπιςτικών Σπουδών 2. Ομάδα Οικονομικών, Πολιτικών, Κοινωνικών & Παιδαγωγικών Σπουδών 3. Ομάδα Θετικών

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιςτικι είναι ο κλάδοσ των μακθματικϊν που αςχολείται με τθ ςυλλογι, τθν οργάνωςθ, τθν παρουςίαςθ και τθν ανάλυςθ αρικμθτικϊν

Διαβάστε περισσότερα

Πρόγραμμα Προπτυχιακών πουδών (ΠΠ) Σμήματοσ «Διοίκηςησ Επιχειρήςεων» Πάτρασ, ΣΕΙ Δυτικήσ Ελλάδασ

Πρόγραμμα Προπτυχιακών πουδών (ΠΠ) Σμήματοσ «Διοίκηςησ Επιχειρήςεων» Πάτρασ, ΣΕΙ Δυτικήσ Ελλάδασ Πρόγραμμα Προπτυχιακών πουδών (ΠΠ) Σμήματοσ «Διοίκηςησ Επιχειρήςεων» Πάτρασ, ΣΕΙ Δυτικήσ Ελλάδασ Μαθήματα Τα ΠΠΣ περιλαμβάνει πενιντα ζνα (51) μακιματα, οργανωμζνα ωσ εξισ: Είκοςι τζςςερα (24) μακιματα

Διαβάστε περισσότερα

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων) 1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ

Διαβάστε περισσότερα

Θ διαδικαςία κοςτολόγθςθσ εφρεςθσ του κόςτουσ παραγωγισ των προϊόντων χωρίηεται ςε διαφορετικζσ τεχνικζσ μεκόδουσ: Α) Την απορροφητική ή πλήρη κοςτολόγηςη Β) Την οριακή ή άμεςη κοςτολόγηςη Απορροφητική

Διαβάστε περισσότερα

τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014

τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014 τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014 Ειςαγωγι Στο παρόν κείμενο παρουςιάηονται και αναλφονται τα ςτατιςτικά ςτοιχεία του ιςτοτόπου τθσ ΚΕΠΑ-ΑΝΕΜ,

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

Πτυχία, προςωπικότθτα και ικανότθτα. Συςχετίηονται; Μαρία Κοκκίνου Manager, ICAP Human Capital Consulting

Πτυχία, προςωπικότθτα και ικανότθτα. Συςχετίηονται; Μαρία Κοκκίνου Manager, ICAP Human Capital Consulting Πτυχία, προςωπικότθτα και ικανότθτα. Συςχετίηονται; Μαρία Κοκκίνου Manager, ICAP Human Capital Consulting Προγράμματα Management Trainees Ένα πεδίο ανηαγφνιζμού για ηα νέα ηαλένηα Οξφσ ανταγωνιςμόσ Σε

Διαβάστε περισσότερα

ΜΗΝΙΑΙΑ ΕΚΘΕΗ ΠΑΡΑΓΩΓΗ ΕΡΓΟΤ. ΜΑΪΟ 2017

ΜΗΝΙΑΙΑ ΕΚΘΕΗ ΠΑΡΑΓΩΓΗ ΕΡΓΟΤ. ΜΑΪΟ 2017 Η ζκκεςθ αυτι ςυνοψίηει δεδομζνα παραγωγισ και μετεωρολογικά δεδομζνα από το ζργο.., εγκατεςτθμζνθσ ιςχφοσ 1.472,94kW ςτθ κζςθ, Δ.Δ.., Νομοφ.., ιδιοκτθςίασ τθσ Παρουςιάηονται ςυγκεντρωτικά διαγράμματα

Διαβάστε περισσότερα

ΔΕΛΣΙΟ ΣΤΠΟΤ. Ζρευνα Πράξεων Τιοθεςίασ ζτουσ 2016

ΔΕΛΣΙΟ ΣΤΠΟΤ. Ζρευνα Πράξεων Τιοθεςίασ ζτουσ 2016 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΕΛΛΗΝΙΚΗ ΣΑΣΙΣΙΚΗ ΑΡΧΗ Πειραιάσ, 1/11/217 ΔΕΛΣΙΟ ΣΤΠΟΤ Ζρευνα Πράξεων Τιοθεςίασ ζτουσ 216 Η Ελλθνικι Στατιςτικι Αρχι (ΕΛΣΤΑΤ) ανακοινϊνει τα ςτοιχεία τθσ Ζρευνασ των Πράξεων Υιοκεςίασ

Διαβάστε περισσότερα

3 ο ΜΑΘΗΜΑ ΑΡΙΘΜΗΣΙΚΑ ΠΕΡΙΓΡΑΦΙΚΑ ΜΕΣΡΑ Ι ΣΑ ΜΕΣΡΑ ΚΕΝΣΡΙΚΗ ΣΑΗ

3 ο ΜΑΘΗΜΑ ΑΡΙΘΜΗΣΙΚΑ ΠΕΡΙΓΡΑΦΙΚΑ ΜΕΣΡΑ Ι ΣΑ ΜΕΣΡΑ ΚΕΝΣΡΙΚΗ ΣΑΗ 3 ο ΜΑΘΗΜΑ ΑΡΙΘΜΗΣΙΚΑ ΠΕΡΙΓΡΑΦΙΚΑ ΜΕΣΡΑ Ι ΣΑ ΜΕΣΡΑ ΚΕΝΣΡΙΚΗ ΣΑΗ Πολλζσ φορζσ μασ είναι ιδιαίτερα χριςιμο να περιγράφουμε ζνα ςφνολο αρικμθτικϊν δεδομζνων από ζναν μοναδικό αρικμό. Σζτοιου είδουσ αρικμοί

Διαβάστε περισσότερα

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1 Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ

Διαβάστε περισσότερα

Έρεσνα για τις εσωκομματικές εκλογές της Νέας Δημοκρατίας

Έρεσνα για τις εσωκομματικές εκλογές της Νέας Δημοκρατίας Έρεσνα για τις εσωκομματικές εκλογές της Νέας Δημοκρατίας Ιανοσάριος 2016 2 ΣΑΤΣΟΣΗΣΑ ΕΡΕΤΝΑ Η ζρευνα πραγματοποιικθκε ςτο ςφνολο τθσ επικράτειασ. Σο δείγμα ανιλκε ςε 930 άτομα, άνδρεσ και γυναίκεσ, 18

Διαβάστε περισσότερα

ΟΙΚΙΑΚΗ ΟΙΚΟΝΟΜΙΑ ΑΡΙΘΜΟ ΑΝΑΠΛΗΡΩΣΩΝ

ΟΙΚΙΑΚΗ ΟΙΚΟΝΟΜΙΑ ΑΡΙΘΜΟ ΑΝΑΠΛΗΡΩΣΩΝ ΟΙΚΙΑΚΗ ΟΙΚΟΝΟΜΙΑ ΔΙΟΡΙΜΟΙ ΜΟΝΙΜΩΝ ΚΑΘΗΓΗΣΩΝ ΟΙΚΙΑΚΗ ΟΙΚΟΝΟΜΙΑ ΑΡΙΘΜΟ ΔΙΟΡΙΘΕΝΣΩΝ 2006-2007 34 2007-2008 40 2008-2009 38 2009-2010 25 2010-2011 13 ΤΝΟΛΟ: 150 ΔΙΟΡΙΜΟΙ ( ΜΕΟ ΟΡΟ 30 ΔΙΟΡΙΜΟΙ ΑΝΑ ΕΣΟ) Με

Διαβάστε περισσότερα

Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου

Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου Ζνωςθ Ελλινων Χθμικϊν Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου Χημεία 03/07/2017 Τμιμα Παιδείασ και Χθμικισ Εκπαίδευςθσ 0 Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη

Διαβάστε περισσότερα

Ζρευνα ικανοποίθςθσ τουριςτϊν

Ζρευνα ικανοποίθςθσ τουριςτϊν Ζρευνα ικανοποίθςθσ τουριςτϊν Ammon Ovis_Ζρευνα ικανοποίθςθσ τουριςτϊν_ Ραδιοςτακμόσ Flash 96 1 ΣΤΟΙΧΕΙΑ ΔΕΙΓΜΑΤΟΣ Σο δείγμα περιλαμβάνει 332 τουρίςτεσ από 5 διαφορετικζσ θπείρουσ. Οι περιςςότεροι εξ αυτϊν

Διαβάστε περισσότερα

Διαχείριςη Αριθμοδεικτών (v.1.0.7)

Διαχείριςη Αριθμοδεικτών (v.1.0.7) Διαχείριςη Αριθμοδεικτών (v.1.0.7) Περιεχόμενα 1. Μενοφ... 5 1.1 Αρικμοδείκτεσ.... 5 1.1.1 Δθμιουργία Αρικμοδείκτθ... 6 1.1.2 Αντιγραφι Αρικμοδείκτθ... 11 2. Παράμετροι... 12 2.1.1 Κατθγορίεσ Αρικμοδεικτϊν...

Διαβάστε περισσότερα

Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον

Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον Ο ν ο μ α τ ε π ώ ν υ μ ο : _ Θ Ε Μ Α 1 ο Α. Ν α χ α ρ α κ τ θ ρ ι ς τ ο φ ν ο ι α κ ό λ ο υ κ ε σ π ρ ο τ ά ς ε ι σ μ ε τ ο

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

ΝΕΟ ΤΣΗΜΑ ΕΙΑΓΩΓΗ ΣΑ Α.Ε.Ι. & Σ.Ε.Ι.

ΝΕΟ ΤΣΗΜΑ ΕΙΑΓΩΓΗ ΣΑ Α.Ε.Ι. & Σ.Ε.Ι. ΝΕΟ ΤΣΗΜΑ ΕΙΑΓΩΓΗ ΣΑ Α.Ε.Ι. & Σ.Ε.Ι. Θ Γϋ τάξθ Γενικοφ Λυκείου κα περιλαμβάνει ςυνολικό πρόγραμμα 32 διδακτικών ωρών τθν εβδομάδα, από τισ οποίεσ οι 15 κα αφοροφν τα μακιματα προςανατολιςμοφ. Διαμορφϊνονται

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ

Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί ςτθ

Διαβάστε περισσότερα

ΑΚΗΕΙ ΠΡΟΒΛΕΨΕΩΝ ΠΡΟΒΛΕΨΕΙ

ΑΚΗΕΙ ΠΡΟΒΛΕΨΕΩΝ ΠΡΟΒΛΕΨΕΙ ΑΚΗΕΙ ΠΡΟΒΛΕΨΕΩΝ ΠΡΟΒΛΕΨΕΙ 1 Άσκηση 1 Μια βιομησανική επισείπηση έσει καταγπάτει τιρ μηνιαίερ πυλήσειρ τυν πποφόντυν τηρ, πος ήσαν οι εξήρ (σε εκατ. εςπώ): Μήναρ Πυλήσειρ 1 50 2 54 3 61 4 68 5 76 6 87

Διαβάστε περισσότερα

ΔΕΛΣΙΟ ΣΤΠΟΤ ΕΡΕΤΝΑ ΔΕΤΣΕΡΟΒΑΘΜΙΑ ΕΠΑΓΓΕΛΜΑΣΙΚΗ ΕΚΠΑΙΔΕΤΗ ΛΗΞΗ ΧΟΛΙΚΟΤ ΕΣΟΤ 2014/2015

ΔΕΛΣΙΟ ΣΤΠΟΤ ΕΡΕΤΝΑ ΔΕΤΣΕΡΟΒΑΘΜΙΑ ΕΠΑΓΓΕΛΜΑΣΙΚΗ ΕΚΠΑΙΔΕΤΗ ΛΗΞΗ ΧΟΛΙΚΟΤ ΕΣΟΤ 2014/2015 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΕΛΛΗΝΙΚΗ ΣΑΣΙΣΙΚΗ ΑΡΧΗ Πειραιάσ, 9 Δεκεμβρίου 2016 ΔΕΛΣΙΟ ΣΤΠΟΤ ΕΡΕΤΝΑ ΔΕΤΣΕΡΟΒΑΘΜΙΑ ΕΠΑΓΓΕΛΜΑΣΙΚΗ ΕΚΠΑΙΔΕΤΗ ΛΗΞΗ ΧΟΛΙΚΟΤ ΕΣΟΤ 2014/2015 Η Ελλθνικι Στατιςτικι Αρχι (ΕΛΣΤΑΤ) ανακοινϊνει

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

Μάκθςθ Κατανομϊν Πικανότθτασ και Ομαδοποίθςθ

Μάκθςθ Κατανομϊν Πικανότθτασ και Ομαδοποίθςθ Μάκθςθ Κατανομϊν Πικανότθτασ και Ομαδοποίθςθ Κϊςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΙ Θεςςαλονίκθσ 1 Μάκθςθ κατανομισ πικανότθτασ Σε όλθ τθν ανάλυςθ μζχρι τϊρα ζγινε ςιωπθρά θ παραδοχι ότι γνωρίηουμε

Διαβάστε περισσότερα

Ενδεικτικζσ Λφςεισ Θεμάτων

Ενδεικτικζσ Λφςεισ Θεμάτων c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.

Διαβάστε περισσότερα

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 1) Τίτλοσ τθσ ζρευνασ: «Ποια είναι θ επίδραςθ τθσ κερμοκραςίασ ςτθ διαλυτότθτα των ςτερεϊν ςτο νερό;» 2) Περιγραφι του ςκοποφ τθσ ζρευνασ: Η ζρευνα

Διαβάστε περισσότερα

ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ

ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ ΚΑΜΠΤΛΕ ΕΛΕΤΘΕΡΗ ΜΟΡΦΗ Χριςιμεσ για τθν περιγραφι ομαλών και ελεφκερων ςχθμάτων Αμάξωμα αυτοκινιτου, πτερφγια αεροςκαφών, ςκελετόσ πλοίου χιματα χαρακτιρων κινουμζνων ςχεδίων Περιγραφι

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου

Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑIΟΤ & ΑΕΙ ΠΕΙΡΑΙΑ Σ.Σ. Σμήματα Ναυτιλίας και Επιχειρηματικών Τπηρεσιών & Μηχ. Αυτοματισμού ΣΕ Π.Μ.. «Νέες Σεχνολογίες στη Ναυτιλία και τις Μεταφορές» Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου

Διαβάστε περισσότερα

Υπολογιςτικζσ Μζκοδοι ςτθν Οικονομία

Υπολογιςτικζσ Μζκοδοι ςτθν Οικονομία Υπολογιςτικζσ Μζκοδοι ςτθν Οικονομία 5. Βαςικζσ Αρχζσ διαχείριςθσ χαρτοφυλακίων Με τον οριςμό χαρτοφυλάκιο (portfolio) εννοοφμε ζνα καλάκι από επενδυτικζσ τοποκετιςεισ,όπωσ μετοχζσ, ομόλογα, δείκτεσ, μετρθτά,

Διαβάστε περισσότερα

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι.

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι. 1 ο Σετ Ασκήσεων Δομή Επιλογής - Επανάληψης Άςκθςθ 1θ: Ζνα παιχνίδι με ηάρια παίηεται ωσ εξισ: Α. Ο παίκτθσ αρχικά ποντάρει κάποιο ποςό και ρίχνει δφο ηάρια. Β. Ο παίκτθσ κερδίηει (το ποςό που ζχει ποντάρει)

Διαβάστε περισσότερα

Γεωργικόσ Πειραματιςμόσ

Γεωργικόσ Πειραματιςμόσ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΧΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γεωργικόσ Πειραματιςμόσ Ενότθτα 6 θ : Απλι Ευκφγραμμθ Συμμεταβολι Γεϊργιοσ Μενεξζσ Άδειεσ Χριςθσ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Στατιςτικζσ δοκιμζσ. Συνεχι δεδομζνα. Γεωργία Σαλαντι

Στατιςτικζσ δοκιμζσ. Συνεχι δεδομζνα. Γεωργία Σαλαντι Στατιςτικζσ δοκιμζσ Συνεχι δεδομζνα Γεωργία Σαλαντι Τι κζλουμε να ςυγκρίνουμε; Δφο δείγματα Μζςθ αρτθριακι πίεςθ ςε δφο ομάδεσ Πικανότθτα κανάτου με δφο διαφορετικά είδθ αντικατακλιπτικϊν Τθν μζςθ τιμι

Διαβάστε περισσότερα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε

Διαβάστε περισσότερα

Η ψθφιακι τεχνολογία ςτθν ερευνθτικι δραςτθριότθτα Περιγραφικι ςτατιςτικι για ποςοτικζσ μεταβλθτζσ

Η ψθφιακι τεχνολογία ςτθν ερευνθτικι δραςτθριότθτα Περιγραφικι ςτατιςτικι για ποςοτικζσ μεταβλθτζσ Η ψθφιακι τεχνολογία ςτθν ερευνθτικι δραςτθριότθτα Περιγραφικι ςτατιςτικι για ποςοτικζσ μεταβλθτζσ Γεϊργιοσ Τψθλάντθσ Σμιμα Ιταλικισ Γλϊςςασ & Φιλολογίασ Θεςςαλονίκθ, Ιοφνιοσ 2013 Σίτλοσ Μακιματοσ Άδειεσ

Διαβάστε περισσότερα

Ρ Ο Σ Ο Σ Τ Ι Κ Ε Σ Μ Ε Θ Ο Δ Ο Ι ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΡΙΧΕΙΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΙΣΤΙΚΩΝ ΕΡΙΧΕΙΗΣΕΩΝ & ΕΡΙΧΕΙΗΣΕΩΝ ΦΙΛΟΞΕΝΕΙΑΣ

Ρ Ο Σ Ο Σ Τ Ι Κ Ε Σ Μ Ε Θ Ο Δ Ο Ι ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΡΙΧΕΙΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΙΣΤΙΚΩΝ ΕΡΙΧΕΙΗΣΕΩΝ & ΕΡΙΧΕΙΗΣΕΩΝ ΦΙΛΟΞΕΝΕΙΑΣ Ρ Ο Σ Ο Σ Τ Ι Κ Ε Σ Μ Ε Θ Ο Δ Ο Ι ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΡΙΧΕΙΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΙΣΤΙΚΩΝ ΕΡΙΧΕΙΗΣΕΩΝ & ΕΡΙΧΕΙΗΣΕΩΝ ΦΙΛΟΞΕΝΕΙΑΣ Τι κάνει η Στατιςτική Στατιςτικι (Statistics) Μετατρζπει αρικμθτικά δεδομζνα ςε

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

Πειραματικι Ψυχολογία (ΨΧ66)

Πειραματικι Ψυχολογία (ΨΧ66) Πειραματικι Ψυχολογία (ΨΧ66) Διάλεξη 7 Σεχνικζσ για τθν επίτευξθ ςτακερότθτασ Πζτροσ Ροφςςοσ Μζθοδοι για την επίτευξη του ελζγχου Μζςω του κατάλλθλου ςχεδιαςμοφ του πειράματοσ (ςτόχοσ είναι θ εξάλειψθ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons.

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Δεδομένων

Εισαγωγή στην Ανάλυση Δεδομένων ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός

Διαβάστε περισσότερα

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Νζεσ Τάςεισ ςτην εκπαιδευτική διαδικαςία: Gamification

Νζεσ Τάςεισ ςτην εκπαιδευτική διαδικαςία: Gamification Νζεσ Τάςεισ ςτην εκπαιδευτική διαδικαςία: Gamification Δρ. Παναγιϊτθσ Ζαχαριάσ Οικονομικό Πανεπιςτιμιο Ακθνϊν - 15/5/2014 Ημερίδα με κζμα: «Οικονομία τθσ Γνϊςθσ: Αξιοποίθςθ τθσ καινοτομίασ ςτθ Β Βάκμια

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

Δια-γενεακι κινθτικότθτα

Δια-γενεακι κινθτικότθτα Δια-γενεακι κινθτικότθτα Κατά κανόνα οι τρζχουςεσ επιλογζσ των ατόμων ζχουν ςυνζπειεσ ςτο μζλλον (δυναμικι ςχζςθ). Σε ότι αφορά τισ επιλογζσ των ατόμων ςε ςχζςθ με τθν εκπαίδευςθ γνωρίηουμε ότι τα άτομα

Διαβάστε περισσότερα

7. Οριακή Κοστολόγηση. Cost Accounting

7. Οριακή Κοστολόγηση. Cost Accounting 7. Οριακή Κοστολόγηση Cost Accounting 1 Κατανόηση τος Κοστολογικού Πποβλήματορ Πλιρθσ ι Απορροφθτικι Κοςτολόγθςθ Μεταβλθτό Ά Φλεσ Άμεςθ Εργαςία Οριακι Κοςτολόγθςθ Μεταβλθτά Γ.Β.Ε. Στακερό Στακερά Γ.Β.Ε.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ Ειρινθ Φιλιοποφλου Ειςαγωγι Ο Παγκόςμιοσ Ιςτόσ (World Wide Web - WWW) ι πιο απλά Ιςτόσ (Web) είναι μία αρχιτεκτονικι για τθν προςπζλαςθ διαςυνδεδεμζνων εγγράφων

Διαβάστε περισσότερα

Άςκηςη 1: Παλινδρομική Ανάλυςη, υςχζτιςη, Σάςη

Άςκηςη 1: Παλινδρομική Ανάλυςη, υςχζτιςη, Σάςη Άςκηςη 1: Παλινδρομική Ανάλυςη, υςχζτιςη, Σάςη Στθν Εφαρμοςμζνθ Κλιματολογία, θ ανάλυςθ, θ επεξεργαςία και θ παρουςίαςθ των κλιματικϊν παραμζτρων γίνεται με τθ χριςθ ςτατιςτικϊν μεκόδων. Βαςικι αρχι αποτελεί

Διαβάστε περισσότερα

Εφαρμογζσ Πλθροφορικισ Σεχνολογία Διαχείριςθ Φυςικών Πόρων Ζκφραςθ-Πολιτιςμόσ Ευρωπαϊκόσ Πολιτιςμόσ

Εφαρμογζσ Πλθροφορικισ Σεχνολογία Διαχείριςθ Φυςικών Πόρων Ζκφραςθ-Πολιτιςμόσ Ευρωπαϊκόσ Πολιτιςμόσ Στουσ μακθτζσ που κα φοιτιςουν φζτοσ ςτθν Αϋ Λυκείου κα αρχίςει να εφαρμόηεται θ νζα δομι του λυκείου. Για τθν ειςαγωγι ςτθν τριτοβάκμια εκπαίδευςθ κα μετράει επιπλζον και ο μζςοσ όροσ των βακμϊν των τριϊν

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Γιατί να ςπουδάςω ςτο Τμήμα Μαθηματικών και Εφαρμοςμζνων Μαθηματικών του Πανεπιςτημίου Κρήτησ;

Γιατί να ςπουδάςω ςτο Τμήμα Μαθηματικών και Εφαρμοςμζνων Μαθηματικών του Πανεπιςτημίου Κρήτησ; Γιατί να ςπουδάςω ςτο Τμήμα Μαθηματικών και Εφαρμοςμζνων Μαθηματικών του Πανεπιςτημίου Κρήτησ; To Tμιμα Μακθματικϊν και Εφαρμοςμζνων Μακθματικϊν δθμιουργικθκε το 2013 από τθ ςυνζνωςθ του Σμιματοσ Μακθματικϊν

Διαβάστε περισσότερα

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα:

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 ο Σετ Ασκήσεων Δομές Δεδομένων - Πίνακες Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8

Διαβάστε περισσότερα

ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:

ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: 2008030075 ΕΙΑΓΩΓΗ Το Heartstone είναι ζνα ψθφιακό παιχνίδι καρτϊν που διεξάγιεται πάνω ςτο Battle.net, ζναν διακομιςτι τθσ εταιρίασ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017

Διαβάστε περισσότερα

Slide 1. Εισαγωγή στη ψυχρομετρία

Slide 1. Εισαγωγή στη ψυχρομετρία Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει

Διαβάστε περισσότερα

ΔΚΑΓΑΜΜΑ ΥΡΗΕΣΚΩΝ ΛΕΚΤΟΥΓΚΑΣ ΚΑΚ ΣΥΝΤΗΗΣΗΣ

ΔΚΑΓΑΜΜΑ ΥΡΗΕΣΚΩΝ ΛΕΚΤΟΥΓΚΑΣ ΚΑΚ ΣΥΝΤΗΗΣΗΣ ΔΚΑΓΑΜΜΑ ΥΡΗΕΣΚΩΝ ΛΕΚΤΟΥΓΚΑΣ ΚΑΚ ΣΥΝΤΗΗΣΗΣ ΜΕΤΗΣΗ ΑΡΟΔΟΣΗΣ ε κάκε προλθπτικι ςυντιρθςθ ι όποτε από τθν κακθμερινι παρακολοφκθςθ προκφψει δυςλειτουργία, πραγματοποιοφνται οι απαραίτθτεσ εξειδικευμζνεσ μετριςεισ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

Είναι μια μελζτθ αςκενι-μάρτυρα (case-control). Όςοι ςυμμετζχουν ςτθν μελζτθ ζχουν επιλεγεί με βάςθ τθν ζκβαςθ.

Είναι μια μελζτθ αςκενι-μάρτυρα (case-control). Όςοι ςυμμετζχουν ςτθν μελζτθ ζχουν επιλεγεί με βάςθ τθν ζκβαςθ. Ερϊτθςθ 1 Μια μελζτθ πραγματοποιείται για να εξετάςει αν θ μετεμμθνοπαυςιακι ορμονικι κεραπεία ζχει προςτατευτικό ρόλο για τθν πρόλθψθ εμφράγματοσ του μυοκαρδίου. 1013 γυναίκεσ με οξφ ζμφραγμα του μυοκαρδίου

Διαβάστε περισσότερα

Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων

Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων Ιςοηυγιςμζνα δζντρα και Β- δζντρα Δομζσ Δεδομζνων Περιεχόμενα Ιςοηυγιςμζνα δζντρα Μζκοδοι ιςοηφγιςθσ δζντρων Μονι Περιςτροφι Διπλι Περιςτροφι Β - δζντρα Ιςοηυγιςμζνα δζντρα Η μορφι ενόσ δυαδικοφ δζντρου

Διαβάστε περισσότερα

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και 25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και Γ) Τα ψυκτικά φορτία από είςοδο εξωτερικοφ αζρα. 26. Ποιζσ είναι οι

Διαβάστε περισσότερα

17. Πολυδιάςτατοι πίνακεσ

17. Πολυδιάςτατοι πίνακεσ Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 17. Πολυδιάςτατοι πίνακεσ Ιωάννθσ Κατάκθσ Πολυδιάςτατοι πίνακεσ o Μζχρι τϊρα μιλοφςαμε για μονοδιάςτατουσ πίνακεσ ι int age[5]= 31,28,31,30,31; o Για παράλλθλουσ

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων

Διαβάστε περισσότερα

ΠΟΙΟΣΗΣΑ ΣΩΝ ΝΕΡΩΝ ΚΟΛΤΜΒΗΗ ΣΗΝ ΕΛΛΑΔΑ

ΠΟΙΟΣΗΣΑ ΣΩΝ ΝΕΡΩΝ ΚΟΛΤΜΒΗΗ ΣΗΝ ΕΛΛΑΔΑ Ειδική Γραμματεία Τδάτων ΠΟΙΟΣΗΣΑ ΣΩΝ ΝΕΡΩΝ ΚΟΛΤΜΒΗΗ ΣΗΝ ΕΛΛΑΔΑ Έτοσ αναφοράσ 2010 Μάιοσ 2011 ΠΟΙΟΣΗΣΑ ΝΕΡΩΝ ΚΟΛΤΜΒΗΗ ΣΗΝ ΕΛΛΑΔΑ ΕΣΟ ΑΝΑΦΟΡΑ 2010 Ε Ι Α Γ Ω Γ Ι Κ Α Σ Ο Ι Χ Ε Ι Α Η ποιότθτα των υδάτων κολφμβθςθσ

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

Ιδιότθτεσ πεδίων Γενικζσ.

Ιδιότθτεσ πεδίων Γενικζσ. Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ακράτεια οφρων είναι οποιαςδιποτε μορφισ ακοφςια απώλεια οφρων.

Ακράτεια οφρων είναι οποιαςδιποτε μορφισ ακοφςια απώλεια οφρων. Σί είναι η ακράτεια οφρων; Ακράτεια οφρων είναι οποιαςδιποτε μορφισ ακοφςια απώλεια οφρων. Ποιά είναι η επίπτωςή τησ ςτο γυναικείο πληθυςμό; Γενικά 27% των γυναικών κα παρουςιάςουν κάποιο τφπο ακράτειασ

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

Πειραματικι Ψυχολογία (ΨΧ66)

Πειραματικι Ψυχολογία (ΨΧ66) Πειραματικι Ψυχολογία (ΨΧ66) Διδάςκουςα: Αλεξάνδρα Οικονόμου Παρουςίαςη διαλζξεων: Πζτροσ Ροφςςοσ Διάλεξη 1 Ειςαγωγι Αντικείμενο και τρόποσ λειτουργίασ του μακιματοσ Τι είναι επιςτιμθ; Καλωςορίςατε ςτο

Διαβάστε περισσότερα

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΕΘΝΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΕΘΝΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΕΘΝΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΧΕΣΕΙΣ Γιώργος Ν. Μαγούλιος, Κακθγθτις Τμιμα Λογιστικής & Χρηματοοικονομικής Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative

Διαβάστε περισσότερα

Δζντρα. Δομζσ Δεδομζνων

Δζντρα. Δομζσ Δεδομζνων Δζντρα Δομζσ Δεδομζνων Περιεχόμενα Δζντρα Γενικζσ ζννοιεσ Κόμβοσ ενόσ δζντρου Δυαδικά δζντρα αναηιτθςθσ Αναηιτθςθ Κόμβου Ειςαγωγι ι δθμιουργία κόμβου Δζντρα Γενικζσ ζννοιεσ Οι προθγοφμενεσ δομζσ που εξετάςτθκαν

Διαβάστε περισσότερα

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9 Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:

Διαβάστε περισσότερα

Μάιοσ Η Ελλθνικι Κοινι Γνϊμθ απζναντι ςτα Ιουλιανά γεγονότα του 1965 & τθν πολιτικι κρίςθ τθσ περιόδου (Στάςεισ & Αντιλιψεισ)

Μάιοσ Η Ελλθνικι Κοινι Γνϊμθ απζναντι ςτα Ιουλιανά γεγονότα του 1965 & τθν πολιτικι κρίςθ τθσ περιόδου (Στάςεισ & Αντιλιψεισ) Η Ελλθνικι Κοινι Γνϊμθ απζναντι ςτα Ιουλιανά γεγονότα του 1965 & τθν πολιτικι κρίςθ τθσ περιόδου 1965 1967 (Στάςεισ & Αντιλιψεισ) Μάιοσ 2008 PI0826 / Διάγραμμα 1 Η ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΕΕΥΝΑΣ ΕΤΑΙΕΙΑ: ΑΝΑΘΕΣΗ:

Διαβάστε περισσότερα

ΣΑ ΔΑΘ ΣΘΝ ΕΛΛΑΔΑ. Θ παραγωγι δαςικϊν προϊόντων. H εκτίμθςθ των ποςοτιτων

ΣΑ ΔΑΘ ΣΘΝ ΕΛΛΑΔΑ. Θ παραγωγι δαςικϊν προϊόντων. H εκτίμθςθ των ποςοτιτων ΣΑ ΔΑΘ ΣΘΝ ΕΛΛΑΔΑ Θ παραγωγι δαςικϊν προϊόντων H εκτίμθςθ των ποςοτιτων «Θ αειφορία του δάςουσ είναι προχπόκεςθ για τθν ςωτθρία του περιβάλλοντοσ, του κλίματοσ και του ανκρϊπου.» Μεταφορά ξυλείασ από το

Διαβάστε περισσότερα

Ο ήχοσ ωσ φυςικό φαινόμενο

Ο ήχοσ ωσ φυςικό φαινόμενο Ο ήχοσ ωσ φυςικό φαινόμενο Φφλλο Εργαςίασ Ονοματεπώνυμο. Παραγωγή και διάδοςη του ήχου Ήχοσ παράγεται όταν τα ςωματίδια κάποιου υλικοφ μζςου αναγκαςκοφν να εκτελζςουν ταλάντωςθ. Για να διαδοκεί ο ιχοσ

Διαβάστε περισσότερα

HY437 Αλγόριθμοι CAD

HY437 Αλγόριθμοι CAD HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 ΗΥ437 - Πολυεπίπεδθ Λογικι Απλοποίθςθ με Περιεχόμενα Είδθ Αδιάφορων Τιμϊν ςε Πολφ-επίπεδα Δυαδικά Δίκτυα Αδιάφορεσ

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

φγκριςθ Πλθκυςμών 1. Ζλεγχοι Τποκζςεων για τθ Διαφορά των μζςων τιμών δφο Πλθκυςμών Δείγματα Ανεξάρτθτα : 1 2 Z t s Pooled Variance t- test

φγκριςθ Πλθκυςμών 1. Ζλεγχοι Τποκζςεων για τθ Διαφορά των μζςων τιμών δφο Πλθκυςμών Δείγματα Ανεξάρτθτα : 1 2 Z t s Pooled Variance t- test φγκριςθ Πλθκυςμών 1. Ζλεγχοι Τποκζςεων για τθ Διαφορά των μζςων τιμών δφο Πλθκυςμών Δείγματα Ανεξάρτθτα Προχποκζςεισ Εναλλακτικι Τπόκεςθ τατιςτικό Κριτικζσ Σιμζσ ( 1 ) Πλθκυςμοί Κανονικοί Διακυμάνςεισ

Διαβάστε περισσότερα

ΔΕΛΣΙΟ ΣΤΠΟΤ ΣΟΧΑΙ ΑΕ: «ΚΛΑΔΙΚΕ ΣΟΧΕΤΕΙ» ΑΚΣΟΠΛΟΪΑ: ΕΠΙΒΑΣΗΓΟ ΝΑΤΣΙΛΙΑ

ΔΕΛΣΙΟ ΣΤΠΟΤ ΣΟΧΑΙ ΑΕ: «ΚΛΑΔΙΚΕ ΣΟΧΕΤΕΙ» ΑΚΣΟΠΛΟΪΑ: ΕΠΙΒΑΣΗΓΟ ΝΑΤΣΙΛΙΑ ΔΕΛΣΙΟ ΣΤΠΟΤ ΣΟΧΑΙ ΑΕ: «ΚΛΑΔΙΚΕ ΣΟΧΕΤΕΙ» ΑΚΣΟΠΛΟΪΑ: ΕΠΙΒΑΣΗΓΟ ΝΑΤΣΙΛΙΑ ε κρίςιμο ςθμείο βρίςκεται θ επιβατθγόσ ναυτιλία, ςφμφωνα με μελζτθ που εκπόνθςε θ ΣΟΧΑΙ φμβουλοι Επιχειριςεων ΑΕ, ςτο πλαίςιο τθσ

Διαβάστε περισσότερα