3 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή"

Transcript

1 3 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή Υπάρχει σε πολλούς η εντύπωση ότι το κύριο κίνητρο για την ανάπτυξη της Θεωρίας των Πιθανοτήτων προήλθε από το ενδιαφέρον του ανθρώπου για τα τυχερά παιχνίδια Σημαντική μάλιστα ώθηση στην ανάπτυξη του κλάδου αυτού των Μαθηματικών αποτέλεσε η γόνιμη αλληλογραφία που αναπτύχθηκε ανάμεσα στους Pascal και Fermat το 17ο αιώνα με αφορμή διάφορα προβλήματα που προέκυψαν από την ενασχόληση του ανθρώπου με τα τυχερά παιχνίδια Μολονότι όμως τα τυχερά παιχνίδια ήταν ευρέως διαδεδομένα και στους Αρχαίους Έλληνες και στους Ρωμαίους, η Θεωρία των Πιθανοτήτων δεν αναπτύχθηκε κατά την αρχαιότητα, όπως συνέβη με άλλους κλάδους των Μαθηματικών, αλλά πολύ αργότερα, το 16ο και 17ο αιώνα μχ Γι αυτό πολλοί απορρίπτουν την άποψη ότι η Θεωρία των Πιθανοτήτων οφείλει τη γένεσή της στην ενασχόληση του ανθρώπου με τα τυχερά παιχνίδια και την αποδίδουν στις ανάγκες να λυθούν προβλήματα που παρουσιάστηκαν με την ανάπτυξη του εμπορίου, των ασφαλίσεων, της συλλογής εσόδων του κράτους κτλ Η ανάπτυξη της Θεωρίας των Πιθανοτήτων οφείλεται επίσης και στις ανάγκες των Φυσικών Επιστημών όπως η εφαρμογή της Θεωρίας Σφαλμάτων σε αστρονομικές παρατηρήσεις Η Θεωρία των Πιθανοτήτων αναπτύχθηκε ακόμα περισσότερο το 18ο αιώνα με τις αξιοσημείωτες εργασίες των μαθηματικών ernoulli, De Moivre, Laplace και Gauss Ιδιαίτερα ο Laplace με τις εργασίες του άνοιξε μια καινούργια εποχή για τη Θεωρία Πιθανοτήτων Γιατί ο Laplace δεν περιορίζεται μόνο στη μαθηματική ανάλυση των τυχερών παιγνιδιών, αλλά εφαρμόζει τα συμπεράσματά του και σε ένα πλήθος από επιστημονικά και πρακτικά προβλήματα Έτσι, με αφορμή τη μελέτη των σφαλμάτων που προκύπτουν στις επαναλαμβανόμενες μετρήσεις του ίδιου αστρονομικού μεγέθους ανακαλύπτεται η περίφημη κανονική κατανομή του Gauss Κατόπιν αποδεικνύεται ότι η κανονική κατανομή απεικονίζει όχι μόνο την κατανομή των σφαλμάτων των αστρονομικών παρατηρήσεων αλλά και την κατανομή πολλών βιολογικών, κοινωνικών και φυσικών φαινομένων Έτσι, στη διάρκεια του 19ου αιώνα γεννιούνται νέοι κλάδοι των εφαρμοσμένων μαθηματικών,

2 138 όπως είναι η Θεωρία των Σφαλμάτων, τα Ασφαλιστικά Μαθηματικά και η Στατιστική Μηχανική Στις μέρες μας η Θεωρία των Πιθανοτήτων με τις εργασίες πολλών διάσημων μαθηματικών, όπως είναι οι Chebyshev, Markov, Von Mises, Kolmogorov κά, έχει σημειώσει αλματώδη πρόοδο Καινούργια θεωρητικά αποτελέσματα παρέχουν νέες δυνατότητες για τη χρησιμοποίηση των μεθόδων της Θεωρίας των Πιθανοτήτων Είναι αξιοσημείωτο το γεγονός ότι οι εφαρμογές των Πιθανοτήτων αναφέρονται σε ένα ευρύτατο φάσμα επιστημών όπως η Φυσική, η Χημεία, η Γενετική, η Ψυχολογία, η Οικονομολογία, η Τηλεπικοινωνία, η Μετεωρολογία κτλ Η Θεωρία των Πιθανοτήτων ανήκει στους κλάδους των Μαθηματικών που συμβαδίζουν με την ανάπτυξη των φυσικών επιστημών και της τεχνολογίας Αυτό δε σημαίνει βέβαια ότι η Θεωρία των Πιθανοτήτων είναι απλώς ένα βοηθητικό εργαλείο για τη λύση πρακτικών προβλημάτων των άλλων επιστημών Απεναντίας έχει μετασχηματιστεί σε έναν αυτοτελή κλάδο των καθαρών Μαθηματικών, που έχει δικά του προβλήματα και δικές του μεθόδους 31 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Όπως γνωρίζουμε από τη Φυσική, αν θερμάνουμε αποσταγμένο νερό σε Κελσίου στην επιφάνεια της θάλασσας, δηλαδή σε ατμοσφαιρική πίεση 760 mm Hg, το νερό θα βράσει Επίσης, αν αφήσουμε ένα σώμα να πέσει στο κενό υπό την επίδραση της βαρύτητας, μπορούμε να προβλέψουμε με ακρίβεια το διάστημα που θα διανύσει σε ορισμένο χρόνο t Κάθε τέτοιο πείραμα κατά το οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό deterministic πείραμα Υπάρχουν όμως και πειράματα των οποίων δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνονται φαινομενικά τουλάχιστον κάτω από τις ίδιες συνθήκες Ένα τέτοιο πείραμα ονομάζεται πείραμα τύχης random experiment Για παράδειγμα, δεν μπορούμε να προβλέψουμε με ακρίβεια τον αριθμό των τροχαίων ατυχημάτων που συμβαίνουν σε μια εβδομάδα σε ένα σημείο μιας εθνικής οδού, αφού ο αριθμός αυτός εξαρτάται από πολλούς απρόβλεπτους παράγοντες Πειράματα τύχης είναι και τα εξής: 1 Ρίχνεται ένα νόμισμα και καταγράφεται η άνω όψη του 2 Ρίχνεται ένα ζάρι και καταγράφεται η ένδειξη της άνω έδρας του 3 Διαλέγεται αυθαίρετα μια οικογένεια με δύο παιδιά και εξετάζεται ως προς

3 139 το φύλο των παιδιών και τη σειρά γέννησής τους 4 Ρίχνεται ένα νόμισμα ώσπου να φέρουμε γράμματα αλλά όχι περισσότερο από τρεις φορές 5 Επιλέγεται τυχαία μια τηλεφωνική συνδιάλεξη και καταγράφεται η διάρκειά της 6 Γίνεται η κλήρωση του ΛΟΤΤΟ και καταγράφεται το αποτέλεσμα 7 Την παραμονή του Πάσχα, στις 5 μμ, μετράται το μήκος της ουράς των αυτοκινήτων στα πρώτα διόδια της Εθνικής οδού Αθηνών-Λαμίας 8 Επιλέγεται τυχαία μια μέρα της εβδομάδος και μετράται ο αριθμός των τηλεθεατών που παρακολούθησαν το απογευματινό δελτίο ειδήσεων στην ΕΤ1 9 Επιλέγεται τυχαία μια ραδιενεργός πηγή και καταγράφεται ο αριθμός των εκπεμπόμενων σωματιδίων σε συγκεκριμένο χρονικό διάστημα Δειγματικός Χώρος Όλα τα αποτελέσματα που μπορούν να εμφανιστούν σε ένα πείραμα τύχης λέγονται δυνατά αποτελέσματα ή δυνατές περιπτώσεις του πειράματος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος sample space και συμβολίζεται συνήθως με το γράμμα Ω Αν δηλαδή ω 1, ω2,, ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος τύχης, τότε ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω { ω1, ω2,, ωκ } Έτσι, στο πρώτο από τα παραπάνω πειράματα τύχης, αν με Κ συμβολίσουμε το αποτέλεσμα να φέρουμε κεφαλή και με Γ το αποτέλεσμα να φέρουμε γράμματα, τότε ο δειγματικός χώρος είναι Ω { Κ, Γ} Επίσης, στο δεύτερο από τα παραπάνω πειράματα τύχης η ένδειξη της άνω έδρας μπορεί να είναι ένας από τους αριθμούς 1, 2, 3, 4, 5, 6 Επομένως, ο δειγματικός χώρος είναι {1,2,3, 4,5, 6} Ενδεχόμενα Το σύνολο που έχει ως στοιχεία ένα ή περισσότερα αποτελέσματα ενός πειράματος τύχης λέγεται ενδεχόμενο event ή γεγονός Για παράδειγμα, στη ρίψη ενός ζαριού τα σύνολα {2, 4,6}, {1,3,5 } και Γ {6} είναι ενδεχόμενα Το Α είναι το ενδεχόμενο να φέρουμε άρτιο αριθμό, το Β να φέρουμε περιττό αριθμό και το Γ να φέρουμε 6 Είναι φανερό ότι ένα ενδεχόμενο είναι υποσύνολο του δειγματικού χώρου Ένα ενδεχόμενο λέγεται απλό όταν έχει ένα μόνο στοιχείο και σύνθετο αν έχει περισσότερα στοιχεία Για παράδειγμα, το Γ είναι ένα απλό ενδεχόμενο, ενώ τα Α και Β είναι σύνθετα

4 140 ενδεχόμενα Όταν το αποτέλεσμα ενός πειράματος, σε μια συγκεκριμένη εκτέλεσή του είναι στοιχείο ενός ενδεχομένου, τότε λέμε ότι το ενδεχόμενο αυτό πραγματοποιείται ή συμβαίνει Γι αυτό τα στοιχεία ενός ενδεχομένου λέγονται και ευνοϊκές περιπτώσεις για την πραγματοποίησή του Έτσι, για παράδειγμα, το ενδεχόμενο {2, 4,6} έχει τρεις ευνοϊκές περιπτώσεις και πραγματοποιείται, όταν φέρουμε 2 ή 4 ή 6 Ο ίδιος ο δειγματικός χώρος Ω ενός πειράματος θεωρείται ότι είναι ενδεχόμενο, το οποίο μάλιστα πραγματοποιείται πάντοτε, αφού όποιο και αν είναι το αποτέλεσμα του πειράματος θα ανήκει στο Ω Γι αυτό το Ω λέγεται βέβαιο ενδεχόμενο Δεχόμαστε ακόμα ως ενδεχόμενο και το κενό σύνολο που δεν πραγματοποιείται σε καμιά εκτέλεση του πειράματος τύχης Γι αυτό λέμε ότι το είναι το αδύνατο ενδεχόμενο Το πλήθος των στοιχείων ενός ενδεχομένου Α θα το συμβολίζουμε με N Επομένως, αν {1,2,3, 4,5,6} και {2, 4,6} έχουμε N 3, N 6 και N } 0 Πράξεις με Ενδεχόμενα Όπως είδαμε, τα ενδεχόμενα είναι υποσύνολα του δειγματικού χώρου Ω Επομένως, μεταξύ των ενδεχομένων ενός πειράματος μπορούν να οριστούν οι γνωστές πράξεις μεταξύ των συνόλων, από τις οποίες προκύπτουν νέα ενδεχόμενα Έτσι, αν Α και Β είναι δύο ενδεχόμενα, έχουμε: Το ενδεχόμενο, που διαβάζεται Α τομή Β ή Α και Β και πραγματοποιείται, όταν πραγματοποιούνται συγχρόνως τα Α και Β Ω Το ενδεχόμενο, που διαβάζεται Α ένωση Β ή Α ή Β και πραγματοποιείται, όταν πραγματοποιείται ένα τουλάχιστον από τα Α, Β Ω

5 141 Το ενδεχόμενο, που διαβάζεται όχι Α ή συμπληρωματικό του Α και πραγματοποιείται, όταν δεν πραγματοποιείται το Α Το λέγεται και αντίθετο του Α Ω Το ενδεχόμενο, που διαβάζεται διαφορά του Β από το Α και πραγματοποιείται, όταν πραγματοποιείται το Α αλλά όχι το Β Είναι εύκολο να δούμε ότι Ω Στον παρακάτω πίνακα τα Α και Β συμβολίζουν ενδεχόμενα ενός πειράματος και το ω ένα αποτέλεσμα του πειράματος αυτού Στην αριστερή στήλη του πίνακα αναγράφονται διάφορες σχέσεις για τα Α και Β διατυπωμένες στην κοινή γλώσσα, και στη δεξιά στήλη αναγράφονται οι ίδιες σχέσεις αλλά διατυπωμένες στη γλώσσα των συνόλων Το ενδεχόμενο Α πραγματοποιείται Το ενδεχόμενο Α δεν πραγματοποιείται Ένα τουλάχιστον από τα Α και Β πραγματοποιείται Πραγματοποιούνται αμφότερα τα Α και Β Δεν πραγματοποιείται κανένα από τα Α και Β Πραγματοποιείται μόνο το Α Η πραγματοποίηση του Α συνεπάγεται την πραγματοποίηση του Β ω ω ή ω ω ω ω ω ή ω Για παράδειγμα, στη ρίψη ενός ζαριού έστω τα ενδεχόμενα {1,2,3,4 } και {2,4,6} Αν το αποτέλεσμα της ρίψης είναι ο αριθμός 1, τότε τα ενδεχόμενα,,, πραγματοποιούνται, ενώ τα,,,, δεν πραγματοποιούνται

6 142 Ασυμβίβαστα Ενδεχόμενα Στη ρίψη ενός ζαριού αν Α είναι το ενδεχόμενο να φέρουμε άρτιο αριθμό και Β το ενδεχόμενο 2 να φέρουμε περιττό αριθμό, έχουμε {2, 4,6} και {1,3,5 } Παρατηρούμε ότι τα Α και Β 6 5 δεν μπορούν να πραγματοποιηθούν συγχρόνως, Ω αφού δεν έχουν κανένα κοινό στοιχείο Στην περίπτωση αυτή τα Α και Β λέγονται ασυμβίβαστα Γενικά: Δύο ενδεχόμενα Α και Β λέγονται ασυμβίβαστα, όταν Δύο ασυμβίβαστα ενδεχόμενα λέγονται επίσης ξένα μεταξύ τους ή αμοιβαίως αποκλειόμενα ΕΦΑΡΜΟΓΕΣ 1 Ρίχνουμε ένα νόμισμα τρεις διαδοχικές φορές i Να γραφτεί ο δειγματικός χώρος Ω του πειράματος ii Να παρασταθούν με αναγραφή τα ενδεχόμενα που προσδιορίζονται από την αντίστοιχη ιδιότητα: Α 1 : Ο αριθμός των Κ υπερβαίνει τον αριθμό των Γ Α 2 : Ο αριθμός των Κ είναι ακριβώς 2 Α 3 : Ο αριθμός των Κ είναι τουλάχιστον 2 Α 4 : Ίδια όψη και στις τρεις ρίψεις Α 5 : Στην πρώτη ρίψη φέρνουμε Κ iii Να βρεθούν τα ενδεχόμενα 3, 5 2, 5 4 ΛΥΣΗ i Για να προσδιορίσουμε το δειγματικό χώρο, θα χρησιμοποιήσουμε ένα δεντροδιάγραμμα: 1 η ρίψη Κ Γ 2 η ρίψη Κ Γ Κ Γ 3 η ρίψη Κ Γ Κ Γ Κ Γ Κ Γ Αποτέλεσμα Κ Κ Κ Κ Κ Γ Κ Γ Κ Κ Γ Γ Γ Κ Κ Γ Κ Γ Γ Γ Κ Γ Γ Γ

7 143 Άρα, ο δειγματικός χώρος του πειράματος αποτελείται από διατεταγμένες τριάδες με στοιχεία το Κ και το Γ και είναι Ω { KKK, KKΓ, KΓ K, KΓΓ, ΓKK, ΓKΓ, ΓΓK, ΓΓΓ} ii Έχοντας υπόψη το δειγματικό χώρο Ω και την αντίστοιχη ιδιότητα έχουμε: 1 { ΚΚΚ, ΚΚΓ, ΚΓΚ, ΓΚΚ} 2 { ΚΚΓ, ΚΓΚ, ΓΚΚ} 3 { ΚΚΚ, ΚΚΓ, ΚΓΚ, ΓΚΚ} Παρατηρούμε ότι { ΚΚΚ, ΓΓΓ} 5 { ΚΚΚ, ΚΓΓ, ΚΓΚ, ΚΓΓ} iii Το 3 περιέχει εκείνα τα στοιχεία του δειγματικού χώρου που δεν περιέχει το 3, περιέχει δηλαδή τα στοιχεία στα οποία ο αριθμός των Κ είναι μικρότερος από 2 Επομένως, 3 { ΚΓΓ, ΓΚΓ, ΓΓΚ, ΓΓΓ} Το ενδεχόμενο 5 2 περιέχει τα κοινά στοιχεία των 5 και 2, δηλαδή τα στοιχεία με δύο ακριβώς Κ, εκ των οποίων το ένα στην πρώτη θέση Επομένως, 5 2 { ΚΚΓ, ΚΓΚ} Το ενδεχόμενο 5 4 περιέχει τα στοιχεία που στην πρώτη θέση έχουν Κ ή τα στοιχεία που έχουν ίδιες και τις τρεις ενδείξεις Επομένως, 5 4 { ΚΚΓ, ΚΓΚ, ΚΚΓ, ΚΚΚ, ΓΓΓ} 2 Δίνονται δύο ενδεχόμενα Α και Β ενός πειράματος με δειγματικό χώρο Ω Να παρασταθούν με διαγράμματα Venn και να εκφραστούν με τη βοήθεια συνόλων τα ενδεχόμενα που ορίζονται με τις εκφράσεις: i Πραγματοποιείται μόνο ένα από τα Α και Β ii Δεν πραγματοποιείται κανένα από τα Α και Β ΛΥΣΗ i Επειδή θέλουμε να πραγματοποιείται μόνο το Α ή μόνο το Β, γραμμοσκιάζουμε τις επιφάνειες των Α και Β με εξαίρεση την τομή τους, δηλαδή την κοινή επιφάνειά τους Παρατηρούμε ότι στην περίπτωση αυτή πραγματοποιείται ένα μόνο από τα και Άρα, το ζητούμενο ενδεχόμενο είναι το ή ισοδύναμα το Ω Α Β Β Α

8 144 ii Επειδή θέλουμε να μην πραγματοποιείται κανένα από τα Α και Β, γραμμοσκιάζουμε την επιφάνεια του Ω που είναι εκτός της ένωσης των Α και Β Στην περίπτωση αυτή παρατηρούμε ότι το ζητούμενο σύνολο είναι συμπληρωματικό του, δηλαδή το Ω ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ 1 Ένα κουτί έχει τρεις μπάλες, μια άσπρη, μια μαύρη και μια κόκκινη Κάνουμε το εξής πείραμα: παίρνουμε από το κουτί μια μπάλα, καταγράφουμε το χρώμα της και την ξαναβάζουμε στο κουτί Στη συνέχεια παίρνουμε μια δεύτερη μπάλα και καταγράφουμε επίσης το χρώμα της Όπως λέμε παίρνουμε διαδοχικά δύο μπάλες με επανατοποθέτηση i Ποιος είναι ο δειγματικός χώρος του πειράματος; ii Ποιο είναι το ενδεχόμενο η πρώτη μπάλα να είναι κόκκινη ; iii Ποιο είναι το ενδεχόμενο να εξαχθεί και τις δυο φορές μπάλα με το ίδιο χρώμα ; 2 Να επιλυθεί το προηγούμενο πρόβλημα, χωρίς όμως τώρα να γίνει επανατοποθέτηση της πρώτης μπάλας πριν την εξαγωγή της δεύτερης Όπως λέμε παίρνουμε διαδοχικά δύο μπάλες χωρίς επανατοποθέτηση 3 Μια οικογένεια από την Αθήνα αποφασίζει να κάνει τις επόμενες διακοπές της στην Κύπρο ή στη Μακεδονία Στην Κύπρο μπορεί να πάει με αεροπλάνο ή με πλοίο Στη Μακεδονία μπορεί να πάει με το αυτοκίνητό της, με τρένο ή με αεροπλάνο Αν ως αποτέλεσμα του πειράματος θεωρήσουμε τον τόπο διακοπών και το ταξιδιωτικό μέσο, τότε: i Να γράψετε το δειγματικό χώρο Ω του πειράματος ii Να βρείτε το ενδεχόμενο Α: Η οικογένεια θα πάει με αεροπλάνο στον τόπο των διακοπών της 4 Ένα ξενοδοχείο προσφέρει γεύμα που αποτελείται από τρία πιάτα Το κύριο πιάτο, το συνοδευτικό και το γλυκό Οι δυνατές επιλογές δίνονται στον παρακάτω πίνακα:

9 145 Γεύμα Κύριο πιάτο Συνοδευτικό Γλυκό Επιλογές Κοτόπουλο ή φιλέτο Μακαρόνια ή ρύζι ή χόρτα Παγωτό ή τούρτα ή ζελέ Ένα άτομο πρόκειται να διαλέξει ένα είδος από κάθε πιάτο i Να βρείτε το δειγματικό χώρο του πειράματος ii Να βρείτε το ενδεχόμενο Α: το άτομο επιλέγει παγωτό iii Να βρείτε το ενδεχόμενο Β: το άτομο επιλέγει κοτόπουλο iv Να βρείτε το ενδεχόμενο v Αν Γ το ενδεχόμενο: το άτομο επιλέγει ρύζι, να βρείτε το ενδεχόμενο Γ 5 Η διεύθυνση ενός νοσοκομείου κωδικοποιεί τους ασθενείς σύμφωνα με το αν είναι ασφαλισμένοι ή όχι και σύμφωνα με την κατάσταση της υγείας τους, η οποία χαρακτηρίζεται ως καλή, μέτρια, σοβαρή ή κρίσιμη Η διεύθυνση καταγράφει με 0 τον ανασφάλιστο ασθενή και με 1 τον ασφαλισμένο, και στη συνέχεια δίπλα γράφει ένα από τα γράμματα α, β, γ ή δ, ανάλογα με το αν η κατάστασή του είναι καλή, μέτρια, σοβαρή ή κρίσιμη Θεωρούμε το πείραμα της κωδικοποίησης ενός νέου ασθενούς Να βρείτε: i Το δειγματικό χώρο Ω του πειράματος ii Το ενδεχόμενο Α: η κατάσταση του ασθενούς είναι σοβαρή ή κρίσιμη και είναι ανασφάλιστος iii Το ενδεχόμενο Β: η κατάσταση του ασθενούς είναι καλή ή μέτρια iv Το ενδεχόμενο Γ: ο ασθενής είναι ασφαλισμένος 6 Σε καθεμιά από τις παρακάτω περιπτώσεις να εξετάσετε αν τα ενδεχόμενα Α και Β είναι ασυμβίβαστα: i Ρίχνουμε ένα ζάρι Α είναι το ενδεχόμενο να φέρουμε 3 και Β είναι το ενδεχόμενο να φέρουμε άρτιο αριθμό ii Επιλέγουμε ένα άτομο Α είναι το ενδεχόμενο να έχει γεννηθεί στην Ελλάδα και Β το ενδεχόμενο να είναι καθολικός iii Επιλέγουμε μια γυναίκα Α είναι το ενδεχόμενο να έχει ηλικία άνω των 30 και Β το ενδεχόμενο να είναι παντρεμένη πάνω από 30 χρόνια iv Επιλέγουμε κάποιον με ένα αυτοκίνητο Α είναι το ενδεχόμενο το αυτοκίνητό του να είναι ευρωπαϊκό και Β το ενδεχόμενο να είναι ασιατικό 7 Μεταξύ των οικογενειών με τρία παιδιά επιλέγουμε τυχαία μια οικογένεια και εξετάζουμε τα παιδιά ως προς το φύλο και ως προς τη σειρά γέννησής τους Να γράψετε το δειγματικό χώρο του πειράματος

10 146 Β ΟΜΑΔΑΣ 1 Δύο παίκτες θα παίξουν σκάκι και συμφωνούν νικητής να είναι εκείνος που πρώτος θα κερδίσει δύο παιχνίδια Αν α είναι το αποτέλεσμα να κερδίσει ο πρώτος παίκτης ένα παιχνίδι και β είναι το αποτέλεσμα να κερδίσει ο δεύτερος παίκτης ένα παιχνίδι, να γράψετε το δειγματικό χώρο του πειράματος 2 Ρίχνουμε ένα ζάρι δύο φορές Να βρείτε τα ενδεχόμενα: Α: Το αποτέλεσμα της 1ης ρίψης είναι μεγαλύτερο από το αποτέλεσμα της 2ης ρίψης Β: Το άθροισμα των ενδείξεων στις δύο ρίψεις είναι άρτιος αριθμός Γ: Το γινόμενο των ενδείξεων στις δύο ρίψεις είναι μικρότερο του 5 Στη συνέχεια να βρείτε τα ενδεχόμενα,,, Γ 3 Αν Α και Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω, να αποδείξετε ότι: αν, τότε 4 Έστω Α και Β δύο ενδεχόμενα του ίδιου δειγματικού χώρου Ω Να γράψετε το ενδεχόμενο ως ένωση τριών ξένων μεταξύ τους ενδεχομένων 32 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Εισαγωγή Ένα από τα κύρια χαρακτηριστικά του πειράματος τύχης, όπως είδαμε, είναι η αβεβαιότητα για το ποιο αποτέλεσμα του πειράματος θα εμφανιστεί σε μια συγκεκριμένη εκτέλεσή του Επομένως, αν Α είναι ένα ενδεχόμενο, δεν μπορούμε με βεβαιότητα να προβλέψουμε αν το Α θα πραγματοποιηθεί ή όχι Γι αυτό είναι χρήσιμο να αντιστοιχίσουμε σε κάθε ενδεχόμενο Α έναν αριθμό, που θα είναι ένα μέτρο της προσδοκίας με την οποία αναμένουμε την πραγματοποίησή του Τον αριθμό αυτό τον ονομάζουμε πιθανότητα του Α και τον συμβολίζουμε με P Πώς όμως θα προσδιορίσουμε για κάθε ενδεχόμενο ενός πειράματος τύχης την πιθανότητά του; Δηλαδή πώς θα βρούμε μια διαδικασία με την οποία σε κάθε ενδεχόμενο θα αντιστοιχίζουμε την πιθανότητά του; Θα προσπαθήσουμε στη συνέχεια να απαντήσουμε στα ερωτήματα αυτά Έννοια και Ιδιότητες Σχετικής Συχνότητας

11 147 Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται κ φορές, τότε ο λόγος v κ ονομάζεται σχετική συχνότητα του Α και συμβολίζεται με f Ιδιαίτερα αν ο δειγματικός χώρος ενός πειράματος είναι το πεπερασμένο σύνολο Ω { ω1, ω2,, ωλ} και σε ν εκτελέσεις του πειράματος αυτού τα απλά ενδεχόμενα { ω 1}, { ω2},,{ ωλ πραγματοποιούνται κ 1, κ 2,, κ λ φορές κ κ κ αντιστοίχως, τότε για τις σχετικές συχνότητες f 1 λ f f λ v, v,, των v απλών ενδεχομένων θα έχουμε: 1 0 f i 1, i 1,2,, λ αφού 0 κ i v κ1 κ 2 κ λ v 2 f1 f 2 f λ 1 v v Ας εκτελέσουμε τώρα το ακόλουθο πείραμα: Ρίχνουμε ένα συμμετρικό και ομογενές νόμισμα και σημειώνουμε με Κ το αποτέλεσμα κεφαλή και με Γ το αποτέλεσμα γράμματα Στον παρακάτω πίνακα αναφέρονται το πλήθος των Κ και οι αντίστοιχες σχετικές συχνότητες στις 10, 20, 30,,200 ρίψεις του νομίσματος ενώ στο σχήμα 1 παριστάνεται το αντίστοιχο διάγραμμα σχετικών συχνοτήτων Πίνακας ρίψεων ενός νομίσματος ν κ f κ ,700 0,650 0,533 0,575 0,520 0,517 0,471 0,488 0,478 0,460 0,482 0,508 0,508 0,500 0,486 0,506 0,512 0,494 0,489 0,495 0,5 Διάγραμμα σχετικών συχνοτήτων 1 f k v Παρατηρούμε ότι καθώς αυξάνεται ο αριθμός ν των ρίψεων η σχετική συχνότητα f κ εμφάνισης της κεφαλής σταθεροποιείται γύρω από την τιμή 0,5 ή, όπως λέμε τείνει στον αριθμό 0,5 Αυτό επιβεβαιώνει την προσδοκία μας ότι στη ρίψη ενός συμμετρικού και ομογενούς νομίσματος ή, όπως λέμε, ενός αμερόληπτου νομίσματος, οι σχετικές συχνότητες των ενδεχομένων { K }, { Γ} είναι ίσες Ανάλογα 1

12 148 παραδείγματα μας οδηγούν στο συμπέρασμα ότι οι σχετικές συχνότητες πραγματοποίησης των ενδεχομένων ενός πειράματος σταθεροποιούνται γύρω από κάποιους αριθμούς όχι πάντοτε ίδιους, καθώς ο αριθμός των δοκιμών του πειράματος επαναλαμβάνεται απεριόριστα Το εμπειρικό αυτό εξαγόμενο, το οποίο επιβεβαιώνεται και θεωρητικά, ονομάζεται στατιστική ομαλότητα ή νόμος των μεγάλων αριθμών Θα προσπαθήσουμε τώρα στηριζόμενοι στις προηγούμενες διαπιστώσεις να ορίσουμε την πιθανότητα ενός ενδεχομένου Κλασικός Ορισμός Πιθανότητας Ας εξετάσουμε την ειδική περίπτωση του αμερόληπτου νομίσματος Ρίχνουμε ένα τέτοιο νόμισμα και παρατηρούμε την όψη που θα εμφανιστεί Όπως διαπιστώσαμε προηγουμένως η σχετική συχνότητα καθενός από τα απλά 1 ενδεχόμενα { K }, { Γ} τείνει στον αριθμό Ομοίως θα μπορούσαμε να 2 διαπιστώσουμε ότι στη ρίψη ενός αμερόληπτου ζαριού η σχετική συχνότητα καθενός από τα απλά ενδεχόμενα { 1},{2},{3},{4},{5} και { 6} τείνει στον 1 αριθμό Σε πειράματα όπως τα προηγούμενα λέμε ότι τα δυνατά 6 αποτελέσματα ή, ισοδύναμα, τα απλά ενδεχόμενα είναι ισοπίθανα Ας δούμε τώρα ποια αναμένουμε να είναι η σχετική συχνότητα ενός σύνθετου ενδεχομένου σε ένα πείραμα με ισοπίθανα αποτελέσματα Έστω για παράδειγμα, το ενδεχόμενο να φέρουμε ζυγό αριθμό στη ρίψη ενός αμερόληπτου ζαριού Επειδή το ενδεχόμενο αυτό πραγματοποιείται όταν το αποτέλεσμα του πειράματος είναι 2 ή 4 ή 6 και καθένα από τα αποτελέσματα αυτά εμφανίζεται με σχετική συχνότητα 6 1, η συχνότητα εμφάνισης του ζυγού αριθμού αναμένεται να είναι Γενικά, σε ένα πείραμα με ν ισοπίθανα αποτελέσματα η σχετική συχνότητα ενός ενδεχομένου με κ στοιχεία θα τείνει στον αριθμό ν κ Γι αυτό είναι εύλογο σε ένα πείραμα με ισοπίθανα αποτελέσματα να ορίσουμε ως πιθανότητα του ενδεχομένου Α τον αριθμό: Πλήθος Ευνοϊκών Περιπτώσεων N P Πλήθος Δυνατών Περιπτώσεων N Ω Έτσι, έχουμε τον κλασικό ορισμό της πιθανότητας, που διατυπώθηκε από τον

13 149 Laplace το 1812 Από τον προηγούμενο ορισμό προκύπτει άμεσα ότι: N 1 P 1 N 0 2 P 0 N 3 Για κάθε ενδεχόμενο Α ισχύει 0 P 1, αφού το πλήθος των στοιχείων ενός ενδεχομένου είναι ίσο ή μικρότερο από το πλήθος των στοιχείων του δειγματικού χώρου Αξιωματικός Ορισμός Πιθανότητας Για να μπορεί όμως να χρησιμοποιηθεί ο κλασικός ορισμός της πιθανότητας σε ένα δειγματικό χώρο με πεπερασμένο πλήθος στοιχείων, είναι απαραίτητο τα απλά ενδεχόμενα να είναι ισοπίθανα Υπάρχουν όμως πολλά πειράματα τύχης, των οποίων ο δειγματικός χώρος δεν αποτελείται από ισοπίθανα απλά ενδεχόμενα Όπως για παράδειγμα ο αριθμός των αυτοκινητιστικών δυστυχημάτων μια ορισμένη εβδομάδα, η ρίψη ενός ζαριού που δεν είναι συμμετρικό κτλ Για τις περιπτώσεις αυτές χρησιμοποιούμε τον παρακάτω αξιωματικό ορισμό της πιθανότητας, ο οποίος έχει ανάλογες ιδιότητες με τη σχετική συχνότητα Έστω { ω1, ω2,, ων} ένας δειγματικός χώρος με πεπερασμένο πλήθος στοιχείων Σε κάθε απλό ενδεχόμενο { ω i } αντιστοιχίζουμε έναν πραγματικό αριθμό, που τον συμβολίζουμε με P ωi, έτσι ώστε να ισχύουν: 0 P ωi 1 P ω1 P ω2 P ων 1 Τον αριθμό P ωi ονομάζουμε πιθανότητα του ενδεχομένου { ω i } Ως πιθανότητα P ενός ενδεχομένου { α1, α2,, ακ} ορίζουμε το άθροισμα P α1 P α2 P ακ, ενώ ως πιθανότητα του αδύνατου ενδεχομένου ορίζουμε τον αριθμό P 0 1 Αν P ω i, i 1,2,, v, τότε έχουμε τον κλασικό ορισμό της πιθανότητας v ενός ενδεχομένου Στην πράξη, ιδιαίτερα στην περίπτωση που δεν ισχύει ο κλασικός ορισμός της πιθανότητας, ως πιθανότητα ενός ενδεχομένου Α λαμβάνεται το όριο της σχετικής του συχνότητας ΣΧΟΛΙΟ

14 150 Όταν έχουμε ένα δειγματικό χώρο { ω1, ω2,, ων} και χρησιμοποιούμε τη φράση παίρνουμε τυχαία ένα στοιχείο του Ω, εννοούμε ότι όλα τα δυνατά 1 αποτελέσματα είναι ισοπίθανα με πιθανότητα P ω i, i 1,2,, v v Κανόνες Λογισμού των Πιθανοτήτων Για τις πιθανότητες των ενδεχομένων ενός δειγματικού χώρου Ω ισχύουν οι παρακάτω ιδιότητες, γνωστές ως κανόνες λογισμού των πιθανοτήτων Οι κανόνες αυτοί θα αποδειχθούν στην περίπτωση που τα απλά ενδεχόμενα είναι ισοπίθανα Αποδεικνύεται όμως ότι ισχύουν και στην περίπτωση που τα απλά ενδεχόμενα δεν είναι ισοπίθανα 1 Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει: P P P ΑΠΟΔΕΙΞΗ Αν N κ και N λ, τότε το έχει κ λ στοιχεία, γιατί αλλιώς τα Α και Β δε θα ήταν ασυμβίβαστα Δηλαδή, έχουμε N κ λ N N Επομένως: N P N N N N N N Ω N N P P Η ιδιότητα αυτή είναι γνωστή ως απλός προσθετικός νόμος simply additive law και ισχύει και για περισσότερα από δύο ενδεχόμενα Έτσι, αν τα ενδεχόμενα Α, Β και Γ είναι ανά δύο ασυμβίβαστα θα έχουμε P Γ P P P Γ 2 Για δύο συμπληρωματικά ενδεχόμενα Α και ισχύει: ΑΠΟΔΕΙΞΗ P 1 P

15 151 Επειδή, δηλαδή τα Α και είναι ασυμβίβαστα, έχουμε διαδοχικά, σύμφωνα με τον απλό προσθετικό νόμο: P P P P P P 1 P P Οπότε 1 P P 3 Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P P P P ΑΠΟΔΕΙΞΗ Για δυο ενδεχόμενα Α και Β έχουμε N N N N, 1 αφού στο άθροισμα N N το πλήθος των στοιχείων του υπολογίζεται δυο φορές Αν διαιρέσουμε τα μέλη της 1 με N έχουμε: N N N N N N N N και επομένως P P P P Η ιδιότητα αυτή είναι γνωστή ως προσθετικός νόμος additive law 4 Αν, τότε P P ΑΠΟΔΕΙΞΗ Επειδή έχουμε διαδοχικά: N N N N N N P P 5 Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει Ω Ω Ω

16 152 P P P ΑΠΟΔΕΙΞΗ Επειδή τα ενδεχόμενα και είναι ασυμβίβαστα και, έχουμε: P P P Ω Άρα P P P ΕΦΑΡΜΟΓΕΣ 1 Ρίχνουμε δύο αμερόληπτα ζάρια Να βρεθεί η πιθανότητα να φέρουμε ως αποτέλεσμα δύο διαδοχικούς αριθμούς ΛΥΣΗ Για να βρούμε το δειγματικό χώρο του πειράματος, χρησιμοποιούμε έναν πίνακα διπλής εισόδου, όπως φαίνεται στο ακόλουθο σχήμα 2ο 1ο ,1 2,1 3,1 4,1 5,1 6,1 1,2 2,2 3,2 4,2 5,2 6,2 1,3 2,3 3,3 4,3 5,3 6,3 1,4 2,4 3,4 4,4 5,4 6,4 1,5 2,5 3,5 4,5 5,5 6,5 1,6 2,6 3,6 4,6 5,6 6,6 Από τον πίνακα αυτόν έχουμε ότι ο δειγματικός χώρος Ω έχει 36 ισοπίθανα δυνατά αποτελέσματα, δηλαδή N 36 Το ενδεχόμενο Α: να φέρουμε δύο διαδοχικούς αριθμούς, είναι το {1,2,2,1,2,3,3,2,3,4,4,3,4,5,5,4,5,66,5} δηλαδή N 10 N 10 5 Επομένως, P N 36 18

17 153 Άρα, η πιθανότητα να φέρουμε δύο διαδοχικούς αριθμούς είναι 5 0, 28 ή, 18 στη γλώσσα των ποσοστών, περίπου 28% 2 Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω δίνονται P 0,5, P 0, 4 και P 0, 2 Να βρεθεί η πιθανότητα των ενδεχομένων: i Να μην πραγματοποιηθεί κανένα από τα Α και Β ii Να πραγματοποιηθεί μόνο ένα από τα Α και Β ΛΥΣΗ i Το ενδεχόμενο να μην πραγματοποιηθεί κανένα από τα Α και Β είναι το Επομένως P 1 P 1 P P P 1 0,5 0,4 0,2 1 0,7 0,3 Ω ii Το ενδεχόμενο να πραγματοποιηθεί μόνο ένα από τα Α και Β είναι το Επειδή τα ενδεχόμενα και είναι ασυμβίβαστα, έχουμε: P P P Ω P P P P P P 2P 0,5 0,4 2 0,2 0,5 3 Για δύο ενδεχόμενα ενός δειγματικού χώρου Ω ισχύουν P 0, 6 και P 0,5 i Να εξεταστεί αν τα Α και Β είναι ασυμβίβαστα

18 154 ii Να αποδείξετε ότι 0,1 P 0, 5 ΛΥΣΗ i Αν τα Α και Β ήταν ασυμβίβαστα, από τον απλό προθετικό νόμο των πιθανοτήτων θα είχαμε: P P P 0,6 0,5 1,1 ισχύει, δηλαδή, P 1, που είναι άτοπο Άρα, τα Α και Β δεν είναι ασυμβίβαστα ii Επειδή και, έχουμε P P και P P, επομένως P 0, 5 1 Από τον προσθετικό νόμο των πιθανοτήτων έχουμε: P P P P Ω P 0,6 0,5 P Όμως P 1 Επομένως: 0,6 0,5 P 1 0,6 0,5 1 P 0,1 P 2 Από τις 1 και 2 προκύπτει ότι: 0,1 P 0,5 ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ 1 Από μια τράπουλα με 52 φύλλα παίρνουμε ένα στην τύχη Να βρείτε τις πιθανότητες των ενδεχομένων i το χαρτί να είναι πέντε ii το χαρτί να μην είναι πέντε 2 Να βρείτε την πιθανότητα στη ρίψη δύο νομισμάτων να εμφανιστούν δύο

19 155 γράμματα 3 Ένα κουτί περιέχει μπάλες: 10 άσπρες, 15 μαύρες, 5 κόκκινες και 10 πράσινες Παίρνουμε τυχαίως μια μπάλα Να βρείτε τις πιθανότητες των ενδεχομένων η μπάλα να είναι: i μαύρη ii άσπρη ή μαύρη iii ούτε κόκκινη ούτε πράσινη 4 Σε μια τάξη με 30 μαθητές, ρωτήθηκαν οι μαθητές πόσα αδέλφια έχουν Οι απαντήσεις τους φαίνονται στον επόμενο πίνακα: Αριθμός μαθητών Αριθμός αδελφών Αν επιλέξουμε τυχαία από την τάξη ένα μαθητή, να βρείτε την πιθανότητα η οικογένειά του να έχει τρία παιδιά 5 Έστω τα σύνολα { ωn /10 ω 20}, { ω / ω πολλαπλάσιο του 3} και { ω / ω πολλαπλάσιο του 4} Αν επιλέξουμε τυχαίως ένα στοιχείο του Ω, να βρείτε τις πιθανότητες i να ανήκει στο Α ii να μην ανήκει στο Β 6 Σε έναν αγώνα η πιθανότητα να κερδίσει ο Λευτέρης είναι 30%, η πιθανότητα να κερδίσει ο Παύλος είναι 20% και η πιθανότητα να κερδίσει ο Νίκος είναι 40% Να βρείτε την πιθανότητα i να κερδίσει ο Λευτέρης ή ο Παύλος ii να μην κερδίσει ο Λευτέρης ή ο Νίκος 7 Για τα ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύουν 7 P και 15 2 P Να βρείτε την P 3 17 P, 30 8 Για τα ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύουν 5 P και 6 1 P Να βρείτε την P 3 1 P, 2 9 Για τα ενδεχόμενα Α και Β του ίδιου δειγματικού χώρου είναι γνωστό ότι P P, P 0, 6 και P 0, 2 Να βρείτε την P 10 Για τα ενδεχόμενα Α και Β του ίδιου δειγματικού χώρου Ω δίνεται ότι P, P και P Να βρείτε την P Για δύο ενδεχόμενα του ίδιου δειγματικού χώρου Ω να δείξετε ότι

20 156 P P P 12 Ένα ορισμένο κατάστημα δέχεται πιστωτικές κάρτες D ή V Το 25% των πελατών έχουν κάρτα D, το 55% έχουν κάρτα V και το 15% έχουν και τις δύο κάρτες Ποια είναι η πιθανότητα ένας πελάτης που επιλέγεται τυχαία να έχει μία τουλάχιστον από τις δυο κάρτες; 13 Το 10% των ατόμων ενός πληθυσμού έχουν υπέρταση, το 6% στεφανιαία καρδιακή ασθένεια και το 2% έχουν και τα δύο Για ένα άτομο που επιλέγεται τυχαία ποια είναι η πιθανότητα να έχει α τουλάχιστον μία ασθένεια; β μόνο μία ασθένεια; 14 Από τους μαθητές ενός σχολείου το 80% μαθαίνει αγγλικά, το 30% γαλλικά και το 20% και τις δύο γλώσσες Επιλέγουμε τυχαίως ένα μαθητή Να βρείτε την πιθανότητα να μη μαθαίνει καμιά από τις δύο γλώσσες Β ΟΜΑΔΑΣ 1 Αν για τα ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω έχουμε P κ, P λ και P μ, να βρείτε τις πιθανότητες: i να πραγματοποιηθεί τουλάχιστον ένα από τα Α και Β ii να μην πραγματοποιηθεί κανένα από τα Α και Β iii να πραγματοποιηθεί μόνο ένα από τα Α και Β 2 Σε μια κωμόπολη το 15% των νοικοκυριών δεν έχoυν τηλεόραση, το 40% δεν έχουν βίντεο και το 10% δεν έχουν ούτε τηλεόραση ούτε βίντεο Επιλέγουμε τυχαίως ένα νοικοκυριό Να βρείτε την πιθανότητα να έχει τηλεόραση και βίντεο 3 Αν P 3 P 4, να βρείτε τις πιθανότητες P και P Αν 0 P 1, να αποδείξετε ότι 4 P P 5 Αν Α και Β είναι ενδεχόμενα του ίδιου δειγματικού χώρου Ω με P 0, 6 και P 0, 7, να δείξετε ότι 0,3 P 0, 6 6 Για δύο ενδεχόμενα Α και Β του ίδιου δειγματικού χώρου Ω να δείξετε ότι

21 157 P P P

22 ΣΥΝΔΥΑΣΤΙΚΗ Είδαμε ότι όταν ο δειγματικός χώρος Ω ενός πειράματος τύχης έχει πεπερασμένο πλήθος απλών ενδεχομένων και τα απλά αυτά ενδεχόμενα είναι ισοπίθανα, τότε η πιθανότητα ενός ενδεχομένου Α είναι: N P N Επομένως, όταν έχουμε ισοπίθανα απλά ενδεχόμενα, ο υπολογισμός της P ανάγεται στην απαρίθμηση των στοιχείων των συνόλων Ω και Α Σε πολλά προβλήματα όμως, η απευθείας απαρίθμηση των στοιχείων του δειγματικού χώρου και των ενδεχομένων που μας ενδιαφέρουν είναι δύσκολη ή και πρακτικά αδύνατη Στις περιπτώσεις αυτές η απαρίθμηση διευκολύνεται με τις επόμενες μεθόδους της Συνδυαστικής η οποία είναι ένας από τους βασικούς κλάδους των Μαθηματικών Βασική Αρχή Απαρίθμησης Ας υποθέσουμε ότι κάποιος επιθυμεί να ταξιδέψει από τη Θεσσαλονίκη, μέσω Αθηνών, στο Ηράκλειο Κρήτης χωρίς να χρησιμοποιήσει το ΙΧ αυτοκίνητό του Από τη Θεσσαλονίκη μπορεί να ταξιδέψει στην Αθήνα με τρένο Τ ή λεωφορείο Λ ή αεροπλάνο Α ή πλοίο Π και από την Αθήνα στο Ηράκλειο με πλοίο ή αεροπλάνο Ενδιαφερόμαστε για τους διαφορετικούς τρόπους ως προς το ταξιδιωτικό μέσο με τους οποίους μπορεί να πάει κάποιος από τη Θεσσαλονίκη στο Ηράκλειο Το ταξίδι λοιπόν γίνεται σε δύο φάσεις Η πρώτη φάση είναι η μετάβαση από τη Θεσσαλονίκη στην Αθήνα και η δεύτερη από την Αθήνα στο Ηράκλειο Η πρώτη φάση του ταξιδιού μπορεί να γίνει με 4 τρόπους και η δεύτερη με 2 τρόπους Σε κάθε τρόπο της πρώτης φάσης αντιστοιχούν οι δύο τρόποι της δεύτερης φάσης Άρα το ταξίδι Θεσσαλονίκη-Ηράκλειο μπορεί να γίνει με διαφορετικούς τρόπους Τα παραπάνω φαίνονται παραστατικά στο επόμενο δεντροδιάγραμμα: Αρχή 1 η φάση Θεσσαλονίκη-Αθήνα Τ Λ Α Π 2 η φάση Αθήνα-Ηράκλειο Α Π Α Π Α Π Α Π Αποτέλεσμα Τ, Α Τ, Π Λ, Α Λ, Π Α, Α Α, Π Π, Α Π, Π

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Συνδυαστική

Διακριτά Μαθηματικά Συνδυαστική Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 7 Αυγούστου 2012 Η είναι ένα κομμάτι των Μαθηματικών που επικεντρώνεται στη "μέτρηση" του πλήθους των αντικειμένων ενός συνόλου. Η ασχολείται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ ΜΕΡΟΣ Α 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ 69 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ Πείραμα τύχης- Δειγματικός χώρος Ένα πείραμα το οποίο όσες φορές και αν το επαναλάβουμε, δεν μπορούμε να προβλέψουμε το αποτέλεσμα

Διαβάστε περισσότερα

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ . Ασκήσεις σχ. βιβλίου σελίδας 54 56 Α ΟΜΑ ΑΣ. Από µία τράπουλα µε 5 φύλλα παίρνουµε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχοµένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν είναι 5 i) εχόµαστε

Διαβάστε περισσότερα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ Συχνότητα Σχετική συχνότητα Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται va φορές,τότε va ο αριθμός va λέγεται συχνότητα του ενδεχομένου

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Το κύριο αντικείμενο της Συνδυαστικής Οι τεχνικές υπολογισμού του πλήθους των στοιχείων πεπερασμένων συνόλων ή υποσυνό-

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1.1 Απαρίθμηση και καταγραφή 1.2 Η αρχή του αθροίσματος 1.3 Η πολλαπλασιαστική αρχή 1.4 Άλλοι κανόνες απαρίθμησης 1.5 Πιθανότητες σε πεπερασμένους δειγματικούς χώρους 1.6 Γενικές

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος ΠΙΘΑΝΟΤΗΤΕΣ.Ένα κουτί περιέχει τέσσερις λαχνούς αριθμημένους από το εώς το 4. Εκλέγουμε έναν λαχνό στην τύχη,σημειώνουμε το αποτέλεσμα και δεν ξανατοποθετούμε τον λαχνό στο κουτί. Επαναλαμβάνουμε το πείραμα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. Ρίχνουµε ένα νόµισµα τρείς φορές (i) Να βρείτε τον δειγµατικό χώρο του πειράµατος τύχης. (ii) Να βρείτε την πιθανότητα των ενδεχοµένων: Α: Οι τρεις ενδείξεις είναι ίδιες. Β:

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις 1 ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ 1 Συνδυαστική ανάλυση Η συνδυαστική ανάλυση είναι οι διάφοροι μέθοδοι και τύποι που χρησιμοποιούνται στη λύση προβλημάτων εκτίμησης του πλήθους των στοιχείων ενός πεπερασμένου συνόλου

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΘΗΜΤΙΚ ΓΕΝΙΚΗΣ ΠΙΔΕΙΣ ΠΙΘΝΟΤΗΤΕΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου Π Ι Θ Ν Ο Τ Η Τ Ε Σ ΟΡΙΣΜΟΙ Πείραμα τύχης λέγεται το πείραμα το οποίο όσες φορές και αν επαναληφθεί (φαινομενικά τουλάχιστον

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Στόχοι- Υποστόχοι- Δραστηριότητες Ασημίνα Ασβεστά, Κωνσταντίνα Ζαχαροπούλου, Σοφία Αιζενμπαχ Πείραμα Τύχης Πιθανότητα Ενδεχομένου ΠΕΙΡΑΜΑ ΤΥΧΗΣ Α Β Γ Δ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: μεταθέσεις και συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. 8. * Αν Ω είναι ο δειγµατικός χώρος ενός πειράµατος τύχης,

ΠΙΘΑΝΟΤΗΤΕΣ. 8. * Αν Ω είναι ο δειγµατικός χώρος ενός πειράµατος τύχης, 3ο Κεφάλαιο ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν Ω είναι δειγµατικός χώρος ενός πειράµατος τύχης, τότε Ρ (Ω) = 1. 2. * Αν Α είναι ενδεχόµενο ενός πειράµατος τύχης τότε, 0 Ρ (Α) 1. 3. *

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

Πιθανότητες και βακτηριουρία πυελονεφρίτιδα Πιθανότητες και ο καρκίνος της μήτρας Ιατρική διάγνωση με υπολογιστές

Πιθανότητες και βακτηριουρία πυελονεφρίτιδα Πιθανότητες και ο καρκίνος της μήτρας Ιατρική διάγνωση με υπολογιστές ΠΙΘΑΝΟΤΗΤΕΣ Πιθανότητες και Στατιστική ειγματικός χώρος Ενδεχόμενα Ορισμοί και νόμοι των πιθανοτήτων εσμευμένη πιθανότητα Ολική πιθανότητα Κανόνας του Bayes Υποκειμενική πιθανότητα Πιθανότητες και βακτηριουρία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση f () είναι παραγωγίσιμη στο R με f () Α Αν είναι οι τιμές μιας μεταβλητής Χ ενός δείγματος παρατηρήσεων μεγέθους ν ( ) να ορίσετε την

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

Συμπληρωματικές Ασκήσεις

Συμπληρωματικές Ασκήσεις Συμπληρωματικές Ασκήσεις Ασκήσεις Στατιστικής ΙΙ Αν για ένα ενδεχόμενο ισχύει Α, να ρείτε την πιθανότητα εμφάνισης του Έστω, τα ενδεχόμενα ότι ένας συγκεκριμένος γιατρός ρίσκεται στις πμ στο ιατρείο του

Διαβάστε περισσότερα

3.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ. 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα.

3.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ. 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 1 3.1 ΕΙΓΜΤΙΚΟΣ ΧΡΟΣ - ΕΝ ΕΧΟΜΕΝ ΘΕΡΙ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων του πειράµατος

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. 1. Ο παρακάτω πίνακας δίνει το βαθμολογικό επίπεδο των μαθητών ενός σχολικού συγκροτήματος.

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. 1. Ο παρακάτω πίνακας δίνει το βαθμολογικό επίπεδο των μαθητών ενός σχολικού συγκροτήματος. ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Προβλήματα 1. Ο παρακάτω πίνακας δίνει το βαθμολογικό επίπεδο των μαθητών ενός σχολικού συγκροτήματος. Βαθμολογικά ΚΟΡΙΤΣΙΑ ΑΓΟΡΙΑ επίπεδα Γυμνάσιο Λύκειο Γυμνάσιο Λύκειο Χαμηλή

Διαβάστε περισσότερα

1.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ

1.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ 1 1.1 ΕΙΓΜΤΙΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝ ΘΕΩΡΙ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Άσκηση 1 Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες:

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΟΜΙΚΩΝ ΤΗΣ ΣΧΟΛΗΣ Σ.Τ.Ε.Φ Τ.Ε.Ι. ΗΡΑΚΛΕΙΟΥ ΠΑΝΑΓΙΩΤΗΣ ΠΑΠΑΔΑΚΗΣ ΗΡΑΚΛΕΙΟ 008 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ I. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ.

ΠΡΟΛΟΓΟΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ. ΠΡΟΛΟΓΟΣ Το παρόν τεύχος δημιουργήθηκε για να διευκολύνει τους μαθητές στην ΆΜΕΣΗ κατανόηση των απαιτήσεων των ΠΡΟΑΓΩΓΙΚΏΝ ΕΞΕΤΑΣΕΩΝ της Α Λυκείου δίνοντας τους τις εκφωνήσεις μαζί με τις λύσεις (ΘΕΜΑΤΑ

Διαβάστε περισσότερα

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ 7/10/010 ΑΡΧΗ ΤΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΝ ένα αντιείμενο A1 μπορεί να επιλεγεί με k1 αι ένα αντιείμενο A μπορεί να επιλεγεί με k αι η ελογή του ενός απολείει την ταυτόχρονη ελογή του άλλου, ΤΟΤΕ ένα οποιοδήποτε

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ www.askisopolis.gr 3 4 .5381 Ένα κουτί περιέχει άσπρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 0, οι κόκκινες είναι 7, ενώ όλες οι μπάλες μαζί είναι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ 4ο Λύκειο Περιστερίου Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν ααννάά εεννόόττηητταα ΑΛΓΕΒΡΑ

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ). Υπενθυμίσεις Παραδείγματα Ασκήσεις Μελέτη 31 Οκτωβρίου 2014 Πιθανότητες και Στατιστική Διάλεξη 7 Ασκήσεις ΙΙ Δεσμευμένη πιθανότητα, Συνδυαστικά επιχειρήματα Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις: ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ Στέλιιος Μιιχαήλογλου-Δημήτρης Πατσιιμάς Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν

Διαβάστε περισσότερα

Δείξτε ότι αν πιθανότητα Ρ(Α/Β) είναι μεγαλύτερη της πιθανότητας Ρ(Α), τότε πιθανότητα Ρ(Β/Α) είναι μεγαλύτερη της πιθανότητας Ρ(Β);

Δείξτε ότι αν πιθανότητα Ρ(Α/Β) είναι μεγαλύτερη της πιθανότητας Ρ(Α), τότε πιθανότητα Ρ(Β/Α) είναι μεγαλύτερη της πιθανότητας Ρ(Β); Μια παρέα αποτελούμενη από 10 άντρες και 5 γυναίκες, με τυχαίο τρόπο χωρίζονται σε ομάδες 3 ατόμων. Βρείτε την πιθανότητα ότι σε κάθε ομάδα θα υπάρχει ένας τουλάχιστον άνδρας. Απάντηση: Έστω το γεγονός

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

ΙΙΙ εσµευµένη Πιθανότητα

ΙΙΙ εσµευµένη Πιθανότητα ΙΙΙ εσµευµένη Πιθανότητα 1 Λυµένες Ασκήσεις Ασκηση 1 Στρίβουµε ένα νόµισµα δύο ϕορές. Υποθέτοντας ότι και τα τέσσερα στοιχεία του δειγµατοχώρου Ω {(K, K, (K, Γ, (Γ, K, (Γ, Γ} είναι ισοπίθανα, ποια είναι

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 3.2 : Απαρίθμηση Συνδυαστική (ΙΙ). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α). 1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο

Διαβάστε περισσότερα

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται: 4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις

Διαβάστε περισσότερα

Οδηγός των νέων δελτίων

Οδηγός των νέων δελτίων Οδηγός των νέων δελτίων 4-7 Νέα εποχή Η ΟΠΑΠ Α.Ε. στο πλαίσιο της δυναμικής της ανάπτυξης, προχωρά στην αναμόρφωση και ανανέωση των παιχνιδιών της. Με ακόμη πιο λειτουργικό σχεδιασμό, μοντέρνα εμφάνιση

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας, Δαμιανού Χαράλαμπος Σβέρκος Ανδρέας Επ Σύμβουλος Παιδαγωγικού Ινστιτούτου Αναπλ Καθηγητής Παν/μίου Αθηνών Σχολικός

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 4ο Συνδυασμοί 2 2.3 ΣΥΝΔΥΑΣΜΟΙ Έστω Χ= {x 1, x 2,..., x ν } ένα πεπερασμένο σύνολο με ν στοιχεία x 1, x 2,...,

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1.ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Σε ένα σχολείο με 00 μαθητές, οι 90 έχουν ποδήλατο, 36 έχουν «παπί», ενώ 84 άτομα δεν έχουν ούτε ποδήλατο ούτε παπί. Διαλέγουμε

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: α) Δεν επιτρέπεται η χρήση υπολογιστικής μηχανής. β) Δεν επιτρέπεται η χρήση διορθωτικού. γ) Να γράφετε μόνο με μπλε μελάνι. (Για τα σχήματα μπορείτε να χρησιμοποιήσετε

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 102, Στρόβολος 200, Λευκωσία Τηλ. 57-2278101 Φαξ: 57-2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 201 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία:

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε ΠΙΘΑΝΟΤΗΤΕΣ Π ε ι ρ α μ α τ υ χ η ς - Δ ε ι γ μ α τ ι κ ο ς χ ω ρ ο ς. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε το αποτελεσμα,.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.1: Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (Ι). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ τράπεζαθεμάτων θέμαδεύτεροκαιτέταρτο Επιμέλεια: ΕμμανουήλΚ.Σκαλίδης ΑντώνηςΚ.Αποστόλου ΚόμβοςΑτσιποπούλου014-15 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΙΘΑΝΟΤΗΤΕΣ 1. Ένα κουτί περιέχει 5 άσπρες,

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1 ο Αχαρνών 97 Αγ Νικόλαος 086596 ο Αγγ Σικελιανού Περισσός 078688 Ε ΛΙΑΤΣΟΣ Μαθηµατικός 7 t t 5 Ο πληθυσµός µιας κοινωνίας βακτηριδίων δίνεται από τον τύπο P(t) = e e σε δεκάδες µικρόβια και t 0 Α Να αποδειχθεί

Διαβάστε περισσότερα

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών. ΜΕΡΟΣ Α 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ 185 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Διαβάστε περισσότερα

Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ

Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ Επιμέλεια: Σ. Ασημέλλης 1. Σε ένα ποδοσφαιρικό πρωτάθλημα μετέχουν 16 ομάδες. Κάθε ομάδα παίζει με όλες τις υπόλοιπες ως γηπεδούχος και ως φιλοξενούμενη. Νίκη μιας ομάδας

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. (α) Βρέστε την πιθανότητα κανείς από

Διαβάστε περισσότερα